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Residential burglary is a social problem in every major urban area. As such, progress has been to
develop quantitative, informative and applicable models for this type of crime: (1) the Deterministic-
time-step (DTS) model [Short, D’Orsogna, Pasour, Tita, Brantingham, Bertozzi & Chayes (2008)
Math. Models Methods Appl. Sci. 18, 1249–1267], a pioneering agent-based statistical model of res-
idential burglary criminal behaviour, with deterministic time steps assumed for arrivals of events in
which the residential burglary aggregate pattern formation is quantitatively studied for the first time;
(2) the SSRB model (agent-based stochastic-statistical model of residential burglary crime) [Wang,
Zhang, Bertozzi & Short (2019) Active Particles, Vol. 2, Springer Nature Switzerland AG, in press],
in which the stochastic component of the model is theoretically analysed by introduction of a Poisson
clock with time steps turned into exponentially distributed random variables. To incorporate inde-
pendence of agents, in this work, five types of Poisson clocks are taken into consideration. Poisson
clocks (I), (II) and (III) govern independent agent actions of burglary behaviour, and Poisson clocks
(IV) and (V) govern interactions of agents with the environment. All the Poisson clocks are inde-
pendent. The time increments are independently exponentially distributed, which are more suitable
to model individual actions of agents. Applying the method of merging and splitting of Poisson pro-
cesses, the independent Poisson clocks can be treated as one, making the analysis and simulation
similar to the SSRB model. A Martingale formula is derived, which consists of a deterministic and a
stochastic component. A scaling property of the Martingale formulation with varying burglar popula-
tion is found, which provides a theory to the finite size effects. The theory is supported by quantitative
numerical simulations using the pattern-formation quantifying statistics. Results presented here will
be transformative for both elements of application and analysis of agent-based models for residential
burglary or in other domains.

Key words: Applications of continuous-time Markov processes on discrete state spaces, applications
of stochastic analysis (to partial differential equations (PDEs), etc.), PDEs in connection with game
theory, economics, social and behavioural sciences
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1 Introduction

Since residential burglary is a critical social issue in every major urban area, quantitative, infor-
mative and applicable crime models are called for inside and outside of the scientific community.
Mathematical modelling and prediction of crime have been a burgeoning area for more than 10
years and many works have been done (e.g., [3, 4, 6, 11, 12, 38, 39, 56, 59, 60, 66, 70, 72, 76,
77, 78, 81, 84, 86, 87, 88, 90, 91, 92, 93, 94, 98, 99, 104, 106, 108]).

One prominent feature of urban residential burglary is that the crimes are not distributed uni-
formly in time and space but rather exhibit spatio-temporal aggregates called ‘hotspots’. In [93],
a pioneering agent-based statistical model of criminal behaviour for residential burglary (referred
to as the DTS model) is developed and the aggregate pattern formation is quantitatively studied
for the first time. Interactions of agent actions with the environment are described based on the
near-repeat victimisation and the broken-windows effects, which are notions in criminology and
sociology that have been empirically observed [10, 32, 43]. Follow-up works of [93] show that
such simple statistical agent-based model can exhibit both crime displacement and crime sup-
pression in the presence of police activity [90, 91]. In the DTS model, time steps are discretised
with a fixed duration and occur at regular intervals, such that all types of events for all agents
arrive according to the same schedule. However, a more realistic model should treat all events as
occurring independently, according to their own stochastic clock.

To incorporate randomness of arrivals of events into the DTS model, in [104], a Poisson clock
is applied to the DTS model [93] and the time steps are turned into exponentially distributed
random variables, and further stochasticity is brought into the DTS model. The model in [104]
is referred to as the SSRB model (agent-based stochastic-statistical model of residential bur-
glary crime). The introduction of a Poisson clock into the residential burglary model brings in
theoretically the mathematical framework of Markov pure jump processes and interacting par-
ticle systems ([20, 62, 63, 64, 65]). A Martingale formulation is derived for the SSRB model
to express the model as the summation of two components: a deterministic component and a
stochastic component. Together with statistics quantifying the degree of hotspot transience, anal-
ysis of the stochastic component leads to a theory for the finite size effects present in the system.
These effects are observed in the simulations of the DTS model and the SSRB model: both tran-
sient and stationary hotspot dynamical regimes appear in the simulations, and as burglar number
decreases, simulations exhibit more transience. Since the number of operating criminals within
any city is very likely to fall within the regime of hotspot transience observed, a deeper and
quantitative understanding of the finite size effects is relevant to real crime statistics [38, 76].
This is the first time that stochastic analysis is applied into residential burglary models and the
stochastic component is theoretically analysed.

Despite the progress made by the SSRB model, it still has some limitations. Most notably,
in the SSRB model, only one Poisson clock governs all the agents, with all agents acting
simultaneously whenever the clock randomly ticks. However, in reality, criminals (or very small
groups of criminals acting as teams) act independently. Therefore, models are called for in which
independent actions of agents are taken into account. In fact, within the context of the DTS fam-
ily of models, five types of independent Poisson clocks need to be taken into consideration to
describe each agent’s burglary behaviour and their interactions with the environment as well.
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A stochastic-statistical residential burglary model 3

Poisson clocks (I) are assigned to individual agents to govern their burgling, Poisson clocks (II)
govern their movement, Poisson clocks (III) govern replacement of agents, and Poisson clocks
(IV) and Poisson clocks (V) govern the implementation of the near-repeat victimisation and the
broken-windows effects. All these Poisson clocks should be independent.

In this work, we introduce Poisson clocks (I), (II), (III), (IV) and (V) into the SSRB model,
so that agents will act individually instead of acting simultaneously. This residential burglary
model will be referred to as the SSRB-IPC model (agent-based stochastic-statistical model of
residential burglary with independent Poisson clocks). The methodology of the theoretical anal-
ysis and numerical simulations of the SSRB-IPC model employs theory regarding the merging
and splitting of Poisson processes [7], and the independent Poisson processes associated with the
independent Poisson clocks can be treated as one merged Poisson process wherein the Poisson
clocks compete to advance first in the merged Poisson process with probability in proportion to
the rate of each Poisson clock. This method allows the analysis and computation of the SSRB-
IPC model to be very similar to that of the SSRB model [104], and the simulation cost of the
SSRB-IPC model is reduced.

A Martingale formula of the SSRB-IPC model is derived, which consists of a deterministic
and a stochastic component. The deterministic component leads to a hydrodynamic-limit-type
continuum analogue of the SSRB-IPC model. The continuum analogue of the SSRB-IPC model
coincides with that of the DTS model [93] and of the SSRB model [104]. The stochastic compo-
nent of the SSRB-IPC model is less complicated to compute and analyse than that of the SSRB
model, as all the covariances vanish, thanks to the independence of the Poisson clocks. A scaling
property of the stochastic component with varying burglar population is found that provides a
theory to the finite size effects. The theory is supported by quantitative numerical simulations
using the statistics quantifying the degree of hotspot transience first developed in Ref. [104].

The theoretical methods and results found here have broad applicability. Poisson processes
are widely applied in chemistry, biology, physics, etc. (see, e.g., [2, 5, 18, 25, 37, 80]).
However, as far as we know there are not many applications of independent Poisson clocks
into modelling in social science. Many existing social science models do not address indepen-
dence of arrivals of events explicitly [19, 61, 67, 89, 107]. Stochastic models are increasingly
applied as a tool to social sciences, e.g., urban structure, disease transmission and networks
([24, 33, 34]). What is more, pattern formation arises in many complex systems such as social
science ([14, 35, 41, 42, 45, 48, 57, 58, 82, 99, 100, 105]). But quantitative study has been lacking
so far. The mathematical framework with the application of stochastic analysis and quantification
of pattern formation developed here may be therefore broadly useful.

The article is organised as follows. In Section 2, the SSRB-IPC model is introduced and
numerical simulations of the model explored finite size effects. The Martingale formulation
is derived in Section 3.1. Based on the Martingale formulation, a continuum analogue of the
SSRB-IPC model is derived (Section 3.2). The degree of hotspot transience of the simulations
of the SSRB-IPC model and its continuum analogue is quantitatively measured using statistics
(Section 3.3). In Section 3.4, the finite size effects are analysed theoretically based upon the
Martingale formulation. The theory is supported by quantitative simulations. The conclusion is
in Section 4.
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2 The SSRB-IPC model and simulations

2.1 The SSRB-IPC model

The agent-based SSRB-IPC model consists of essentially two components – the stationary
burglary sites and burglar agents jumping from site to site, occasionally committing crimes.
Independent Poisson clocks will govern time increments of evolution of these components.

We assume the domain as D := [0, L] × [0, L] with periodic boundary conditions. The lattice
grid over the domain D has spacing ℓ = L/N , N ∈N. The grid points are denoted as s = (s1, s2),
s1 = ℓ, 2ℓ, · · ·, L, s2 = ℓ, 2ℓ, · · ·, L. And the collection of all the grid points is denoted as S ℓ.
Attached to each grid point s ∈ S ℓ is a pair (nℓ

s (t), Aℓ
s (t)) representing the number of burglar

agents and attractiveness at site s at time t. The attractiveness shows the burglar’s beliefs about
the vulnerability and value of the site. We also assume that Aℓ

s (t) consists of a dynamic term and
a static background term

Aℓ
s (t) = Bℓ

s (t) + A0ℓ
s . (2.1)

Here A0ℓ
s is not necessarily uniform over the lattice grids. And the initial data are given to be

(nℓ
s (0), Bℓ

s (0)) = (n0ℓ
s , B0ℓ

s ).
A type (I) Poisson clock is assigned to each agent to govern his action of burgling. Suppose

that a type (I) clock of an agent advances at time t−. At time t, the agent will burgle his current
location and immediately be removed from the system, representing the burglar fleeing with
his trophy. Type (I) Poisson clocks advance according to independent Poisson processes with
rate Aℓ

s (t), s being the current location of the burglar agent. Thus, the attractiveness numerically
represents the stochastic rate of burglary at a location, given that there is a criminal located there.

A type (II) Poisson clock is assigned to each agent to govern his movement. Suppose that a
type (II) clock of an agent advances at time t−. At time t, the agent will jump from site s to one
of the neighbouring sites, say k, with a probability, qℓ

s→k(t), which is defined by the ratio of the
attractiveness of k over the combined attractiveness of the neighbouring sites of s:

qℓ
s→k(t) = Aℓ

k(t−)

Tℓ
s (t−)

, (2.2)

where Tℓ
s (t) :=∑

s′
s′∼s

Aℓ
s′ (t), s′ ∼ s indicating all of the neighbouring sites of s. To create consis-

tency with the DTS model, type (II) Poisson clocks advance according to independent Poisson
processes with rate Dℓ−2, where D is an absolute constant independent of ℓ. On average, the time
increment δt for type (II) clocks is the inverse of the rate of the Poisson clock:

δt ∼= ℓ2

D
. (2.3)

A type (III) Poisson clock is assigned to each site to govern replacement of burglars. Suppose
that the type (III) clock attached to a site s advances at time t−. At time t, a new agent will be
placed at s. Type (III) Poisson clocks advance according to independent Poisson processes with
rate Ŵ, an absolute constant indicating the growth rate of criminal population.
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The attractiveness field gets updated according to the repeat and near-repeat victimisation and
the broken-windows effect. The ‘broken windows’ theory argues that the visible signs of past
crimes are likely to create an environment that encourages further illegal activities [106]. The
so-called repeat and near-repeat events depict the phenomenon that residential burglars prefer to
return to a previously burgled house and its neighbours [30, 49, 50, 51, 92].

The repeat victimisation and broken-windows effects are modelled by letting Bℓ
s depend upon

previous burglary events at site s. Let θ be an absolute constant measuring strength of the repeat
victimisation effect, and the attractiveness increases by θ whenever a burglary event occurs on
that site via a type (I) clock as described above. However, this increase has a finite lifetime
governed by type (IV) Poisson clocks, one of which is assigned to each site. Suppose that the
type (IV) clock associated with site s advances at time t−. At time t, the attractiveness gets
updated as follows:

Bℓ
s (t) = Bℓ

s (t−)
(

1 − ω

Dℓσ

)

, (2.4)

where ω is an absolute constant setting the speed of the decay. Type (IV) Poisson clocks advance
according to independent Poisson processes with rate Dℓσ , where σ < 0 is an absolute constant
that affects the speed of this type (IV) process, and whose value we will decide later. On average,
the time increment δt for the type (IV) clocks is the inverse of the Poisson clock rate

δt ∼= 1

Dℓσ
. (2.5)

The near-repeat victimisation effect is modelled by allowing Bℓ
s to spread in space from each

house to its neighbours via a type (V) Poisson clock, which is assigned to each site. Suppose that
the type (V) clock associated with a site s advances at time t−. At time t, the attractiveness gets
updated as follows:

Bℓ
s (t) = Bℓ

s (t−) + η

4
ℓ2	ℓBℓ

s′ (t
−), (2.6)

where η ∈ (0, 1) is an absolute constant that measures the significance of neighbourhood effects,
and 	ℓ is the discrete spatial Laplace operator associated with the lattice grid, namely

	ℓBℓ
s (t) = ℓ−2

⎛

⎜

⎜

⎝

∑

s′
s′∼s

Bℓ
s′ (t) − 4Bℓ

s (t)

⎞

⎟

⎟

⎠

.

Again for consistency with the DTS model, type (V) Poisson clocks advance according to
independent Poisson processes with rate Dℓ−2.

The spatially homogeneous equilibrium solutions to the above described SSRB-IPC model are
the same as the DTS model [93] and the SSRB model [104]. From now on, we always assume
that A0ℓ

s ≡ A0 for simplicity. The homogeneous equilibrium values are deduced as
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6 C. Wang et al.

B̄ = θŴ

ω
, n̄ℓ = Ŵℓ2

D
(

1 − e− ℓ2Ā
D

)

∼= Ŵ

Ā
, (2.7)

where Ā = B̄ + A0.

2.2 Numerical simulations of the SSRB-IPC model

To compare the agent-based SSRB-IPC model with the agent-based SSRB model [104], we
perform simulations of the models and display the resulting attractiveness fields in Figures 1, 2,
3 and 4. The SSRB model is shown in Figures 1(a), (b), 2(a), (b), 3(a), (b), 4(a) and (b). The
SSRB-IPC model is shown in the remaining figures. The parameters are mostly the equivalent of
those used to create the plots for the DTS model [93] in Figure 3 of [93] and for the SSRB model
in Figures 2, 3 and 4 of [104]. The same behavioural regimes are observed:

(1) Spatial homogeneity. In this regime, Aℓ
s (t) does not vary essentially in space or in time.

Very few visible hotspots, that is, the accumulation of Aℓ
s (t) in space and in time, appear in the

process.
(2) Dynamic hotspots. In this regime, localised spots of increased attractiveness form and

are transient. These spots remain for varying lengths of time and may appear and disappear at
seemingly random locations and move about in space and deform over time. They may also
merge and split. Similar examples of transitory hotspots have been observed in the simulation
output in [93] and [104].

(3) Stationary hotspots. In this regime, hotspots form and stay more or less stationary over
time.

The spatially homogeneous equilibrium value of the dynamic attractiveness B̄ in (2.7) serves
as a midpoint for all the simulations and is shaded in green. To document the false colour map for
the attractiveness, a colour key is given in the figures. All the simulations were run with L = 128,
ℓ = 1, ω = 1/15, D = 100, and A0 = 1/30. As ℓ = 1, there is no need to specify σ for type (IV)
Poisson clocks. And the initial criminal number at each site n0ℓ

s is set to be n̄ℓ on average, and
the burglar agents are assumed to be randomly uniformly distributed over the 128 × 128 grids,
with

∑

s∈S ℓ n0ℓ
s = 1282n̄ℓ.

In all panels of Figures 1, 2, 3 and 4, we set Ŵ = 0.0019q, θ = 5.6/q, where q takes on values 1,√
10, 10 and 10

√
10 in panels 1(a), 1(b), 2(a) and 2(b), respectively. This same pattern of q values

also applies to the panel sets 3(a), 3(b), 4(a) and 4(b); 1(c), 1(d), 2(c) and 2(d); and 3(c), 3(d),
4(c) and 4(d). For both SSRB and SSRB-IPC models, as q increases, (2.7) implies that the initial
burglar population and the burglar replacement rate both increase while the initial attractiveness
field remains fixed.

For the cases with zero hotspot formation (Figures 1(a), (b), (c) and (d) and 2(a), (b), (c) and
(d)), we set η = 0.2 and B0ℓ

s ≡ B̄ for every s ∈ S ℓ. For the cases with hotspot formation (the
remaining figures), η = 0.03, and B0ℓ

s is set to be B̄ on every site except for 30 randomly chosen
grid points where the attractiveness is increased by 0.002.

The same finite size effects as in the SSRB model [104] and the DTS model [93] are observed.
The degree of hotspot ‘transience’ seems to depend on the total burglar population. The regimes
of transient hotspots seem to appear associated with low or vanishing burglar numbers and
low numbers of events, while the regimes of stationarity, including the stationary hotspots or
homogeneity regimes, occur more likely with large numbers of burglars and burglary events.
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FIGURE 1. Plot of the attractiveness Aℓ
s (t) for the SSRB model [104] and the SSRB-IPC model. For both

models, the initial conditions (at t = 0) and parameters are set as A0 = 1/30, B0ℓ
s ≡ B̄, n0ℓ

s
∼= n̄ℓ, D = 100,

L = 128, ℓ = 1, ω = 1/15, and η = 0.2. For the SSRB model [104], in (a) and (b), we set Ŵ = 0.0019q,
θ = 5.6/q, q = 1 in (a), and q =

√
10 in (b). For the SSRB-IPC model, in (c) and (d), we set Ŵ = 0.0019q,

θ = 5.6/q, q = 1 in (c), and q =
√

10 in (d). (a) and (c) show the dynamic hotspot regimes, while (b) and
(d) show less degree of transience of hotspots.
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t = 10 days, 1538 criminals
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FIGURE 2. Plot of the attractiveness Aℓ
s (t) for the SSRB model [104] and the SSRB-IPC model. For both

models, the initial conditions (at t = 0) and parameters are set as A0 = 1/30, B0ℓ
s ≡ B̄, n0ℓ

s
∼= n̄ℓ, D = 100,

L = 128, ℓ = 1, ω = 1/15 and η = 0.2. For the SSRB model [104], in (a) and (b), we set Ŵ = 0.0019q,
θ = 5.6/q, q = 10 in (a), and q = 10

√
10 in (b). For the SSRB-IPC model, in (c) and (d), we set Ŵ = 0.0019q,

θ = 5.6/q, q = 10 in (c), and q = 10
√

10 in (d). (a) and (c) show the spatially homogeneous regimes, and
(b) and (d) show even less transience of hotspots.
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FIGURE 3. Plot of the attractiveness Aℓ
s (t) for the SSRB model [104] and the SSRB-IPC model. For both

models, the parameters and initial conditions (at t = 0) are set as L = 128, ℓ = 1, D = 100, ω = 1/15, η =
0.03, A0 = 1/30, n0ℓ

s
∼= n̄ℓ, and B0ℓ is set to be B̄ except for sites with slight perturbations. For the SSRB

model [104], in (a) and (b), we set Ŵ = 0.0019q, θ = 5.6/q, q = 1 in (a), and q =
√

10 in (b). For the SSRB-
IPC model, in (c) and (d), we set Ŵ = 0.0019q, θ = 5.6/q, q = 1 in (c), and q =

√
10 in (d). (a) and (c) show

the the dynamic hotspot regimes, while (b) and (d) show less degree of transience of hotspots.
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t = 15 days, 1382 criminals
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FIGURE 4. Plot of the attractiveness Aℓ
s (t) for the SSRB model [104] and the SSRB-IPC model. For both

models, the parameters and initial conditions (at t = 0) are set as L = 128, ℓ = 1, D = 100, ω = 1/15, η =
0.03, A0 = 1/30, n0ℓ

s
∼= n̄ℓ, and B0ℓ is set to be B̄ except for sites with slight perturbations. For the SSRB

model [104], in (a) and (b), we set Ŵ = 0.0019q, θ = 5.6/q, q = 10 in (a), and q = 10
√

10 in (b). For the
SSRB-IPC model, in (c) and (d), we set Ŵ = 0.0019q, θ = 5.6/q, q = 10 in (c), and q = 10

√
10 in (d). (a)

and (c) show the stationary hotspots regimes. (b) and (d) show even less degree of transience of hotspots.
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A stochastic-statistical residential burglary model 11

3 Analysis and discussion

3.1 Martingale formulation

The Martingale formulation of a Markov pure jump process characterises the process as sum of
an integral part involving the infinitesimal mean and a Martingale part involving the infinitesimal
variance. For every t, we define

(

Bℓ(t), nℓ(t)
)

:= {
(

Bℓ
s (t), nℓ

s (t)
)

: s ∈ S ℓ}. In a similar way, we can
define the stochastic processes nℓ(t), Bℓ(t) and Aℓ(t) associated with the SSRB-IPC model. For
arbitrary scalar fields f ℓ := { f ℓ

s : s ∈ S ℓ} and gℓ := {gℓ
s : s ∈ S ℓ}, we define the discrete inner

product and Lp norm over the lattice S ℓ:

〈

f ℓ, gℓ
〉

:= ℓ2
∑

s∈S ℓ

f ℓ
s gℓ

s ,
∣

∣ f ℓ
∣

∣

p
:=

⎛

⎝ℓ2
∑

s∈S ℓ

∣

∣ f ℓ
s

∣

∣

p

⎞

⎠

1/p

, p � 1.

Let φℓ = {φℓ
s : s ∈ S ℓ} be an arbitrary stationary scalar field, and we define

〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉

:=
(〈

Bℓ(t), φℓ
〉

,
〈

nℓ(t), φℓ
〉)

. (3.1)

As
〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉

is a Markov pure jump process with state space R2, a Martingale approach
is applicable (e.g., [20, 21, 54, 65, 96]) and a Martingale formulation can be derived as follows:

Theorem 3.1 For each fixed ℓ, before the possible blow-up time,
〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉

can be

written as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

〈

Bℓ(t), φℓ
〉

=
〈

B0ℓ, φℓ
〉

+
∫ t

0
G

ℓ
1

(〈(

Bℓ(r), nℓ(r)
)

, φℓ
〉)

dr

+M
ℓ
1

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

,

〈

nℓ(t), φℓ
〉

=
〈

n0ℓ, φℓ
〉

+
∫ t

0
G

ℓ
2

(〈(

Bℓ(r), nℓ(r)
)

, φℓ
〉)

dr

+M
ℓ
2

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

,

(3.2)

where M ℓ
i

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

, i = 1, 2, are Martingales that start at t = 0 as zeros, and

G ℓ
i

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

, i = 1, 2, are the infinitesimal means for the attractiveness and the

burglar distribution, respectively, and

G
ℓ
1

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

=
〈

ηD

4
	ℓBℓ(t) − ωBℓ(t) + θAℓ(t)nℓ(t), φℓ

〉

, (3.3)

G
ℓ
2

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

= ℓ2
∑

s∈S

[

−nℓ
s (t)Aℓ

s (t) + Dℓ−2

(

Aℓ
s

∑

s′∼s

nℓ
s′ (t)

Tℓ
s′ (t)

− nℓ
s (t)

)

+ Ŵ

]

φℓ
s . (3.4)

The variances of M ℓ
i

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

, i = 1, 2, can be characterised in the following way:

Var
(

M
ℓ
i

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉))

=
∫ t

0
E
[

V
ℓ

i

(〈(

Bℓ(r), nℓ(r)
)

, φℓ
〉)]

dr, i = 1, 2, (3.5)
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12 C. Wang et al.

where V
ℓ

i

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

, i = 1, 2, are the infinitesimal variances for the attractiveness and

the burglar distribution, respectively, and

V
ℓ

1

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

= ℓ2

〈

θ2nℓ(t)Aℓ(t) + ℓ−σω2

D
Bℓ(t)2 + Dℓ2η2

16

(

	ℓBℓ(t)
)2

,
(

φℓ
)2
〉

, (3.6)

V
ℓ

2

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

= ℓ2
〈

Aℓ(t)nℓ(t) + Ŵ,
(

φℓ
)2
〉

+ Dℓ4
∑

s∈S

nℓ
s (t)

(

∑

s′∼s

Aℓ
s′ (t)

Tℓ
s (t−)

∣

∣∇ℓ
s→s′φ

ℓ
∣

∣

2

)

, (3.7)

where ∇ℓ
s→s′φ

ℓ
s denotes the discrete directional derivative from s pointing towards s′, that is,

∇ℓ
s→s′φ

ℓ
s =

(

φℓ
s − φℓ

s′
)

/ℓ.

Proof of Theorem 3.1 We compute the infinitesimal means and variances for the Markov pure
jump process

〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉

for a fixed ℓ, using the methods in [1, 17, 22, 44, 46, 53, 62, 73,
74, 83, 85]. In the computational steps, we will drop the superscript ℓ for simplicity.

As G
ℓ
1

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

is the infinitesimal mean for
〈

Bℓ(t−), φℓ
〉

, from (2.6), we have

G1
(〈

Bℓ(t−), φℓ
〉

,
〈

nℓ(t−), φℓ
〉)

= ℓ2θ
∑

s∈S

ns(t
−)As(t

−)φs − Dℓσ+2
∑

s∈S

ω

Dℓσ
φsBs(t

−) + Dℓ2
∑

s∈S

η

4
	sBs(t

−)φs

= ℓ2
∑

s∈S

[

ηD

4
	Bs(t

−) − ωBs(t
−) + θAs(t

−)ns(t
−)

]

φs. (3.8)

From (3.8), we obtain (3.3).
As G ℓ

2

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

is the infinitesimal mean for
〈

nℓ(t−), φℓ
〉

, from (2.2), we have

G2
(〈(

Bℓ(t−), nℓ(t−)
)

, φℓ
〉)

= −ℓ2
∑

s∈S

ns(t
−)φsAs(t

−) + D
∑

s∈S

ns(t
−)

(

∑

s′∼s

As′ (t−)

Ts(t−)
(φs′ − φs)

)

+ Ŵℓ2
∑

s∈S

φs

= −ℓ2
∑

s∈S

ns(t
−)φsAs(t

−) + D
∑

s∈S

φs

(

As(t
−)

∑

s′∼s

ns′ (t−)

Ts′ (t−)
− ns(t

−)

)

+ Ŵℓ2
∑

s∈S

φs. (3.9)

From (3.9), we obtain (3.4).
As V

ℓ
1

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

is the infinitesimal variance of
〈

Bℓ(t−), φℓ
〉

, we have

V
ℓ

1

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

= lim
δt→0

1

δt
E

[

(〈

B(δt + t−), φ
〉

−
〈

B(t−), φ
〉)2
∣

∣

∣(B(t−), n(t−))
]
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A stochastic-statistical residential burglary model 13

= ℓ4θ2
∑

s∈S

ns(t
−)As(t

−)φ2
s + ℓ4Dℓσ

∑

s∈S

ℓ−2σ ω2

D2
Bs(t

−)2φ2
s + Dℓ6

∑

s∈S

η2

16

(

	sBs(t
−)
)2

φ2
s

= ℓ2
∑

s∈S

[

ℓ2θ2ns(t
−)As(t

−) + ℓ2−σ ω2

D
Bs(t

−)2 + Dℓ4η2

16

(

	sBs(t
−)
)2
]

φ2
s . (3.10)

From (3.10), we obtain (3.6).
As V ℓ

2

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

is the infinitesimal variance of
〈

nℓ(t−), φℓ
〉

, we have

V
ℓ

2

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

= lim
δt→0

1

δt
E

[

(〈

n(δt + t−), φ
〉

−
〈

n(t−), φ
〉)2
∣

∣

∣(B(t−), n(t−))
]

= ℓ4
∑

s∈S

As(t
−)ns(t

−)φ2
s + Dℓ2

∑

s∈S

ns(t
−)

(

∑

s′∼s

As′ (t−)

Ts(t−)
(φs′ − φs)

2

)

+ Ŵℓ4
∑

s∈S

φ2
s

= ℓ4
∑

s∈S

[

As(t
−)ns(t

−)φ2
s + Dns(t

−)

(

∑

s′∼s

As′ (t−)

Ts(t−)
|∇s→s′φ|2

)

+ Ŵφ2
s

]

. (3.11)

From (3.11), we obtain (3.7).
With the infinitesimal means and variances obtained, we apply Theorem (1.6), [20] or

Theorem 3.32, [65], to obtain (3.2) and apply Exercise 3.8.12 of [8] to obtain (3.5). We can also
apply Lemma A 1.5.1 in [54] or Proposition B.1 in [79] to obtain (3.5). The proof of Theorem 3.1
is completed.

3.2 Continuum analogue of the SSRB-IPC model

With a similar derivation of the hydrodynamic limit of interacting particle systems [26, 40, 54,
55, 96, 97, 102, 103], we can find a continuum analogue of the agent-based SSRB-IPC model
based on the Martingale formulation (3.2), where the infinitesimal variances have an equal or
lower order of magnitude than ℓ.

By (3.6) and (3.7), as σ < 0, we obtain

V
ℓ

1

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)∼= ℓ2

〈

θ2nℓ(t)Aℓ(t),
(

φℓ
)2
〉

+ o(ℓ2) ∼= O(ℓ2), (3.12)

V
ℓ

2

(〈(

Bℓ(t), nℓ(t)
)

, φℓ
〉)

∼= ℓ2

〈

∑

s∈S

Aℓ(t)nℓ(t) + Ŵ,
(

φℓ
)2

〉

+ Dℓ2

〈

nℓ
s (t),

∑

s′∼s

Aℓ
s′ (t)

Tℓ
s (t−)

∣

∣∇ℓ
s→s′φ

ℓ
∣

∣

2

〉

∼= O(ℓ2). (3.13)

Therefore, for ℓ small, it is reasonable to set the continuum version of the infinitesimal mean
vector as a continuum analogue of the SSRB-IPC model, and by (3.3) and (3.4) we obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂B

∂t
= ηD

4
	B − ωB + θnA,

∂n

∂t
= D

4

∇ ·

(


∇n − 2n

A

∇A

)

− nA + Ŵ,

n(0) = n0, B(0) = B0,

(3.14)
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FIGURE 5. Output of the attractiveness A(x, t) for the continuum analogue of the SSRB model with hotspot
formation. The parameters and data are the equivalent of those used to create plots in Figures 3 (a)–(d)
and 4 (a)–(d).

where n(x, t), A(x, t) and B(x, t), x ∈ D , are the continuum versions of nℓ
s (t), Aℓ

s (t) and Bℓ
s (t),

respectively. The continuum analogue of the SSRB-IPC model (3.14), the DTS model [93] ((3.2)
and (3.5) in [93]) and the SSRB model ((18) in [104]) is the same.

We check the validity of the continuum equation of the agent-based SSRB-IPC model through
simulations. We use the same algorithm as that for the continuum analogue of the DTS model
[93] (see (3.11)–(3.13) in [93]). Figure 5 shows example output of the attractiveness A(x, t) in
the cases of hotspot formation. The same colour key is used as in Figure 1. We infer from (3.14)
that the parameters and data used to create Figures 3(a), (b), (c) and (d), and 4(a), (b), (c) and
(d) give rise to the same attractiveness field for the continuum analogue of the SSRB-IPC model.
Hence, we only display the output once here in Figure 5. For the cases of zero hotspot formation,
the parameters and data used to create Figures 1(a), (b), (c) and (d) and 2(a), (b), (c) and (d) give
rise to the same attractiveness field for the continuum analogue of the SSRB-IPC model, which
is the equilibrium as the continuum system stays at the equilibrium with equilibrium initial data.

The regimes of dynamic hotspots are absent in the continuum simulations. As the total burglar
population decreases, deviations of behavioural regimes of the SSRB-IPC model from its contin-
uum equation increase. These observations are closely linked to the finite size effects exhibited
in Figures 1, 2, 3, and 4. The same hotspot pattern formations are observed in the simulations of
the DTS model [93], the SSRB model [104] and their respective continuum equations.

3.3 Quantification of the pattern formation

To analyse the finite size effects mathematically, we quantify the pattern formation of hotspots
by measuring the degree of hotpot transience with statistics through quantitative simulations.

3.3.1 Statistics measuring degree of hotspot transience

We use the same statistics as in [104] to measure degree of hotspot transience:

(i) Relative Fisher information relative to the uniform measure over S ℓ, logarithm mean type
(see Appendix of [16], and also [27, 28, 29]):

I
ℓ(t) := ℓ−2

∑

s∈S

(

Aℓ
s (t) − Aℓ

s′ (t)
) (

log Aℓ
s (t) − log Aℓ

s (t)
)

. (3.15)
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A stochastic-statistical residential burglary model 15

(ii) Rate of change of Aℓ(t) over time in the discrete Lp norm, p � 1. Fixing a time increment
	t > 0, we define the Lp-area rate of change as

δℓ
p(t) :=

∣

∣Aℓ(t + 	t) − Aℓ(t)
∣

∣

p
. (3.16)

(iii) Rate of change of the area of regions with attractiveness higher than 2Ā (red regions).
For these regions, we define the relative overlapping area Oℓ(t) and non-overlapping area
N ℓ(t) as follows:

O
ℓ(t) := 1

Aℓ
R

∑

s∈S ℓ

Aℓ
s (t)�2Ā

Aℓ
s (t+	t)�2Ā

1(s), (3.17)

N
ℓ(t) := 1

Aℓ
R

⎡

⎢

⎢

⎢

⎣

∑

s∈S ℓ

Aℓ
s (t+	t)�2Ā

1(s) +
∑

s∈S ℓ

Aℓ
s (t)�2Ā

1(s)

⎤

⎥

⎥

⎥

⎦

− 2O
ℓ(t), (3.18)

where 1(s) is an indicator function, and Aℓ
R is the renormalisation:

Aℓ
R =

∑

s∈S ℓ

Aℓ
s (t)�2Ā

1(s). (3.19)

For the continuum equation (3.13), in a very similar way, we can define all the analogues of
the above quantities, which will be denoted as I (t), δp(t), O(t) and N (t).

3.3.2 Numerical simulations of the statistics

Example output of direct simulations for the statistics (3.15)-(3.18) for the agent-based SSRB
model [104] and the agent-based SSRB-IPC model can be found in Figures 6, 7, 8 and 9. All the
simulations are run with 	t = 10, t ∈ [0, 730] and p = 1. The blue, magenta, black and red lines
show results with increasing values of q and thus increasing burglar population.

For the agent-based SSRB model [104], Figures 6(a) and 7(a) show results with zero hotspot
formation, and the blue, magenta, black and red lines represent the results associated with the
simulations in Figures 1(a), (b), 2(a) and (b), respectively. Figures 6(b), 7(b), 8(a) and 9(a)
show the results associated with hotspot formation regimes, and the blue, magenta, black red
and green lines represent results associated with the simulations in Figures 3(a), (b), 4(a), (b)
and 5, respectively.

For the agent-based SSRB-IPC model, Figures 6(c) and 7(c) show results with zero hotspot
formation, and the blue, magenta, black and red lines represent the results associated with
the simulations in Figures 1(c), (d), 2(c) and (d). Figures 6(d), 7(d), 8(b) and 9(b) show the
results associated with hotspot formation regimes, and the blue, magenta, black, red and green
lines represent the results associated with the simulations in Figures 3(c), (d), 4(c), (d) and 5,
respectively.

As in [104], the simulation output shows that a larger degree of hotspot transience appears
with a smaller burglar population. Also, the continuum simulations exhibit the lowest degree of
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FIGURE 6. Examples of the relative Fisher information I ℓ(t) and I (t) for zero hotspot formation and
hotspot formation. For the SSRB model [104], (a) shows results with cases of zero hotspot formation, and
the blue, magenta, black and red lines represent the statistics of the models plotted in Figures 1(a), (b),
2(a) and (b), respectively. (b) shows results associated with the hotspot formation regimes, and the blue,
magenta, black, red and green lines show results with the simulations in Figures 3(a), (b), 4(a), (b) and 5,
respectively. For the SSRB-IPC model, (c) shows results with cases of zero hotspot formation, and the blue,
magenta, black and red lines represent the statistics of the models plotted in Figures 1(c), (d), 2(c) and (d),
respectively. (d) shows results associated with the hotspot formation regimes, and the blue, magenta, black,
red and green lines show results with the simulations in Figures 3(c), (d), 4(c), (d) and 5, respectively.

hotspot transience. The peaks in Figures 7(b), (d), 9(a) and (b) correspond to the initial emer-
gence of hotspots in the SSRB model, the SSRB-IPC model, and their continuum equations. The
statistics increase during the emergence period as hotspots form, and decrease and stabilise (or
directly stabilise) as hotspots stabilise. The same simulation output is also observed over other
random paths. The output matches well with the qualitative simulations in Figures 1, 2, 3, 4,
and 5, which indicates that the above statistics are suitable to use.

3.4 Mathematical analysis and simulations of the finite size effects

With quantification of the degree of hotspot transience, we analyse the finite size effects

based on the Martingale formulation, and simulations are run which supports our theoretical
conclusion.
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FIGURE 7. Examples of the L1-area rate of change δℓ
1(t) and δ1(t) for SSRB and SSRB-IPC models for zero

hotspot formation and hotspot formation. For the SSRB model [104], (a) shows results with cases of zero
hotspot formation, and the blue, magenta, black and red lines represent the statistics of the models plotted in
Figures 1(a), (b), 2(a) and (b), respectively. (b) shows results associated with the hotspot formation regimes,
and the blue, magenta, black, red and green lines show results with the simulations in Figures 3(a), (b), 4(a),
(b) and 5, respectively. For the SSRB-IPC model, (c) shows results with cases of zero hotspot formation,
and the blue, magenta, black and red lines represent the statistics of the models plotted in Figures 1(c), (d),
2(c) and (d), respectively. (d) shows results associated with the hotspot formation regimes, and the blue,
magenta, black, red and green lines show results with the simulations in Figures 3(c), (d), 4(c), (d) and 5,
respectively.

3.4.1 A theory of the finite size effects

We analyse the deterministic and stochastic component of the Martingale formulation with vary-
ing initial burglar number, repeat victimisation strength θ and replacement rate Ŵ. Fixing � > 0,
�> 0, for q ∈ (0, D/ℓ2

�), we consider the agent-based SSRB-IPC model with parameters and
initial data scaled in the following way:

(

Bℓ,(q)(t), nℓ,(q)(t)
)

:=
(

Bℓ(t), nℓ(t)
)

∣

∣

∣

B0ℓ∼=B̄, n0ℓ∼=qn̄ℓ, θ= �
q , Ŵ=q�

. (3.20)

Here, B̄, n̄ℓ are the homogeneous equilibrium values as in (2.7) with θ = � and Ŵ = �:

B̄= ��

ω
, n̄

ℓ = �ℓ2

D
(

1 − e−ℓ2(B̄+A0)D−1
)

∼= �

B̄+ A0
. (3.21)
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FIGURE 8. Examples of the relative overlapping area, Oℓ(t) and O(t), associated with hotspot formation
regimes. For the SSRB model [104], in (a), the blue, magenta, black, red and green lines represent the
statistics of the models plotted in Figures 3(a), (b), 4(a), (b) and 5, respectively. For the SSRB-IPC model,
in (b), the blue, magenta, black, red and green lines show results with the simulations in Figures 3(a), (b),
4(a), (b) and 5, respectively.
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FIGURE 9. Examples of the relative non-overlapping area, N ℓ(t) and N (t), associated with hotspot for-
mation regimes. For the SSRB model [104], in (a), the blue, magenta, black, red and green lines represent
the statistics of the models plotted in Figures 3(a), (b), 4(a), (b) and 5, respectively. For the SSRB-IPC
model, in (b), the blue, magenta, black, red and green lines show results with the simulations in Figures
3(a), (b), 4(a), (b) and 5, respectively.

As q increases, the initial burglar population and the burglar replacement rate both increase while
the initial attractiveness field remains fixed. We will use the notations G

ℓ,(q)
i (t, φℓ), V

ℓ,(q)
i (t, φℓ)

and M
ℓ,(q)
i

(

t, φℓ
)

as short for G ℓ
i

(〈(

Bℓ,(q)(t), nℓ,(q)(t)
)

, φℓ
〉)

, V ℓ
i

(〈(

Bℓ,(q)(t), nℓ,(q)(t)
)

, φℓ
〉)

and M ℓ
i

(〈(

Bℓ,(q)(t), nℓ,(q)(t)
)

, φℓ
〉)

, respectively, i = 1, 2. And applying (3.2) and (3.5) to
(

Bℓ,(q)(t), nℓ,(q)(t)
)

over a small time step δt, we obtain
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

〈

Bℓ,(q)(t + δt), φℓ
〉

=
〈

Bℓ,(q)(t), φℓ
〉

+ G
ℓ,(q)
1

(

t, φℓ
)

δt

+M
ℓ,(q)
1

(

t + 	t, φℓ
)

− M
ℓ,(q)
1

(

t, φℓ
)

,
〈

nℓ,(q)(t + δt), φℓ
〉

=
〈

nℓ,(q)(t), φℓ
〉

+ G
ℓ,(q)
2

(

t, φℓ
)

δt

+M
ℓ,(q)
2

(

t + 	t, φℓ
)

− M
ℓ,(q)
2

(

t, φℓ
)

.

(3.22)
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By (3.5) and additivity of the variance in time for Martingales, we have
√

Var
(

M
ℓ,(q)
i

(

t, φℓ
)

)

∼=
√

E

[

V
ℓ,(q)

i

(

t, φℓ
)

]

δt, i = 1, 2. (3.23)

This together with (3.22) implies that the infinitesimal variances are the key to estimate the stan-
dard deviation of the stochastic component, and the deviation of the trajectories of the evolution
of the model from its deterministic component.

To analyse the infinitesimal variance for attractiveness, by (3.12) , we have

V
ℓ,(q)

1

(

t, φℓ
)∼= q−2ℓ2�2

〈

nℓ,(q)(t)
(

Bℓ,(q)(t) + A0
)

,
(

φℓ
)2
〉

. (3.24)

We perform estimates at the first time step. At time zero, from (3.24) and (3.21), we infer

V
ℓ,(q)

1

(

0, φℓ
)

= q−1ℓ2�2
〈

n̄
ℓ
(

B̄+ A0
)

,
(

φℓ
)2
〉

= q−1ℓ2�2
�
∣

∣φℓ
∣

∣

2

2
, (3.25)

which implies that the infinitesimal variance for the attractiveness is inversely proportional to q:

V
ℓ,(q)

1

(

0, φℓ
)

∝ q−1. (3.26)

We have for 0 < q < q̃ < D�/ℓ2,

V
ℓ,(q)

1

(

0, φℓ
)

> V
ℓ,(q̃)

1

(

0, φℓ
)

. (3.27)

This together with (3.23) implies that at the first time step we have

Var
(

M
ℓ,(q)
1

(

δt, φℓ
)

)

> Var
(

M
ℓ,(q̃)
1

(

δt, φℓ
)

)

. (3.28)

From (3.28) and (3.22), we infer that at the first time step a smaller value of q leads to a larger
deviation of the trajectory of Bℓ,(q)(t) from its deterministic component, and the hotspots develop
temporal transience in the simulations. This explains the finite size effects at the first time step.
We conjecture that (3.27) remains to be true at an arbitrary later time, namely,

V
ℓ,(q)

1

(

t, φℓ
)

> V
ℓ,(q̃)

1

(

t, φℓ
)

, for 0 < q < q̃ <
D�

ℓ2
and t > 0, (3.29)

which leads to a theory of the finite size effects at an arbitrary later time.

3.4.2 Numerical simulations of the theory of finite size effects

To check the validity of (3.29), we perform direct simulations of
√

V
ℓ,(q)

1 (t), the infinitesimal
standard deviation for the attractiveness. We make comparisons of the agent-based SSRB-IPC
model with the SSRB model [104]. Example output can be found in Figure. 10. For all the
simulations, we choose the test function as

φℓ(x) = 1 + sin(x1)sin(x2)/20, x = (x1, x2). (3.30)

This choice of test function is arbitrary. It is a perturbation of the constant function so that the
test function is non-trival. The perturbation does not need to be periodic.

For the agent-based SSRB model [104], Figure 10(a) shows results in the cases with no hotspot
formation. The blue, magenta, black and red lines show results with the simulations in Figures
1(a), (b), 2(a) and (b), respectively. Figure 10(b) shows results with hotspot formation. The
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no hotspot hotspot

SSRB

0

22

44

0

25

50

SSRB-IPC

0

22

44

0 200 400 600 t 0 200 400 600 t

0 200 400 600 t 0 200 400 600 t
0

25

50

(a) (b)

(c) (d)

FIGURE 10. Examples of the infinitesimal standard deviation for attractiveness,
√

V
ℓ,(q)

1 (t), in the cases of
zero hotspot formation and hotspot formation. For the SSRB model [104], (a) shows results in the cases
with no hotspot. The blue, magenta, black and red lines show results with the simulations in Figures 1(a),
(b), 2(a) and (b), respectively. (b) shows results with hotspot formation. The blue, magenta, black and red
lines represent results with the simulations in Figs 3(a), 3(b), 4(a) and 4(b), respectively. For the SSRB-
IPC model, (c) shows results in the cases with no hotspot. The blue, magenta, black and red lines show
results with the simulations in Figures 1(c), (d), 2(c) and (d), respectively. (d) shows results with hotspot
formation. The blue, magenta, black and red lines represent results with the simulations in Figs 3(c), 3(d),
4(c) and 4(d), respectively.

blue, magenta, black and red lines represent results with the simulations in Figs 3(a), 3(b), 4(a)
and 4(b), respectively.

For the agent-based SSRB-IPC model [104], Figure 10(c) shows results in the cases with no
hotspot formation. The blue, magenta, black and red lines show results with the simulations in
Figures 1(c), (d), 2(c) and (d), respectively. Figure 10(d) shows results with hotspot formation.
The blue, magenta, black and red lines represent results with the simulations in Figs 3(c), 3(d),
4(c) and 4(d), respectively.

The output of the simulations supports the validity of (3.29). The same simulation results are
also observed over other random paths.

Furthermore, we check with simulations the validity of (3.25) for an arbitrary later time t > 0,
which is

V
ℓ,(q)

1

(

t, φℓ
)∼= 1

q
ℓ2�2

�
∣

∣φℓ
∣

∣

2

2
, t > 0. (3.31)
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FIGURE 11. Comparison of the log–log plot of the theoretical and true scaling in (3.32) with error bars
for both zero hotspot formation and hotspot formation. The straight lines show the theoretical scaling with
slope −1 and the x-intercept ℓ2�2�

∣

∣φℓ
∣

∣

2

2
∼= 2.9892, where �= 0.019, � = 5.6, and φℓ is assumed as in 3.30.

The error bars show the true scaling, with [T1, T2] set as [0, 10], [1, 11], [2, 12], ..., [719, 729], [720, 730].
For the SSRB model [104], (a) shows results with no hotspot, and the error bars with x-axis as 0, 1, 2 and
3 show results with the simulations of the blue, magenta, black and red lines in Figure 10 (a), respectively.
(b) shows results with hotspot formation, and the error bars with x-axis as 0, 1, 2 and 3 show results with
the simulations of the blue, magenta, black and red lines in Figure 10 (b), respectively. For the SSRB-IPC
model, (c) shows results with no hotspot, and the error bars with x-axis as 0, 1, 2, and 3 show results with
the simulations of the blue, magenta, black and red lines in Figure 10 (c), respectively. (d) shows results
with hotspot formation, and the error bars with x-axis as 0, 1, 2 and 3 show results with the simulations of
the blue, magenta, black and red lines in Figure 10 (d), respectively.

This is an analog of Equation (39) [104] for the SSRB model. In Figure 11, we run direct sim-
ulations for the SSRB model [104] and the SSRB-IPC model. Taking average of both sides of
(3.31) over a time period [T1, T2], we obtain

1

T2 − T1

∫ T2

T1

V
ℓ,(q)

1

(

t, φℓ
)

dt ∼= 1

q
ℓ2�2

�
∣

∣φℓ
∣

∣

2

2
. (3.32)

Figure 11 shows the log–log plot with error bars for (3.32). The lines show the theoretical scaling
with slope as −1 and the x-intercept as ℓ2�2

�
∣

∣φℓ
∣

∣

2

2
, and the error bars show the true scaling with

the x-coordinate and y-coordinate as:
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x = log q, y = log

(

1

T2 − T1

∫ T2

T1

V
ℓ,(q)

1

(

t, φℓ
)

dt

)

, q = 1,
√

10, 10, 10
√

10. (3.33)

Here, [T1, T2] is chosen as [0, 10], [1, 11], [2, 12], ..., [719, 729], [720, 730]. The minimum and
maximum values of y taken over all such intervals are set as the limits of the error bars.

For the SSRB model [104], Figure 11 (a) shows results with no hotspot, and the error bars
with x-axis as 0, 1, 2 and 3 show results with the simulations of the blue, magenta, black and
red lines in Figure 10 (a), respectively. Figure 11(b) shows results with hotspot formation, and
the error bars with x-axis as 0, 1, 2 and 3 show results with the simulations of the blue, magenta,
black and red lines in Figure 10 (b), respectively.

For the SSRB-IPC model, Figure 11(c) shows results with no hotspot, and the error bars with
x-axis as 0, 1, 2 and 3 show results with the simulations of the blue, magenta, black and red lines
in Figure 10 (c), respectively. Figure 11(d) shows results with hotspot formation, and the error
bars with x-axis as 0, 1, 2 and 3 show results with the simulations of the blue, magenta, black
and red lines in Figure 10 (d), respectively.

The output shows that for the agent-based SSRB model [104] and the agent-based SSRB-
IPC model, the error bars are short and fall mostly on the straight lines representing the theory.
Moreover, the larger the total number of burglars is, the shorter the error bar is. The same sim-
ulation results are also observed over other random paths. These results support the validity of
(3.32) and our theory for the finite size effects based on the Martingale formulation.

4 Conclusion

In this article, independent Poisson clocks are applied to individual agents in the agent-based
DTS model [93]. The time increments are independently exponentially distributed random
variables, which are more suitable to model independent actions of agents. The agent-based
SSRB-IPC model is more realistic than the agent-based SSRB model [104] where one Poisson
clock governs all the agents. The SSRB and SSRB-IPC models are both models with stochastic
features.

The simulations of the SSRB-IPC model produces aggregate pattern formation of residen-
tial burglary assuming independent agent actions. And the finite size effects are observed in the
simulations: dynamic hotspots are observed associated with small burglar population.

The agent-based SSRB-IPC model is also an interacting particle system, and stochastic anal-
ysis is applicable. A Martingale formulation for the SSRB-IPC model is derived. The formula
consists of a deterministic and a stochastic component, that is, the infinitesimal mean and the
infinitesimal variance. The infinitesimal mean is very similar to that of the SSRB model (see
(11) and (12) in [104]). And the infinitesimal mean yields a continuum equation, which coin-
cides with the that of the DTS model [93] and of the SSRB model [104]. Simulations show that
the continuum equation is a good approximation of the SSRB-IPC model under the circumstance
of a large number of burglars. The infinitesimal variance of the SSRB-IPC model is less com-
plicated than that of the SSRB model (see (13) and (14) in [104]). And we get more robust and
rigorous results than [104].

Moreover, the pattern formation of crime hotspots is quantified by the statistics measuring
the degree of transience of hotspots. A theory for the finite size effects is developed based on
the Martingale formulation. As the burglar population decreases, the stochastic component of
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the Martingale representation increases in size, while the deterministic component remains the
same, which leads to a larger stochastic fluctuation of the SSRB-IPC model from its continuum
equation. The theory can be proven at time zero with equilibrium initial data, and we conjecture
that it remains to be true at arbitrary later times with negligible error. Quantitative numerical
simulations support our conjecture. The finite size effects are closely related to hotspot transience,
which is well documented in real crime statistics. Therefore, through the observation of hotspot
transience, we could estimate the number of criminals, something that is normally difficult to
predict. For general human behaviour with similar aggregation pattern formation, our finding
could help with the prediction of the size of agents participating in the activity.
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