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Abstract

A key requirement for accurate trajectory prediction and space situational awareness is knowledge of how non-conservative forces
affect space object motion. These forces vary temporally and spatially, and are driven by the underlying behavior of space weather par-
ticularly in Low Earth Orbit (LEO). Existing trajectory prediction algorithms adjust space weather models based on calibration satellite
observations. However, lack of sufficient data and mismodeling of non-conservative forces cause inaccuracies in space object motion
prediction, especially for uncontrolled debris objects. The uncontrolled nature of debris objects makes them particularly sensitive to
the variations in space weather. Our research takes advantage of this behavior by utilizing observations of debris objects to infer the
space environment parameters influencing their motion.

The hypothesis of this research is that it is possible to utilize debris objects as passive, indirect sensors of the space environment. We
focus on estimating atmospheric density and its spatial variability to allow for more precise prediction of LEO object motion. The esti-
mated density is parameterized as a grid of values, distributed by latitude and local sidereal time over a spherical shell encompassing
Earth at a fixed altitude of 400 km. The position and velocity of each debris object are also estimated. A Partially Orthogonal Ensemble
Kalman Filter (POEnKF) is used for assimilation of space object measurements to estimate density.

For performance comparison, the scenario characteristics (number of objects, measurement cadence, etc.) are based on a sensor task-
ing campaign executed for the High Accuracy Satellite Drag Model project. The POEnKF analysis details spatial comparisons between
the true and estimated density fields, and quantifies the improved accuracy in debris object motion predictions due to more accurate drag
force models from density estimates. It is shown that there is an advantage to utilizing multiple debris objects instead of just one object.
Although the work presented here explores the POEnKF performance when using information from only 16 debris objects, the research
vision is to utilize information from all routinely observed debris objects. Overall, the filter demonstrates the ability to estimate density to
within a threshold of accuracy dependent on measurement/sensor error. In the case of a geomagnetic storm, the filter is able to track the
storm and provide more accurate density estimates than would be achieved using a simple exponential atmospheric density model or
MSIS Atmospheric Model (when calm conditions are assumed).
� 2020 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Our research proposes to utilize debris objects to sense
their local space environment. A multi-object filter is used

to extract the underlying non-conservative forces without
a detailed physical description of the individual objects.
The end goal is a data assimilation framework capable of
handling high dimensional systems with nonlinear dynam-
ics and leveraging all available observations. We focus on
the low Earth orbital regime where mismodeling of atmo-
spheric drag is the largest contributor to orbit prediction
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error. However, it is expected that the methods developed
could be extended to additional orbital regimes for refine-
ment of magnetic field and solar radiation models.

This work explores a problem in which we use multiple
debris objects to estimate atmospheric density parameters,
as well as the position and velocity of each debris object.
The purpose of this article is to explore the combined orbit
and density estimation problem to determine the system
requirements, such as the number of ground sensors, mea-
surement cadence, and ballistic coefficient knowledge. We
also analyze the performance of the tool during a simulated
geomagnetic storm in which the atmospheric density mag-
nitude rapidly increases.

1.1. Atmospheric density

An object in Low Earth Orbit (LEO) experiences atmo-
spheric drag caused by particles in the atmosphere colliding
with the surface of the object. Drag acts primarily in the
opposite direction of the velocity vector to decrease the
speed of an object. The magnitude of the force due to drag
is directly dependent on neutral density (number of parti-
cles in the atmosphere). This is illustrated in the equation
of acceleration due to drag,

adrag ¼ �
1

2
q
CDA

m
v2rel

v!rel

v!rel

�

�

�

�

ð1Þ

where

v!rel ¼
d r!

dt
� x!� � r! ð2Þ

is the velocity vector relative to the rotating atmosphere,
CD is the coefficient of drag, A is the exposed cross-

sectional area, m is the object’s mass, x!� is the mean

motion of the Earth’s rotation, and r! is the Earth Cen-
tered Inertial object position vector (Vallado, 2013). The
drag coefficient, mass, and area of the object are typically

combined to form the ballistic coefficient (b ¼ CDA

m
).

Atmospheric density is highly dynamic and depends on
a number of factors, including solar cycle, diurnal cycle,
geomagnetic activity, altitude, and latitude. Atmospheric
models are used in orbital object prediction. A potential
discrepancy between model and reality may lead to rela-
tively large errors in orbit prediction. If a model assumes
calm conditions, i.e. little to no geomagnetic activity, it

produces an atmospheric density of about 0.0015 g=km3

at 400 km altitude (using Ap and F10.7 indices of 17 and
127, respectively). On the other hand, when a geomagnetic
storm hits, the density can rise more than an order of mag-

nitude to 0.037 g=km3 within minutes. This density value
corresponds to input parameters, Ap and F10.7 indices,
being set to 400 and 273, respectively in the MSIS (Mass
Spectrometer and Incoherent Scatter) Atmospheric Model
(Picone et al., 2002). Our research aims to estimate the
atmospheric density in real time, specifically considering

potential variability due to the diurnal cycle, latitude, and
geomagnetic activity.

1.2. Previous work

Current methods that estimate or model atmospheric
density can be categorized as either empirical or physics-
based approaches. Empirical models are computationally
fast, but only represent the climatological atmospheric con-
ditions. Physics-based models incorporate current knowl-
edge of atmospheric conditions to provide forecasts, but
require substantially more computing power than empirical
models.

An example of an empirical approach is the High Accu-
racy Satellite Drag Model (HASDM) project. This effort
estimates a time-series of thirteen spherical harmonic glo-
bal density correction coefficients by using observations
of 75–80 carefully selected calibration satellites (payloads
and debris) in a batch fit (Bowman and Storz, 2002,
2003; Storz et al., 2005). Intensive sensor tasking is made
available for this effort, which allows for the collection of
approximately 500 observations per day per calibration
satellite. A batch fit solves for both temperature and den-
sity correction coefficients. HASDM decouples the ballistic
coefficient and the density parameter by first solving for the
long-term averaged ballistic coefficient of each satellite.
This ballistic coefficient is computed by averaging almost
3200 previously estimated ballistic coefficients of each cali-
bration satellite.

The Direct Density Correction Method (DDCM) pro-
ject takes a slightly different approach by using Two-Line
Element sets (TLE) of sixteen well-known objects
(Yurasov et al., 2005, 2006). DDCM empirically estimates
two time-series density correction coefficients for both the
MSIS Atmospheric Model (Picone et al., 2002) and the
Russian ‘‘Upper Atmosphere Model for Ballistic Calcula-
tions,” known as GOST (Volkov, 2004), density models.
The DDCM method includes secondary data processing
in which smoothed orbits of each object and smoothed bal-
listic coefficients are estimated. This smoothing approach
enables only long-period variations in density to be observ-
able, which is a drawback of the DDCM effort.

The HASDM and DDCM empirical models do not
allow for the spatial and temporal resolution necessary to
capture the dynamical behavior of density. As described
above, these methods estimate coefficients of density that
are applied to a pre-defined model, not density directly.
Furthermore, by combining information from objects in
different regimes, or at different altitudes, a single batch
fit limits the spatial resolution of density corrections that
can be achieved.

More recently, density modeling and forecasting meth-
ods have been developed that take advantage of physics-
based models. Matsuo (2014) showed that ionospheric elec-
tron density data can be used with a physics-based model
to estimate and predict thermospheric mass density.
Electron density data are assimilated with an Ensemble
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Kalman Filter (EnKF) to estimate input, or driver param-
eters of the physics-based Thermosphere-Ionosphere-Elec
trodynamics General circulation model (TIE-GCM). These
drivers include thermospheric temperature and composi-
tion. Her work demonstrates that assimilation of
COSMIC/FORMOSAT-3 electron density data can extend
thermospheric mass density predictions produced by TIE-
GCM by more than three days.

Mehta and Linares (2017) developed an approach that
aims to combine the strength of a physics based model in
its predictive capability, with the speed of an empirical
model. In their approach, a reduced order model captures
the upper atmospheric dynamics by using proper orthog-
onal decomposition to project a high dimensional system
onto a set of low-order basis functions. This approach is
demonstrated using an empirical model, MSIS, as the
underlying upper atmosphere model with the intention
that a physics-based model will replace MSIS in the
future.

A physics-based approach that estimates atmospheric
drivers, such as F10.7 and Kp indices, as inputs to TIE-
GCM is described by Sutton (2018). This effort estimates
drivers through an iterative process that involves data
assimilation of neutral density data from Challenging
Mini-Satellite Payload (CHAMP). Each iteration initializes
several instances of an Ionosphere-Thermosphere (I-T)
model with an ensemble of drivers. An updated driver esti-
mate is formed via the measurement update that assesses
the agreement between each I-T model instance and the
neutral density data. Once convergence between the I-T
model and density data is reached, the driver estimates
can be used with TIE-GCM to provide atmospheric
forecasts.

Our proposed density estimation method is introduced
in Section 2. A comparison is presented between two non-
linear estimation filters, the Particle Filter (PF) and Ensem-
ble Kalman Filter (EnKF), and the decision to use the
Partially Orthogonal EnKF (POEnKF) as the chosen data
assimilation tool is discussed. A simple example of a den-
sity estimation problem is introduced in Section 3 to com-
pare the performance of the PF and POEnKF. Section 4
describes the full density estimation scenario and the per-
formance of the PoEnKF when applied to this system is
analyzed in Section 5.

2. Method

Unlike current methods, our research estimates density
from ground-based observations of object trajectories. This
work also aims to take advantage of all debris objects,
instead of a small, handpicked portion of the resident space
object (RSO) population. This approach allows for a
higher resolution density estimate. The resolution of the
density estimate is dependent on its spatial parameteriza-
tion and the available debris object distribution; details

of the current parameterization scheme are given in
Section 4.1.

When limited to metric data, the ballistic coefficient and
density terms cannot be decoupled if debris object physical
characteristics are unknown, precluding the explicit estima-
tion of density. (Interestingly, it has been shown that the
ballistic coefficient and density terms can be decoupled if
photometric data are utilized (Linares et al., 2014).) The
work presented here aims to utilize all debris objects,
objects that are typically not characterized. To resolve this,
a density calibration tool, such as HASDM, is leveraged to
provide initial density estimates. These estimates are com-
bined with debris object tracking information to solve for
initial object ballistic coefficients. Once this ‘‘bootstrap-
ping” process is complete, our density estimation method
begins using the recently solved for ballistic coefficients.

2.1. Particle Filter v. Ensemble Kalman Filter

Nonlinear systems pose challenges in estimation that
require special filtering methods and numerical techniques
to handle non-Gaussian distributions that result from non-
linear dynamics and/or measurements. Two filters com-
monly used for nonlinear systems are the PF and the
EnKF. The Particle Filter was introduced in 1993 and is
known as a truly nonlinear filter because no Gaussian or
linear assumptions are made in its formulation (Gordon
et al., 1993). The EnKF was introduced to estimate high-
dimensional systems in a computationally tractable manner
(Evensen, 1994). It does so by combining Kalman filter the-
ory and Monte Carlo estimation methods (Houtekamer
and Zhang, 2016).

An obvious commonality between the two filters is that
they take advantage of a particle representation of the state
PDF. The number of particles (N) required is an obvious
difference between the filters. The PF requires at least 10n

(n is the number of state elements) weighted particles to
capture the full non-Gaussian PDF, while the EnKF uses
an ensemble of state realizations, or ‘‘particles,” of size
greater than 2nþ 1 (number of particles used in the
Unscented Kalman Filter) and less than 10n. In the EnKF,
N is determined via a Monte Carlo study; there is no exact
definition for N in the EnKF as there is in the PF and
Unscented Kalman Filter. The number of particles in each
filter is a direct indication of the level of nonlinearity the
filter maintains. Although the PF maintains the full nonlin-
earity behavior of a system, it has a major obvious pitfall
associated with the requirement of 10n particles which
becomes intractable for states with more than 5 elements
(dimensionality curse). On the other hand, a well known
strength of the EnKF is its ability to handle high-
dimensional systems. Section 3 introduces an example of
a nonlinear high-dimension system, a density estimation
problem, in which a comparison between the performance
of a PF and EnKF will be discussed.
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2.2. The EnKF approach

The Ensemble Kalman Filter (EnKF) is typically used in
high-dimensional nonlinear geophysical applications, such
as forecasting of atmosphere and ocean systems, where
there is an abundance of observations (Houtekamer and
Zhang, 2016). Our research applies the EnKF to a combi-
nation of a large-scale problem and a smaller scale prob-
lem. The latter is a typical orbit determination (OD)
problem in which the position and velocity of the tracked
objects are estimated. The large-scale portion is a high-
dimensional geospatial estimation problem of the density
field. Each of the N ensemble members are represented

by v
ið Þ
k , where 1 < i < N and k denotes time-step. For

this work, we use a variant of the Ensemble Kalman Filter,
the POEnKF (Heemink et al., 2000); as described in the
following.

2.3. Partially Orthogonal EnKF

Due to a lack of observability, the EnKF might suffer
from a nonpositive definite covariance. A common solution
to this issue is localization, which effectively localizes the
measurement update to state elements close to the mea-
surement. A smaller portion of the state correction is
applied to elements farther from the measurement
(Houtekamer and Zhang, 2016). One example of a localiza-
tion function is applying a ratio of the correction; the ratio
is defined by an exponential function (C), dependent on dis-
tance from the measurement:

v
ið Þþ
k ¼ v

ið Þ�
k þ C � K yok �Y ið ÞÞ

� �

ð3Þ

where K is the Kalman gain, yo is a uniquely perturbed
observation, and Y is the predicted measurement
(Gaspari and Cohn, 1999).

We use the MSIS Atmospheric Model (Picone et al.,
2002) to generate the density field through which we simu-
late debris object trajectories. Due to the globally coherent
dynamical behavior of density represented by MSIS, local-
ization is not an option. The POEnKF provides an alter-
nate approach to localization that maintains the full-rank
covariance. It approximates the initial full covariance
matrix with a reduced rank matrix by selecting its q leading
eigenvectors (Heemink et al., 2000). The POEnKF is an
effective solution to a weakly ranked covariance in a system
like ours where the underlying model does not allow for
localization. It does so by combining the EnKF and
Reduced Rank EnKF (RREnKF) algorithms.

Following Heemink et al. (2000), the first step of the
POEnKF is to select q, the number of leading eigenvectors
to be used in the covariance approximation. This step helps
form the L matrix, which is part of the RREnKF portion
of the POEnKF. First, the initial covariance matrix is
computed:

P�
0 ¼

1

N � 1
E0E

T
0 ð4Þ

where N is the number of ensemble members,

E�
0 ¼ v

1ð Þ�
0 � X 0; v

2ð Þ�
0 � X 0; . . . ; v

Nð Þ�
0 � X 0

h i

ð5Þ

and

X 0 ¼
1

N

X

N

i¼1

v
ið Þ
0 ð6Þ

The eigenvectors (l
jð Þ
0 ) and eigenvalues (k jð Þ) of the initial

covariance matrix, P�
0 , are calculated and analyzed to select

an appropriate number of leading eigenvectors for the
reduced rank approximation.

L0 ¼ l
1ð Þ
0 ; l

2ð Þ
0 ; . . . ; l

qð Þ
0

h i

ð7Þ

where

P�
0 v! jð Þ ¼ k

jð Þ
v! jð Þ ð8Þ

and

l
jð Þ
0 ¼

ffiffiffiffiffiffiffi

k
jð Þ

p

v! jð Þ ð9Þ

L is a matrix of the q leading eigenvectors (l
jð Þ
0 ), normalized

by the square root of the eigenvalues (Eqs. (7)–(9)) (Heemink
et al., 2000). The superscript j is used to denote indices of q
leading eigenvectors; whereas, the superscript i is used to
denote the indices of N ensemble members. The q selection
for our particular system is described in Section 4.5.

The POEnKF applies a linear update to a prior, non-
Gaussian distribution, making it a partially nonlinear filter
(Evensen, 2009). The particles take on a non-Gaussian dis-
tribution in the case of a nonlinear problem and are not
forced to form a Gaussian distribution at any point in
the filter. However, the measurement update is based only
on the covariance, making the update linear. As a result,
the solution of the EnKF is described by Evensen as
‘‘something between a linear Gaussian update and a full
Bayesian computation” (Evensen, 2009).

A Monte Carlo method is employed in the form of an
ensemble representation of the estimated state probability
distribution. The ensemble contains Nmembers where each
member is a sample realization of the state that is drawn
from a normal distribution. Combined, the ensemble mem-
bers represent the a priori distribution of the state and
define the initial mean and variance of each state element.
An ensemble representation of the initial state is generated
using the a priori statistical information of the state X as
shown in Eq. (10).

The POEnKF ensemble initialization and forecast step
are similar to the EnKF with the addition of a matrix L,
the reduced rank, square root of the forecast covariance
given in Eq. (7) (Heemink et al., 2000) as follows

v
ið Þ
0 ¼ X

!
0 þ g ið Þ ð10Þ

where g ið Þ is a realization of the process noise.

v
ið Þ�
k ¼ M v

ið Þþ
k�1

� �

þ w ið Þ ð11Þ
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w ið Þ � N 0;Qð Þ ð12Þ

The POEnKF time update is the nonlinear propagation
of the state ensemble (Eq. (11)) (Houtekamer and Mitchell,
2005), where M is the nonlinear forecast operator. Super-
script ið Þ denotes the ith ensemble member. The L matrix is
updated in the forecast step:

X k�1 ¼
1

N

X

N

i¼1

v
ið Þþ
k�1 ð13Þ

l
jð Þ�
k ¼

1

�
M X k�1 þ �l

jð Þþ
k�1

� �

�M X k�1

� �

h i

ð14Þ

where � is a perturbation that is set to equal 0.95. The L
matrix represents the effect that a relatively small perturba-
tion has on an ensemble member during the forecast step
and is computed by Eq. (14).

The prior covariance is computed as

P�
k ¼ cL�

k L
�T
k þ

1� c

N � 1
E00�
k E00�T

k ð15Þ

where 0 6 c 6 1 is a weighting coefficient and a smaller c is
better for nonlinear systems (c= 0.4 is used). Information
from the POEnKF q leading eigenvectors is provided by

the first term, L�
k L

�T
k (RREnKF portion of the POEnKF),

and information from the full ensemble is incorporated via

the second term, E00�
k E00�T

k . E00�
k is the projection of the

ensemble members onto the q leading eigenvectors and is
computed as follows:

E�T
k E�

k ¼ XXX T ð16Þ

E00�
k ¼ E�

k X
� 	

:;1:q
ð17Þ

It should be noted that in the implementation of Eq. (15)
shown in Heemink et al. (2000), there is an additional con-
tribution of the covariance projected in directions orthogo-

nal to the space spanned by the ensemble l
jð Þ�
k . This term is

intended to rectify the problem of rank-deficiency of the
ensemble-based covariance matrix by modifying the covari-
ance matrix in a way to increase its rank (Evensen, 2009).
Our filtering experiments have performed well without an
inclusion of this additional covariance contribution. If
issues of rank-deficiency in the context of this specific
application arise, an effective way to remedy them will be
investigated in the future.

The state measurement update is analogous to the
EnKF with the addition of the L matrix and modified
covariance update:

yok ¼ ~yk þ � ð18Þ

� � N 0;Rð Þ ð19Þ

Y
ið Þ
k ¼ G v

ið Þ�
k

� �

ð20Þ

v
ið Þþ
k ¼ v

ið Þ�
k þ K yok �Y ið ÞÞ

� �

ð21Þ

X
!

k ¼
1

N

X

N

i¼1

v
ið Þþ
k ð22Þ

where G is the measurement equation as a function of the
state, Y is the predicted measurement, and R is the mea-
surement covariance matrix. The measurement update for
each POEnKF member (Eq. (18)) incorporates a uniquely
perturbed observation, yo for each ensemble member. This
is a signature feature of the stochastic EnKF not used in
other nonlinear filters. The Kalman gain is calculated in
a conventional manner as follows

K ¼ P�
k H

T HP�
k H

T þ R
� 	�1

ð23Þ

where H is the Jacobian matrix, i.e. the partial derivative of

the measurement models (Y
!
) with respect to the state

H ¼
@ Y
!

@X
!

" #

ð24Þ

and the covariance update is computed as follows:

L
�
þ
k ¼ I � KHð ÞL�

k ; KR
1
2

h i

ð25Þ

L
�
þT
k L

�
þ
k ¼ XXX T ð26Þ

Lþ
k ¼ L

�
þ
k X

h i

:;1:q
ð27Þ

EþT
k Eþ

k ¼ XXX T ð28Þ

E00þ
k ¼ Eþ

k X
� 	

:;1:q
ð29Þ

Pþ
k ¼ cLþ

k L
þT
k þ

1� c

N � 1
E00þ
k E00þT

k ð30Þ

3. Simplified example of density estimation problem

A 2D simplified version of an OD and atmospheric den-
sity estimation problem is created to illustrate the
POEnKF and the PF for high dimensional systems. The
full version of the density estimation problem is introduced
in Section 4.

3.1. System details and initialization

A scenario is created in which a single orbital debris
object is utilized to estimate atmospheric density along its
trajectory. The debris object trajectory is propagated using
two-body Keplerian dynamics with the addition of acceler-
ation due to atmospheric drag,

€
X
!

¼
l

r!3
r!�

1

2
q
CDA

m
v2rel

v!rel

v!rel

�

�

�

�

ð31Þ

where v!rel is defined in Eq. (2). The debris object is in a
near circular, equatorial orbit at 400 km altitude; range
and range-rate measurements of the object are collected
from an inertially fixed sensor located at [0, REarth, 0].

For this simplified system, the atmospheric density is
modeled as a partial sinusoid that varies as a function of
Local Sidereal Time (LST) with a peak in density at local
noon (LST 12),

q ¼ A � sin B � LSTð Þ þ C ð32Þ
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Fig. 1 shows the nominal density state as a function of
LST. The debris object is simulated for a duration of
400 min. The true density through which the object passes
is shown in Fig. 2.

The goal of this problem is to estimate the density field
that the debris object is orbiting through, along with the X
and Y position and X and Y velocity of a debris object
(OD state). The density field portion of the state is located
at the equator at the altitude corresponding to the debris
object orbit, and is parameterized by LST with a 5 degree
resolution (72 elements).

A perturbation is applied to the true initial OD state so
that the a priori state in the filter is not equal to the true ini-
tial state,

X
!0

OD 0 ¼ X
!

OD 0 þ pOD ð33Þ

where the perturbation (pOD) has a nonzero mean (lpert OD):

pOD � N lpert OD; P pert OD

� �

ð34Þ

lpert OD ¼ 10m; 10m; 0:1m=s; 0:1m=s½ �
T

ð35Þ

P pert OD ¼ diag 1mð Þ2; 1mð Þ2; :01m=sð Þ2; :01m=sð Þ2
h i� �

ð36Þ

The OD state ensemble is generated using the perturbed

initial state (X
!0

OD 0) and its a priori statistical information
(P 0):

v
ið Þ
OD 0 ¼ X

!0
OD 0 þ g ið Þ ð37Þ

where

g ið Þ � N 0; P 0ð Þ ð38Þ

and

P 0 ¼ diag 10mð Þ
2
; 10mð Þ

2
; :1m=sð Þ

2
; :1m=sð Þ

2
h i� �

ð39Þ

Similar to the OD state initial estimate, the initial filter
estimate is perturbed from the true initial density:

X
!0

q 0 ¼ X
!

q 0 þ pq ð40Þ

where,

pq � N lpert q; P pert q

� �

ð41Þ

lpert q ¼ 0:1; 0:1; . . . ; 0:1½ �g=km3 ð42Þ

P pert q ¼ diag 5e�2
� �2

; 5e�2
� �2

; . . . ; 5e�2
� �2

h i� �

g=km3
� �2

ð43Þ

Next, the initial density state ensemble is generated by
varying the vertical shift of the perturbed initial state

(X
!0

q 0) sinusoid. This approach reflects the behavior of a

density ensemble generated via the MSIS model (Picone
et al., 2002), where input parameters simply control the
magnitude of the density state, but do not affect its spatial
variability. The resulting density ensemble is shown in
Fig. 3; each line represents the density state of one ensem-
ble member.

With 76 state elements required, an ensemble size (N) of
150 members is used in the POEnKF. The theoretically

required number of particles for the PF (1076 particles)
causes the filter to be computationally intractable for this

high dimensional system, so 104 particles are used in the
PF implementation. This number of particles is chosen
because the filter can run in about double the amount of
time as the POEnKF.

3.2. Results and analysis

Both the PF and POEnKF are applied to this simplified
density estimation system and their performance is com-
pared. Fig. 4 shows the PF density estimate percent error.
The estimate is more accurate in the beginning of the sim-
ulation but then quickly veers off track. This is due to the

insufficient number of particles used (104 instead of 1076

particles). The evolution of the PF particles is shown in
Fig. 6. It is apparent that the particle distribution quickly
collapses and, therefore underrepresents the full state space
probability (Fig. 5). This causes the covariance to collapse
and the filter to discard information from the
measurements.

Unlike the PF, the POEnKF is able to recover the true
density to within 10% error after 100 min, as shown in
Fig. 7. The POEnKF’s particle, or ensemble member distri-
bution accurately captures the probable state space and the
estimate error magnitude.

The evolution of ensemble members is shown in Fig. 8
with the same axis bounds as the PF (Fig. 6). After estimate
convergence at 100 min (shown in Fig. 7), the distribution

Fig. 1. True Density vs. LST Generated from Eq. (32), where A = 1.5

g/km3, B = 2p
48
hours, and C = 0.4 g/km3.

Fig. 2. Underlying true density vs. time.
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of particles still reveal a relatively large error that occurs
cyclicly. The cyclic behavior of the error shown in Fig. 8.
b (the zoomed in version of Fig. 8.a) occurs when the true
density has the smallest magnitude (Fig. 2). This occurs on

the night-side near 0 degrees LST. The filter performance is
degraded in regions of low density because a small density
has relatively little effect on the object orbit and is therefore
less observable.

A direct comparison between the performance of the PF
and POEnKF is provided in Fig. 9, which shows their

Fig. 3. Density ensemble generated from perturbed initial state.

Fig. 4. PF density estimate percent error.

Fig. 5. PF density error and 3-r envelope.

Fig. 6. PF particle evolution.

Fig. 7. POEnKF density estimate percent error.

Fig. 8. POEnKF particle evolution zoomed.
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density estimation errors as a function of time. The black
and red dotted lines represent the final errors of the PF
and POEnKF, respectively. As seen in the earlier figures,
the PF estimate diverges about 15 min into the run with
the collapse of its covariance, and thereafter ignores the
measurements and never recovers. The POEnKF performs
properly, accumulating information from the measure-
ments throughout the run, and settling near the truth with
errors that are well described by the 3-sigma bounds.

This simplified version of the extended state density esti-
mation problem illustrates the advantage of utilizing the
POEnKF over the PF for high dimensional systems.

4. Full density estimation system

This section presents a more complete version of the
density estimation approach. The scenario includes multi-
ple debris objects orbiting at a fixed LEO altitude with var-
ious inclinations, right ascension of ascending nodes, etc.,
and therefore, expands the problem space from a single
equatorial orbital path to a spherical shell encompassing
Earth. Similar to the simplified example, the debris objects
are propagated using two-body Keplerian dynamics with
the addition of acceleration due to atmospheric drag (Eq.
(31)). The partial sinusoid as the underlying atmospheric
density model is replaced by the MSIS Atmospheric Model
(Picone et al., 2002).

4.1. System details

The estimated states in this scenario are: the position
and velocity of multiple orbital debris objects and a 2D
grid of atmospheric density. We model the spherical shell
of neutral density at 400 km altitude with a spatial grid
parameterized by LST and latitude. An altitude of
400 km is used here, similar to Emmert et al. (2008),
Morozov et al. (2013), and Pilinski et al. (2016). These
parameters define a spatial grid in the sun-fixed coordinate
frame. Both LST and latitude have a spatial resolution of
five degrees. The resulting vector of densities, one at each

grid point, contains 2701 elements, yielding a total of
2701þ 6D estimated elements when combined with the
orbit states of each object. The grid of density elements is
defined with respect to the sun in order to account for
one of the major contributors of density variability, the
diurnal cycle. Due to this design, the density state is mod-
eled as stationary, requiring no forecast step for the density
portion of the state, i.e. the density state portion of M in
Eq. (11) is identity.

The debris objects simulated for this project are inspired
by the objects used in the HASDM effort. Orbital charac-
teristics (inclination, right ascension of ascending node,
etc.) of 16 HASDM objects (Bowman and Storz, 2002,
2003) are simulated; however, their eccentricity is set to
zero and altitude is 400 km in order to fall within the
defined problem space. For example, Vanguard 2 (satellite
number 00011) has a 32.8 deg inclination, 45.2 deg right
ascension of ascending node, 167.0 deg argument of peri-
gee, and is set to have a 400 km altitude and zero eccentric-
ity. Each object is simulated with an area to mass ratio

(AMR) of 0.0955 m2=kg. Nominally, the filter also assumes
this AMR value for the mass of each object (assumes the
true AMR); however, an evaluation of the effect of errors
in the assumed AMR is described in Section 5.6.

Azimuth (az), elevation (el), and range (R) measure-
ments of debris objects are generated from three ground
stations. The HASDM effort is able to execute a dedicated
sensor tasking campaign in which 500 measurements per
object per day are collected. This equates to a measurement
of each object every three minutes. Therefore, we choose a
three minute measurement cadence for these simulations.

4.2. Scenario use-cases

Six scenarios are explored in Sections 5.1–5.7. A brief
description and the resulting root mean squared (RMS)
density error is provided for each case in Table 1.

The ground track of the orbital debris in the single
object scenario is shown in Fig. 10. Red stars signify three
ground stations for which measurements are generated.

Fig. 9. PF and POEnKF performance comparison.
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The stations located in Canberra, Madrid, and Diego Gar-
cia are referred to as station 1, station 2, and station 3,
respectively. The ground-tracks of the 16-object scenario
are shown in Fig. 11. The object trajectory is simulated

for roughly one orbital period. This scenario is used for
the majority of our analysis (Sections 5.3–5.7).

Fig. 12 shows the LST of each object at the times when a
measurement is collected of that object. It is apparent that
there is a gap in the LST of the measurements, which shifts
throughout the 24 h simulation. This measurement gap is
caused by the absence of sensor stations on the western side
of the globe (Fig. 11). As the local time for each ground
station progresses throughout the day, so does the LST
of the measurements collected by each ground station. This
affects the estimation error for density state elements
located at local sidereal times for which there are gaps.
For example, during the first 250 min of the simulation

Table 1

Case study comparison.

Case RMS Density

Error (g/km3)

Single Object 1.2

– one object

– sensor error: 0.15 arc-seconds for az & el,

0.1 m for range

– measurement cadence: 3 min

– AMR: 0.0955 m2=kg

Multi-Object Baseline 0.14

– 16 objects

– all objects AMR: 0.0955 m2=kg
Larger Sensor Error 0.42

– sensor error: 1 arc-second for az & el,

0.5 m for range

Reduced Measurement Cadence 0.28

– measurement cadence: 6 min

Unknown Ballistic Coefficient 0.21

– each object AMR randomly generated

with particular mean & variance

Geomagnetic Storm 3.47

– extreme geomagnetic storm

Fig. 10. Groundtrack of 90 min trajectory for single debris object scenario.

Fig. 11. Groundtrack of 90 min trajectory for 16 HASDM inspired objects.

Fig. 12. Local sidereal time of all object measurements during 24 h multi-

object scenario.
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there are no measurements taken of objects located
between 0 and 150 deg LST. The effect of the measurement
gap in LST is discussed further in Section 5.3.

4.3. System initialization

As in the simple model, a perturbation is applied to the
true initial OD state so that the a priori state in the filter is
not equal to the true initial state,

X
!0

OD 0 ¼ X
!

OD 0 þ pOD ð44Þ

where the perturbation has a nonzero mean that is drawn
from a normal distribution:

pOD � N lpert OD; P pert OD

� �

ð45Þ

lpert OD ¼ 100m; 100m; 100m; 0:1m=s; 0:1m=s; 0:1m=s½ �
T

ð46Þ

P pert OD ¼ diag 1mð Þ2; 1mð Þ2; 1mð Þ2; 0:01m=sð Þ2;
h�

0:01m=sð Þ2; 0:01m=sð Þ2
i�

ð47Þ

The MSIS model generates a density value when pro-
vided with various input parameters. These parameters
include latitude, LST, altitude, day of year (DOY), F10.7
index, and the Ap index (Table 2). Latitude and LST are
inherently defined for each value of the density state in
the parameterization scheme.

June 24th is the date chosen for the simulation
(DOY = 175). The true density field can be generated with
the nominal inputs provided in Table 3. An equatorial slice
of the true underlying density field generated using these
nominal input parameters is shown in Fig. 13.

Similar to the OD state, a perturbation is applied to the
true initial density state to produce the filter’s a priori

estimate:

X
!0

q 0 ¼ X
!

q 0 þ pq ð48Þ

pq � N lpert q; P pert q

� �

ð49Þ

lpert q ¼ 0:1ð Þ
2
; 0:1ð Þ

2
; . . . ; 0:1ð Þ

2
h i

g=km3 ð50Þ

P pert q ¼ diag 0:5ð Þ
2
; 0:5ð Þ

2
; . . . ; 0:5ð Þ

2
h i� �

g=km3
� �2

ð51Þ

4.4. Ensemble generation

The number of ensemble members, N, was selected via a
Monte Carlo study of the density state error distribution as
a function of N. It was determined that a 100-member
ensemble is sufficient to represent the full state of
2701 + 6D elements, where D is the number of debris
objects. The method for generating a randomly distributed
ensemble is different for the two portions of our estimated
state.

To generate the initial ensemble (v
ið Þ
OD 0) for the position

and velocity portion of the state, 100 samples are drawn

from a distribution with X
!0

0;OD mean and P 0 variance using

Eq. (10). The standard deviations in P 0 correspond to the
perturbations applied to the initial ensemble (lpert OD),

P 0 ¼ diag 100mð Þ
2
; 100mð Þ

2
; 100mð Þ

2
; :1m=sð Þ

2
; :1m=sð Þ

2
;

h�

:1m=sð Þ2
i�

ð52Þ

The density ensemble is generated with a different
approach because an appropriate covariance of the density
random variable is unknown. In this case, MSIS is used to
generate density values that represent the probable distri-
bution statistics. To do so, we begin by defining an array
of values for the latter four variables (DOY, F10.7 index,
Ap index, and altitude).

DOY ¼ 169; 171; 173; 175; 177; 179; 181½ �

F10:7 ¼ 67; 83; 102; 124; 148; 172; 196½ �

Ap index ¼ 0; 4; 7; 14; 27; 48½ �

altitude ¼ 395; 396; 397; 398; 399½ �

Each parameter array is randomly sampled 100 times to
generate 100 combinations of input to MSIS. Each combi-
nation produces a density ensemble member (Fig. 14).
Varying these parameters produces a range of density real-
izations encompassing the likely true densities. A compar-
ison between the mean of the density ensemble and the true
nominal density is provided in Fig. 15.

Table 2

MSIS parameters for nominal density.

Parameter DOY Ap Index F10.7 Index Altitude

Value 175 17 127 400 km

Table 3

MSIS parameters for an extreme geomagnetic storm.

Parameters Ap Index F10.7 Index

Nominal Conditions 17 127

Extreme Geomagnetic Storm 400 273

Fig. 13. Nominal density state at equator.
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4.5. q eigenvectors selection

The number of leading eigenvectors used for the reduced
rank representation of the full ensemble in the POEnKF is
determined via an analysis of the initial ensemble covari-
ance eigenvalues. It was found that including components
with eigenvalues of 1e-6 and higher is sufficient. This sug-
gests that q ¼ 26 is appropriate for the state covariance
reduced rank approximation in the single object scenario
and 60 leading eigenvectors for the 16 object scenario.

Proper selection of q is important because selecting a rel-
atively small q greatly reduces computation time. However,
too small of a q can also cause filter divergence because the
reduced rank approximation will not adequately represent
the full state behavior (Heemink et al., 2000).

5. Analysis and results

This section presents a series of scenarios in which var-
ious use cases for our tool are analyzed. These cases
demonstrate the sensitivity of the POEnKF to various con-
ditions such as constant verses nominal surveillance, single
verses multi-object, sensor error, measurement cadence,
knowledge of the objects’ AMR, and a geomagnetic storm.

5.1. Constant surveillance: single object

This simulation includes a single debris object and con-
stant surveillance in which there is a measurement every
three minutes regardless of physical constraints or observ-
ability conditions. It is noted that due to the behavior of
MSIS, the information from a single debris object at a par-

ticular location on the density grid inherently provides
information for all density grid elements. The debris object
completes three orbital periods throughout the simulation.
There is a larger error in the density estimate during the
first orbital period (first 90 min), but subsequently the solu-
tion converges and does not exceed 20% error nor the 3-r
bounds. Fig. 16 shows the percent error of the density esti-
mate with each estimate’s corresponding measurement sta-
tion identified. Fig. 17 is the error of the density estimate
with the same labels used to identify the station from which
that estimate’s measurement originated. This figure pro-
vides the estimate after the time update (black dot mark-
ers), as well as the estimate after the measurement update
(square, triangle, and diamond markers indicating the
ground station).

The overall RMS density error for this simulation is 0.32

g=km3 out of an average 2.68 g=km3 density. The RMS den-

sity error post-convergence (after 90 min) is 0.22 g=km3.
This post-convergence RMS density error is more indica-
tive of the performance of the filter and will therefore be
the error reported and used for comparison in the remain-
ing scenarios (Sections 5.2–5.7). The performance of the
OD portion of the state is illustrated below via the X posi-
tion and X velocity error and covariance (Fig. 18). The
remainder of the state, the Y and Z position and Y and
Z velocity, have similar performance with small RMS
errors of 2 m, 2 m, 3 cm=s, and 4 cm=s, respectively.

5.2. Nominal surveillance: single object

For this simulation the debris object measurements are
generated only when the debris object is visible from a

Fig. 15. Density ensemble mean and density truth.

Fig. 16. Single object constant surveillance density estimate percent error.

Fig. 14. Density ensemble.

Fig. 17. Single object constant surveillance density error and 3-r envelope.
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ground station. Therefore, the measurements do not occur
every three minutes consistently throughout the simulation.
This simulation is run for the same duration as the simula-
tion in Section 5.1. As expected, the performance is worse
than that with constant surveillance. The estimated RMS

density error is 1.2 g=km3 for nominal surveillance com-

pared to 0.22 g=km3 for constant surveillance. The esti-
mated density error is shown in Figs. 19 and 20. Fig. 21
shows the ground track of the debris object measurements
as seen by the three stations indicated by red stars.

This scenario demonstrates the need for measurements
of multiple debris objects in order to estimate density to
the desired level of accuracy. It is not possible to consis-
tently task sensors to ‘‘stare” at debris objects and collect
hundreds of measurements of each object every day, as is
done for the HASDM effort. We aim to develop a tool cap-
able of using sparse debris data to estimate density; our
advantage being that there are thousands of debris objects
to utilize for this purpose. Section 5.3 demonstrates the
substantial improvement in the density estimate when data
from 16 debris objects are utilized.

5.3. Nominal surveillance: multiple objects

This scenario is similar to that of Section 5.2, but with
16 HASDM-inspired objects instead of one. These objects
vary in inclination, right ascension of ascending node
(RAAN), and argument of perigee. This scenario is
referred to as the baseline case. The overall RMS error of
the density estimate is greatly reduced when using 16 debris
objects compared to one object (Table 1).

Fig. 22 shows that the density estimate percent error is
relatively large in the beginning of the simulation, but the
filter is able to converge to a relatively low error for the
remainder of the simulation. Fig. 23 shows the updated
density error for the element closest to the measurement
(square, diamond, and triangle symbols) and the density
error of the density elements located along the Object 1
orbital path (black dots).

Fig. 24 shows the percent error of the density estimate as
a function of LST. It was shown in Section 3.2 via the Sim-
plified Problem that the filter has the smallest percent error
in the density estimate when going through higher density
regions, because the effect of density on the object trajecto-
ries is more observable in higher density regions. Therefore,
it was expected that the filter would have the lowest percent
error at local sidereal times near noon (highest density) for
this multi-object scenario. However, we find that the lowest
percent error in the density estimate actually occurs when
measurements are taken of debris objects in low density

regions (near zero deg LST). This is contradictory to what
is expected, but is explained by the gap in measurements
between 40 and 150 deg LST. The measurements taken
directly after the gap have a high percent error when the
lowest percent error is what is expected. If there were con-
sistent measurements throughout all LST values, then the
lowest percent error in the density estimate would occur
around noon (180 deg LST) as seen in the Simplified Exam-
ple. The cause of this measurement gap in LST was
described in Section 4.2. The ground track of the measure-
ments for each of the sixteen objects is shown in Fig. 25.

The RMS density error over the entire grid, for each
measurement time is shown in Fig. 26. This plot is indica-
tive of the overall performance of the filter because it
captures the filter’s performance over the entire density
state-space. Previous figures focused on the RMS error

Fig. 18. Single object constant surveillance X position and velocity error

and 3-r envelope.

Fig. 19. Single object nominal surveillance density estimate percent error.

Fig. 20. Single object nominal surveillance density error and 3-r envelope.
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for a particular density element, or location on the spatial
grid, as a function of time. It is apparent that the full den-
sity state error follows the same trend shown in Fig. 22,
converging after 90 min, or one orbital period.

5.4. Sensor error study

This scenario introduces a larger sensor error into the
baseline multi-object scenario, demonstrating the sensitiv-
ity of the density estimate to measurement error and noise.
The azimuth and elevation sensor error standard deviation
is increased from 0.15 arc-seconds to 1 arc-second. Like-
wise, the range sensor error is increased from a standard
deviation of 0.1 meters to 0.5 meters.

It is expected that the density estimate error increases
with the same magnitude of the sensor error. Because den-
sity has a relatively small contribution to the debris object

dynamics, any additional sensor error will impact the accu-
racy of the density estimate. This is shown in Fig. 27. The
error in the density has increased throughout the simula-
tion compared to the baseline case.

5.5. Measurement cadence study

To study the effect of measurement cadence, we
increased the time between measurements from three min-
utes to six minutes. Even though there are measurements
from sixteen objects, the measurements are more sporadic
(Fig. 28). The overall RMS density error increases from

0.14 g=km3 for the baseline multi-object scenario to 0.28

g=km3.

5.6. Unknown ballistic coefficient

In each of the prior scenarios, the filter assumes it knows

the true AMR of each object (0.0955 m2=kg). This scenario
simulates objects of different AMRs while the filter still

assumes an AMR of 0.0955 m2=kg for each debris object.
Each AMR is drawn from a normal distribution with

0.0955 m2=kg mean (mean AMR error of zero) and 0.015

m2=kg standard deviation. The standard deviation is equal
to roughly 15% of the total AMR. Fig. 29 shows that the
filter has the highest error within the first 40 min and then
is able to resolve the density estimate to within 15–20%
error. The magnitude of error is about 5% higher than

Fig. 21. Single object nominal surveillance ground track of debris object measurements.

Fig. 22. Multi-object nominal surveillance density estimate percent error.

Fig. 23. Multi-object nominal surveillance density error and 3-r envelope.

Fig. 24. Density percent error as a function of LST.

S. Mutschler et al. / Advances in Space Research xxx (2020) xxx–xxx 13

Please cite this article as: S. Mutschler, P. Axelrad and T. Matsuo, A Partially Orthogonal EnKF approach to atmospheric density estimation
using orbital debris, Advances in Space Research, https://doi.org/10.1016/j.asr.2020.01.021



the baseline multi-object scenario throughout the simula-
tion (Table 1 and Fig. 30).

This scenario shows that the filter should still be able to
estimate the density to a reasonable level of accuracy for a
real-world case where the debris object ballistic coefficients
are not known precisely. A best guess of the ballistic coef-
ficients would be used in the filter. These ballistic coeffi-
cients are from the bootstrap process described in
Section 2.

5.7. Geomagnetic storm

This scenario simulates an extreme geomagnetic storm
that ramps up to Ap and F10.7 indices of 400 and 273,

respectively (NOAA Space Weather Scales; Thompson;
Space Weather Indices).

The geomagnetic storm begins building at approxi-
mately 200 min into the simulation and continues for the
remainder of the simulation (Fig. 31). Once the geomag-
netic storm begins, the density estimation error increases
rapidly as the filter attempts to compile enough informa-
tion to sense the true density. After the storm reaches a
steady-state, around 500 min into the simulation, the filter
takes about one orbital period, 90 min, to correct the den-
sity estimates (Fig. 32). From this point forward, the den-
sity estimate stays within 30%-40% error and to within 20%
error by the end of the simulation (2225 min). The RMS
density error over the full density state for each measure-
ment time is shown in Fig. 33.

Fig. 25. Multi-object nominal surveillance ground track of debris objects measurements.

Fig. 26. The RMS density error over the entire spatial grid as a function

of time for the Baseline Case.

Fig. 27. Sensor error study density estimate percent error.

Fig. 28. Measurement cadence study density estimate percent error.

Fig. 29. Unknown ballistic coefficient study density estimate percent

error.
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5.8. Results summary

Table 1 summarizes the results for case studies exploring
the filter’s dependence on sensor error, measurement
cadence, ballistic coefficient information, and a geomag-
netic storm. It is found that increasing the sensor error
by an order of magnitude also increases the RMS density
error by roughly half an order of magnitude. When the
measurement cadence is reduced by 50%, the RMS density
error doubles. The density error increases by 50% when the
ballistic coefficient is known within 15% of its true value.
By far, the filter had the most difficulty in the geomagnetic
storm case, but this is to be expected when the density is
increasing by an order of magnitude within just a couple
hours. Fig. 34 shows the RMS error over the entire spatial
grid of density elements as a function of time for compara-
ble cases (Sections 5.3–5.6).

6. Conclusion

The POEnKF proves to be a suitable method for esti-
mating a large state comprised of debris object states (po-
sition and velocity) and a grid of atmospheric density.
This particular filter avoids a nonpositive definite matrix
while still maintaining enough information, or covariance
eigenvectors, to allow for the regions of different density
throughout the grid to be effectively estimated. Not only
is the POEnKF able to estimate disparate regions of den-
sity, but it is also capable of tracking rapid changes in glo-
bal density due to an extreme geomagnetic storm.

Overall, the filter use cases demonstrate the tool’s effec-
tiveness in determining what criteria (sensor error, mea-
surement cadence, ballistic coefficient knowledge) are
required to achieve a certain level of accuracy in the density
estimate. In Section 5.4, it is shown that if a larger measure-
ment error, is applied the density estimate error increases.
Likewise, if the ballistic coefficient is not known precisely,
the error grows proportionally. This is due to the direct
correlation between atmospheric drag and both the ballis-
tic coefficient and atmospheric density. These parameters
are coupled (Eq. (1)).

In conclusion, it has been shown that using debris
objects tracking data can greatly improve our real-time

Fig. 30. Unknown ballistic coefficient study density error and 3-r

envelope.

Fig. 31. True density during extreme geomagnetic storm.

Fig. 32. Geomagnetic storm density estimate percent error.

Fig. 33. The RMS density error over the entire spatial grid as a function

of time for the Geomagnetic Storm Case.

Fig. 34. The RMS density error over the entire spatial grid as a function

of time for various case studies.
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estimate of atmospheric density compared to assuming a
particular density model which will likely be incorrect when
the atmosphere is disturbed. The dispersion of multiple
debris objects provides global information about the atmo-
spheric density at any given time, instead of at a single deb-
ris object location. If a geomagnetic storm occurs, this tool
can provide more accurate density estimates than that of a
simple exponential atmospheric density model or MSIS
(when calm conditions are assumed). The work presented
here explores the POEnKF performance when using infor-
mation from only 16 debris objects, the research vision is to
utilize information from all debris objects. Although obser-
vations of particular debris objects are sporadic, observa-
tions of the overall debris population are collected
regularly. Our tool can utilize this influx of debris object
information to provide improved density estimates consis-
tently. Enhanced knowledge of near real-time atmospheric
density behavior will allow for improved predictions of all
objects, not just orbital debris.

The next phase of planned research is to incorporate a
physics-based atmospheric model in the forecast step. This
version of the tool will involve estimating accelerations
from debris object measurements and using these accelera-
tions to infer forcing parameters, such as Kp and F10.7
indices, of the physics-based model, TIE-GCM. Similar
to the current tool, the product of our new tool will be
an improved time-series estimate of atmospheric density,
with the addition of a physics driven forecasting ability.
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