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Abstract—We evaluated training deep neural network (DNN)
beamformers for the task of high contrast imaging in the presence
of reverberation clutter. Training data was generated using
simulated hypoechoic cysts and a pseudo nonlinear method for
generating reverberation clutter. Performance was compared to
standard delay-and-sum (DAS) beamforming on simulated
hypoechoic cysts having a different size. For a hypoechoic cyst in
the presence of reverberation clutter, when the intrinsic contrast
ratio (CR) was -10 dB and -20 dB, the measured CR for DAS
beamforming was -9.2+0.8 dB and -14.3+0.5 dB, respectively, and
the measured CR for DNNs was -10.7+1.4 dB and -20.0x1.0 dB,
respectively. For a hypoechoic cyst with -20 dB intrinsic CR, the
contrast-to-noise ratio (CNR) was 3.4+0.3 dB and 4.31+0.3 dB for
DAS and DNN beamforming, respectively. These results show
that DNN beamforming was able to extend contrast ratio dynamic
range (CRDR) by about 10 dB while also improving CNR.
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I. INTRODUCTION

B-mode ultrasound is known to misrepresent high contrast
targets because true structure can be masked by strong off-axis
scattering. For example, members of our group previously noted
that delay-and-sum (DAS) beamforming has limited contrast
ratio dynamic range (CRDR), which causes contrast to be
reduced in magnitude relative to true contrast for hyperechoic
and hypoechoic targets [1]. Others have also noted that many
adaptive beamformers suffer from a dark region artifact that
affects high contrast targets [2].

Furthermore, reverberation clutter has been identified as a
major source of image degradation for B-mode ultrasound [3].
Reverberation clutter further reduces CRDR and enhances the
dark region artifact [1]. Previously, members of our group
developed a physics model-based beamforming method called
aperture domain model image reconstruction (ADMIRE) with
the goal of suppressing reverberation clutter [4]. Developing an
ultrasound beamformer that is able to accurately represent the
true contrast of a high contrast target in the presence of strong
reverberation clutter would improve overall B-mode image
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quality in high contrast imaging scenarios such as the
differentiation of simple and complex cysts, cardiac ultrasound,
and kidney stone imaging.

Recently, there has been growing interest in using deep
neural networks (DNNs) to improve ultrasound beamforming.
We developed a DNN beamformer that operates on gated
segments of channel data in the frequency domain for
suppressing off-axis scattering [5-6]. Hyun et. al developed a
DNN beamformer for smoothing speckle [7].

Previously, we studied training DNN beamformers for high
contrast targets [8]. For the current work, we investigated
training deep neural network (DNN) beamformers to extend
CRDR in the presence of reverberation clutter. Training data
was generated from high contrast targets in the presence of
reverberation clutter. The neural networks were trained to map
from a region of signal space that included signal of interest,
strong off-axis scattering, and reverberation clutter to the
corresponding signal of interest space only.

II. METHODS

The DNN beamformer studied in this work consists of a set of
DNNSs that operate on channel data that has been transformed
to the frequency domain using a short-time Fourier transform
(STFT). This DNN beamformer is convolutional in nature
because the networks, including their weights, are reused
through depth; however, fully connected layers are used across
the aperture dimension. An inverse short-time Fourier
transform (ISTFT) was used to convert back to the time-
domain after DNN processing. During STFT processing, a
rectangular window with one pulse length was used and the
window overlap was 90%. More specific details about the
beamformer studied here can be found in our previous work [5-
6].

For this work, we modified the training data generation
method that we introduced previously for generating training
data from high contrast targets in order to incorporate
reverberation clutter [8]. FIELD II was used to generate
anechoic cysts and anechoic backgrounds as illustrated in Fig. 1
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Fig. 1. (a) Method for simulating high contrast targets with reverberation clutter. Diagram for generating training data from the (b) inside of
hypoechoic cysts and from the (c) background region of hypoechoic cysts.

[9]. In addition, a pseudo-nonlinear method for generating
reverberation clutter that was previously developed by members
of our group was used to generate reverberation clutter [10].
These channel data sets were combined as illustrated in Fig. 1
(a) in order to form hypoechoic cysts with varying contrast
ratios (CR) and with a specific signal-to-clutter ratio (SCR).

Input training examples were formed from the inside of the
hypoechoic cyst and also from the background region. For input
examples that were created from the inside of the hypoechoic
cyst with reverberation, the desired output was the paired data
from the anechoic background region as illustrated in Fig. 1 (b).
For input examples that were created from the background
region with reverberation, the desired output was the paired data
from the anechoic cyst as illustrated in Fig. 1 (¢).

The set of cysts that were used for generating training data
had a diameter of 1 cm. A total of 24 cysts were simulated and
each cyst provided 6,328 training examples. The CR was varied
from -40 dB to 0 dB in steps of 2 dB. The signal-to-clutter ratio
(SCR) was 0 dB. An equal number of examples were drawn
from the inside and the background regions. The total number
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of training examples included in the training data set was
3,189,312. All of the cysts were located at a depth of 7 cm.

The set of cysts that were used to generate examples for the
test set had a diameter of 5 mm. The test set had three cysts and
each cyst provided 1,392 training examples. The total number
of examples in the test set was 87,696.

The simulated array was modeled after an L7-4 linear array
transducer, with a scanning aperture of 65 elements on transmit
and receive, 298 pum pitch, 48 um kerf , 7 cm transmit focal
depth, and the beam spacing was 298 um. A Gaussian pulse
with 5.208 MHz center frequency and 75% fractional
bandwidth was used as the impulse response. The sampling
frequency for the simulation was 520.8 MHz which was then
decimated to 20.8 MHz.

The neural networks parameters are in Table 1. The training
parameters were tuned manually and the studied image quality
metrics used for evaluation purposes included contrast ratio
dynamic range (CRDR) and contrast-to-noise ratio (CNR).
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TABLE L NEURAL NETWORK PARAMETERS
Parameter Value
Architecture Fully-connected layers
Hidden Layers 7
Layer Widths 1040
Batch Size 6000
Dropout 0.05
Batch size 6328

Intrinsic CR: -10 dB Intrinsic CR: -15 dB Intrinsic CR: -20 dB
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Fig. 2 (a) DAS and (b) DNN beamforming images for hypo
with strong reverberation clutter (0 dB SCR). The images are shown with
a 60 dB dynamic range.

echoic cysts

III. RESULTS

Fig. 2 shows example images for hypoechoic cysts with
varying intrinsic CR for DAS and DNN beamforming. Fig. 3
shows CR and CNR as a function of intrinsic CNR. DAS
exhibited linear behavior with respect to intrinsic contrast over
the range from -10 dB to 0 dB, while the DNN beamformer
exhibited linear behavior from -20 dB to 0 dB. Fig. 3 shows
qualitatively how the DNN beamformer improved CRDR. The
difference in contrast in the DAS images for -15 dB and -20 dB
CR levels shown in Figs. 2 (b) and (c) is subtle, reflecting the
saturation observed for DAS at about -15 dB in Fig. 3 (a). In
comparison, the difference in contrast in the DNN beamforming
images for -15 dB and -20 dB CR levels shown in Figs. 2 (e)
and (f) is more pronounced, demonstrating how the DNN
beamformer was able to recover intrinsic contrast.

Although the speckle patterns were similar for DAS and
DNN beamforming for the shown CR levels, there were
observed differences, suggesting that the DNN beamformer
may be starting to learn to uncover the true speckle pattern on
the inside of the cyst that was masked by off-axis scattering and
reverberation clutter. We note that the reverberation clutter level
was high in this study, making the task of recovering the true
speckle pattern on the inside of the cyst particularly challenging.

Fig. 3 (b) shows how the DNN beamformer produced the
same or improved CNR for the examined values of intrinsic CR.

293

(a) Contrast ratio dynamic range

1] += DAS 4
. DNN L e
_ -10 A
g Y
= 51—t
w »
g -20 =
5 -~
2 -25 ot
E -~
-30 e
-35 -
—40 ~

25 -20 -15 -5 0

Intrinsic CR (dB)

=30 -10

(b) CNR as a function of intrinsic CR

5 ~+— DAS
[ — DNN

———

0 N \\
\

{dB)

CNR

\l

Fig. 3 (a) Contrast ratio dynamic range and (b) CNR as a function of
intrinsic contrast ratio for DAS and DNN beamforming. Error bars show
standard deviations for a sample size of N=3.

=30 =25 =20 =13

Intrinsic CR (dB)

-10 -5

For a hypoechoic cyst with -20 dB intrinsic CR, the contrast-to-
noise ratio (CNR) was 3.4+0.3 dB and 4.3+0.3 dB for DAS and
DNN beamforming, respectively. This result demonstrates that
while expanding CRDR, the DNN beamformer maintained or
improved image quality as measured by CNR.

IV. CONCLUSIONS

We trained DNN beamformers to extend the CRDR of B-
mode ultrasound in the presence of reverberation clutter.
Overall, the results show the potential of using DNN
beamformers to improve ultrasound image quality.
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