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Abstract—We evaluated training deep neural network (DNN) 

beamformers for the task of high contrast imaging in the presence 

of reverberation clutter. Training data was generated using 

simulated hypoechoic cysts and a pseudo nonlinear method for 

generating reverberation clutter. Performance was compared to 

standard delay-and-sum (DAS) beamforming on simulated 

hypoechoic cysts having a different size. For a hypoechoic cyst in 

the presence of reverberation clutter, when the intrinsic contrast 

ratio (CR) was -10 dB and -20 dB, the measured CR for DAS 

beamforming was -9.20.8 dB and -14.30.5 dB, respectively, and 

the measured CR for DNNs was -10.71.4 dB and -20.01.0 dB, 

respectively. For a hypoechoic cyst with -20 dB intrinsic CR, the 

contrast-to-noise ratio (CNR) was 3.40.3 dB and 4.30.3 dB for 

DAS and DNN beamforming, respectively. These results show 

that DNN beamforming was able to extend contrast ratio dynamic 

range (CRDR) by about 10 dB while also improving CNR. 
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high contrast targets 

I. INTRODUCTION 

B-mode ultrasound is known to misrepresent high contrast 

targets because true structure can be masked by strong off-axis 

scattering. For example, members of our group previously noted 

that delay-and-sum (DAS) beamforming has limited contrast 

ratio dynamic range (CRDR), which causes contrast to be 

reduced in magnitude relative to true contrast for hyperechoic 

and hypoechoic targets [1]. Others have also noted that many 

adaptive beamformers suffer from a dark region artifact that 

affects high contrast targets [2].  

Furthermore, reverberation clutter has been identified as a 

major source of image degradation for B-mode ultrasound [3]. 

Reverberation clutter further reduces CRDR and enhances the 

dark region artifact [1]. Previously, members of our group 

developed a physics model-based beamforming method called 

aperture domain model image reconstruction (ADMIRE) with 

the goal of suppressing reverberation clutter [4]. Developing an 

ultrasound beamformer that is able to accurately represent the 

true contrast of a high contrast target in the presence of strong 

reverberation clutter would improve overall B-mode image 

quality in high contrast imaging scenarios such as the 

differentiation of simple and complex cysts, cardiac ultrasound, 

and kidney stone imaging. 

Recently, there has been growing interest in using deep 

neural networks (DNNs) to improve ultrasound beamforming. 

We developed a DNN beamformer that operates on gated 

segments of channel data in the frequency domain for 

suppressing off-axis scattering [5-6]. Hyun et. al developed a 

DNN beamformer for smoothing speckle [7].  

Previously, we studied training DNN beamformers for high 

contrast targets [8]. For the current work, we investigated 

training deep neural network (DNN) beamformers to extend 

CRDR in the presence of reverberation clutter. Training data 

was generated from high contrast targets in the presence of 

reverberation clutter. The neural networks were trained to map 

from a region of signal space that included signal of interest, 

strong off-axis scattering, and reverberation clutter to the 

corresponding signal of interest space only.  

II. METHODS 

The DNN beamformer studied in this work consists of a set of 

DNNs that operate on channel data that has been transformed 

to the frequency domain using a short-time Fourier transform 

(STFT). This DNN beamformer is convolutional in nature 

because the networks, including their weights, are reused 

through depth; however, fully connected layers are used across 

the aperture dimension. An inverse short-time Fourier 

transform (ISTFT) was used to convert back to the time-

domain after DNN processing. During STFT processing, a 

rectangular window with one pulse length was used and the 

window overlap was 90%. More specific details about the 

beamformer studied here can be found in our previous work [5-

6]. 
For this work, we modified the training data generation 

method that we introduced previously for generating training 
data from high contrast targets in order to incorporate 
reverberation clutter [8]. FIELD II was used to generate 
anechoic cysts and anechoic backgrounds as illustrated in Fig. 1 
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[9]. In addition, a pseudo-nonlinear method for generating 
reverberation clutter that was previously developed by members 
of our group was used to generate reverberation clutter [10].  
These channel data sets were combined as illustrated in Fig. 1 
(a) in order to form hypoechoic cysts with varying contrast 
ratios (CR) and with a specific signal-to-clutter ratio (SCR). 

Input training examples were formed from the inside of the 
hypoechoic cyst and also from the background region. For input 
examples that were created from the inside of the hypoechoic 
cyst with reverberation, the desired output was the paired data 
from the anechoic background region as illustrated in Fig. 1 (b). 
For input examples that were created from the background 
region with reverberation, the desired output was the paired data 
from the anechoic cyst as illustrated in Fig. 1 (c). 

The set of cysts that were used for generating training data 
had a diameter of 1 cm. A total of 24 cysts were simulated and 
each cyst provided 6,328 training examples. The CR was varied 
from -40 dB to 0 dB in steps of 2 dB. The signal-to-clutter ratio 
(SCR) was 0 dB. An equal number of examples were drawn 
from the inside and the background regions. The total number 

of training examples included in the training data set was 
3,189,312. All of the cysts were located at a depth of 7 cm.  

The set of cysts that were used to generate examples for the 
test set had a diameter of 5 mm. The test set had three cysts and 
each cyst provided 1,392 training examples. The total number 
of examples in the test set was 87,696. 

The simulated array was modeled after an L7-4 linear array 
transducer, with a scanning aperture of 65 elements on transmit 

and receive, 298 m pitch, 48 m kerf , 7 cm transmit focal 

depth, and the beam spacing was 298 m. A Gaussian pulse 
with 5.208 MHz center frequency and 75% fractional 
bandwidth was used as the impulse response. The sampling 
frequency for the simulation was 520.8 MHz which was then 
decimated to 20.8 MHz.  

The neural networks parameters are in Table 1. The training 
parameters were tuned manually and the studied image quality 
metrics used for evaluation purposes included contrast ratio 
dynamic range (CRDR) and contrast-to-noise ratio (CNR). 

 
Fig. 1. (a) Method for simulating high contrast targets with reverberation clutter. Diagram for generating training data from the (b) inside of 

hypoechoic cysts and from the (c) background region of hypoechoic cysts. 
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TABLE I.  NEURAL NETWORK PARAMETERS 

Parameter Value 

Architecture Fully-connected layers 

Hidden Layers 7 

Layer Widths 1040 

Batch Size 6000 

Dropout  0.05 

Batch size 6328 

 

 

III. RESULTS 

Fig. 2 shows example images for hypoechoic cysts with  
varying intrinsic CR for DAS and DNN beamforming. Fig. 3 
shows CR and CNR as a function of intrinsic CNR. DAS 
exhibited linear behavior with respect to intrinsic contrast over 
the range from -10 dB to 0 dB, while the DNN beamformer 
exhibited linear behavior from -20 dB to 0 dB. Fig. 3 shows 
qualitatively how the DNN beamformer improved CRDR. The 
difference in contrast in the DAS images for -15 dB and -20 dB 
CR levels shown in Figs. 2 (b) and (c) is subtle, reflecting the 
saturation observed for DAS at about -15 dB in Fig. 3 (a). In 
comparison, the difference in contrast in the DNN beamforming 
images for -15 dB and -20 dB CR levels shown in Figs. 2 (e) 
and (f) is more pronounced, demonstrating how the DNN 
beamformer was able to recover intrinsic contrast.  

Although the speckle patterns were similar for DAS and 
DNN beamforming for the shown CR levels, there were 
observed differences, suggesting that the DNN beamformer 
may be starting to learn to uncover the true speckle pattern on 
the inside of the cyst that was masked by off-axis scattering and 
reverberation clutter. We note that the reverberation clutter level 
was high in this study, making the task of recovering the true 
speckle pattern on the inside of the cyst particularly challenging. 

Fig. 3 (b) shows how the DNN beamformer produced the 
same or improved CNR for the examined values of intrinsic CR. 

For a hypoechoic cyst with -20 dB intrinsic CR, the contrast-to-

noise ratio (CNR) was 3.40.3 dB and 4.30.3 dB for DAS and 
DNN beamforming, respectively.  This result demonstrates that 
while expanding CRDR, the DNN beamformer maintained or 
improved image quality as measured by CNR. 

IV. CONCLUSIONS 

We trained DNN beamformers to extend the CRDR of B-
mode ultrasound in the presence of reverberation clutter. 
Overall, the results show the potential of using DNN 
beamformers to improve ultrasound image quality.   

 
[1] K. Dei, A. Luchies, and B. Byram, “Contrast ratio dynamic range: A new 

beamformer performance metric” in Proc. of Int. Ultrason. Symp., 2017. 

[2] O. M. H. Rindal, A. Rodriguez-Morales, and A. Austeng, “The dark 
region artifact in adaptive ultrasound beamforming,” in Proc. of IEEE 
Ultrason. Symp., 2017. 

[3] G. F. Pinton, G. E. Trahey, and J. J. Dahl, “Erratum: Sources of Image 
Degradation in Fundamental and Harmonic Ultrasound Imaging: A 
Nonlinear, Full-Wave, Simulation Study,” IEEE Trans. on Ultrason., 
Ferroelec., Freq. Contr., vol. 58, no. 6, pp. 1272–1283, 2011. 

[4] B. Byram, K. Dei, J. Tierney, and D. Dumont, “A model and 
regularization scheme for ultrasonic beamforming clutter reduction,” 
IEEE Trans. on Ultrason., Ferroelec., Freq. Contr., vol. 62, no. 11, pp. 
1913–1927, 2015. 

[5] A. C. Luchies and B. C. Byram, “Deep Neural Networks for Ultrasound 
Beamforming,” IEEE Trans. on Med. Imag., vol. 37, pp. 2010–2021, 
2018. 

[6] A. C. Luchies and B. C. Byram, “Training improvements for ultrasound 
beamforming with deep neural networks,” Phys. in Med. And Biol., vol. 
37, vol. 64, 2019. 

[7] D. Hyun, L. Brickson, K. T. Looby, and J. J. Dahl, “Beamforming and 
Speckle Reduction Using Neural Networks,” IEEE Trans. on Ultrason., 
Ferroelec., Freq. Contr., vol. 66, no. 5, pp. 898–910, 2019. 

 
Fig. 2 (a) DAS and (b) DNN beamforming images for hypoechoic cysts 
with strong reverberation clutter (0 dB SCR). The images are shown with 

a 60 dB dynamic range.  

 

 
Fig. 3 (a) Contrast ratio dynamic range and (b) CNR as a function of 
intrinsic contrast ratio for DAS and DNN beamforming. Error bars show 

standard deviations for a sample size of N=3. 
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