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Abstract—We trained convolutional neural networks (CNNs) to
suppress off-axis scattering in the short-time Fourier Transform
(STFT) domain. Our training data were point target responses
from simulated anechoic cysts. We used random neural archi-
tecture search to build CNN models with variable input formu-
lations, layer sizes, and training hyperparameters. Our results
showed that CNNs were easier to train, as they required fewer
network weights to match the performance of fully-connected
networks (FCNs). The best CNN models achieved comparable
phantom CNRs with with two to three orders of magnitude fewer
weights.

Index Terms—ultrasound, beamforming, convolutional neural
networks, deep learning

I. INTRODUCTION

Recently, deep neural networks have been used for ultra-
sound beamforming by our group [I] and others [7] [9].
Our method applies deep neural network beamforming in
the short-time Fourier Transform (STFT) domain in order
to avoid having to train for different pulse shapes, depth
dependent attenuation, and other pulse parameters that may
vary across patients and even across probes as they age. Our
early approach used classic fully connected deep networks
(FCNs) trained with synthetic data. These beamformers are
convolutional in nature insofar as the networks, including their
weights, are reused through depth; however, fully connected
layers are used to span the aperture dimension. We demon-
strated that these models could work well [1].

Convolutional Neural Networks (CNNs) have seen
widespread applications in Computer Vision, Natural
Language Processing, and Medical Imaging alike. By taking
advantage of localized parameter sharing, CNNs require
fewer parameters and thus reduce the risk of overfitting.
In our studies, we use CNNs for the same STFT-domain
beamforming with similar performance but many fewer
parameters, which makes them easier to train and less
resource-intensive to deploy.

By applying CNNs to the same STFT data, we introduce
convolution to the aperture dimension as well. CNNs could
have the additional benefit of detecting local features such
as aperture shapes. In addition, CNN beamformers, with
fewer parameters, may be easier to train as shown in other
application domains.
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II. METHODS
A. Training Data and Evaluation Scans

The FCN beamformer studied here was proposed previously
by members of our group [6]. A collection of FCN is trained to
operate on channel data in the frequency domain. Training data
was generated from FieldIl simulated point target responses
[5]. The simulated ultrasonic array was based on the L7-4
(38 mm) linear array transducer. Point targets were randomly
placed in an annular sector centered at the focal depth of
the transducer array, using a process that we have described
previously [6]. For the point targets inside the main lobe of
the beam, the corresponding output was the same as the input;
for those outside the main lobe of the beam, the corresponding
output was a vector of zeros [6]. We used 10° examples for
training and 10* for validation.

An ATL L7-4 (38 mm) linear array transducer was operated
using a Verasonics system to scan a physical phantom. A
cylindrical cyst having Smm in diameter located at 7cm depth
was scanned using a cross-sectional view at five different
positions along the axial dimension. The image quality metrics
used for evaluation purposes included contrast-to-noise ratio
(CNR), contrast ratio (CR), and speckle SNR.

B. Convolutional Neural Networks

Since there were no existing CNNs for our task, we had
to design custom CNN architectures. The CNN architectures
that we designed were based on LeNet [4] and AlexNet [8]
because these architectures commonly serve as baselines for
other applications. We implemented CNNs with configurable
input, output, layer sizes, with and without pooling, kernel
size, number of kernels, number of fully-connected layers, and
many others, using similar layer types and layer orders.

We also varied the optimizers and loss functions. Optimizers
were chosen between Stochastic Gradient Descent (SGD) and
Adaptive Moment Estimation (Adam). Each model could have
either Mean Squared Error (MSE), Mean Absolute Error (L1),
or Smooth Mean Absolute Error (Smooth L1) as its loss
function.

Our neural architecture search (NAS) consisted of 1000
trained models. They were random instead of heuristic, as
current studies show that sophisticated NAS algorithms gener-
ally fail to outperform random search [2]. In addition, studies
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Hyperparameter Value
Architecture Type LeNet-like
Input Formulation 1x130x1
Using Max Pooling True
Using Batch Normalization True
Adding Gaussian Noise True
Conv1 Kernel Size 17
Convl Number of Kernels 45
Convl1 Stride 1
Conv1 Dropout 0
Pooll Kemel Size 2
Pooll Stride 2
Conv2 Kernel Size 12
Conv2 Number of Kernels 35
Conv2 Stride 1
Conv2 Dropout 0.5149
Pool2 Kemel Size 2
Pool2 Stride 2
Fully-Connected (FC) Layers 2
FC Layers Width 109
Loss Function Smooth Mean Absolute Error
Optimizer Adam
Learning Rate 1.803e4
TABLE 1

ARCHITECTURE AND HYPERPARAMETERS FOR THE BEST CNN MODEL

show that random hyperparameter search outperformed grid
search [3]. Since popular NAS libraries such as AutoKeras and
NNI lacked support for regression tasks, we created our own
framework for random NAS using constraint satisfaction with
Prolog. The models were created and trained with PyTorch
[10].

We investigated the effects of treating real and imaginary
components as a flat array (1 by 130 by 1), as separate
channels (1 by 65 by 2), and as a height dimension (2 by
65 by 1). We first concatenated the real and imaginery parts
to have a single-channel 1D convolution. We then stacked the
two parts as separate channels, resulting in a two-channel 1D
convolution. Lastly, we treated inputs as narrow gray images
that we convolve in both aperture and [-Q dimensions.

III. RESULTS

We found that LeNet-like CNNs featuring two convolutional
layers and two or three fully-connected layers were effective.
We also found that adding Gaussian noise in training was
useful. Furthermore, it was better to concatenate the I and
Q components as a single-channel 1D array or stack them as
a two-channel 1D array than to stack them as a one-channel
2D array. Furthermore, almost all top-performing models used
Adam instead of SGD as their optimizers. In terms of loss
functions, L1 was ineffective compared with MSE and Smooth
L1

For phantom targets, the CNR was 5.46+0.45 dB,
5.5740.20 dB, and 4.2440.38 dB for the best CNN, the best
FCN, and DAS, respectively. A t-test was used to compare
the best CNN to the best FCN and the difference was not
statistically significant (p-value=0.45). Our results suggest that
CNNs produce equivalent results to FCNs and qualitative
assessment suggests they may have a larger depth of field.
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Fig. 1. For a phantom target, DAS has a CNR of 4.3994, FCN 5.5403, CNN
5.2946
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Fig. 2. For an in vivo target, DAS has a CNR of -14.982, FCN -0.80402,
CNN -2.8361

IV. CONCLUSION

Based on the evaluation scans, we conclude that CNNs
can match the performance of FCNs in suprressing off-axis
scattering. In addition, CNNs have the added benefit of having
fewer parameters, making training and deployment easier.
Lastly, beamformed images indicate that CNNs may have a
larger depth of field.

Average CNR (Phantoms) vs Number of Weights (log10)
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Fig. 3. The best CNNs tend to have fewer weights than the best FCNs
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