


ing them using global pose optimization. We extract local

features (keypoints) and store them in a database, which is

subsequently compressed to a manageable size. For local-

ization, we find keypoints in a query image and search the

database for candidate matches using approximate nearest

neighbor matching. Because it is common for more than

90% of the matches to be spurious, we use voting to reject

outliers, based on the observation that inlier matches will

vote for a consistent location whereas outliers distribute their

votes randomly. Finally, we use the remaining inlier matches

to precisely calculate the location of the query image.

The major contributions of this paper are:

• Describing a low-cost global localization system based

on ground textures and making relevant code and in-

structions available for reproduction.

• Capturing and making available datasets of seven indoor

and outdoor ground textures.

• Investigating the design decisions necessary for prac-

tical matching in texture-like images, as opposed to

natural images. This includes the choice of descriptor,

strategies for reducing storage costs, and a robust voting

procedure that can find inliers with high reliability.

• Demonstrating a real-world application of precise local-

ization: a robot that uses Micro-GPS to record a path

and then follow it with sub-centimeter accuracy.

The ability to localize a vehicle or robot precisely has the

potential for far-reaching applications. A car could accu-

rately park (or guide the driver to do so) in any location it

recognizes from before, avoiding obstacles mere centimeters

away. A continuously-updated map of potholes could be

used to guide drivers to turn slightly to avoid them. The

technology applies equally well to vehicles smaller than cars,

such as Segways, electric wheelchairs, and mobility scooters

for the elderly or disabled, any of which could be guided to

precise locations or around hard-to-see obstacles. Indoor ap-

plications include guidance of warehouse robots and precise

control over assistive robotics in the home.

II. RELATED WORK

Textures for Tracking and Localization: Textures such

carpet, wood grain, concrete or asphalt all have bumps,

grooves, and variations in color from location to location,

and we typically use the overall pattern or statistics of this

variation to recognize a particular material. Indeed computer-

based modeling and recognition of textures traditionally pro-

ceeded along statistical lines [3, 4]. Moreover, researchers

have successfully synthesized new texture by example using

parametric [5] and non-parametric [6] models. However,

when we study the particular arrangement of bumps and

variations present at any location in real-world textures, we

find that it is unlikely to be repeated elsewhere.

Kelly et al. [7] introduce a warehouse automation sys-

tem in which a downward facing camera installed on each

robot is used to help track the robot. They observe that

ground surfaces usually exhibit cracks and scratches, and it

is possible to track the motion of the camera over a pre-

constructed visual map. This work, however, still assumes

a known initial location and surface textures are leveraged

only for pairwise (local) frame matching, much as is done

in an optical mouse. Other similar systems [8, 9] align the

test frame with a small set of map frames determined either

by an odometry or the most recent successful estimation. In

contrast, our approach performs global localization, which

could be used to initialize tracking systems such as these.

Clarkson et al. [10] demonstrate that seemingly-random

textures can provide a means for unique identification. The

authors observe that the fine-scale variations in the fibers of

a piece of paper can be used to compute a “fingerprint” that

uniquely identifies the piece of paper. Our work demon-

strates that ground textures, including man-made ones such

as carpet, share similar properties at sufficiently fine scales,

and thus may be used for localization.

Relocalization: Structure from motion allows reconstruction

of a large scale 3D point cloud offline, but relocating a newly

captured image in the reconstructed point cloud without any

initial guess about the camera position is challenging. Previ-

ous works explore direct 2D-to-3D matching [11] to estimate

the 6 DoF pose of a photo with respect to a reconstructed

point cloud. Li et al. [12] propose a method to leverage

a co-occurrence prior for RANSAC and achieve relocaliza-

tion on a larger georegistered 3D point cloud within a few

seconds. Relocalization is an essential module of modern

SLAM systems, such as ORB-SLAM [13], which uses a

bag-of-words model for matching. Kendall et al. [14] train a

convolutional neural network (PoseNet) to regress the input

RGB image to the 6-DoF camera pose. Researchers have

also explored using skylines from omni-images to perform

relocalization [15].

All the above approaches, except PoseNet, involve large-

scale feature matching, which quickly becomes a bottleneck

because of the number of false matches. To speed up feature

matching, more compact models can be constructed by se-

lecting a subset of stable 3D points from the original models

[16, 17]. An effective approach to handle a high outlier ratio

is voting [18]. This has also proven successful in the field

of image retrieval, where spatial verification is commonly

applied to rerank the retrieved list of images, and variants of

Hough voting have been proposed to improve efficiency and

robustness [19–21]. With more sensors available, one can

utilize the gravity direction [22] as an additional constraint.

Baatz et al. [23] leverage both gravity direction and a 3D

scene model to rectify images, transforming the 6-DOF pose

estimation problem into a 3-DOF problem.

Mobile devices are ideal deployment platforms for a relo-

calization system. Lim et al. [24] achieve localization on a

micro aerial vehicle at interactive framerates by distributing

feature extraction over multiple frames. Middelberg et al.

[25] achieve real-time performance by combining online

camera tracking and an external localization server. Irschara

et al. [26] and Wendel et al. [27] demonstrate that GPUs,
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Map of feature locations Precise voting map

Fig. 3: Left: A simple strategy would be to vote for the locations
of matched features. Right: The precise voting leads to a more
defined local maximum.

features with scale s as well. In practice, to allow some

inconsistency, we quantize scale into 10 buckets and divide

the database into 10 groups based on scale. Then we build

a search index for each group using FLANN [33]. During

testing, given a feature with scale s, we only need to search

for the nearest neighbor in the group to which s belongs.

B. Localization

The input to our online localization phase is a single

image. We assume that the height of the camera above the

ground is the same as during mapping (or that the ratio of

heights is known), so that the image scale is consistent with

the images in the database.

Feature Computation and Matching: We first extract SIFT

features from the test image and project onto k principal

components, as in database construction. For each descriptor,

we search for the nearest neighbor using the pre-build search

index for the appropriate scale.

Precise Voting: Recall that we only keep 50 features per

database image, so only a small subset of features will have

a correct match in the database. Finding this small set of

inliers is challenging, since methods such as RANSAC work

poorly if outliers greatly outnumber inliers.

We instead adopt a voting approach based on the obser-

vation that, due to the randomness of ground textures, false

matches are usually evenly distributed in the map. Fortu-

nately, since true matches usually come from one or two

images, they are concentrated in a small cluster. Figure 3,

left, shows a heat map of feature matches in a database,

with red indicating high density, green intermediate, and

blue indicating low density. While we are able to build

a system based on this principle, the correct features are

distributed throughout the entire area corresponding to the

test image. This leads to poor robustness, because there is

only a moderately-high density of votes in the map near the

location of the test image. The solution is to concentrate

the votes: we want all of the true features to vote for the

same point in the map, leading to a much greater difference

between the peak corresponding to the true location and the

background density of outliers.

In particular, each feature casts a vote for the origin of

the test image by assuming that nearest neighbors are true

matches. Denote a feature extracted from the test image as ft
and its nearest neighbor in the database as fd. If the feature

pair {ft, fd} is a true match, we can compute the pose of

the test image T in world coordinates, denoted [R|t]WT , by

TABLE I: Performance of Micro-GPS. From left to right: tex-
ture type, elapsed time between capture of database and test se-
quence, number of test frames, and success rates using 8- and 16-
dimensional descriptors.

Texture Elapsed # frames Rate-8 Rate-16

fine asphalt 16 days 651 76.04% 95.24%
carpet 30 days 1179 99.49% 99.92%
coarse asphalt 17 days 771 97.54% 99.09%
concrete 26 days 797 83.31% 93.35%
granite tiles 6 days 862 79.47% 94.43%
tiles 18 days 1621 93.83% 98.40%
wood 0 days 311 59.48% 77.49%

composing the pose of fd in world coordinates and the pose

of ft in the test image:

[R|t]WT = [R|t]Wfd [R|t]fdft [R|t]ftT , (1)

where [R|t]fdft is assumed to be the identity. We then vote

for the location of the origin of the test image, which is the

translational component of [R|t]WT .

Using this strategy, implemented via voting on a relatively

fine spatial grid with each cell set to 50×50 pixels, we find

a much tighter peak of votes relative to the uniform back-

ground of outliers, as shown in Figure 3, right. After voting,

the cell with the highest score is very likely to contain the

true origin of the test image. We select all of the features

in that peak as likely inliers, and perform RANSAC just on

them to obtain a final estimate of the pose of the image.

IV. EVALUATION

In order to evaluate the accuracy and robustness of a local-

ization system, a typical approach would be to obtain ground-

truth location and pose using a precise external measurement

setup. However, this is impractical in our case due to the

large areas mapped and the precision with which we are

attempting to localize. Moreover, we are more interested in

repeatability, rather than absolute accuracy, given that most

of the applications we envision will involve going to (or

avoiding) previously-mapped locations.

We therefore adopt an evaluation methodology based on

comparing the query image against an image captured during

mapping. Using the pose predicted by Micro-GPS, we find

the closest image in the database, and compute feature cor-

respondences (using all SIFT features in the image, not just

the features stored in the database). If there are insufficiently

many correspondences, we mark the localization result as

a failure. We then compute a best-fit relative pose using

those features. If the pose differs by more than 30 pixels

(4.8 mm) in translation or 1.5◦ in rotation from the pose

output by Micro-GPS, we again mark the result as a failure.

Finally, given a sequence of consecutive poses that should

be temporally coherent, we detect whether the poses of any

frames differ significantly from their neighbors.

The performance of our system, implementing the pipeline

described in Section III-B, is shown in Table I. The second

column shows the elapsed time between capture of database

and test sequence, which demonstrates that our system is
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