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ABSTRACT

Reconfigurable manufacturing systems supported by Industrial

Internet-of-Things (IIoT) are modular and easily integrable, pro-

moting efficient system/component reconfigurations with minimal

downtime. Industrial systems are commonly based on sequential

controllers described with Control Interpreted Petri Nets (CIPNs).

Existing design methodologies to distribute centralized automa-

tion/control tasks focus on maintaining functional properties of

the system during the process, while disregarding failures that may

occur during execution (e.g., communication packet drops, sens-

ing or actuation failures). Consequently, in this work, we provide

a missing link for reliable IIoT-based distributed automation. We

introduce a method to transform distributed control models based

on CIPNs into Stochastic Reward Nets that enable integration of

realistic fault models (e.g., probabilistic link models). We show how

to specify desired system properties to enable verification under the

adopted communication/fault models, both at design- and run-time;

we also show feasibility of runtime verification on the edge, with a

continuously updated system model. Our approach is used on real

industrial systems, resulting in modifications of local controllers to

guarantee reliable system operation in realistic IIoT environments.
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1 INTRODUCTION

Recent advances in information technologies and embedded sys-

tems networking are revolutionizing manufacturing industry, lead-

ing to a new stage known as the Industry 4.0 [15]. Namely, to ad-

dress fluctuating market demands, manufacturers have embraced

mass customization (as opposed to mass batch production) and the
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personalization production paradigm [8]. This is achieved by ensur-

ing high level flexibility and adaptability of manufacturing systems

through rapid and cost effective changes in their structure, func-

tionality and capacity [16]. In other words, there is a move toward

Reconfigurable Manufacturing Systems (RMS) that can be ad-hoc

re-configured to support awide variety of products. Themost promi-

nent enabling technologies for RMS development are the (Industrial)

Internet of Things (IIoT) and Cyber-Physical Systems (CPS) [13].

To ensure scalability, convertibility and customization, RMS should

be modularly built on IIoT-enabled smart things - manufacturing

field devices (sensors, tools, machines, ...); these represent CPS that

in addition to the physical devices, integrate computation and com-

munication to support a higher level of automation/autonomy. RMS

capabilities, including modularity and re-configurability, impose

new requirements on the control system design. The traditional au-

tomation pyramid (where each layer of devices strictly has a lower

level of automation than the layer above) is broken up, giving way

to control systems with functionality distributed over different field

devices that communicate with each other. The functionality of an

Industry 4.0 enterprise is based on ubiquitous communication be-

tween things (assets) that form the IIoT, and enable vertical, horizon-

tal and end-to-end integration of manufacturing processes [1, 10].

Yet, reliable functioning of RMS with distributed control/au-

tomation tasks requires high performance connectivity of smart

devices. Key performance indicators of the IIoT connectivity repre-

sent: (1) network availability (robustness to failures), (2) data loss

and transmission errors, (3) data latency and jitter, and (4) data

throughput [9]. For the functions of distributed industrial control

systems, reliable communication, data latency and jitter are critical.

Design of industrial automation/control systems commonly comes

in a form of a relatively low level of abstraction ś i.e., as sequential

discrete-event systems. In industrial practice, GRAFCET standard

(IEC 60848) is frequently employed for functional specification of

event-driven sequential control tasks. Control interpreted Petri nets

(CIPN) are the formalism underlying GRAFCET, with the behavioral

equivalence between these shown in [5]. Following this rationale,

and considering the benefits that CIPN and the parent formalism of

Petri nets (PN) provide for industrial automation, we have recently

proposed a method for distribution of control tasks in industrial

automation based on the use of CIPNs [12]. Specifically, starting

from a CIPN representation of the global (i.e., centralized) control

system, which may be extracted from a GRAFCET-compliant design

tool, control system functionalities are automatically distributed to

a number of local controllers (LC) executing on IIoT-enabled smart

devices; local CIPNs, as well as control code in C, for all LCs are

automatically obtained during this procedure. To ensure that the

obtained functionality of the distributed system matches the one of

the centralized system, coordination of the LCs with physical access

to sensors and actuators is performed by means of communication.
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non-empty can be defined. These measures provide insight in the

system dwell time in a particular state. For example, we expect that

the channel dwells zero time in Pch_Txd place as otherwise would

indicate a problem with ACK transmissions (this can be verified

by analyzing the model within SPNP). Also, actuation systems are

commonly provisioned by specific upper bounds on the actuator

active times. In our running example, probability that the pneumatic

cylinders are either in the state of extending or retracting can be

used to compute average duty cycles of the mechanical components,

which can be used to verify that the system is operating within

prespecified limitations, or anticipate increased wear.

Conversely, average throughput of tokens through each of the

transitions can be defined, as well as probability that a transition is

enabled. Transition throughput can then be used as a performance

metric; for example, the speed at which the pick and place cycle is

performed for our running example ś analysis using SPNP reveals

that the throughput of all controller transitions is 0.295 tokens

sec

resulting in the processing time of 3.389 sec

unit
.6

4.2 SRN-based System Analysis

The derived SRN models are used for design- and run-time system’s

safety and performance analysis using existing PN-supported tools.

Capabilities of Petri Net-Based Tools. When analytic/numeric meth-

ods are utilized, violation of safety properties can be determined at

the time of construction of the reachability graph; i.e., the undesir-

able marking(s) can be identified without statistical simulations. On

the other hand, if discrete-event simulation is performed (e.g., in

the case of non-exponentially distributed firing times), reachability

of markings where a safety property is violated is determined on

per-simulation-run basis; i.e., obtained results translate into prob-

abilistic guarantees. Two broadly used PN-based tools are [2, 11],

which implement a type of stopping criteria both for analytic/nu-

meric and simulative solution modes. Therefore, if a safety property

violation is detected (i.e., non-zero probability of reaching undesired

state), the analysis can be halted.

Runtime Monitoring Support. Various runtime effects such as com-

munication channel utilization, component aging, and mechanical

wear may affect the parameters of the developed model; thus, re-

sults of design-time (i.e., offline) system analysis based on initially

obtained SRN models may not continue to hold during system exe-

cution. Hence, the ability to check for statical property violation at

runtime is crucial for reliability and performance monitoring. We

explored runtime support for monitoring of distributed automation

systems; the stopping criteria feature of PN-based tools is very use-

ful for runtime safety verification as the supervisor can be warned

on predicted unreliability, before the full analysis is completed.

We developed an execution environment in which process mea-

surements (e.g., cylinder travel times) and channel features (e.g.,

packet propagation delays) are acquired in real-time, and used

for runtime adaption of the prespecified parameters of probabilis-

tic features within the SRN model. To ensure timely response in

bandwidth-constrained IIoT-based deployments, we explore execu-

tion of the model checking tool on the edge, rather than the cloud

(details are provided in Sec. 5). Edge-based monitor deployment

6Given the specific structure of PNs modeling controller behavior, the throughput of
all transitions is the same as no tokens are being generated or flushed at runtime.

is naturally promoted for IIoT-based automation, as continuously

powered gateway devices that support higher-level coordination

and decision-making exist by design in such systems.

Remark 3 (Estimating distributions vs. directly using sam-

ple-based measurements). State-of-the-art PN tools support para-

metric specification of transition firing times conforming to most

well-studied probability density functions (more than 15 distribu-

tions), suitable for flexible modeling of discrete event processes [2, 11].

In this setting, distributions are fitted to offline data to create an accu-

rate model of the real system. Still, state-of-the-art tools also support

sample-based firing times Ð i.e., the solver can sample firing time

arrays during simulation that are obtained from measurements at

runtime, rather than generating a random sample from a predefined

distribution [11]. Our system is capable of exploiting this feature such

that the additional step of fitting a probability distribution to the ac-

quired data can be eliminated, increasing the statistical fitness of the

obtained measures to the real system. Consequently, while analysis of

a model fitted with offline date is, our online edge-based performance

and reliability monitoring is not dependent on the IID assumption as

it employs process and channel measurements acquired at runtime.

5 INDUSTRIAL CASE STUDIES

On two real-world industrial case-studies, we show applicability of

our methodology for IIoT-enabled distributed automation: (I) 3-DOF

pneumatic manipulator, and (II) a complex pneumatic manipulator

with parallel processes. The considered manipulators are not classi-

cal; they are modularly designed in terms of mechanical subsystems

and their control (using a smart IoT device), to facilitate reconfig-

uration. Also the considered control scenarios do not follow the

conventional IEC 62264 hierarchical industrial automation pyramid.

While we limited our evaluation to manipulators in our physical

testbed, our approach applies to other IIoT-enabled equipment.

In both case-studies, we start from distributed control models

obtained using existing techniques. We transform these CIPNs into

SRNs and perform analysis with the developed plant and channel

models. We first show how to discover potential problems that arise

with the use of existing distributed controllers executing in realistic

IIoT environments, before showing how these can be addressed

through patches in the code generation stage (by introducing suit-

able communication constructs and exploiting LC runtime support).

5.1 Case Study I: 3-DOF Industrial Manipulator
5.1.1 Physical Setup and Modeling. The considered manipulator is

configured to pick a part at the picking location, transfer it to the

immersion location and immerse it into liquid, retract the part from

liquid, shake of excess liquid (by means of rotation), and return the

part to the original location. The pneumatic cylinder configuration

with highlighted components is shown in Fig. 8(a), while the top por-

tion of the system (i.e., cylinders) are shown in Fig. 8(b1). Cylinders

A and B, providing translational DOF, as well as C, providing the ro-

tational DOF, are all equipped with end-position sensors, while the

gripper D is not (similarly to our running example). Each cylinder

modules is controlled by a low-cost ARM Cortex-M3-based NXP

LPC1768 microcontroller (i.e., LC in Fig. 8(b2)) clocked at 96MHz.

All LCs execute the C code generated from the formal CIPN descrip-

tion using our framework from [12]. Finally, LCs form a low-power,

low-latency network via IEEE 802.15.4-compliant radio modules.
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