Reliable Industrial loT-Based Distributed Automation

Vuk Lesi Zivana Jakovljevic Miroslav Pajic

Duke University University of Belgrade Duke University
Durham, North Carolina Belgrade, Serbia Durham, North Carolina
vuk.lesi@duke.edu zjakovljevic@mas.bg.ac.rs miroslav.pajic@duke.edu

ABSTRACT

Reconfigurable manufacturing systems supported by Industrial
Internet-of-Things (IIoT) are modular and easily integrable, pro-
moting efficient system/component reconfigurations with minimal
downtime. Industrial systems are commonly based on sequential
controllers described with Control Interpreted Petri Nets (CIPNs).
Existing design methodologies to distribute centralized automa-
tion/control tasks focus on maintaining functional properties of
the system during the process, while disregarding failures that may
occur during execution (e.g., communication packet drops, sens-
ing or actuation failures). Consequently, in this work, we provide
a missing link for reliable IloT-based distributed automation. We
introduce a method to transform distributed control models based
on CIPNs into Stochastic Reward Nets that enable integration of
realistic fault models (e.g., probabilistic link models). We show how
to specify desired system properties to enable verification under the
adopted communication/fault models, both at design- and run-time;
we also show feasibility of runtime verification on the edge, with a
continuously updated system model. Our approach is used on real
industrial systems, resulting in modifications of local controllers to
guarantee reliable system operation in realistic IIoT environments.

CCS CONCEPTS

» General and reference — Cross-computing tools and tech-
niques; - Computer systems organization — Dependable and
fault-tolerant systems and networks; « Software and its en-
gineering — Petri nets; Abstraction, modeling and modularity.

KEYWORDS
Distributed automation, Performance and reliability, Petri nets

ACM Reference Format:

Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic. 2019. Reliable Industrial
IoT-Based Distributed Automation. In IoTDI ’19: Internet of Things Design
and Implementation, April 15-18, 2019, Montreal, QC, Canada. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3302505.3310072

1 INTRODUCTION

Recent advances in information technologies and embedded sys-
tems networking are revolutionizing manufacturing industry, lead-
ing to a new stage known as the Industry 4.0 [15]. Namely, to ad-
dress fluctuating market demands, manufacturers have embraced
mass customization (as opposed to mass batch production) and the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IoTDI °19, April 15-18, 2019, Montreal, QC, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6283-2/19/04...$15.00
https://doi.org/10.1145/3302505.3310072

personalization production paradigm [8]. This is achieved by ensur-
ing high level flexibility and adaptability of manufacturing systems
through rapid and cost effective changes in their structure, func-
tionality and capacity [16]. In other words, there is a move toward
Reconfigurable Manufacturing Systems (RMS) that can be ad-hoc
re-configured to support a wide variety of products. The most promi-
nent enabling technologies for RMS development are the (Industrial)
Internet of Things (IIoT) and Cyber-Physical Systems (CPS) [13].
To ensure scalability, convertibility and customization, RMS should
be modularly built on IJoT-enabled smart things - manufacturing
field devices (sensors, tools, machines, ...); these represent CPS that
in addition to the physical devices, integrate computation and com-
munication to support a higher level of automation/autonomy. RMS
capabilities, including modularity and re-configurability, impose
new requirements on the control system design. The traditional au-
tomation pyramid (where each layer of devices strictly has a lower
level of automation than the layer above) is broken up, giving way
to control systems with functionality distributed over different field
devices that communicate with each other. The functionality of an
Industry 4.0 enterprise is based on ubiquitous communication be-
tween things (assets) that form the IIoT, and enable vertical, horizon-
tal and end-to-end integration of manufacturing processes [1, 10].
Yet, reliable functioning of RMS with distributed control/au-
tomation tasks requires high performance connectivity of smart
devices. Key performance indicators of the IIoT connectivity repre-
sent: (1) network availability (robustness to failures), (2) data loss
and transmission errors, (3) data latency and jitter, and (4) data
throughput [9]. For the functions of distributed industrial control
systems, reliable communication, data latency and jitter are critical.
Design of industrial automation/control systems commonly comes
in a form of a relatively low level of abstraction - i.e., as sequential
discrete-event systems. In industrial practice, GRAFCET standard
(IEC 60843) is frequently employed for functional specification of
event-driven sequential control tasks. Control interpreted Petri nets
(CIPN) are the formalism underlying GRAFCET, with the behavioral
equivalence between these shown in [5]. Following this rationale,
and considering the benefits that CIPN and the parent formalism of
Petri nets (PN) provide for industrial automation, we have recently
proposed a method for distribution of control tasks in industrial
automation based on the use of CIPNs [12]. Specifically, starting
from a CIPN representation of the global (i.e., centralized) control
system, which may be extracted from a GRAFCET-compliant design
tool, control system functionalities are automatically distributed to
a number of local controllers (LC) executing on IloT-enabled smart
devices; local CIPNs, as well as control code in C, for all LCs are
automatically obtained during this procedure. To ensure that the
obtained functionality of the distributed system matches the one of
the centralized system, coordination of the LCs with physical access
to sensors and actuators is performed by means of communication.

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

Local CIPN
controller mode

Global CIPN controller
model (from GRAFCET)

Local SRN
ontroller models

))) Edge-based reliability and®, A
performance monitoring ¢ 0\

)y

:.-""Control code
% adaptation

E Code generation

Executable code (e.g., C)

CipN. | Automation F} P o
o &) Distribution {C!PN1J { transformation 1 <

Offline reliability and % I
[1[1]

performance verification /

Figure 1: Methodology for reliable IloT-based distributed automation — global (i.e., centralized) CIPN-based controller model is
transformed into local CIPNs, each of which is used to generate executable code (in C) for smart device controllers. To enable
system analysis for realistic environment (e.g., communication) models, the local CIPNs are further converted into an SRN-
compatible representation; the channel and plant SRN models are introduced. Such models are used to verify system reliability
and performance both at design- and run-time; any detected execution scenario that violates system requirements is then used
to adapt the design of local CIPNs to avoid detected failure modes. The paper’s contributions are highlighted in blue.

Yet, communication between smart devices raises the issue of re-
liable information exchange which is crucial in safety- and mission-
critical production systems. GRAFCET and CIPNs are originally
intended for modeling of centralized automation systems, and thus
do not support inclusion of communication channel models for con-
trol design and performance analysis. Hence, control performance
of the newly obtained distributed system, operating in realistic
industrial environments, cannot be guaranteed. On the other hand,
the parent formalism of PNs has been used for modeling and anal-
ysis of communication protocols [6], but stochastic properties of
universally adopted wireless channels cannot be encoded within it.

Consequently, we bridge the gap between the expressiveness of
the widely adopted control models and the need for verification of
automatically synthesized distributed control systems. We achieve
this by automatic translation of the distributed CIPN models into
Stochastic Reward Nets (SRNs) — a variant of PN that supports
stochastic timing features suitable for modeling of communication
channels and time-varying physical executions; this enables cap-
turing of automation-level (control-related) effects of realistic IloT
designs. SRNs were successfully used to model performance/relia-
bility of software/hardware (e.g., [4, 18]), communication protocols
(e.g., [14]), and distributed systems (e.g., [21]). We exploit composi-
tion of SRN models to verify relevant system properties, based on
probability distributions obtained (and updated at runtime) from
system measurements. Execution scenarios that violate the desired
properties are then used to modify the distributed CIPN controllers
such that potential failure modes are avoided. Finally, we do not
limit the analysis to design-time only. To support dynamic IIoT
environments, we develop an edge-based runtime monitoring sys-
tem that checks properties of interest against system models any
time the models are updated; SRN models are continuously updated
using real-time process and communication channel measurements
obtained by the smart devices and the monitoring system itself.

This paper is organized as follows. Sec. 2 provides an overview of
state-of-the-art distributed automation modeling and design based
on CIPNs as well as its limitations in realistic IloT-based systems.
Sec. 3 introduces SRNSs, the transformation from the CIPN controller
models, and network modeling. In Sec. 4, we present the use of such
models for offline analysis and property verification, and introduce
edge-based runtime verification of distributed automation systems
based on SRNS. Sec. 5 presents the use of our framework on real-
world industrial case studies, before concluding remarks in Sec. 6.

2 STATE-OF-THE-ART AUTOMATION
DISTRIBUTION AND ITS LIMITATIONS

Effective implementation of RMS requires fast and reliable meth-
ods for distribution of control tasks to smart IloT-enabled devices
acting as local controllers (LCs). However, the system’s control
functionalities are commonly specified as centralized controllers
using tools that produce global (i.e., centralized) controller descrip-
tion as a CIPN (e.g., GRAFCET-compatible tools). Hence, in this
paper, we will employ a recently derived method for distribution
of CIPN-based control tasks to LCs [12], which we outline in this
section. We start with a brief overview of PNs and CIPNs.
Formally, a Petri net is a 5-tuple PN = (P, T, F, W, M), where
P ={Py,...,Pn} is a set of places (graphically presented by circles),
T = {Ty,..., Ty} is a set of transitions (graphically presented by
bars) such that PUT # @ and PNT = @, F C {PX T} U{T X P} is
the set of arcs connecting places and transitions, W is the vector of
arc weights, and M is the initial marking, denoting which places
contain (how many) tokens at net initialization time [20]. At any
time, the state of PN is defined by its marking, i.e., distribution of
tokens (graphically presented by black circles inside places), while
firing of transitions that removes tokens from some places and
deposits them into others represents change of the PN state.
Control Interpreted Petri Nets (CIPN) are a variant of PNs where
transition firing is synchronized to system inputs (i.e., sensor sam-
pling) while control outputs (i.e., actuation commands) are issued
from active places (i.e., that have a token). Formally, CIPN repre-
sents a 6-tuple CIPN = (P, T, F, C, A, Mp) in which P, T, F, and My
are the set of places, transitions, arcs, and initial marking, respec-
tively as with PNs [5]. To synchronize sensor measurements with
the CIPN, a set of logical conditions C = {Cy, ..., Cp } is introduced;
C; represents a Boolean function of sensor values and it is allocated
to corresponding transition T;. Also, CIPN is synchronized with
actuator outputs via a set of actions A = {Ay,...,Am}; Aj repre-
sents a set of Boolean (or some other) functions of actuator outputs
allocated to places P;. Note that all arcs in CIPN have weight 1, and
in the initial marking My only one place contains a token. In the
graphical representation, conditions C; (actions Aj) are denoted
next to the corresponding transitions T; (places P;) (see e.g., Fig. 2).
A transition T; can fire and pass tokens to the succeeding places, if
all preceding places contain a token, and condition C; is fulfilled.
The CIPN-based method for distribution of control tasks to LCs,
starts from the global CIPN that captures functional representation

Reliable Industrial loT-Based Distributed Automation

P_CTRL_Init
T_CTRL_Start
st==1

P_CTRL bCYL Extendl T_CTRL_aCYL_Retracted

bp=1 ao==1
T_CTRL_bCYL_Extended1 P_CTRL_aCYL_Retract
bl==1 ap=0
P_CTRL_cGRIP_Grip_bCYL_Retract1 T_CTRL_bCYL_Retracted2

cp=1,wait(500ms),bp=0 bo==1

T_CTRL_bCYL_Retracted1 P_CTRL_cGRIP_Release_bCYL_Retract2
bo==1 cp=0,wait(500ms),bp=0

P_CTRL_aCYL_Extend T_CTRL_bCYL_Extended2
ap=1 bl==1

T_CTRL_aCYL_Extended P_CTRL_bCYL_Extend2
al==1 bp=1

Figure 2: CIPN-based centralized control model of the pneu-
matic industrial manipulator shown in Fig,. 3.

of the centralized control system, as well as the mapping of sensors
and actuators to IloT-enabled smart devices (i.e., their LCs). Then,
the method automatically generates local CIPNj, i = 1,...N, for
each LC using special-purpose graph-search algorithms. In addition
to relevant logical conditions and actions assigned to places and
transitions, each CIPNj may contain communication commands
(i.e., communication API calls) between LCs. These enable coor-
dination and information exchange between LCs, to ensure that
control functionality of distributed control matches the original
CIPN. From CIPN; functional description, C code for LCs is auto-
matically generated. We illustrate this methodology on an example
of pneumatic manipulator with two degrees of freedom (DOF).

ExampLE. A 2-DOF industrial manipulator in a pick-and-place
configuration (Fig. 3) is used as a running example in this paper. The
manipulator consists of two pneumatic double acting cylinders pro-
viding translational degrees of freedom, denoted A and B, and one
pneumatic gripper denoted C. All actuators are controlled by electri-
cally activated monostable dual control valves 5/2 (with 5 ports and 2
positions), triggered by signals xp, x € {a, b, c}. Here, lower letter x de-
notes signals associated to the actuators denoted with capital letter X,
X € {A,B,C}. Also, cylinders are equipped with proximity switches
that detect their final retracted (home) and extended (end) positions;
home position sensor signals are denoted as x0, and end positions as x1,
x € {a,b}. The system is also equipped with a start switch st. Each
actuator represents a smart field device with integrated LC with physi-
cal access to sensors and dual control valves. The allocation of LCs and
signals is as follows: i) Cylinder A: LC; « {ap, a0, a1}, ii) Cylinder
B: LCy « {bp, b@, b1, st}, and iii) Gripper C: LC3 « {cp}.

The manipulator operates as follows. On activation of the start
switch (st==1), cylinder B extends (due to action bp=1). When cylin-
der B reaches end position (b1==1), the gripper is activated and grips
the part at the picking position (cp=1). Then, cylinder B retracts (bp=0)
and when it arrives to the home position (b@==1), cylinder A advances
(ap=1). When cylinder A comes to the end position (al==1), cylin-
der B starts extending (bp=1), and when it reaches the end position
(b1==1), gripper C releases the part (cp=0) at the placing position.
Then, cylinder B retracts (bp=0, b0==1), followed by retraction of
cylinder A (ap=0, a0==1). The cycle is then automatically repeated
without pressing the start switch. A timer ensures gripping and releas-
ing of a part before retraction of cylinder B — i.e., a delay is inserted

oTDI 19, April 15-18, 2019, Montreal, QC, Canada

17

Controller B

Cylinder A
<“—>

Cylinder B

R

Controller A

Pick and place positions

Figure 3: Running example — 2-DOF pneumatic manipula-
tor in a pick-and-place configuration. Each of the cylinders
and the gripper are controlled by a networked controller.

between commands cp=1 and bp=0 to secure gripping before raising
the object from the picking position; similarly holds for placing.

Fig. 2 shows a CIPN that captures the described functioning of
the manipulator’s global sequential behavior using the CIPN formal-
ism. The use of the CIPN-based distribution of control tasks to LCs
leads to local CIPN; from Fig. 4. Each CIPN; contains: (i) places
and transitions with conditions and actions extracted from the
global CIPN based on sensor/actuator mapping to LC;, and (ii) arcs
that ensure the desired control sequence through token passing.
Furthermore, some of the places in CIPN; contain commands for
transmission (i.e., communication API calls) of certain signals from
LC; to LC;. For example, place PaCTRL_TxB_aEnd contains com-
mand Send(B, a1), which sends information from LC; (cylinder A)
to LCy (cylinder B) that sensor a1 is activated (i.e., a1==1 as cylinder
A reached the end position); LC; receives this information at the
transition TbCTRL_wfAextended.! Communication between LCs
ensures that the distributed system behaves as globally specified.

However, unpredictable network delays and failures, including
packet drops, may violate functional safety of the distributed system.
For instance, if a message from controller B to controller C fails
to reach controller C (in time), the part ends up ungripped and
the workcycle is wasted, or collision occurs between the gripper
and the part. Also, if a cylinder fails to inform the other that it has
reached the end position, the entire system is deadlocked. Note that
such scenarios cannot occur with centralized control.

Consequently, to ensure reliable system operation in realistic
IIoT environments, it is necessary to analyze distributed control
performance when realistic network and faults models are taken
into account. To achieve this, we first propose the use of Stochastic
Reward Nets (SRN) to model communication and time-variable
executions; the formalism supports modeling of probabilistic prop-
erties of communication channels/execution delays in a framework
suitable for quantitative reliability and control-related performance
analysis. We show how physical components (i.e., the controlled
plants) and communication channels can be modeled with SRNS,
and how the distributed CIPN-based controller models can be au-
tomatically transformed into SRN models. We also show how the

!We use the abbreviated descriptive notation for places and transitions to improve
model readability; e.g., transition TbCTRL_wfAextended on controller B waits for cylin-
der A to extend, while place PaCTRL_TxB_aEnd on controller A implements sending
of signal a1==1 to controller B.

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

PaCTRL_Init (a) Controller A

TaCTRL_Start

PaCTRL_wfRxB_bHome1 (b) Controller B PbCTRL_Init

TaCTRL_wfRxB_bHome1 TbCTRL_Start

bO==1 st==1
PaCTRL_aCYL_Extend PbCTRL_bCYL_Extend1
ap=1 bp=1
TaCTRL_aCYL_Extended ThCTRL_bCYL_Extended1
al==1 bl==1
PaCTRL_TxB_aEnd PbCTRL_TxC_bEnd1_bCYL_Retract1
Send(B,al) Send(C,b1),wait(500ms),bp=0

TaCTRL_Retlnit
TaCTRL_wfRxB_bHome2 TbCTRL_bCYL_Retracted1
bo==1 bo==1

PaCTRL_aCYL_Retract PbCTRL_TxA_bHome1

ap=0 Send(A,be)
TaCTRL_aCYL_Retracted TbCTRL_wfAextended
ag==1 - al==1

PcCTRL_Init
PaCTRL_TxB_aHome cp=0 PbCTRL_bCYL_Extend2
Send(B,a0) bp=1
TcCTRL_Start TbCTRL_bCYL_Extended2
(c) Controller C B - e;;l=e=1

PcCTRL_wfRxB_bEnd1 PbCTRL_TxC_bEnd1_bCYL_Retract2
Send(C,bl),wait(500ms),bp=0

TcCTRL_wfRxB_bEnd1
bl==1 TbCTRL_bCYL_Retracted2

be==1

PCCTRL_cGRIP_Crip PbCTRL_TxA_bHome2

cp=1 TcCTRL_Retlnit “Send(A,bo)
TcCTRL_wfRxB_bEnd2

bl==1 TbhCTRL_wfAretracted

a@==1

PcCTRL_cGRIP_Release

cp=0
Figure 4: CIPN-based distributed control model of an indus-
trial manipulator from Fig. 3 (obtained from CIPN in Fig. 2).

desired system properties can be specified and efficiently verified
with tools that solve SRN, and how to avoid detected failure-modes
by adapting local CIPN; controllers. As deployment environments
of lloT-based RMS are dynamic, we also introduce an edge-based
reliability and performance runtime monitoring system that re-
evaluates properties at runtime based on current system models. In
what follows, we describe the stages of the framework from Fig. 1.

3 NETWORKING-AWARE MODELING FOR
DISTRIBUTED SEQUENTIAL CONTROL

Stochastic Reward Nets (SRN) extend the expressiveness of PNs
by introducing stochastic transition firing times, and race policies
for resolving firing of competing transitions. Additionally, general
marking-dependent guard functions and firing rates can be speci-
fied. Moreover, SRN support marking-dependent reward functions
that encode an arbitrary measure of system performance, enabling
extensive reliability and performance analysis [22].2

To analyze effects of non-zero execution, network transmission
delays, and packet drops on distributed sequential control, we trans-
form the distributed control specification given by CIPN;, into SRN

models SRN?”I, i =1,...,N; we also add corresponding SRNflant

models of the physical components controlled by SRN?”I , and
SRN}C.ha"”el ,Jj = 1,..., M, modeling used communication channels.?

2The PN definition from Sec. 2 can be formally extended to capture features of SRNs;
for more details and complete theoretical review, refer to Ch.12 of [22].

3This supports the general case when more than one communication channel is used
for information exchange between controllers; e.g., frequency separation may be used
in such wireless networks to minimize communication contention between the devices.

Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

Due to the structure of CIPN and SRN formalisms, the translation
of the local controller models CIPN; to SRNS‘" l'js straightforward
for all places and transitions, except:

(1) Places issuing actuation commands by setting a control vari-
able, e.g., actr=value, and transitions conditioned by the
state of an input signal (sensor value), e.g., sensor==value,

(2) Communication API calls for signal transmission in places,
i.e,, Send(destination,signal), and for waiting for a sig-
nal on transitions, i.e., transition conditions signal==value.

In essence, exception (1) refers to explicit modeling of the inter-

action between the controllers SRN{* "l and the plant SRNf lant
The implicit, operating system-supported, sampling of sensors and
issuing of actuation commands in the paradigm of CIPNs must be
transformed into the SRN setting such that analytical or simula-
tive solutions of the composition of controller and plant SRNs is
supported. In addition, exception (2) pertains to modeling of the
coordination between controllers that is mediated over the channel
SRNC¢hannel Iy this case, the implicit transmit/receive paradigm
of CIPNs must be transformed into explicit synchronization of
controllers via a channel model that are to be composed and solved.

To address these challenges, in the rest of the section we present
methods to model the physical components, network, and controller-
network interaction, while Sec. 4 focuses on solving the SRN model.

3.1 Modeling Physical Components

We start by describing an example model of physical plants being
controlled by the distributed automation system, as well as the
interaction between the plants and distributed controllers, with
emphasis on SRN-enabled modeling conveniences.

3.1.1 Plant Modeling. Expected plant behavior is usually available
as properties of the controlled process (i.e., plant) are known at
design-time. On our running example, we show how an SRN-based
model of the plant can be developed. Fig. 5(a) shows the SRN model
of the two-position linear pneumatic cylinder from Fig. 3. As the
position of the cylinder cannot be controlled anywhere between the
two end positions, places PaCYL_Retracted and PaCYL_Extended
are sufficient to model the two end positions (states) (see Fig. 5(a)).

The cylinder is initially in the retracted (home) position; hence
one token is initially placed in PaCYL_Retracted. The transition
TaCYL_Extending (TaCYL_Retracting) is a timed transition that
models the delay between the extend (retract) actuation signal and
the cylinder reaching the end (home) position. If such delay is fixed
(i-e., does not change during system operation), a deterministic fir-
ing time transition can be utilized, as in Fig. 5(a). On the other hand,
the pneumatic cylinder may not exhibit fully deterministic behavior
in terms of travel time between the end positions. In such cases, the
deterministic time transitions can be replaced with a distribution
that models travel time variations around the nominal travel time.

In general, the plant side of the controller-plant interaction is
modeled by guarding transitions in the plant model with functions
dependent on the marking of the controller model. In our example,

“Note that timed transitions are denoted as rectangles, while immediate transitions
are denoted using the usual bars as in regular PNs.

SFor example, a common method is to use Erlang-k distribution, where each of the k ex-
ponential stages have average firing time w Another alternative
is to use the uniform distribution, as in the real-world case studies described in Sec. 5.

Reliable Industrial loT-Based Distributed Automation

(b) Controller A PaCTRL_Init

TaCTRL_wfRxB_bHome1

(a) Cylinder A bo=1

PaCYL_Retracted

TaCYL_Extending TaCYL_Retracting PaCTRL_aCYL_Extend

[g_aCYL_ExtendEn] [g_aCYL_RetractEn] TaCTRL aCYL Extended

[g_aCTRL_aCYL_Extended]

PaCTRL_TxB_aEnd
Send(B,al)

PaCYL_Extended

TaCTRL_wfRxB_bHome2 bo==1

PaCTRL_TxB_aHome
Send(B,a0)

TaCTRL_aCYL_Retracted
[g_aCTRL_aCYL_Retracted] g_aCYL_ExtendEn()= {;’
B

PaCTRL_aCYL_Retract

oTDI 19, April 15-18, 2019, Montreal, QC, Canada

(¢) Guard functions

mark(PaCYL_Extended)=1

1
aCTRL_aCYL_Extended()= ’
- - = 0 {0, otherwise

mark(PaCYL_Retracted)=1

g_aCTRL_aCYL_Retracted()=< 1’ :
- - - 0, otherwise

mark(PaCTRL_aCYL_Extend)=1
otherwise

mark(PaCTRL_aCYL_Retract)=1

1
aCYL_RetractEn()= ’
8- - 0 {0, otherwise

Figure 5: Modeling the plant and plant-controller interaction: (a) SRN model of a two-position pneumatic cylinder; (b) extended
model of the controller for cylinder A from Fig. 4(a) (the model is not SRN as it still maintains communication API) - plant-
controller interaction is captured through transitions guarded by Boolean functions (c) of the plant and controller markings.

transition TaCYL_Extending (TaCYL_Retracting) is guarded by
a Boolean function g_aCYL_ExtendEn (g_aCYL_RetractEn) - i.e.,
the transition is enabled if there is a token in the corresponding
place in the controller model where cylinder extending (retracting)
is commanded (Fig. 5(c)). The following subsection introduces the
controller side of the controller-plant interaction.

REMARK 1. Since CIPNs are the de-facto standard for representation
of industrial automation controllers, in this work we assume that a
PN-based model (e.g., a CIPN or SRN model) of the physical plant is
available. On the other hand, if plant models are given as automata,
timed-automata or discrete-event systems, which are other formalisms
widely used to model dynamics of physical systems in industrial
automation, standard methods for translation of such formalisms into
PN-compliant models (e.g., as in [3, 7]) can be used.

3.1.2 Modeling Controller-Plant Interaction. In general, places issu-
ing actuation commands in the form actuator=value in an initial
CIPN controller model, are transformed into places in the corre-
sponding SRN controller model whose number of tokens is assessed
by the aforementioned guard functions in the plant model. For ex-
ample, to map command ap=1 in place Pa_CTRL_aCYL_Extend from
the CIPN in Fig. 4(a), the cylinder’s transition TaCYL_Extending, in
Fig. 5(a), is guarded by function g_aCYL_ExtendEn that returns 1 if
the cylinder’s controller (Fig. 5(b)) is in place PaCTRL_aCYL_Extend
(i.e., where actuation signal to extend is commanded), and other-
wise returns 0. This effectively models the actuation part of the
controller-plant interaction. Formally, the controller deposits tokens
in places that enable plant transitions; semantically, the controller
sends actuation commands to locally connected actuators.
Similarly to the described actuation modeling, in the controller
model we introduce guard functions on the plant model’s state (i.e.,
token distribution) to model plant sensing. Formally, each transition
in the CIPN controller model conditioned by sensor==value is
replaced with an immediate transition guarded by a Boolean guard
function that evaluates to 1 if the plant model currently has a token
in the place corresponding to the state where the given sensor’s
reading is equal to the specific value, and otherwise to 0. Note that
more than one plant’s place may be considered simultaneously for
complex transitions (i.e., that use multiple sensors). Extensions to
real-valued variables and more complex guard functions are also
supported, but are not considered here to simplify our presentation.
To illustrate this, the intermediary controller model correspond-
ing to the CIPN model of the controller for this cylinder (Fig. 4(a)) is

shown in Fig. 5(b), while Fig. 5(c) contains the corresponding guard
functions. Transition TaCTRL_aCYL_Retracted guarded by a0==

in Fig. 4(a) is mapped into transition TaCTRL_aCYL_Retracted
in Fig. 5(b) guarded by function g_aCTRL_aCYL_Retracted. Note
that this controller model includes only the interaction between the
controller and the plant, and carries over the CIPN communication
paradigm — transmissions Send(destination,signal), and sig-
nal receptions modeled by transitions guarded by signal==value.

3.2 Modeling Network-Controller Interaction

In the CIPN models of distributed controllers, communication be-
tween a transmitter and a receiver is handled via a place issuing a
Send(destination,signal) command on the transmitter, while
the receiver guards the transition from its place preceding reception
with a corresponding signal==value condition, as illustrated in
Fig. 6(a). A suitable SRN-compatible representation is needed for
this place/transition to enable interaction with the communication
channel. Yet, explicit network modeling is (a) medium-, (b) protocol-,
and (c) implementation-dependent. For instance, Fig. 6(c) shows the
model] of a half-duplex, acknowledge-required unicast CSMA-CA-
based communication channel. While other channel models can be
as easily adopted, in this paper we define the transformation of the
sending/receiving semantics from CIPNs into an SRN-compatible
representation for this specific channel model. Note that while
seemingly simple, this model captures application-level (control-
related) effects for the experimentally observed communication
delays/faults in IIoT deployments. Additionally, as we will show in
Sec. 5, this abstraction was successfully used to discover flaws in
existing implementations of distributed automation systems.

The considered channel can either be idle, busy transmitting a
communication packet, just completed the transmission in prepara-
tion to take the acknowledgement (ACK), or busy transmitting an
ACK, as shown in Fig. 6(c). The transition Tch_wfTx is enabled only
when the respective transmitter is in a corresponding transmit state.
Thus, guard function g_Tx is dependent on the number of tokens
in Pa_wfTx place on the transmitter (i.e., where the transmitter is
issuing packet transmission, as shown in Fig. 6(b)).

In the general case with multiple transmitters, the transmitter
that first deposits a token into its transmit place (i.e., initiates trans-
mission), triggers a change in the channel state. Race conditions
between transmitters can be resolved deterministically (e.g., by pri-
orities), or probabilistically. Once Tch_wfTx transition is enabled,
the token in the channel model can transition to place Pch_TxBusy

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

(a) CIPN (b) SRN Tx/Rx model (c) SRN Channel model (d) Guard functions
. A(Tx H B (Rx ()= <4 L mark (Pa_wfTx)=1
A(Tx) ; (™) (Rx) _ Channel g-Tx0 @, otherwise
Pa Tx Pa_wfTx H Pch_Idle
- Th_wfRx _J 1, mark(Pb_TxAck) =1
Send(B,a) . Ta wfTx [g_Rx] Teh wfTx 0, otherwise
; 3 [g Tx] Tch_AckTx
Pb_TxAck N ={1, mark (Pch_Txd)=1
Pa_wfAck i Pch_TxBusy Pch_AckBusy @, otherwise
B (Rx Tb_TxAck . -
(); Ta_wfAck v Teh_wfAck g_TxFin():{l’ mark(Pch_Tdle)=1
Ta Rx ; [g_TxFin] Tch_Tx 0, otherwise
a==1 ~/ 1 mark(Pch_Txd)=1 &&
v Pa_TxDone Pch_Txd () g Rx()= > mark(Pa_wfAck)=1
V = @, otherwise

Figure 6: SRN model of a half-duplex, ACK-required unicast CSMA-CA channel. Places model channel states, immediate tran-
sitions are enabled when packet (ACK) transmission is enabled on Tx (Rx); stochastic firing time transitions model the delay.

(i.e., the channel changes state), where it will dwell until the stochas-
tic time transition Tch_Tx modeling the network/channel-induced
delay fires. Also, once Tch_Tx fires, the packet is sent, enabling the
transition Ta_wfTx, advancing the transmitter into wait-for-ACK
state. Hence, as the channel is ready to transmit the ACK (token
in Pch_Txd), and the transmitter is waiting for the ACK (token in
Pa_wfAck), the receiver receives the packet, advancing to Pb_TxAck
place (i.e., Tbo_wfRx fires). This captures packet transmission model.

After a message transmission, the channel model advances to
Pch_AckBusy state, as the transition Tch_wfAck is enabled. Imme-
diately, the receiver continues execution as the ACK is handled
by lower layers of the communication stack. Consequently, the
receiver’s token advances through Tb_TxAck, which concludes the
receiver’s activity in the packet exchange. On the other hand, the
transmitter is blocked at Ta_wfAck by the guard g_TxFin, until the
ACK propagates through the channel. The channel is busy transmit-
ting the ACK until the stochastic firing time transition Tch_AckTx
fires, returning the channel into idle state, and advancing the trans-
mitter into Pa_TxDone, which concludes acknowledging.

Note that in addition to modeling of event sequencing, the
SRN models allow for capturing time-to-transmit and time-to-ACK,
which we model using two independent stochastic-time transitions.
This enables adoption of realistic models where an ACK packet prop-
agates much faster, as it is much shorter than the original packet,
and is immediately preceded by a successful full-packet transmis-
sion. Complete transmitter/receiver and channel models are shown
in Fig. 6(b)-(d). For improved readability, transitions and places are
colored according to their dependencies in Fig. 6(b) and (c).

Furthermore, this model imposes two race conditions, between
transitions Tch_wfTx and Ta_wfAck, and between Tch_wfAck and
Tb_TxAck. In both scenarios, the competing transitions are simul-
taneously enabled, and firing of the former disables the latter (si-
multaneous transition firing is not allowed in PNs). In the first case,
when transmitter A receives the ACK, guard g_TxFin no longer in-
hibits Ta_wfAck, as the channel is in Pch_Idle state. However, the
token in Pch_Idle also enables another transmitter A’ to change
the state of the channel from Pch_Idle to Pch_TxBusy, which in
turn disables Ta_wfAck. In the second case, as the receiver is ready
to advance through ACK transmission (Tb_TxAck is enabled), and
the channel to start transmitting the ACK (Tch_wfAck is enabled),

firing of Tb_TxAck disables Tch_wfAck as it removes the token from
Pb_TxAck; this causes the guard g_Ack to inhibit Tch_wfAck.

We address with transition priority assignment; if prio(Ta_wfAck)
>prio(Tch_wfTx) and prio(Tch_wfAck)>prio(Tb_TxAck) therace
conditions are resolved properly; this is semantically correct as the
first transmitter must complete transmission before another one can
initiate the next transmission in CSMA-CA-based networks (first
scenario), and the receiver has to initiate ACK transmission upon
packet reception before continuing execution (second scenario).

REMARK 2. The presented modeling approach is flexible, and can
be adjusted for different PHY- and MAC-layer variations. For instance,
if an ACK is not required for low-criticality transmissions, the above
presented channel model can easily be modified by eliminating places
and transitions modeling ACK transmission/reception. Low-level pro-
tocol features, such as multiple-retry schemes, can also be accounted
for. For instance, standard exponential-based retransmission back-off
can be modeled by probabilistically flushing tokens from Pch_TxBusy
place in case of transmission failure, and depositing new tokens at a
stochastic rate. Other random back-off models are also allowed.

Furthermore, in the presented model, the receiver advances to trans-
mitting the ACK through Tb_wfRx transition that is guarded by g_Rx
dependent both on the channel and the transmitter markings. This
ensures that, in the case of multiple receivers, only the one targeted by
the active transmitter advances execution; i.e., the channel is unicast.
The guard function g_Rx can easily be modified to model multicast
or broadcast channels. For presentation clarity, we consider the com-
munication model from Fig. 6 throughout the paper as it applies to
the network underlying our case study. For details on the use of PNs
for modeling of communication and cooperation protocols refer to [6].

ExXAMPLE (INDUSTRIAL MANIPULATOR WITH 2-DOF). We used the
presented methodology for translation of distributed CIPN controllers
into SRN models that also capture communication (i.e., networking)
between the controllers, to fully transform the CIPN model from Fig. 4
into an SRN model shown in Fig. 7. The following section analyzes the
model utility by introducing formally-encoded functional and safety
properties that can be verified in tools that support analysis of SRNE.

4 SYSTEM ANALYSIS AND VERIFICATION

The developed SRN-based models can be used to verify desired
system properties. Given the probability distributions of network

Reliable Industrial loT-Based Distributed Automation

Controller C PcCTRL_Init

TcCTRL_wfRxB_bEnd1

[g._c_Rx_bEnd1 TcCTRL_Retlnit

PcCTRL_TxAckB_bEnd1 PcCTRL_cGRIP_Release
TcCTRL_TxAckB_bEnd1 TcCTRL_TxAckB_bEnd2
PcCTRL_cGRIP_Grip PcCTRL_TxAckB_bEnd2

TcCTRL_wfRxB_bEnd2 [g_c_Rx_bEnd2]

PaCTRL_Init
TaCTRL_wfAckB_aHome
[g_TxFin]
PaCTRL_wfAckB_aHome
% TaCTRL_wfTxB_aHome

PcGRIP_Released

Controller A

TaCTRL_wfRxB_bHome1
[g_a_Rx_bHomel]

PaCTRL_TxAckB_bHome1

TaCTRL_TxAckB_bHome1

PaCTRL_aCYL_Extend PaCTRL_wfTxB_aHome

TaCTRL_aCYL_Extended
[g_aCTRL_aCYL_Extended]

TaCTRL_aCYL_Retracted

PaCTRL_wfTxB_aEnd PaCTRL_aCYL_Retract

TaCTRL_wfTxB_aEnd

TaCTRL_TxAckB_bHome2

PaCTRL_wfAckB_aEnd PaCTRL_TxAckB_bHome2

TaCTRL_wfRxB_bHome2
[g_a_Rx_bHome2]

TaCTRL_wfAckB_aEnd
[g_TxFin]

Gripper C PaCTRL_wfRxB_bHome2

TcGRIP_wfGripCmd

[g_cGRIP_GripEn] TcGRIP_Releasing

PcGRIP_Gripping PcGRIP_Releasing

TcGRIP_wfReleaseCmd

TcGRIP_Gripping [g_cGRIP_ReleaseEn]

PcGRIP_Gripped

[g_aCTRL_aCYL_Retracted][g bCTRL_bCYL_Retracted]

oTDI 19, April 15-18, 2019, Montreal, QC, Canada

PbCTRL_Init Controller B
TbCTRL_Init
PbCTRL_bCYL_Extend1
TbCTRL_bCYL_Extended1 THCTRL_TxAckA_aHome
[g_bCTRL_bCYL_Extended]
PbCTRL_wfTxC_bEnd1 PbCTRL_TxAckA_aHome
ThCTRL wfTxC bEnd1 TbCTRL_wfRxA_aHome

[g_b_Rx_aHome]

PbCTRL_wfAckC_bEnd1 PbCTRL_wfAretracted

TbCTRL_wfAckA_bHome2
[g_TxFin]

TbCTRL_wfAckC_bEnd1
[g_TxFin]

PbCTRL_wfCgrip PbCTRL_wfAckA_bHome2

TbCTRL_wfCgrip TbCTRL_wfTxA_bHome2

500ms

PbCTRL_bCYL_Retract1 PbCTRL_wfTxA_bHome2

TbCTRL_bCYL_Retracted1 TbCTRL_bCYL_Retracted2
[g_bCTRL_bCYL_Retracted]

PbCTRL_wfTxA_bHome1 PbCTRL_bCYL_Retract2

TbCTRL_wfTxA_bHome1 TbCTRL_wfCrelease

500ms
PbCTRL_wfAckA_bHome1 PbCTRL_wfCrelease

TbCTRL_wfAckA_bHome1
[g_TxFin]

TbCTRL_wfAckC_bEnd2
[g_TxFin]

PbCTRL_wfAextended PbCTRL_wfAckC_bEnd2

TbCTRL_wfRxA_aEnd TbCTRL_wfTxC_bEnd2

[g_b_Rx_aEnd]

A-OA-OA-OAOHOHO~

Lo

PbCTRL_TxAckA_aEnd PbCTRL_wfTxC_bEnd2

TbCTRL_bCYL_Extended2
g_bCTRL_bCYL_Extended]

TbCTRL_TxAckA_aEnd
[

PbCTRL_bCYL_Extend2

Figure 7: SRN-based distributed control model of a simple industrial manipulator; models of cylinders A and B, as well as the
channel model are shown in Fig. 5(a), and Fig. 6(c), respectively; guard functions are defined as per the pattern shown therein.

delays, actuator and plant response times, as well as controller
settings as inputs, PN software packages can be used for system
analysis. If all timed transitions are either immediate or have expo-
nential firing time, the model can be solved using analytic/numeric
methods [11, 22]. On the other hand, for generally distributed firing
times, discrete event simulation is performed. As assuming exponen-
tially distributed or immediate firing times is not valid in most IloT
applications, we use the Stochastic Petri Net Package (SPNP) [11]
that also supports discrete-event simulation for quantitative system
analysis. We now discuss specification of relevant system properties
as well as employed design- and run-time verification setup.

4.1 Specifying System Properties

Safety Properties. Safety properties can be specified as reward func-
tions — arbitrary functions of the controller and plant states (i.e.,
markings) that are evaluated at every marking update (i.e., discrete
simulation step). For instance, for our running example, gripper C
must never be closed while cylinder B is advancing downward to-
wards the part; this leads to collision between the gripper and part. If

mark (PcGRIP_Gripped)==1 AND mark (PbCTRL_bCYL_Extend1)==
holds, the safety property is violated. Thus, a Boolean reward func-
tion that returns 1 when the condition holds, and 0 otherwise is used

to evaluate probability of occurrence of such an event; any nonzero

such probability is used as an indicator about potential safety viola-
tion. To simplify our notation, we denote functions of this form as

R()=if (BooleanCondition,ValueIfTrue,ValueIfFalse).

For our running example, SPNP returns that the system is safe
when the network-induced communication delays are exponentially
distributed (rate parameter used for packet delays is 1/200 while it
is 1/1000 for ACK). In Sec. 5, we use actual channel measurements
acquired from a deployed system for analysis using the SPNP tool.

Liveness Properties. Besides safety, it is important to ensure the
system makes forward progress and performs according to desired
performance specification; we somewhat abuse the notation and
refer to these as liveness properties. Analysis of SRN models results
in a set of average measures for each place and transition. For places,
average number of tokens and average probability of a place being

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

non-empty can be defined. These measures provide insight in the
system dwell time in a particular state. For example, we expect that
the channel dwells zero time in Pch_Txd place as otherwise would
indicate a problem with ACK transmissions (this can be verified
by analyzing the model within SPNP). Also, actuation systems are
commonly provisioned by specific upper bounds on the actuator
active times. In our running example, probability that the pneumatic
cylinders are either in the state of extending or retracting can be
used to compute average duty cycles of the mechanical components,
which can be used to verify that the system is operating within
prespecified limitations, or anticipate increased wear.

Conversely, average throughput of tokens through each of the
transitions can be defined, as well as probability that a transition is
enabled. Transition throughput can then be used as a performance
metric; for example, the speed at which the pick and place cycle is
performed for our running example - analysis using SPNP reveals

that the throughput of all controller transitions is 0.295 mske%

sec 6
unit "

4.2 SRN-based System Analysis

The derived SRN models are used for design- and run-time system’s
safety and performance analysis using existing PN-supported tools.

resulting in the processing time of 3.389

Capabilities of Petri Net-Based Tools. When analytic/numeric meth-
ods are utilized, violation of safety properties can be determined at
the time of construction of the reachability graph; i.e., the undesir-
able marking(s) can be identified without statistical simulations. On
the other hand, if discrete-event simulation is performed (e.g., in
the case of non-exponentially distributed firing times), reachability
of markings where a safety property is violated is determined on
per-simulation-run basis; i.e., obtained results translate into prob-
abilistic guarantees. Two broadly used PN-based tools are [2, 11],
which implement a type of stopping criteria both for analytic/nu-
meric and simulative solution modes. Therefore, if a safety property
violation is detected (i.e., non-zero probability of reaching undesired
state), the analysis can be halted.

Runtime Monitoring Support. Various runtime effects such as com-
munication channel utilization, component aging, and mechanical
wear may affect the parameters of the developed model; thus, re-
sults of design-time (i.e., offline) system analysis based on initially
obtained SRN models may not continue to hold during system exe-
cution. Hence, the ability to check for statical property violation at
runtime is crucial for reliability and performance monitoring. We
explored runtime support for monitoring of distributed automation
systems; the stopping criteria feature of PN-based tools is very use-
ful for runtime safety verification as the supervisor can be warned
on predicted unreliability, before the full analysis is completed.
We developed an execution environment in which process mea-
surements (e.g., cylinder travel times) and channel features (e.g.,
packet propagation delays) are acquired in real-time, and used
for runtime adaption of the prespecified parameters of probabilis-
tic features within the SRN model. To ensure timely response in
bandwidth-constrained IloT-based deployments, we explore execu-
tion of the model checking tool on the edge, rather than the cloud
(details are provided in Sec. 5). Edge-based monitor deployment

®Given the specific structure of PNs modeling controller behavior, the throughput of
all transitions is the same as no tokens are being generated or flushed at runtime.

Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

is naturally promoted for IloT-based automation, as continuously
powered gateway devices that support higher-level coordination
and decision-making exist by design in such systems.

REMARK 3 (ESTIMATING DISTRIBUTIONS VS. DIRECTLY USING SAM-
PLE-BASED MEASUREMENTS). State-of-the-art PN tools support para-
metric specification of transition firing times conforming to most
well-studied probability density functions (more than 15 distribu-
tions), suitable for flexible modeling of discrete event processes [2, 11].
In this setting, distributions are fitted to offline data to create an accu-
rate model of the real system. Still, state-of-the-art tools also support
sample-based firing times — i.e., the solver can sample firing time
arrays during simulation that are obtained from measurements at
runtime, rather than generating a random sample from a predefined
distribution [11]. Our system is capable of exploiting this feature such
that the additional step of fitting a probability distribution to the ac-
quired data can be eliminated, increasing the statistical fitness of the
obtained measures to the real system. Consequently, while analysis of
a model fitted with offline date is, our online edge-based performance
and reliability monitoring is not dependent on the IID assumption as
it employs process and channel measurements acquired at runtime.

5 INDUSTRIAL CASE STUDIES

On two real-world industrial case-studies, we show applicability of
our methodology for IloT-enabled distributed automation: (I) 3-DOF
pneumatic manipulator, and (II) a complex pneumatic manipulator
with parallel processes. The considered manipulators are not classi-
cal; they are modularly designed in terms of mechanical subsystems
and their control (using a smart IoT device), to facilitate reconfig-
uration. Also the considered control scenarios do not follow the
conventional IEC 62264 hierarchical industrial automation pyramid.
While we limited our evaluation to manipulators in our physical
testbed, our approach applies to other IloT-enabled equipment.

In both case-studies, we start from distributed control models
obtained using existing techniques. We transform these CIPNs into
SRNs and perform analysis with the developed plant and channel
models. We first show how to discover potential problems that arise
with the use of existing distributed controllers executing in realistic
IIoT environments, before showing how these can be addressed
through patches in the code generation stage (by introducing suit-
able communication constructs and exploiting LC runtime support).

5.1 Case Study I: 3-DOF Industrial Manipulator
5.1.1 Physical Setup and Modeling. The considered manipulator is
configured to pick a part at the picking location, transfer it to the
immersion location and immerse it into liquid, retract the part from
liquid, shake of excess liquid (by means of rotation), and return the
part to the original location. The pneumatic cylinder configuration
with highlighted components is shown in Fig. 8(a), while the top por-
tion of the system (i.e., cylinders) are shown in Fig. 8(b1). Cylinders
A and B, providing translational DOF, as well as C, providing the ro-
tational DOF, are all equipped with end-position sensors, while the
gripper D is not (similarly to our running example). Each cylinder
modules is controlled by a low-cost ARM Cortex-M3-based NXP
LPC1768 microcontroller (i.e., LC in Fig. 8(b2)) clocked at 96 MHz.
All LCs execute the C code generated from the formal CIPN descrip-
tion using our framework from [12]. Finally, LCs form a low-power,
low-latency network via IEEE 802.15.4-compliant radio modules.

Reliable Industrial loT-Based Distributed Automation

Cylinder A Controller A S\ (1) 3-DOF manipulator

NC >

Cylinder C
Controller B

Pick and return
position

(a) 3-DOF manipulator in a pick-immerse-
shake-return configuration

(b) System components

Figure 8: Case Study I: (a) 3-DOF industrial manipulator;
(b1) Cylinders A and B provide translational DOFs, C pro-
vides rotational DOF, gripper D handles parts; each is con-
trolled by a low-cost ARM Cortex-M3-based LC (b2). Size-
and power-aware NUC (b3) monitors system’s performance
(pneumatic cylinders do not scale to the LC and the NUC).

Forward stroke bounds Reverse stroke bounds

Cylinder Lower [ms] Upper [ms] | Lower [ms] Upper [ms]
A 1100 1120 689 715
B 107 143 146 172
C 119 130 111 122
D 45 55 45 55

Table 1: Travel times for the cylinder are modeled using uni-
form distribution with parameters specified in the table.

Local CIPN controller models, obtained using the existing frame-
work from [12], are transformed into SRN-compatible represen-
tation, and plant and channel models are developed as described
in Sec. 3. Plant model parameters (i.e., cylinder travel times) are
obtained from experimental measurements as they depend on a
number of external parameters (e.g., control valve setting, nominal
air pressure). Therefore, in the SRN models, cylinder response times
(i.e., travel times from home to end positions) are modeled using
the uniform distribution with parameters given in Table 1.7

Similarly, channel parameters (i.e., propagation delay distribu-
tions) were obtained from the data acquired from the physical setup.
Fig. 9 shows the histograms of acquired transmit-to-receive and
receive-to-ACK times in experiments executed over two days, il-
lustrating small changes when the system operates in nominal
conditions. Truncated normal distribution® is adopted with param-
eters y = 4.84 ms, 0 = 4.7 - 10_6, Xmin = 4.83 ms, Xmax = 4.85 ms
for Tx - Rx and y = 0.57 ms, 0 = 4.7 - 107%, xmin = 0.56 ms,
Xmax = 0.58 ms for Rx — Ack times; these parameters were used
for offline system verification. To also cover the scenarios where
environmental and operating conditions may significantly change,
probability distribution parameters were updated at runtime based

"The case study model is substantially more complex than the running example model.
However, the CIPN/SRN model schematics are omitted due to their close semantical
similarity with the running example.

8Truncated normal distribution is a variant of the Gaussian normal distribution that
allows the random variable to be bounded from bellow and/or above. In addition to
the model being realistic as a communication packet will never have zero or infinite
propagation time, our experiments showed that the distribution was able to fit the
obtained experimental data very well.

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

0.2 0.2

0.15 0.15
0.1 0.1
0.05 0.05

0 0
483 4835 4.84 4845 485 0.565 0.57 0.575 0.58
Tx to Rx delay [ms] Rx to Ack delay [ms]

frequency

Figure 9: Histograms of packet and ACK propagation delays
measured over two days from our industrial testbed.

on acquired delay measurements, and the properties reverified on
an edge-based near-gateway monitor device, as described below.

5.1.2 Verification and Runtime Monitoring. We run SPNP on an
Intel Core i3-based NUC platform, shown in Fig. 8(b3), which is suit-
able for edge-based near-gateway deployment. The NUC platform
monitors the deployed industrial manipulator by collecting event-
triggered communication packets between distributed controllers,
and receiving additional diagnostic measurements from controllers
themselves (e.g., cylinder travel times, actuation to sensing delays),
obtained from local on-line monitoring using the Microchip ZENA
IEEE 802.15.4-compliant adapter.

We considered an exhaustive list of safety and liveness properties
prescribed by a domain expert. To illustrate our approach, in this
paper we focus on the following properties:

PROPERTY 1 (GRIPPER D IS ALWAYS GRIPPED DURING CYLINDER A
STROKE). Violation of this property implies dropping of the part dur-
ing transfer between the picking/placing position and the immersion
position causing damage to the part and/or the manipulator platform.
We add the reward function indicating violation of this property as:
R1()=if ((mark (PdGRIP_Gripped)==0 AND

mark (PaCTRL_aCYL_Extend)==1) OR
((mark (PdGRIP_Gripped)==0 AND
mark (PaCTRL_aCYL_Retract)==1)),1,0).

PROPERTY 2 (GRIPPER D IS ALWAYS RELEASED DURING CYLINDER
B PART-APPROACHING STROKE). Violation of this property implies
collision between the gripper and the part. The corresponding reward
function indicating property violation is specified as:
R2()=if ((mark (PdGRIP_Released)==0 AND
mark (PbCTRL_bCYL_Extend1)==1,1,0).

ProOPERTY 3 (CYLINDER C DUTY CYCLE IS AT LEAST 5.5%). Viola-
tion of this property implies abrupt rotation of the part after immersion
causing increased wear of mechanical components. The probability of
places PcCTRL_RotateCW and PcCTRL_RotateCCW collectively rep-
resent the fraction of time cylinder C is rotating.

PROPERTY 4 (MANIPULATOR PROCESSES PARTS AT THE MAXIMUM
RATE OF 3 255=). Violation of this property implies increased mechan-
ical wear and potential issues with feeding surrounding manufactur-
ing systems at a rate higher than expected. The average throughput of
any of the controllers’ transitions is indicative of this liveness property
(i.e., the rate at which controllers visit their initial state equals the

rate at which parts are handled).

Furthermore, we consider the following representative scenarios,
which were observed during system operation.

SCENARIO 1 (NOMINAL SYSTEM OPERATION). This scenario per-
tains to offline verification of prescribed properties using nominal plant

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

parameters, and the acquired channel model corresponding to exper-
imental measurements at the time of deployment (i.e., parameters
from Sec. 5.1.1); our experiments showed that the model parameters
would not significantly change in nominal operating conditions.

SCENARIO 2 (CONGESTION-INDUCED NETWORK UNAVAILABILITY).
Due to increased channel utilization, network packets may be delayed
or dropped at higher than nominal rates; our experiments showed that
bimodal (or multimodal) distributions may occur in such conditions.

Scenario 2 was observed when a large number of additional LCs
was introduced, all using the same wireless channel for communi-
cation. To realize this scenario and increase channel utilization in
a realistic manner (in terms of channel temporal and bandwidth
requirements), we emulated additional pneumatic manipulators
similar to the real manipulators considered here - i.e., a mixture of
the running example and case study I/Il manipulators were imple-
mented with real controllers, but software-emulated cylinders.

SCENARIO 3 (COMPONENT FAULT — GRADUALLY INCREASING AIR
PRESSURE DUE TO A FAULT IN THE AIR PRESSURE CONTROL SYSTEM).
Due to a fault in the air pressure control system, increased air pressure
is delivered to the pneumatic cylinders causing gradual shortening of
cylinder response times (i.e., travel times between end positions).

We implemented Scenario 3 by gradually increasing air pressure
in the pneumatic system to emulate a system component fault.

5.1.3 Results. Table 2 shows results of model analysis® for these
properties. Average model analysis runtime in SNPN, capturing
1000 discrete-event simulations of 1000 sec duration (> 200 manip-
ulator cycles), on the NUC is 28.2 sec. As the centralized control
system is correct by design, and wireless communication does not
incur significant delays and packet drops between local controllers
under nominal conditions (Scenario 1), the system performs as
expected (average cylinder C duty cycle is 6.1208%, average part
processing time is 3.9368 sec.), and safety properties are not violated.
An acquired sequence of events during a sample of the manipulator
run under nominal conditions is shown in Fig. 11(top).1°

In Scenario 2, as gripper D is not equipped with end-position
sensing (due to its size constraints), communication between con-
trollers B and D is most-vulnerable; by design, controller B sends
a grip command to controller D and waits deterministically for
500 ms assuming that the operation has finished after this time
elapses. If the communication packet fails, for instance, controller
D may leave gripper D released when it is supposed to grip the part
before cylinder B retracts it from the picking position, as shown
in Fig. 11(bottom) during an experimental run in this scenario.

From our runtime analysis, we observed that protocol-level re-
tries are insufficient to provide reliable packet delivery. Generally,
the channel model presented in Fig. 6(c) does not cover unsuccess-
ful transmissions, which acount 3% of all packet transmissions. By
running the analysis on the derived model, we obtain significant
probabilities of violation of properties P1 and P2 (26.9% and 3.3%,
respectively). In the case of controllers A, B, and C, unsuccessful
communication causes a deadlock; in essence, receiving controllers

?Our analysis is based on discrete-event simulation supported by SNPN, as our model
includes non-exponentially-distributed transitions. Recall that if all transitions are
either immediate or exponential, analytic/numeric solutions can be obtained.
OTiming diagrams were obtained by directly measuring sensing/actuation signals.

Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

Pch_ldle

——1 Tch_AckTx

Figure 10: SRN model of a half-duplex, ACK-required uni-
cast CSMA-CA-based communication channel with explicit
delayed retries. In this specific case, 97% of transmissions are
initially successful, while 3% are retransmitted at least once.

are eternally left waiting for a signal to continue execution, and the
(unsuccessful) transmitter exhausts protocol-level retries. Cylinder
C average duty cycle and the production rate are omitted in Table 2,
as the system is often halted due to a communication interruption.
We thus employ the reasoning enabled by the presented SRN
model analysis to modify the translation of the CIPN’s communica-
tion semantics; we do this during code generation for LCs in order
to include application-level transmission retries. Consequently, we
also redesign the channel model to account for this change; Fig. 10
shows the improved channel model from Fig. 6(b). We redeployed
the entire distributed system, using the modified semantics for com-
munication APIs in LCs, and reproduced Scenario 2. We showed
that in this case, despite network congestion, the system operated
safely with marginal performance degradation - i.e., single part
average processing time increases by ~ 0.03 sec due to application-
level retransmission-handling delays. Note that the probability of
successful transmission is updated at runtime (as shown in Sec. 4.2),
to eliminate pessimistic results in non-congested deployment sce-
narios, and to maximize analysis accuracy under dynamic runtime
conditions. In addition, while the discrete-event analysis by SPNP
tool takes 28.6 sec on average on the NUC, asserting possible safety
violation takes only 313.6 ms (an order of magnitude lower than
the system’s cycle time), which prevents faulty system operation.
Finally, in Scenario 3, due to the gradually increasing air pres-
sure, parts were processed at a higher average rate, and cylinder
C duty cycle was reduced, potentially endangering process qual-
ity and increasing component wear. Over time, part processing
time is reduced to 3.2154 sec and cylinder C duty cycle decreased to
5.6214%, as shown in Table 2. Discrete-event model simulation takes
an average of 29.7 sec on the NUC using incremental channel and
process measurements, and warns the supervisor that the system’s
performance is degrading. This information is used to correct the
fault before system performance degrades below acceptable limits.

5.2 Case Study II: Industrial Manipulator with
Parallel Processes

The manipulator is configured in a parallel loading/unloading con-
figuration; it consists of two (parallel) cylinders A and B, and a
rotary cylinder C. The rotary cylinder rotates a base with parts,
while cylinders A and B load/unload parts in parallel. The CIPN
model of the centralized controller is shown in Fig. 13(a). The exist-
ing CIPN models for local controllers are shown in Fig. 13(b), (c).!!

' Models of controllers A and B are identical; thus, only a single model of controller X
for cylinder X is shown in Fig. 13(b), where X € {A, B}.

Reliable Industrial loT-Based Distributed Automation

oTDI 19, April 15-18, 2019, Montreal, QC, Canada

Average violation probability over scenarios
Property | (S1) Nominal conditions (52) Network u.nava1L due to congesnon. (S3) Air pressure control fault
w/o app-level retries | w/ app-level retries |
(P1) 0.0000 0.2690 [0.2459,0.2908] 0.0000 0.0000
(P2) 0.0000 0.0330 [0.0237,0.0423] 0.0000 0.0000
Property Cylinder C average duty cycle [%]
(P3) 6.1208 [6.1202,6.1213] | — [6.0761[6.0754,6.0768] | 5.6214 [5.6210,5.6218]
Property Inverse of average throughput [seconds per unit]
(P4) 3.9368 [3.9366, 3.9370] | - I 3.9671 [3.9668, 3.9674] I 3.2154 [3.2152, 3.2156]

Table 2: Case Study I: Property violation probabilities and performance measures over different scenarios; for network un-
availability due to congestion without application-level retries, performance measures are not given due to frequent operation
interruptions. Confidence intervals are computed with 99% confidence.

Name Pin T 4096 samples at 800 Hz

Nominal operation

CYL_A_HOME oooX[|

CYL_A_END m X l

CYL_B_HOME m X L L

CYL_B_END m X _,—| 1 [

CYL_C_HOME o0 4 X [

on_c_eno m X [

CTRL_A_RET oosX[|

CTRL_A_EXT m X | I B

CTRL_B_RET m X L] L

CTRL_B_EXT MJ— [ﬁ [

CTRL_C_RET o10 12 X [

CTRL_C_EXT m X [

GRIP_D_GRIP m X L
Name Pin T EEWQ{ samples at 800 Hz Network congested

CYL_A_HOME oooX[: |

oA END m X

CYL_B_HOME m X —L u I;

cYL_B_END m X _Iﬁ I [

CYL_C_HOME pio 4 X u

on_c e m X I

CTRL_A_RET oosX[: | —

CTRL_A_EXT m X]

CTRL_B_RET m X| 5]

s ERITT] i —

CTRL_C_RET o0 12X

CTRL_C_EXT m X A m

GRIP_D_GRIP m X [

Figure 11: Case Study I: Experimental sensing/actuation tim-
ing diagrams: (top) correct execution under nominal condi-
tions; (bottom) execution when the part is not gripped (see
ALARM) due to a dropped packet from controller B to D,
caused by network congestion.

This cylinder configuration is of special interest as cylinders A
and B simultaneously stroke forward to load/unload parts; thus,
controllers A and B in the distributed setting must simultaneously
command the forward stroke of their respective cylinders, when
commanded to do so by controller C (followed by completion of the
rotary movement of cylinder C). While the communication from
controller C to controllers A and B can be realized using a multicast
protocol, guarantees must be provided that cylinders A and B both
receive the signal, and synchronously issue actuation commands.
On the other hand, while broadcast is, multicast communication
is not natively supported by the IEEE 802.15.4 low-power wire-
less communication standard employed in the previous case study.
While there exist works on achieving multicast communication via
IPv6 protocol (e.g., [19]), simultaneous delivery and processing of
packets on multiple receiving nodes cannot be guaranteed. From

Unloadin
gl Controller C

\

Controller B} N Cylinder B

@
’\/

Loading

Cylinder C

[Controller A

Figure 12: Case Study II: Industrial manipulator in a parallel
loading/unloading configuration. Parts are loaded by cylin-
der A, and unloaded by cylinder B simultaneously, while the
rotary cylinder C ‘replaces’ the loading/unloading positions
by means of rotating the loading base.

the analysis of the SRN-models obtained as described in Sec. 3,12 we
found again that the translation of the controller communication
semantics needed to be adjusted (from the one in Fig. 6(b)), as the
resulted distributed automation system was violating safety prop-
erties. For instance, if only one of the controllers A or B receives
the packet and commences actuation, the system transitions into
an erroneous state; for example, a new part is loaded against the
previous one that is not yet unloaded.

We thus modified the semantics of the communication-APIs in
translation from the CIPNs as part of code generation; this was done
to utilize the low-power, low-bandwidth synchronization protocol
devised in [17], which is fully compatible with our LC platform
implementation. When the synchronization protocol was employed,
it enabled synchronous execution of actuation commands on con-
trollers A and B, once both controllers received the signal from
controller C. This may introduce additional delays, as additional
handshaking between controllers A and B is added, as well as po-
tential additional retransmissions between cylinders C and A, and
C and B, which are originally nonexistent in the CIPN-based dis-
tributed automation model. Still, with (worst-case) 100 ms added to
the production cycle time, sub-10 us synchronization of cylinder A
and B strokes is achieved, resulting in a verifiably safe system.

6 CONCLUSION

In this paper, we have presented a methodology that takes as inputs
widely used CIPN-based controller models for industrial automa-
tion, which preclude correctness and fault-tolerance analysis of
distributed automation deployments. Such models are transformed

2Complete model schematic is omitted due to space limitations.

1oTDI *19, April 15-18, 2019, Montreal, QC, Canada

PxCTRL_Init
(b) Controller X

TxCTRL_Start X € {A,B}

PxCTRL_wfRx_cEnd
Xp=0
TxCTRL_wfRx_cEnd
cl==1

TxCTRL_RetlInit

PxCTRL_TxA_xHome2
cl==1

PxCTRL_xCYL_Extend1 TxCTRL_xCYL_Retracted2
xp=1 X0==1
TXCTRL_xCYL_Extended J_CTRL_aCYL_Extended]

PxCTRL_xCYL_Retract2

x1==1 Xp=0
PXCTRL_xCYL_Retract1 TxCTRL_xCYL_Extended2 . ‘
xp=0 x1==1 P_CTRL_aCYL_Retractl

TxCTRL_xCYL_Retracted1
X0==1
PxCTRL_TxA_xHome1
Send(C,x0)

PxCTRL_xCYL_Extend2
xp=1
TxCTRL_wfRx_cHome

TcCTRL_RxAB_Retracted2

TcCTRL_Start a0==1 AND be

st==1

(c) Controller C PcCTRL_Init
PcCTRL_cCYL_RotateCW ~ Cp=0

cp=1

TcCTRL_cCYL_End
cl==1

T_CTRL_Start

P_CTRL_cCYL_RotateCW

T_CTRL_cCYL_EndT_CTRL a&bCYL_Retracted1

P_CTRL_bCYL_Extend1

P_CTRL_bCYL_Retract1

T _CTRL_a&bCYL_Retracted1
20==1 AND bo==1

P_CTRL_cCYL_RotateCCW

Vuk Lesi, Zivana Jakovljevic, and Miroslav Pajic

it} (a) Centralized controller

cp=1

©==1 AND bo==1
a P CTRL_bCYL_Retract1

P_CTRL_aCYL_Retract1
T_CTRL_aCYL_Extended1

T_CTRL_bCYL_Extended1
bl==1
P _CTRL bCYL Extend1

P_CTRL_aCYL_Extend1

T_CTRL_cCYL_Home
co==1

cp=0

PcCTRL_TxAB_cHome
send({A,B},ce) TcCTRL_cCYL_Home
co==1

PcCTRL_cCYL_RotateCCW
cp=0

PcCTRL_TxAB_cEnd
Send({A,B},cl)

TcCTRL_RxAB_Retracted1
a0==1 AND b@==1

Figure 13: Case Study II — Global (a), and local (b),(c) CIPN controller models of the industrial manipulator from Fig. 12.

into an SRN-compatible representation that natively supports sto-
chastic modeling of communication channels and system faults. We
have shown how analysis/verification of the distributed automa-
tion system can be performed with probabilistic guarantees within
the SRN paradigm. In addition, we have revised existing strategies
for automatic synthesis of distributed control code based on re-
sults obtained from SRN models. To support dynamic deployment
environments of IIoT-based automation systems, we have proven
feasibility of an edge-based monitoring system that re-checks at
runtime relevant system properties against models that are con-
tinuously updated from acquired real-time process and network
channel measurements. We have evaluated our approach on real-
world case-studies including industrial manipulators. As avenue
for future work, we will explore inclusion of true non-determinism
within the controller and channel models, which would allow us to
capture adversarial affects on distributed automation systems.

ACKNOWLEDGMENTS

This work is sponsored in part by the ONR under agreements N00014-
17-1-2012 and N00014-17-1-2504, as well as the NSF CNS-1652544
grant. It was also partially supported by the Serbian Ministry of
Education, Science and Technology research grant TR35004.

REFERENCES

[1] Peter Adolphs, Heinz Bedenbender, D Dirzus, M Ehlich, U Epple, M Hankel, R
Heidel, M Hoffmeister, H Huhle, B Kircher, et al. 2015. Reference architecture
model industrie 4.0 (rami4. 0). ZVEI and VDI, Status Report (2015).

Giacomo Bucci, Laura Carnevali, Lorenzo Ridi, and Enrico Vicario. 2010. Oris: a
tool for modeling, verification and evaluation of real-time systems. International
Journal on Software Tools for Technology Transfer 12,5 (01 Sep 2010), 391-403.
Franck Cassez and Olivier H. Roux. 2006. Structural translation from Time Petri
Nets to Timed Automata. J. of Systems and Software 79, 10 (2006), 1456 — 1468.
Gianfranco Ciardo, Jogesh K Muppala, and Kishor S Trivedi. 1992. Analyzing
concurrent and fault-tolerant software using stochastic reward nets. J. Parallel
and Distrib. Comput. 15, 3 (1992), 255-269.

R.David and H. Alla. 2010. Discrete, continuous, and hybrid petri nets (2nd edition).
Michel Diaz. 1982. Modeling and analysis of communication and cooperation
protocols using Petri net based models. Computer Networks 6, 6 (1982), 419 — 441.

7]

8]

)

[10]

[11

[12

(13

(14

(15

[16

(7

[18

[19

[20]

[21

[22

S. Donatelli. 1993. Superposed stochastic automata: a class of stochastic Petri
nets with parallel solution and distributed state space. Performance Evaluation
18, 1(1993), 21 - 36.

H. EIMaraghy, G. Schuh, W. EIMaraghy, F. Piller, P. Schonsleben, M. Tseng, and
A. Bernard. 2013. Product variety management. {CIRP} Annals - Manufacturing
Technology 62, 2 (2013), 629 — 652. https://doi.org/10.1016/j.cirp.2013.05.007

P. Ferrari, A. Flammini, E. Sisinni, S. Rinaldi, D. Brandao, and M.S. Rocha. 2018.
Delay Estimation of Industrial IoT Applications Based on Messaging Protocols.
IEEE Transactions on Instrumentation and Measurement 67, 9 (2018), 2188-2199.
Y. He, J. Guo, and X. Zheng. 2018. From Surveillance to Digital Twin: Challenges
and Recent Advances of Signal Processing for Industrial Internet of Things. IEEE
Signal Processing Magazine 35, 5 (2018), 120-129.

Christophe Hirel, Bruno Tuffin, and Kishor S. Trivedi. 2000. SPNP: Stochastic
Petri Nets. Version 6.0. In Computer Performance Evaluation.Modelling Techniques
and Tools. Springer Berlin Heidelberg, 354-357.

Z. Jakovljevic, V. Lesi, S. Mitrovic, and M. Pajic. 2018. Distributing Sequential
Control for Manufacturing Automation Systems. IEEE Transactions on Control
Systems and Technology (2018). submitted.

Zivana Jakovljevic, Vidosav Majstorovic, Slavenko Stojadinovic, Srdjan Zivkovic,
Nemanja Gligorijevic, and Miroslav Pajic. 2017. Cyber-Physical Manufacturing
Systems (CPMS). In Proceedings of 5th International Conference on Advanced
Manufacturing Engineering and Technologies. Springer International, 199-214.
R Jayaparvathy, S Anand, S Dharmaraja, and S Srikanth. 2007. Performance
analysis of IEEE 802.11 DCF with stochastic reward nets. International Journal of
Communication Systems 20, 3 (2007), 273-296.

Henning Kagermann, Johannes Helbig, Ariane Hellinger, and Wolfgang Wahlster.
2013. Recommendations for implementing the strategic initiative INDUSTRIE 4.0.
Forschungsunion.

Y. Koren, X. Gu, and W. Guo. 2018. Reconfigurable manufacturing systems:
Principles, design, and future trends. Frontiers of Mechanical Engineering 13, 2
(2018), 121-136. https://doi.org/10.1007/s11465-018-0483-0

V. Lesi, Z. Jakovljevic, and M. Pajic. 2016. Towards Plug-n-Play Numerical Control
for Reconfigurable Manufacturing Systems. In 21st IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA). 1-8.

Yue Ma, James] Han, and Kishor S Trivedi. 2001. Composite performance and
availability analysis of wireless communication networks. IEEE Transactions on
Vehicular Technology 50, 5 (2001), 1216-1223.

G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. 2007. Transmission of IPv6
packets over IEEE 802.15.4 networks (No. RFC 4944). Technical Report.

T. Murata. 1989. Petri Nets: Properties, Analysis and Applications. Proc. IEEE 77,
4(1989), 541-580.

Srinivasan Ramani, Kishor S Trivedi, and Balakrishnan Dasarathy. 2000. Perfor-
mance analysis of the CORBA event service using stochastic reward nets. In Proc.
of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS). 238-247.
Kishor S Trivedi and Andrea Bobbio. 2017. Reliability and Availability Engineering:
Modeling, Analysis, and Applications. Cambridge University Press.

	Abstract
	1 Introduction
	2 State-Of-the-Art Automation Distribution and its Limitations
	3 Networking-Aware Modeling for Distributed Sequential Control
	3.1 Modeling Physical Components
	3.2 Modeling Network-Controller Interaction

	4 System Analysis and Verification
	4.1 Specifying System Properties
	4.2 SRN-based System Analysis

	5 Industrial Case Studies
	5.1 Case Study I: 3-DOF Industrial Manipulator
	5.2 Case Study II: Industrial Manipulator with Parallel Processes

	6 Conclusion
	Acknowledgments
	References

