Synchronization of Distributed Controllers in
Cyber-Physical Systems

Vuk Lesi
Dept. of Electrical and Comp. Eng.
Duke University
Durham, North Carolina, USA
vuk.lesi@duke.edu

Abstract—Due to misaligned clock sources, distributed control
in Cyber-Physical Systems (CPS) requires not only synchronous
execution of control algorithms on distributed system com-
ponents, which we refer to as cyber-synchronization, but also
appropriate generation of actuation signals—we refer to this
as physical-synchronization. In this paper, we define general
requirements for cyber-physical synchronization, as well as show
their use on a specific real-world application—distributed motion
control for reconfigurable manufacturing systems. We present
synchronization challenges in such systems and investigate effects
of synchronization errors on the overall system functionality (i.e.,
machining accuracy). Furthermore, we introduce a low-cost
synchronization scheme that can be implemented with of-the-
shelf components and validate it on standardized accuracy tests
with 2D configurations of industry-grade single-axis robots. We
show that our cyber-physical synchronization techniques ensure
minimal accuracy impairment of distributed motion control
without introducing significant cost/overhead to system design.

Index Terms—cyber-physical synchronization, distributed po-
sition control, reconfigurable manufacturing systems

I. INTRODUCTION

Due to the tight interaction between the cyber and physical
components in Cyber-Physical Systems (CPS), synchroniza-
tion of distributed CPS controllers imposes challenges that
span beyond conventional views on synchronous software
execution—i.e., synchronicity of actuation signals directly
affects the behavior of controlled physical elements. For
example, commonly used pulse train-based actuation signals
are generated by hardware components clocked by potentially
unsynchronized clock sources; this affects their frequency or
pulse width and thus may introduce additional misalignment of
actuation signals on distributed control nodes. Consequently,
to achieve the desired quality of control in distributed CPS,
not only does invocation of deployed controllers need to be
synchronized (we refer to this as cyber-synchronization), but
distributed generation of actuation signals must be performed
in a way that ensures their physical-synchronization.

The problem of synchronous software execution (cyber-
synchronization) has been widely addressed, with plethora of
existing synchronization protocols. For example, in the wire-
less domain, the method from [1] employs out-of-band beacon

This work is sponsored in part by the ONR under agreements NO0O014-17-
1-2012 and N00014-17-1-2504, and the NSF CNS-1652544 grant, as well as
Serbian Ministry of Education, Science, and Technology grant TR35004.

Zivana Jakovljevic
Faculty of Mechanical Engineering
University of Belgrade
Belgrade, Serbia
zjakovljevic@mas.bg.ac.rs

Miroslav Pajic
Dept. of Electrical and Comp. Eng.
Duke University
Durham, North Carolina, USA
miroslav.pajic @duke.edu

signal to achieve sub-20 ps synchronization in a power-
conserving fashion. Control-theoretic approaches (e.g., [2],
[3]) are used to perform synchronization solely based on
synchronization packet arrival times, rather than payloads
containing transmission timestamps, achieving sub-ps syn-
chronization errors. However, this protocol relies on the use
of contention delay-free media access control. Dual clock-
based, virtual high-resolution time, based on special-purpose
hardware, is presented in [4]. Also, very accurate (and ex-
pensive) chip-scale atomic clocks can be used to achieve
ns-level synchronization of clock sources even over wireless
(e.g., [S]). All these methods focus on providing ever-precise
software timestamping or clock synchronization capabilities
(typically for sensing tasks), while understanding of their
effects on actuation and the underlying controlled physical
process remains rather limited.

In general, challenges for cyber-physical synchronization
are platform- and application-specific. For example, the un-
derlying platform determines whether fine-grained tuning of
the oscillator circuitry to provide clock-source frequency
synchronization (e.g., as in [5]) is available, or if soft-
ware timestamping-based methods have to be used (e.g., as
in [6]); similarly, the actuation inputs are typically controlled
by analog voltage (from DA convertors) or timer-generated
pulse frequency/width, which on the other hand imposes
different requirements for physical-synchronization. Thus, in
this work we focus on the synchronization challenges for
commonly used low-cost platforms without clock-source fre-
quency tuning—i.e., where timestamping-based synchroniza-
tion should be performed, and where pulse frequency/width-
controlled actuator drives are employed. To show their ef-
fects on performance of distributed controllers in CPS, we
focus on synchronization problems for a specific industrial
application, with emphasis on architecture-based trade-offs
and challenges. Specifically, we consider distributed motion
control in reconfigurable manufacturing systems; however, the
results presented in this work can be easily generalized to
a wide range of CPS applications and domains that employ
similar actuation stages.

By synchronicity of CPS controllers, we specifically refer
not only to synchronous invocation of control code on dis-
tributed controllers, but also to (1) compensation of actua-
tion signals that must be implemented due to clock-source

Fig. 1. Reconfigurable manufacturing systems composed of single-axis robots
controlled in a distributed manner—tight timing synchronization of distributed
controllers is needed to ensure the desired trajectory accuracy.

skews, and (2) timely administering updates of the actuation
signals in a manner that minimizes physical disturbances in
the controlled process. We start by capturing challenges for
cyber-physical synchronization and present their effects on
the performance of CPS controllers. We provide a low-cost
cyber- and physical-synchronization scheme that minimizes
quality-of-control degradation due to control distribution (i.e.,
moving from centralized to distributed control architecture).
Finally, we implement an instance of distributed position
control on low-cost ARM Cortex-M4F controllers and validate
our implementation on a series of standardized accuracy tests.

This paper is organized as follows. Sec. II introduces the dis-
tributed motion control problem and its specific synchroniza-
tion requirements. Sec. III defines synchronization challenges
for CPS controllers, and captures effects of synchronization
errors on the overall system performance. Sec. IV introduces
a method to address these challenges and minimize cyber-
and physical-synchronization errors. Sec. V describes our im-
plementation and experimental validation, before concluding
remarks are provided in Sec. VL.

II. MOTIVATING APPLICATION: RECONFIGURABLE
MANUFACTURING

We consider the problem of distributed position control of
multi-axis machines (see Fig. 1) whose design should facilitate
system reconfigurability, based on modular components that
are easily integrable and convertible in terms of functional-
ity [7]-[10]. For example, their two-dimensional configura-
tions can be used in conjunction with laser cutters, while
three- and higher-dimensional configurations can be used
for machining or complex assembly tasks; Fig. 1 illustrates
three such configurations obtained with a suitable number of
single-axis robots.

These machines traditionally employ centralized con-
trol [11], which significantly limits their reconfigurability [6].
Recently, in [6] we have shown feasibility of distributed
motion control where each single-axis robot is controlled by its
own networked microcontroller (MCU)-based platform, which
is referred to as the low-level controller (LLC). Specifically,
all low-level control and hard real-time tasks critical for
operation of a single-axis robot (e.g., limit switch monitoring,
position control) are performed by the LLC, while high-level
trajectory planning and scheduling of manufacturing tasks is
executed on an off-machine (potentially an edge- or cloud-
based) high-level controller (HLC). Such LLCs have hard real-
time requirements, with position control (for both centralized

and distributed architectures) implemented as a periodical
interpolation (IPO) routine with a period on the order of
1 — 10 ms [11]. As the typical working cycle for every
axis consists of an acceleration phase, a constant velocity
phase, and a deceleration phase, from the commanded velocity
profile, the IPO routine interpolates the next reference position
and computes the actuation signal for the next period.

Finally, the actuation stage commonly consists of a stepper
motor or variable frequency drive (e.g., [12]) with a corre-
sponding motor; the actuation signal is typically a pulse train
whose frequency or pulse width is controlled by the MCU.
For example, in a stepper-based system, unit displacement of
an axis corresponds to an actuation pulse, and thus the specific
output pulse frequency depends on the desired motion speed.

Synchronization Requirements for Distributed Motion Con-
trol: Any synchronization error between motion controller
executions on different axes (i.e., the IPO routines) introduces
additional machining accuracy impairment. As we show in
Section V, due to the system design, execution times of
the PO routines do not vary significantly. Thus, instead of
synchronous control updates (i.e., actuation), it is sufficient
to minimize the synchronization error between the IPO in-
vocations on all axes in the system. For example, Fig. 2(a)
illustrates machining accuracy impairment due to a constant
synchronization error between IPO routine invocations on X
and Y axes. We refer to such requirements for synchronous
IPO invocations as cyber-synchronization.

However, distributed position control not only requires
synchronization of the IPO routines on all axes. Specifically,
actuation signals (their frequency or pulse width) are directly
affected by the unsynchronized clocks that drive dedicated
hardware timers used to generate these signals. For instance,
with pulse frequency-controlled actuation, the pulse train fre-
quency is directly proportional to the desired motion speed;
thus, any variation in clock frequency on LLCs implies incon-
sistencies between commanded and obtained velocities, which
in return directly affects trajectory accuracy. This is illustrated
in Fig. 2(b), where a fixed frequency offset in pulse train
generation on X and Y axis controllers introduces trajectory
error. Additionally, regardless of clock-source synchronicity,
in the scenario of the change in motion speed, conducting an
update of the pulse frequency-controlled actuation signal at an
arbitrary point in time may cause undefined behavior of the
motor drive circuitry (e.g., due to a shorter-than-expected high
or low signal level), as illustrated in Fig. 4. Thus, in addition
to cyber-synchronization, it is also necessary to consider
physical-synchronization between distributed controllers (i.e.,
their actuation stages) to limit temporal differences between
the actuation signals used for control.

Therefore, we focus on design challenges related to timing
synchronization for distributed CPS control with emphasis on:

o Control scenarios where ensuring synchronicity
of controller invocations is insufficient (i.e., pulse
width/frequency-controlled actuation stages),

« Effects of utilizing realistic actuation modules (i.e., motor
drives), and

.5 (X} Y1) .5 (X}".YI) Commanded

Z ' 2 ' e

2 a

> > Obtained
trajectory

(XO:yO) X positiorn (xo:yo) X POSitiO'n

(2) (b)

Fig. 2. TIllustration of synchronization error-induced trajectory tracking inac-
curacies in distributed motion control in a 2-D space: (a) scenario with a fixed
synchronization error between interpolation activations on X and Y position
controllers; (b) scenario with synchronization error between pulse width or
pulse frequency-based actuation signals on X and Y position controllers.

o Application of most common timestamping-based syn-
chronization schemes (e.g., IEEE 1588).
While this work is mainly focused on distributed motion con-
trol, the results can be generalized to a range of CPS applica-
tions in which similar types of actuation signals are used.

ITI. SYNCHRONIZATION CHALLENGES FOR DISTRIBUTED
CONTROL OF CPS

Existing synchronization protocols commonly employ the
underlying network to communicate information on clock
skew among nodes. In general, the CPS controller platform
(in conjunction with the sync. protocol) may offer fine-grained
adjustments to the on-board digital clock-source (which we
will refer to as the clock-source sync. architecture), or al-
ternatively, only the local notion of synchronized wall-time
(referred to as the timestamping-based sync. architecture). In
the following we consider challenges for cyber- and physical-
synchronization for both architectures.

A. Cyber-Physical Synchronization
Timestamping-Based Synchronization

Challenges with
As illustrated in Fig. 3(a, b), as part of the synchronization
(SYNC) mechanism one free-running hardware timer (referred
to as the SYNC timer within the SYNC mechanism) is
commonly dedicated to be synchronized to the corresponding
timers on other nodes (e.g., as in [6]). To achieve this, the
timer’s counter register is periodically adjusted based on the
offset calculated from the received synchronization protocol
messages that contain timestamping information. Note that the
SYNC timer may be a special-purpose timer, different than
general-purpose on-board timers; e.g., with IEEE 1588 Pre-
cision Time Protocol, a dedicated on-board timer is required,
with direct hardware connection to the Ethernet peripheral.
Since the local SYNC timer is the only peripheral whose
operation is synchronized with other nodes, it is necessary to
use software to propagate synchronization to the remaining pe-
ripherals. This can be achieved through a SYNC routine that is
periodically invoked by the SYNC timer to adjust other on-
board timers that require synchronization; this results in syn-
chronized invocations of control routines on different nodes by
adjusting the timer (IPO timer in Fig. 3) used to generate
control (i.e., IPO) activations. Such cyber-synchronization re-
quirements are sufficient when the motor drive is controlled by
analog signal generated by a D/A converter (Fig. 3(a)), as the
desired (analog) actuation signal can be directly generated. On

OUTINE OUTINE
CLK IPO — CLK IPO =

- TIMER — @ - TIMER —

i i

i o~ E T PULSE_

' L T hwm

i DAC /\/\, - TIMER "

] |

SYNC 2 2| syne
MECH.:Z Z] beacon

NETWORK SYNC

SYNC g 2| syne
MECH. & % beacon

NETWORK SYNC

(a) R(J]l}})'gNE (b) R()]L;I)TOINE
OUTINE OUTINE
CLK IPO — CLK IPO =
TIMER — @ TIMER —
: :
| AN i ACT PULSE .
! | A
i DAC /\/\’, : TIMER | — ™
. | —
SYNC 22| | SYNC 22| |
— J|MECH.Z3 — J|MECcH.E3

NETWORK NETWORK

(©) (d)

Fig. 3. Synchronization-aware system architecture for distributed motion con-
trol: (a, c) when D/A converter is used to generate actuation signals, and (b, d)
with timer-based generation of actuation signals; (a, b) when timestamping-
based synchronization is available, and (c, d) when clock-source synchroniza-
tion is available.

the other hand, the common use of pulse-frequency or pulse-
width controlled motor drives (Fig. 3(b)) imposes physical-
synchronization constraints on the hardware components (i.e.,
timers) used to generate these signals.

1) Challenges for Cyber-Synchronization: The time base
of the SYNC routine typically differs by orders of magnitude
from the periods of the IPO routine and actuation signals. For
example, with IEEE 1588-based synchronization, a software
interrupt with 1 sec period is provided—i.e., 1 pulse per
second (pps) signal, which is referred to as the SYNC beacon.
The beacon is used to periodically inspect the state of other on-
board timers, and establish the difference between the elapsed
local-time for those timers and the global time interval since
the last SYNC beacon (i.e., during the latest SYNC interval).
For instance, consider the case where the SYNC beacon arrives
every 1 sec and the TPO routine should activate every 1 ms.
Due to synchronization errors, the number of IPO activations
per SYNC interval may not be exactly 1000.

The naive approach to propagate synchronization to the
timer activating the IPO routine would be to make the IPO
period longer or shorter during the final (e.g., 1000") TPO
period based on the computed offset; this would ensure that the
required number of IPO routine invocations occurred during
the SYNC interval. However, this could cause disturbance in
the physical components of the system, as during the final
of the 1000 IPO periods, the axis would potentially have to
travel the same displacement significantly faster, due to the
abrupt correction of the IPO period duration. This problem
is exacerbated when due to errors in the estimation of the
timing mismatch, the SYNC routine overcompensates the
synchronization error that needs to be accounted for.

2) Challenges for Physical-Synchronization: Physical-
synchronization of timers used to generate actuation sig-
nals (ACT timer in Fig. 3(b)) introduces additional design

challenges. Specifically, the number of pulses (i.e., reload
frequency) generated by such a timer directly determines the
actuation input delivered to the physical plant. Thus, as the
local TPO time intervals are adapted as part of the cyber-
synchronization, it is necessary to ensure that the actuation
signals generated by actuation timers are properly adapted
not only as the function of desired tool/end effector motion
(i.e., trajectory/speed) but also as the function of used cyber-
synchronization scheme; effectively, the mismatch between the
durations of IPO intervals on different nodes can be mapped
into a frequency skew between actuation timers on the nodes.

In addition, some modern platforms (e.g., NXP Kinetis
K64 MCU family) may not maintain the phase of signals
generated by different on-board timers, even when the timers
use the same clock-source; we will refer to this phenomenon
as the inter-timer phase synchronization error. For instance,
experiments from [13] showed that the phase shifting be-
tween such two timer signals at the output of the chip is
approximately one full period of the higher frequency signal
over the course of 1 sec. When used for control, the phase
drift between the two timers does not affect the number
of generated pulses, but only alignments of IPO routines’
activations and the first/last actuation pulse. This can cause
problems when the IPO routine updates the axis velocity as
illustrated in scenario from Fig. 4(a), since the input logic of
motor drives typically requires pulses with a minimum pre-
scribed pulse width—any pulse violating these requirements
is considered as zero commanded velocity.l Thus, such short
pulses will cause inconsistent motion impairing machining
accuracy and potentially increasing machine wear and the
chance of tool breakage.

B. Cyber-Physical Synchronization Challenges with Synchro-
nized Clock Sources

A synchronization protocol can be setup on top of hardware
offering fine-grained tuning of the oscillator circuitry to pro-
vide clock-source frequency synchronization as illustrated in
Fig. 3(c, d) (e.g., [5]).

1) Challenges for Cyber-Synchronization: Essentially,
clock-source synchronization provides synchronous-rate ex-
ecution of all functionalities on the distributed platforms.
Consequently, synchronization is inherently propagated to
IPO invocations and thus, cyber-synchronization is guaranteed
(down to the maximum synchronization error).

2) Challenges for Physical-Synchronization: In the case
of synchronized clock sources, the actuation pulse train fre-
quencies across controllers are also synchronized; therefore,
providing synchronized clock sources ensures desired temporal
properties of actuation signals. However, recall inter-timer
phase synchronization errors illustrated in Fig. 4 (introduced
in Sec. I1I-A2); due to phase drifting between IPO invocations
and the actuation signal, unexpectedly short pulses may occur,
as in the case of timestamping-based synchronization.

While synchronizing clock sources does alleviate the prob-
lem of cyber-physical synchronization, clock-source frequency

'Undefined motor drive behavior is also possible in the case of non-
conforming input pulse-trains.

4-———-""’:7' IPO routine invocation
IPO TIMER Actuation pulse
output corresponding to unit
/ displacement
ACT TIMER out.

@ (out of phase update) Unexpectedly short

U

7

pulse is generated

= Correct behavior is ensured
(b) A.CThTIMElzouL | | by deferring the actuation
(in phase update) signal update

}

Fig. 4. Example of a frequency-controlled actuation signal update in presence
of inter-timer phase synchronization errors: (a) an unexpectedly short pulse
may occur, potentially causing a vibration in the axis position if frequency
updates are administered immediately as they are computed, (b) correct
behavior is ensured by deferring the frequency update.

synchronization usually requires Oven-Controlled Crystal Os-
cillators (OCXOs), or atomic clock sources which can signif-
icantly contribute to the price of an axis controllers for dis-
tributed position control. Therefore, in our implementation and
evaluation, we consider timestamping-based synchronization.

C. Effects of synchronization errors

To analyze effects of synchronization errors on accuracy
in distributed control, we simulated the architectures from
Fig. 3(b, d). Specifically, in addition to the hardware timers
used for invocation of the IPO routine and generation of
actuation signals, we modeled the input stage of a motor
drive (widely used Geckodrive G203V that is also used in
our implementation described in Section V). The motor drive
requires a pulse to have a minimum high level duration of
1 wps and a minimum low level duration of 2 us to be
considered valid, resulting in a unit displacement (i.e., Basic
Length Unit—BLU) of the axis typically in the [1,20]um
range, depending on the employed mechanical system.

We compared the obtained pulse trains that propagate
through the amplification and output stages of the motor drives
for two axes. We considered three scenarios:

(a) Fixed invocation delay between controllers on two axes
(i.e., as illustrated in Fig. 2(a)),

(b) Fixed skew of the pulse frequency between the controllers
(i.e., as illustrated in Fig. 2(b), and

(c) Fixed error in actuation signal update (i.e., as in Fig. 4));

where (a) captures cyber-synchronization errors, while (b),
and (c) capture effects of physical-synchronization errors.
Fig. 5 shows results for the sample acceleration phase of a
standard axis working cycle, where a nominal motion speed
is achieved in 10 steps by increasing commanded veloc-
ity (i.e., the frequency of pulses) every 10 ms. Fig. 5(a)
shows position errors induced by synchronization errors
in IPO routine invocations—with sufficiently good cyber-
synchronization, minor accuracy impairment can be guaran-
teed under distributed axes control.

Fig. 5(b) shows position errors induced by clock skews
between two controllers, i.e., non-equal frequencies of the
generated actuation pulse trains. Here, we assume that IPO
routines are perfectly synchronized. Thus, due to the critical
(i.e., last in the IPO period) pulses generated by a skewed clock
being intercepted by an IPO routine updating the signal fre-
quency, this error is not linear in the actuation frequency skew.
In essence, some skewed frequencies have closer harmonic

=

3
»

@

A

> 4

~

A

IS

! Mean
Maximum

Obtained position
error [BLU]
~

Obtained position
error [BLU]

! Mean Mean
Maximum Maximum

A
|

error [BLU]
o N & O ®

Obtained position

)

2 5 50
Max. IPO invocation sync error [us]

100

o

deferred
Actuation signal updates

20 50 immediate

Actuation frequency skew [ppm]

100

Fig. 5. Axis position errors (in Basic Length Units—BLU) due to (a) cyber-synchronization errors (i.e., IPO routine invocation misalignments), and (b)—(c)
physical-synchronization errors affecting the exact number of valid pulses issued by an axis controller over a period of time (i.e, due to frequency clock skews

in (b), and improper administering of actuation signal updates in (c)).

1s
t | |Commanded Feedrate
SYNC. | ——— veloci ;- compensation J*| AcT i
MECH.) SYNC beacons : L Re% update | |TIMERFactuation
Sync + A 1 elay signal
P .y d (1s) z = Filter 11PO period duration in real-time

eriod (1s 1 0 Ayt T e
— fsperiod Lome L | o den] eo | [
——— 1ms period cesumuE . TIMEREIPO

multi rate
[1 cyber-sync.
[physical-sync.

O,

Fig. 6. Synchronization scheme for distributed control of CPS.

relation to the nominal pulse frequency, requiring tightly
controlled physical synchronization in the general case (e.g.,
arbitrary commanded velocities). It is important to note that
simulations of our actuation system stage become intractable
for skews lower than 10 ppm, as the required simulation step
approaches 1 ps.

Fig. 5(c) compares position errors induced by immediate and
deferred updates of the actuation signal at the 10 acceleration
points (i.e., during the same acceleration stage). As the critical
pulses are intercepted by the (synchronous) IPO update, a
number of pulses is lost; on the other hand, if the actuation
signal updates are deferred, no positioning error is introduced.
Notice that in this case we assume IPO invocations are per-
fectly synchronized, as well as that there is no frequency skew
between pulse trains across axes. Therefore, errors induced
due to synchronization shown in Fig. 5 pertain to individual
effects of non-ideal cyber- and physical-synchronization on
the actuation signals, and do not take into account mechanical
effects such as loads.

IV. SYNCHRONIZATION OF DISTRIBUTED CONTROLLERS

To achieve both cyber- and physical-synchronization of
distributed controllers, we introduce the synchronization
scheme presented in Fig. 6. We start by noting that cyber-
synchronization performance is not affected by the employed
physical-synchronization scheme, unlike the other way. In
addition, the following synchronization scheme applies to
platforms providing timestamping-based synchronization (i.e.,
architectures from Fig. 3(a, b)).

Our cyber-synchronization scheme employs a feed-forward
(FF) approach using the estimate of the error between local
time duration of the last SYNC beacon and the predefined (i.e.,
global) SYNC beacon interval—the error is denoted as Ae in
Fig. 6. Since the clock skew between nodes does not change
very fast, the synchronization error can be expressed as a
slowly-changing bias term and a random (measurement) noise;
e.g., the computed offset may depend on the (varying) network
utilization. To avoid over-reacting to the noise, the error signal

is filtered over time and the filtered beacon synchronization
error Aey is uniformly accounted for over the entire 1000
IPO invocations within the SYNC beacon interval; this is
done by periodically introducing very small corrections. For
example, if the IPO timer is clocked at 60 M Hz, then

60,000 timer ticks need to elapse between two lms IPO

T |invocations

routine invocations. Given a typical clock skew of a few ppm,
this amounts to offset correction of e.g., Aey ~ 3 s every 1 s,
which is around 180 ticks of the IPO timer. Instead of
correcting this offset once, which could affect the physical part
of the system, we ‘spread’ corrections of 1 tick uniformly (or
nearly uniformly) over 180 out of the 1000 IPO periods in the
SYNC beacon interval.

The methodology used for cyber-synchronization is not ap-
plicable for physical-synchronization, as the timer generating
actuation signals (i.e., ACT timer from Fig. 6) operates on
a much smaller time base—the actuation signal can change
state hundreds of times during one IPO period. In addition, the
ACT timer adapts parameters of its output signals according
to the desired trajectory. Thus, correcting for the offset the
same way as previously discussed could have severe conse-
quences to the physical part of the system. For instance, in a
pulse-width controlled actuation stage, a correction of just a
few ticks may be nearly equal to the pulse width of a unit
actuation pulse, potentially causing an abrupt vibration in the
mechanical system. We thus, as shown in Fig. 6, propose to
synchronize the actuation signal to the IPO timer, rather
than the originally synchronized free-running timer, part of
the employed SYNC mechanism.

Like previously described, as part of the IPO timer
synchronization, corrections in the IPO timer counter are
introduced throughout the SYNC period. Thus, duration of
some IPO periods will slightly deviate from the nominal
duration (1 ms for our running example), and it is im-
portant to consider feedrate compensation when configuring
ACT timer. Since the duration of the next IPO period is
always known at every IPO routine activation (as the timer
reload value has to be set for the next IPO activation), that
duration should be used for velocity calculations instead of the
nominal duration (of 1 ms). Let us consider a stepper-based
actuation stage where pulse width is kept constant and the
pulse frequency determines velocity. For instance, if the com-
manded velocity is 20 2=, and the unit displacement (BLU)
is 5 pum, the nominal actuation signal is 4 %. Instead
of configuring the ACT timer to this pulse frequency, the
IPO routine should set the frequency of the actuation signal

IPO routine invocations

—
IPO TIMER 4 4
output

Second IPO period is shorter due to
a synchronization error correction

» Actuation signal is updated to ensure
>
T axis speed is maintained

ACT TIMER | | | | | | I || | ;[
output \ Actuation pulse corresponding to

» unit displacement (fixed width)

Fig. 7. Example of the synchronization procedure for the ACT timer
based on the period of the IPO routine. Adjusting the pulse frequency to
the synchronized IPO timer period ensures suitable velocity is obtained.

pulses ,
04 —— 55 period Tenght” to account for the IPO timer

synchronization. This is depicted in Fig. 7 with a drastic
difference in the IPO periods for illustrative purposes.

Finally, to prevent the scenario from Fig. 4(a), modern
timer peripherals in microcontrollers offer the functionality
of deferring updates of the ACT timer parameters through
the use of buffered registers. Specifically, the IPO routine
updates the ACT timer registers as soon as it computes
the corresponding actuation parameters, while the hardware
internally updates the timer registers with the buffered values
only at predefined loading points. In this case, a suitable
loading point to update the signal frequency would be at the
end of pulse currently being generated by the timer, and after
the minimum low-level duration has elapsed, as shown in
Fig. 4(b). Note that in the case platforms with synchronized
clock sources, only this compensation is required to maintain
physical-synchronization.

V. SYSTEM IMPLEMENTATION AND VALIDATION

To evaluate the presented synchronization techniques, we
implemented distributed motion control for HIWIN KK86
single-axis robots driven by TRINAMIC QSH5718-76-28-
189 stepper motors and Geckodrive G203V stepper-motor
drives. Axis controllers (i.e., LLCs) execute on ARM Cortex-
MA4F-based, NXP FRDM-K64F development boards running
MQX RTOS with full Ethernet communication stack. Also,
IEEE 1588-based synchronization is available through an
IXXAT library [14]; however, this specific platform supports
only timestamping-based synchronization. Furthermore, as the
synchronization library encapsulates the configuration of the
IEEE 1588 hardware timestamping timer, only synchronized
1 pps (pulse per second) events are exposed, thus requiring ad-
ditional software synchronization routine—the IPO and actua-
tion timers are synchronized using the methodology described
in Section IV. The physical setup is shown in Fig. 9(c)

Fig. 8 shows the LLC software architecture. A Transmission
Control Protocol (TCP) client is used for communication with
a HLC that constructs trajectories for individual axes from
the (to-be-machined) workpiece specification. A sporadic task
with 400 ms period checks the state of the local double-
trajectory buffer, and requests a buffer refresh if any of the
buffers is exhausted. We employ a double-buffer strategy to
eliminate starvation and minimize resource access conflicts;
i.e., position control consumes one buffer and actuates the
physical system with tight timing requirements, while the
second buffer can be reloaded by the TCP communication
task. The IPO routine is triggered by a periodic 1 ms interrupt
from the TPO timer. To minimize control latency and jitter,

Commanded trajectory buffers

|—_

TCPRx || TCP Tx 1223:111
ETH comm. task task Syn.c. PO oeatue
+ 1588 sync routine || youtine
stack —
RTOS | | Imy\:/-
¢ 11 §

I Ethernet network To motor drive L™ l Pos. sensorI

Fig. 8. Hardware/software architecture of the low-level controllers (LLCs).

this interrupt routine is configured as a kernel interrupt® and
assigned highest-priority, resulting in non-preemptive IPO exe-
cutions. Yet, since the IPO routine only computes commanded
speed using the reference velocity profile, and thus has a very
short execution time, its non-preemptivity does not signifi-
cantly impact other (e.g., TCP communication or IEEE 1588
synchronization) tasks.

SYNC routine is invoked every 1 sec, based on the IEEE
1588 SYNC beacon, which in our experiments were syn-
chronized down to £200 ns on distributed axes. The SYNC
routine implements the offset noise term correction within the
IPO timer counter register and updates the error filter for
the feed-forward synchronization, as described in Section IV.
The FF synchronization is performed regularly by the IPO
routine itself. Fig. 9 shows the obtained synchronization errors
between IPO routine invocations on two axis controllers for
regular axes operation (i.e., with all tasks executed) as well as
under reduced MCU utilization; histograms of synchronization
errors are shown vertically on the left side of the oscilloscope
screens, where both horizontal (for the time domain signals)
and vertical division (for the histogram) are 2 %

As shown in Fig. 9, using the presented synchronization
techniques we propagated IEEE 1588-based time-stamping
synchronization (with error ~ 200 ns), to synchronized
execution of the main application functionality (distributed
position control) with the synchronization error bounded by
+3.4 ps when the entire application stack was executed
on the MCU-based axis controllers. Synchronization error
is 1.6 ps, when position control and communication are
inhibited and axis controllers only maintain synchronization
(i.e., TCP server is offline and there is no reference trajectory
to execute)—therefore, the software SYNC routine reduces
sync performance by only ~ £1.4 ps. Note that these results
only ensure that the synchronization errors for IPO invocations
are within the desired limits (i.e., cyber-synchronization).
In the following subsection we experimentally evaluate the
impact of the deployed synchronization techniques on the
main application performance metrics—position control (i.e.,
machining) accuracy, using a standardized accuracy test.

2Kernel interrupts in MQX are allowed to bypass the standard bookkeeping
of an interrupt manager in an RTOS; this ensures minimal interrupt service
latency, but precludes system calls (e.g., mutex locking/unlocking). This is
not a limitation as the IPO routine only performs geometrical interpolation
calculations and configures hardware used to generate actuation signals.

340 mm Networked

Fun

J1rig'd Tl

]Trig’d

22

W{5ncemor

!‘- controller

Drive

=

Motor drive and
networked controller
~ are integral to the

- axis module

@ 10V &
T.000s
.€D)

|Delay(4

2,000 2.5065/5 @/
100k points. 164V

2.0

l

DU‘My:!!‘ “ ;) oo

25065/5
100k points

[2 00ys

(a) IPO routine synchronization error under reduced (b) IPO routine synchronization error under normal (c¢) Distributed single-axis robot setup used for

MCU utilization MCU utilization

evaluation in Sec. V-A

Fig. 9. Synchronization errors between IPO routines (with 1 ms period); falling edges of two signals (dark- and light-blue) represent IPO invocation on

two LLCs: (a) synchronization error is 1.6 ps when the TCP server is offlin

e, and thus the axis control is inhibited as no reference trajectory is available;

(b) synchronization error is 3.4 p1s under normal operation, during execution of a reference trajectory supplied from the TCP server. Brown histograms show

the synchronization error distributions. Both the horizontal division (i.e., for the time domain signals) and vertical division (i.e., for the histogram) are

s
2 div”

(c) shows the physical 2D setup of single-axis robots distributed used for evaluation of proposed cyber-physical synchronization.

A. Validation on Machining Accuracy Tests

Our validation is based on tests defined by the ISO 10791-
7 standard [15]; we compare system’s performance in terms
of geometric accuracy of pieces machined by the centralized
and distributed control architectures. Influence of different
systematic and random errors inherent from the underlying
mechanical system can be isolated if both centralized and
distributed control modes are tested using the same compo-
nents under the same conditions. Thus, to evaluate centralized
control architecture, we implemented a synchronous mode
of operation where the IEEE 1588-based synchronization is
bypassed and axes are controlled synchronously. Essentially,
system’s performance in synchronous mode sets a baseline
benchmark for our physical process-aware sync. evaluation.

Fig. 10 shows the considered test piece along with tol-
erances on geometric features. We perform tests using the
feedback signal (i.e., encoder measurements) to acquire the
machining trajectory, as described in Annex D of ISO 230
Part 4 [16]; this procedure is alternative to using equipment
such as a laser interferometer. 3 Since errors are not obtained
from an independent measuring instrument, we compute the
straightness error by finding maximal deviations (in both
perpendicular directions) from a straight line fitted to the
first and the last sample corresponding to the respective
feature. Angularity is determined by computing the distance
between two lines sloped according to the feature angle that
enclose the obtained trajectory. Position error is determined
by computing the distance between the commanded and the
obtained bore positions.

Table I compares an excerpt of obtained straightness,
angularity and position errors, as defined in ISO 10791-
7, for the synchronous and distributed modes of operation.
The first column shows worst-run machining errors in the
fully synchronous mode of operation. The remaining columns
summarize results for distributed motion control with cyber-
synchronization only (middle), and with both cyber- and

3BALLUFF SIF series magnetically-coded sensing system is used to
acquire axis position.

{=[0.010

Fig. 10. ISO 10791-7 test piece; machining trajectory of the piece in the X-Y
plane is used as a reference input during testing. Tolerances are captured as
(type, tolerance, datum), where type specifies how the tolerance is mea-
sured, tolerance is the allowed deviation, and the optional datum specifies
the reference features relative to which the respective tolerance is defined.

physical-synchronization implemented (right); specifically, we
show the worst-run additional accuracy impairments relative
to the synchronous mode. As can be seen, without physical-
synchronization, straightness of linear segments remains prac-
tically unaffected as the clock skew between axes is roughly
constant. Yet, tilted segments and positioning are heavily
affected due to the accumulation effect of the different number
of actuation pulses among axes. On the other hand, when
physical-synchronization is employed, practically insignificant
accuracy impairments are introduced when position control is
distributed (recall that the BLU of our axes is 1 BLU =
5 pm). This demonstrates the effectiveness of our cyber-
physical synchronization techniques in realistic scenarios.

B. Discussion

Notice that implementing closed-loop position control (i.e.,
by utilizing position measurements to adjust the actuation
signal at real-time) inherently compensates for some physical-
synchronization issues. Specifically, feed-rate compensation
(see Fig. 7) is naturally performed by the closed-loop con-
troller, and does not need to be handled separately. Addi-
tionally, actuation pulse-train frequency skews are also in-
herently masked by the closed-loop controller that “skews”
the frequencies to compensate towards minimizing error to
target position. However, timely administering of actuation

TABLE I
EXCERPT OF MEASURED ERRORS: SYNCHRONOUS MODE ERRORS ARE
SPECIFIED FOR THE WORST RUN, WHILE THE DISTRIBUTED-MODE ERRORS
ARE GIVEN AS THE WORST-RUN ADDITIONAL IMPAIRMENTS WITH
CYBER-, BUT WITH AND WITHOUT PHYSICAL-SYNCHRONIZATION.

Feature and tolerance Sy nlcrl:;*((l):ous le):;'(.) v;{lc;fsber D 1s:vrl. ;‘i:;’s' ber
" B datum

ESED straightness [pm] < 1.03 +0.00 +0.00

© & left vertical edge
straightness [um] < 100 +0.00 +0.00

2 bottom-left edge

S w

g_&‘é’o straightness [pm] < 2281 +0.00 +0.00

.2 © bottom-left edge .

=] angularity [pm)] < 23.33 4+40.31 max | +0.71 max
bottom-left bore

§ % position [um] < 3.16 +39.22 max +0.00

& S bottom-right bore .

o position [pm] < 5.00 +63.88 max +0.00

signal updates remains a challenge (see Fig. 4) as undesired
pulse width may cause undefined drive behavior and/or present
additional unwanted disturbance for the closed-loop algorithm.

On the other hand, while closing the loop (i.e., using feed-
back in controls) eliminates the need for some of our methods,
it significantly increases the cost of a single-axis module. For
instance, in our implementation the cost of the magnetically-
coded sensing system with resolution 1 um and overall mea-
surement system accuracy of =10 pum (equal to +2 BLU)
amounts to approximately 50% of the price of the single-axis
robot itself. Thus, cost reduction is a natural choice for applica-
tion where dynamic cutting forces do not exist and adaptability
to a wide range of dynamic loads is not necessary, such as in
contactless workpiece machining, assembly tasks, etc.

Fig. 11 qualitatively summarizes architectural design trade-
offs based on the employed synchronization technique, for
different actuation (i.e., pulse/frequency- or analog-based) and
position control types (i.e., open or closed loop). In essence,
synchronized clock sources help reduce the complexity of syn-
chronization software compared to timestamping-based syn-
chronization schemes, but at the expense of generally costlier
hardware platform. On the other hand, while potentially more
accurate, closed-loop systems are significantly more expensive
due to the cost of feedback sensing components. Conversely,
open-loop systems may require more complex software, due to
additional synchronization techniques described in this paper.

VI. CONCLUSION

In this paper we have presented a design approach
that allows platform- and application-specific use of cyber-
synchronization schemes for distributed CPS controllers.
Additionally, we have introduced a method for physical-
synchronization of distributed actuation signal generation.
We have quantified the effects of cyber- and physical-
synchronization errors through simulation of the actual ac-
tuation stage we later deployed in our implementation. We
have evaluated our synchronization scheme by implementing
an instance of distributed motion control with low-cost MCUs

Actuation type

Pulse/Freq. controlled Analog

Clock source frequency
synchronization

lime-stamping -based

Closed

synchronization

Critical SW

complexity @
———
Low High
HW cost
—(8
Low High
Accuracy
| |
Good Best
Uncommon
application

Fig. 11. Architectural design tradeoffs: comparison of software complexity,
hardware cost and the overall system accuracy for distributed CPS controllers.

Position control loop

Open

and a 2D configuration of industry-grade single-axis robots. Fi-
nally, we have demonstrated that cyber-physical synchroniza-
tion ensures maintenance of the system’s main functionality
(i.e., machining accuracy) on standardized accuracy tests. As
avenue for future work, we propose to address architectural
issues during distribution of conventional numerical control
kernels used for centralized multi-axis motion control over
networked CPS controllers by quantifying real-time bandwidth
and computation requirements.

REFERENCES

[11 A. Rowe, R. Mangharam, and R. Rajkumar, “Rt-link: A time-
synchronized link protocol for energy- constrained multi-hop wireless
networks,” in 2006 3rd Annual IEEE SECON.

[2] A.Leva and F. Terraneo, “Low power synchronisation in wireless sensor
networks via simple feedback controllers: The flopsync scheme,” in 2013
American Control Conference, June 2013, pp. 5017-5022.

[3] F. Terraneo, L. Rinaldi, M. Maggio, A. V. Papadopoulos, and A. Leva,
“Flopsync-2: Efficient monotonic clock synchronisation,” in 20/4 I[EEE
Real-Time Systems Symposium, Dec 2014, pp. 11-20.

[4] T. Schmid, P. Dutta, and M. B. Srivastava, “High-resolution, low-power
time synchronization an oxymoron no more,” in I/PSN 2010.

[5S]1 A. Dongare, P. Lazik, N. Rajagopal, and A. Rowe, “Pulsar: A wireless
propagation-aware clock synchronization platform,” in 2017 IEEE RTAS.

[6] V. Lesi, Z. Jakovljevic, and M. Pajic, “Towards Plug-n-Play Numerical
Control for Reconfigurable Manufacturing Systems,” in ETFA 2016.

[71 H. A. ElMaraghy, “Flexible and reconfigurable manufacturing systems
paradigms,” International Journal of Flexible Manufacturing Systems,
vol. 17, no. 4, pp. 261-276, 2006.

[8] H. ElMaraghy, G. Schuh, W. ElMaraghy, F. Piller, P. Schnsleben,

M. Tseng, and A. Bernard, ‘“Product variety management,” CIRP Annals

- Manufacturing Technology, vol. 62, no. 2, pp. 629 — 652, 2013.

Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, and

H. V. Brussel, “Reconfigurable manufacturing systems,” CIRP Annals -

Manufacturing Technology, vol. 48, no. 2, pp. 527 — 540, 1999.

Y. Koren and M. Shpitalni, “Design of reconfigurable manufacturing

systems,” Journal of Manufacturing Systems, vol. 29, no. 4, pp. 130 —

141, 2010.

S.-H. Suh, S. K. Kang, D.-H. Chung, and 1. Stroud, Theory and Design

of CNC Systems. London, UK: Springer-Verlag London, 2008.

[12] Parker Motion & Control Technologies, Motion Control Products,

Drives, Motors and Controller Products, 2013, 192-490123N5.

H. Ma, “Using FTM Global Time Base Feature with KSDK and

TWR-K65F120M,” NXP Community, July 2015. [Online]. Available:

https://community.nxp.com/docs/DOC-106216

[14] IXXAT, IEEE 1588 PTP Protocol Software, 2018.

[15] International Standardization Org., ISO 10791 Test conditions for ma-

chining centres — Part 7: Accuracy of finished test pieces, Std., 1998.

International Standardization Organization, ISO 230 Test code for ma-

chine tools, Std., 2012.

[9

—

[10]

(11]

[13]

[16

