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Abstract— Sitting is the most common status of modern human
beings. Some sitting postures may bring health issues. To pre-
vent the harm from bad sitting postures, a local sitting posture
recognition system is desired with low power consumption and low
computing overhead. The system should also provide good user
experience with accuracy and privacy. This paper reports a novel
posture recognition system on an office chair that can categorize
seven different health-related sitting postures. The system uses six
flex sensors, an Analog to Digital Converter (ADC) board and a
Machine Learning algorithm of a two-layer Artificial Neural Network
(ANN) implemented on a Spartan-6 Field Programmable Gate Array
(FPGA). The system achieves 97.78% accuracy with a floating-point
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evaluation and 97.43% accuracy with the 9-bit fixed-point implementation. The ADC control Ioglc and the ANN are
constructed with a maximum propagation delay of 8.714 ns. The dynamic power consumption is 7.35 mW when the

sampling rate is 5 Sample/second with the clock frequency of 5 MHz.

Index Terms—Smart Chair, Sitting Posture Recognition, Flex Sensors, Artificial Neural Network, Real-time Machine

Learning.

[. INTRODUCTION

Sitting is the most common status of modern human beings
and poor postures may affect head/neck posture and cervico-
thoracic muscle activity [1], bring health problems, especially
for young students [2]. For example, Keeping a neutral lumbar
position is very important for health. However, the habitual
sitting posture causes more flexed lower lumbar spine [3],
which may increase health risks. According to a survey [4],
people are sitting on an average of 13 hours a day. However,
a long period of sitting may increase risk of obesity and
metabolic diseases [5]. With bad postures, it may bring more
health problems like postural pain [1]. Besides, improper sit-
ting postures with a long period sedentary life may increase the
risk of hyperflexion injury [6], and may cause musculoskeletal
disorders such as back pain with deteriorating lung function
[71, low back pain or injury [8], pains in muscle and connective
tissues of tendons [9], increasing spine load [10], changing
cervical spine position [11], neck pain [12], pressure ulcers in
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some patients [13] and shoulder pain [14].

For the above-mentioned long-time sitting caused heart
disease problems, wearable sensors [15], [16] were proposed
to monitor the status of the heart. The warning systems were
created to prevent delayed treatment, such as the wireless
transceivers [17], the integrated Ultra-wideband (UWB) com-
munication system [18], [19] using On-off Keying (OOK)
and Frequency-shift Keying (FSK), and the system [20] with
Delta-sigma encoder. Though, those solutions may help people
avoid serious conditions, considering user experience, privacy,
reliability, and hardware resource overhead, a low-power local-
implemented real-time monitoring system for directly sitting
posture recognition is expected [21]. Thus, the sitting posture
recognition system has become an attractive topic with help
from novel sensors and machine-learning technologies.

The current sitting posture recognition systems proposed in
the literature can be categorized by the sensor types. The main
types of sensors include vision sensors, accelerometer sensors,
pressure sensors, and textile sensors. For example, [22] re-
ports vision-based system with the webcam and [23], [24]
present recognition systems applying the Microsoft Kinect
sensor. Accelerometer sensors are applied in [25], [26], and
skin-mounted electromagnetic tracking sensors are used in
[27]. However, the vision-based and the accelerometer-based
systems suffer from poor robustness and susceptibility to the
interference from the environment [24]. Moreover, the feeling
of being spied results in a bad user experience. Furthermore,
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Fig. 1: System building blocks of the sitting posture recogni-
tion system.

background cluster and occlusion cause challenge to the
vision-based sitting recognition system [28].

In contrast to those sensors, pressure sensors [29] and textile
sensors [30] can provide an acceptable user experience with
dignity and reliable results. However, these methods usually
apply a large sensor array. For instance, 1176 sensors (42x28)
were deployed in [29] and 96 sensors were consumed in [30].
This aggravates the processing complexity and hardware re-
source overhead, which is usually associated with a shortened
battery life. As a result, the classifier of [29] is running on the
computer which cannot be simply merged on the chair. A hard-
ware friendly sitting detection solution was reported in [31],
which applies 4x4 force-sensitive resistor (FSR) sensors and
the processing algorithm is implemented on a microcontroller
(MCU). However, it only detects whether someone is sitting on
the chair, but cannot classify different sitting postures. Besides,
the systems [29]-[31] that use personal computers (PCs) to
process real-time data bring privacy issues.

To address the aforementioned problems, a novel smart chair
solution in terms of sensing and processing for sitting posture
recognition is proposed. The system building block diagram
is illustrated in Fig. 1. The main contribution of this work is
to introduce flex sensors with a machine learning algorithm
to build a low-complexity hardware system for sitting posture
recognition. In this work, only six passive flex sensors are
attached to the chair with a sampling rate at 5 Hz. Each
sensor is connected to a simple voltage divider to convert the
variation of its resistance, which is caused by the deformation
of the sensor, into an analog voltage. An ADC board is used
to collect the analog voltage from the flex sensors and convert
them into digital format. The digital signal is then processed on
an FPGA with a machine learning algorithm. The algorithm is
implemented as a two-layer artificial neural network (ANN) as
the classifier that classifies seven different health-related sitting
postures. The hyperbolic tangent (tanh) activation function
is applied because of its simplicity, which made it friendly
for Very-large-scale integration (VLSI) implementation [32].
For example, the hyperbolic tangent activation function was
applied for optical pattern classification [33]. The overall
system is implemented on an office chair.

The main research contributions of this paper are: (1) The
proposed system reduces the number of sensors and com-
putation complexity compared with the pressure and textile
sensor systems, which results in less hardware overhead. This
energy-efficient, private, and reliable continuous sitting posture
recognition system will play a more valuable role in preventing
people from getting harmed from musculoskeletal disorders

while protecting the dignity of the users; (2) The proposed
method does not have a drift problem, so frequent calibrations
can be avoided. Therefore, it is more reliable and power-
efficient than the accelerometer-based system, which means
longer battery life; (3) This proposed system provides a better
user experience on privacy than the vision-based system. The
rest of the paper is organized as follows: Section II presents
the system design overview. Section III describes the hardware
implementation. Section IV provides the experimental results.
Section V concludes the paper.

[1. SYSTEM DESIGN

The smart chair system consists of an array of six flex
sensors, an ADC board, and an FPGA implementing the
Artificial Neural Network. The output of the system is the
classification result of the sitting posture. We selected seven
health-related sitting postures, which are shown on the top of
Fig. 2. The sitting postures are: (a) sit straight; (b) left recline;
(c) right recline; (d) lounge; (e) lean backward; (f) cross left
leg; (g) cross right leg. Fig. 2 also illustrated the recorded
sensor output waveforms, belonging to three participants,
from the six sensors according to the sitting posture. The
seven different postures are selected for the following reasons.
Posture (a) and (d) are very common postures. Posture (b) and
(c) may cause contractures and exacerbate muscle imbalances
[34], while posture (e) may increase tension in the muscles,
which may in turn cause pain [35]. Posture (f) and (g) may
cause sagittal imbalance, coronal imbalance, pelvic obliquity,
and lordosis angle [36]. The following subsections describe
the sensor interface and signal processing in detail.

A. Flex Sensor

The flex sensor is made up of a polymer ink with conductive
particles and plastic flake. When a flex sensor is bent into
different shapes, the distance of conductive particles changes
with the shape of the sensor, which results in the difference
of resistance. The short flex sensor applied in the application
is FS-L-0055-253-ST from Spectra Symbol. The sensor has a
length of 73.7mm. The active length is 55.4 mm. The width is
6.4 mm and the thickness is 0.5 mm. Its weight is 0.27 g. The
flat resistance is 25k Ohm. The bending resistance can reach
45k to 125k Ohms. The change of the resistance is converted
to the change of voltages using voltage dividers with a 5V
power supply. Each flex sensor, as shown in Fig. 3 (a), has two
terminals. The resistance between the two terminals changes
with the flexing or bending (Fig. 3 (b)) of the sensor. The
individual sensor is connected to a resistor to form a voltage
divider (Fig. 3 (c)). The voltage output of the voltage divider
represents the distortion of the sensor.

B. Ethical approval and Participant Selection

Ethical approval for this work has been granted by The
Office of Research Compliance of New Mexico State Univer-
sity. Each participant has been explained the Key Information
and has signed the Informed Consent Form. The selected
participants consist of 11 healthy young people (4 female and
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Fig. 2: Seven typical sitting postures (Top) with corresponding waveform of three participants from each flex sensor (Bottom).
(a) sit straight; (b) left recline; (c) right recline; (d) lounge; (e) lean backward; (f) cross left leg; (g) cross right leg.
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Fig. 3: Flex Sensor and its application (a) flat status (b)
bending with various resistance (c) voltage divider readout
circuit.

7 male) with the age ranging from 25 to 33, mean =+ standard
deviation as 29 + 2.68; weight ranging from 45 to 95 kg, mean
=+ standard deviation as 66.63 £ 14.46 kg; height ranging from
159 to 186 cm, mean =+ standard deviation as 169 4+ 9.27 cm.
The participants were asked to sit on the smart chair with
seven different common postures including straight, lean left,
lean right, lounge, lean backward, cross left leg, and cross
right leg. The participant keeps each posture for 30 seconds
for data collection. The identification of each participant is
anonymously coded and stored in a classified file.

Fig. 4: Flex sensor based sitting posture recognition system
(left) and the circuit deployment (right). Wires and circuits are
implemented on the chair.

C. Sensor Interface

The flex sensors are attached to the chair and connected
to the input pins of the Arduino board or the ADC board
through individual voltage dividers. Each value of the voltage
is sampled by the ADC in the Arduino board for training or
the ADC board for inference. The flow of data, from sensors
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Fig. 5: Two layer Artificial Neural Network for sitting posture
classification.

to Arduino board or ADC board, is shown in Fig.1 as well.
The ADC in the Arduino board has a 10-bit resolution with a
sampling rate of up to 9.6 kS/s while the ADC board equipped
by the device with a 16-bit resolution and sampling rate up
to 200 kS/s. The Tensorflow 1.12 is installed on a PC with
a Core i5 CPU, a GTX 1060 GPU and an Ubuntu 16.04
Operating System. The Arduino device was used to collect
the training data. The training process is performed off-line
on a PC with TensorFlow. In the training process, the voltage
at one end of each sensor was sampled by the built-in ADCs
of the Arduino. The training data were then transmitted to
the PC using Universal Asynchronous Receiver/Transmitter
(UART) and processed by the python program on the PC. In
the inference stage, the system uses an ADC board to obtain
real-time data from the sensors. Then the ADC sends the data
to the FPGA for inference. The sensors are deployed on the
top of the seat, the backrest, and the armrests on the chair as
shown in Fig. 4. The hardware board and power supply are
attached on the back of the chair.

D. Artificial Neural Network

A two-layer Artificial Neural Network is applied in the
system as shown in Fig. 5. The ANN has six inputs from
the six flex sensors. The input layer is not considered as an
ANN layer since it does not perform computing. The inputs
are connected to the internal nodes in the hidden layer. Then
the output layer generates a classification result, which is one
of the seven different sitting postures.

The ANN design procedure includes four main steps. The
first step is to find the number of layers (k) and the number
of the nodes () in the hidden layer. This is done using
TensorFlow simulation on the PC with the stored training
data to perform cross-validations to evaluate the classification
accuracy of each combination of (k, ), and find the optimized
numbers. We used 10-fold cross-validation to find out the best
combination of £ and /. In the experiment, we set the number
of layers k to 1 or 2. This is because when k is larger than
2, the computation overhead will increase more than double.

Then the number of nodes [ at the hidden layer is set between
13 and 30. This is because our number of the input node is 6,
and the number of the hidden layer nodes should be 3-5 times
of the number of the input nodes, which is a rule-of-thumb of
choosing the number of nodes in the hidden layers. The results
of each combination of k and [ for the 10-fold cross-validation
are in Table L

In Table I, the first column is the number of layers; the
second column is the number of nodes of the hidden layer;
from the third to the twelfth columns are the accuracy of the
first round to the tenth round of the 10-fold cross-validation;
the last column is the accuracy with each combination where
m stands for mean and s stands for standard deviation. The
experiment shows that the best combination is k = 2, [ = 28.

The second step is to obtain the floating-point weight
and bias by training the ANN with back propagation (BP)
algorithm with iterative and adaptive process, in which we
set the feed batch size as 100 and the epoch as 990. In
the third step, the fixed point weight and bias are finalized
using Matlab fixed point converter by evaluating the system
performance at the different numbers of bits and fractions. This
step also estimates the fixed-point model with the activation
function. In this experiment, the word length is finalized as
9 bits with 5 bits as the fraction. The activation function
is finalized as a 9-bit Look-up Table. The last step before
hardware implementation is to simulate the overall fixed-point
model in Matlab with the raw input data and evaluate the
system performance.

E. ANN vs. SYM

In order to compare the performance between different
machine-learning methods, we also studied the support vector
machine (SVM) algorithm as an alternative method in our
sitting posture recognition system. It is well known that
compared to neural network methods, SVM with linear kernel
has lower computational overhead, which makes it easier to
be implemented in wearable sensors. However, neural network
methods may achieve higher accuracy in scenarios with looser
power consumption requirements. To compare their perfor-
mance, We built a linear SVM based classifier. The sensor
inputs are applied as features. We used the same 10-fold cross-
validation to find out the best penalty parameter C' for the
SVM. The optimized C' is found as 128. Then we trained and
evaluated the SVM model with the same dataset as the ANN.
The SVM achieved an accuracy of 88.37%, which is lower
than the ANN (97.43%). The results of the 10-fold cross-
validation are shown in Table II.

In Table II, the first column is the penalty parameters, and
the parameters range from 27° to 2°; from the second to
the eleventh columns are the accuracy of the first round to
the tenth round of the 10-fold cross-validation with different
penalty parameters; the twelfth column is the average accuracy
and the standard deviation. C' stands for penalty parameter,
Rndl to Rndl0 stand for the first to the tenth fold cross-
validation, m and s stands for mean and standard deviation,
respectively. The results show that in our smart chair setup,
ANN achieves a higher accuracy than SVM. It is possible
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TABLE [: 10-fold cross-validation for different combination of number of layers and number of nodes in the hidden layer.

Accuracy
# of # of Analysis
layers nodes | Rndl Rnd2 Rnd3 Rnd4 Rnd5 Rnd6 Rnd7 Rnd8 Rnd9 Rndl0 (m :I:é)‘
1 N/A 0.758 0.705 0.710 0.727 0.712 0.735 0.712 0.745 0.657 0.757 0.7216+0.0301
2 13 0945 0905 0962 0934 0929 0940 0932 0917 0949 0.929 0.9341+0.0161
2 14 0960 0948 0957 0943 0903 0937 0952 0942 0952 0.934 0.9427+0.0163
2 15 0943 0939 0952 0979 0932 0980 0940 0919 0934 0951 0.9467+0.0196
2 16 0952 0949 0966 0960 0971 0955 0917 0949 0.972 0.951 0.9543+0.0157
2 17 0959 0959 0940 0948 0946 0949 0974 0925 0954 0.955 0.95077£0.0129
2 18 0935 0957 0969 0942 0931 0965 0946 0949 0952 0968  0.95138+0.0133
2 19 0942 0957 0975 0974 0928 0972 0955 0929 0939 0979  0.9549240.0196
2 20 0962 0965 0971 0955 0955 0982 0951 0937 0975 0.962  0.96138+0.0128
2 21 0975 0931 0982 0982 0940 0992 0963 0.939 0.955 0.959 0.9617+0.0208
2 22 0951 0968 0959 0963 0955 0968 0951 0955 0969 0968  0.9606340.0073
2 23 0959 0942 0969 0963 0949 0963 0969 0.943 0.991 0.946  0.9593940.0151
2 24 0966 0.960 0975 0955 0975 0952 0945 0948 0971 0.971 0.96186+0.0114
2 25 0963 0957 0975 0969 0937 0979 0974 0955 0974 0.935 0.96184£0.0155
2 26 0975 0945 0974 0943 0928 0982 0955 0.962 0.955 0.966  0.95846+0.0167
2 27 0963 0960 0966 0948 0968 0975 0963 0949 0971 0.940  0.9603240.0112
2 28 0.957 0.946 0982 0963 0.959 0991 0.966 0962 0.969 0982  0.96754+0.0135
2 29 0988 0949 0985 0963 0.929 0968 0982 0.952 0.963 0.959  0.96369+0.0179
2 30 0977 0942 0972 0963 0939 0965 0968 0.954 0.983 0.952  0.9613840.0146
TABLE II: 10-fold cross-validation for different penalty parameters with the linear SVM.
Accuracy
¢ Rndl1 Rnd2 Rnd3 Rnd4 Rnd5 Rnd6 Rnd7 Rnd8 Rnd9 Rnd10 A(Eilg:)l s
0.0312  0.6863 0.6906 0.7151 0.7151 0.6806 0.6763 0.6734 0.7036  0.6791  0.7094  0.6929540.0164
0.0625 0.7022 0.7165 0.7266  0.7511 0.7079 0.7165 0.7108 0.7094 0.6763  0.7453  0.71626+0.0213
0.125 0.777 0.7525 0.7899 0.7986  0.7727  0.7914 0.777 0.7799 0.741 0.7971  0.7777140.0187
0.25 0.7626  0.7914 0.7914 0.8014 0.7842 0.7871 0.7799 0.7856  0.7511  0.8058  0.7840540.0165
0.5 0.8158 0.8014 0.823 0.836 0.7971  0.8245 0.8273 0.8216  0.7957 0.8432  0.8185640.0161
1 0.8432 0.823 0.8432 0.8475 0.8043 0.8475 0.8489 0.8345 0.8259 0.8518 0.83698+0.0151
2 0.8561  0.8317  0.8561 0.859 0.8288  0.8604 0.8576  0.8388 0.8388  0.8719  0.84992+0.0143
4 0.8604  0.8345 0.859 0.859 0.8331 0.859 0.859 0.8489 0.8504 0.8748  0.85381+0.0126
8 0.8691 0.8374 0.8619 0.8647 0.8518  0.8647 0.859 0.8518 0.8633 0.8791 0.86028+0.0113
16 0.8791 0.8547 0.8734 0.8705 0.8662 0.8719 0.8791 0.8662  0.8705 0.895 0.87266£0.0105
32 0.8777 0.8619 0.8863 0.8806 0.8705 0.8777 0.8892 0.8676 0.8691 0.9065 0.87871+0.0129
64 0.8806 0.8647  0.8921 0.882 0.8863  0.8748 0.8892 0.8691 0.8719 0.9094  0.8820140.0131
128 0.882 0.8719 0.8921 0.8806 0.8892 0.8777 0.8863 0.8705 0.8734 0.9137 0.88374+0.0128
256 0.882 0.8691  0.8921 0.882 0.8878 0.8748 0.8849 0.8719 0.8734 09137 0.8831740.0130
512 0.8791 0.8647  0.8935 0.882 0.8878 0.8719 0.8835 0.8719 0.8719 0.9137 0.882+0.0141

that other machine learning algorithms or other sensor systems
may achieve a higher accuracy, which is an interesting topic
for future studies.

I1l. HARDWARE IMPLEMENTATION

Several efforts are made to implement the ANN on the
FPGA. This section presents the specific steps and consid-
erations of the hardware-algorithm interface.

A. Data Normalization

The first step in hardware implementation is to normalize
the input signal. With a 5V power supply, the input signal
from the flex sensor is between 2.5 V and 3.3 V, which is
normalized to a data range from -1 to +1 for the input of the
ANN. Normalization of the input signal is achieved by a Look-
up Table (LUT) in order to avoid a hardware divider. Then the
ANN performs multiply-and-accumulate (MAC) operations

using the input data, as well as the weights and biases data.
The data range of the weight and bias is between -9.7 and
7.949 which is truncated to the range from -8 to 7.949. The
output ranges of the two-layer ANN are (-6.254, 7.239) at
the hidden layer and (-25, 29) at the output layer. Since
the floating-point operation is power-hungry in hardware, we
implement the fixed-point operation for MAC in the ANN.
For example, in this design, all data, weights, and biases used
as input operands for the MAC operation in the ANN are
quantized to signed 2’s complement binary numbers with a
word length of 9-bit, including 5 bits for the fraction. The
outputs of MAC have a word length of 18-bit with 10 bits for
the fraction. These parameters for fixed-point binary number
guarantee enough range to cover and present data, weights,
and biases with reasonable accuracy and the performance in
classification.
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Fig. 7: Hardware architecture of the ANN implemented on the
FPGA.

B. Look-up Table

Each output of the MAC should be processed by the
nonlinear activation function. Thanks to the nature of differ-
entiability, the Hyperbolic tangent activation function is fit for
the back propagation algorithm. For example, the Hyperbolic
tangent is also applied in the ANN [32], [33] which is used
as a classifier. The activation function is also implemented
using a LUT to save the hardware resource. In order to fit
the fixed point system with the word length of 9-bit and 5
bits as the fraction, the LUT is designed to cover the input
range from -8 to +8 with a standard deviation of residual as
0.0056. The floating-point Hyperbolic tangent sequences and
quantized Hyperbolic tangent sequences with a word length
of input data as 6 bits, 7 bits, 8 bits, and 9 bits are shown in
Fig. 6. The LUT for Hyperbolic tangent has a size of 512x9

. Y
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N

LUT

(Activation Function)
1 Start ' l
Data
Sampling
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N

LUT LUT
(Data Normalization) (Activation Function)
Data
MAC Transfer
L '
m Compare

Fig. 8: Flowchart of the ANN on the FPGA.

bits.

C. System Implementation

The system architecture implemented on the FPGA is
illustrated in Fig. 7. The flowchart of the ANN on the FPGA
is shown in Fig.8.

The system consists of a Control Part module and a Data-
path module.

1) Control Logic: The Control Part contains an ADC logic
module, a flow control module and three control models for
computation at the input layer, the hidden layer, and the output
of the ANN. The system operates as follows: First, the ADC
Control module sends control signals to the ADC and receives
data from the ADC with a sampling rate of 5 samples/second.
Then, the Flow Control module manages the ANN processing
flow. Each layer of the ANN starts running after receiving
the beginning signals from the Flow Control module. At each
layer, the Layer Control module sends the address of the
operands to the Operand Fetch module. Then the Operand
Fetch module fetches the corresponding operands from the
LUT. Next, the Operation Control module sends the operand
from the Operand Fetch module, along with control signals, to
the Datapath module. The difference between Layer 1 control
logic and Layer 2 control logic is the address generation
operations due to the structure of the LUT. The control logic
for the output layer consists of the Output Control module and
the Data Transfer Control module. The Output Control module
starts work after receiving the beginning signal from the Flow
Control module. Then the Output Control module sends the
control signals to the Data Transfer Control module. After that,
the Data Transfer Control module converts data from signed
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2’s complement binary code to the true binary code, which
facilitates the comparison operations.

2) Datapath: The Datapath module is composed of a Data
& Operation Selection module, a Multiply-Accumulate (MAC)
module and a Result Calculate module. The Data & Operation
Select module contains the ports connected to Control Part
and the MAC and multiplexers. The data and control signals
are sent to this module from the Control Part, then the specific
data and operation are selected by controlling the multiplexers.
Then the MAC module performs the MAC calculation. After
calculation, the result is sent back to the Data & Operation
Section unit. Finally, The result is sent to a specific layer. The
Result Calculate unit is responsible for finding the maximum
value from the seven different values. Finally, the output data
are transferred to the Datapath Result Calculate module. The
output of the system is the classified sitting posture.

1.0
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Fig. 10: Confusion matrix with the floating-point model and
the data from the first part of the dataset.

IV. EXPERIMENT RESULTS

In order to evaluate the performance of the smart chair
sitting recognition system, we obtained data from a total of
11 people (4 females and 7 males). Each person participated
in the experiment is required to sit on the chair to exercise
all seven postures. The participant keeps one posture for 30
seconds and then change to another posture. The sensing
system records data from sensors during the experiment. The
total data are separated into two parts. The first part contains
data from 9 people (4 females and 5 males) for training and
evaluation, including the cross-validation of the ANN model.
The second part of the data (2 people) is only used to validate
the generalization of the ANN model to avoid over-fitting.

A. Validation results

The first part of the dataset collected from 9 participants
has a total of 9791 samples from each sensor. The data
are then organized in rows. Each row has six data samples
corresponding to six sensors. The setup of the system when
collecting the data are shown in Fig.4. Due to the different
initial resistance of each sensor, the voltages at the six sensors
have different ranges. Thus, data of each column (sensor) are
normalized with its specific parameters into the range between
-1 and 1 for training the ANN model. The curves for each
sensor with three participants are also shown at the bottom
of Fig. 2, corresponding to seven typical sitting postures. To
recognize the different sitting postures, each row of the data is
sent to the training stage or evaluation stage as an independent
feature set. Then, 6527 (67%) samples are selected randomly
to be the data for training a model, while other 3264 (33%)
samples are selected as data to evaluate both of the trained
floating-point model and the quantized fixed-point model. The
2-layer model with 28 nodes in the hidden layer achieves
the accuracy at 97.86% at the training stage. The accuracy
curve during training is shown in Fig. 9. At the evaluation
stage, the data for evaluation is used to evaluate both of
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Fig. 11: Confusion matrix with the floating-point model and
the data from the second part of the dataset.
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TABLE llI: Comparison between this work and state-of-the-art works

Number of Power of Platforms .
Sensor Sensors . . Power of | Processing
Works Sampling Algorithm (Hardware ) Accuracy
Type (Power of . Processor Time
Device Resource)
Sensors)
2 MATLAB N/A
[22] Camera (N/A) N/A SVM (N/A) (PC) N/A 61.9%
. 2 N/A 35W avg o
[23] Kinect (5W) N/A KNN (N/A) (i7 CPI) N/A 94%
MCU
1 232.5mW N/A
[25] Accelerometer (1.65mW) (Arduino) SVM (]\l;/(‘/i ) (PC) N/A 95.33%
Pressure 35W avg
[29] | Distribution ‘(‘;’/‘iﬁ N/A PCA (15/%) (Pentium N/A 96%
Sensors CPU)
MCU
. 96 1.89mW N/A
[30] Textile Sensors (N/A) (ADC) Bayes (I\l;’/i ) (PC) N/A 82%
.. Vector MCU
31 | Orifessi‘;?j;me 4x4 ((N/A)) 19%‘3’[};‘“ Measurement PC g/CA) N/A N/A
Algorithm (N/A)
Strain Gauge 3 Mobility 2.7W max
[37] Sensor g (N/A) N/A Bayes Monitor (Mobility N/A 72.1% + 12%
(N/A) Monitor)
Smartphone
FPGA
1 N/A 120mW
[38] Accelerometer (N/A) (Smartphone) ANN (§é9DFS]§ (FPGA) 270ns 94.6%
3466 LUT)
ADC
. FPGA
this 6 100mW max . . 7.33mW
work Flex Sensor (2.34mW) (ADC) ANN (755 Slice Register (FPGA) 267.4us 97.43%
911 FF
659 LUT)
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Fig. 12: Confusion matrix with the fixed-point model and the
data from the first part of the dataset.

the floating-point model and the fixed-point model, obtaining
the accuracy at 97.78% and 97.43% respectively. The posture
lean backward can be recognized with accuracy at 100% for
both the floating-point model and the fixed-point model. The
confusion matrix which shows the classification result with
the floating-point model and data from the first part of the
dataset is shown in Fig.10. The fixed-point system results

Fig. 13: Confusion matrix with the fixed-point model and the
data from the second part of the dataset.

are shown in Fig. 12. According to the confusion matrices,
the lowest accuracy, 90.1%, is recorded on the posture of
cross-left-leg when applying the floating-point model, which
is caused by the confusion between the posture of sit-straight
and the posture of cross-left-leg. To find out the reason of
notable confusion between these two sitting postures, the data
from different participants has been analyzed. Some data about
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posture cross left leg is close to the value about the posture sit
straight, as shown in the Fig.2. The confusion in the data which
was caused by personal sitting habits results in the confusion
between posture sit straight and posture cross left leg.

The second part of the dataset has 1806 rows of the data
collected from the other 2 participants (2 male). This part of
data are used to validate the generalization of the ANN model,
since the data is alien to the ANN model. The accuracy of the
floating-point model and the fixed-point model reaches 96%
and 96.3%, respectively, which validates the generalization of
the ANN model. The confusion matrix of the classification
result with the floating-point model and the data from the
second part of the dataset is shown in Fig.11. The fixed-point
system results are shown in Fig. 13.

As shown in the confusion matrices, when the fixed-point
model is applied, over 7% of data from posture left recline
is recognized as posture right recline, resulting in the low
accuracy, 91%, of posture left recline.

B. Hardware and power results

Based on the verification of the fixed-point model and hard-
ware structure design, a processing system is realized on an
FPGA board of Spartan 6 XC6SLX9, using 755 slice registers,
659 slice LUTs, and 911 Flip-Flop pairs. The processing
system has a maximum propagation delay as 8.714 ns with
dynamic power as 7.35 mW, when the sampling rate is 5
Sample/second and the clock frequency is 5 MHz.

The sensor power consumption is very low in our system.
Each voltage divider consists of two parts, one is the flex
sensor while another part is a resistor with resistance as 42k
ohm. According to the data we collected, the highest voltage
is 3.3 V on the sensor, which means the current is 0.078 mA
for each voltage divider with the power supply of 5 V. The
total power consumption is 2.34 mW for all 6 voltage dividers
and sensors.

V. DISCUSSION AND FUTURE WORK

The comparison between our system and state-of-the-art
works, [22], [23], [25], [29]-[31], [37], [38], is presented
in Table IIl. To the best of our knowledge, this work has
achieved the lowest power consumption, the lowest hard-
ware simplicity and the highest accuracy among the related
works. The proposed system can be more energy-efficient and
powerful. For example, the ADC board consumes the power
up to 100mW, which is over 91% of the power budget of
the entire system. In order to reduce power consumption, an
integrated ADC will be designed to replace the ADC board.
Besides, this recognition system will be a part of a smart health
monitoring system which brings challenges of processing large
amounts of data with higher dimension and achieving high
performance with complicated tasks. The algorithms with
complicated architecture like Convolutional Neural Network
(CNN) will be considered as a potential choice to meet the
challenges. Besides, the system will be optimized with respect
to the real-time processing, the user usability and acceptability
as well as mobility and comfortability.

VI. CONCLUSION

A low-power private smart sitting posture recognition sys-
tem was realized. The system achieved an accuracy of 97.78%
with floating-point model and 97.43% with 9-bit fixed-point
model. The dynamic power consumption is 7.35 mW with
sampling rate as 5 Sample/second and maximum propagation
delay as 8.714 ns. The primary novelty of the paper is the
new type of sensor combined with fixed-point two-layer ANN
model to achieve high accuracy, low computing overhead,
and power consumption. The proposed system brings longer
battery life, better user experience, and robustness compared
to other types of sensing systems.
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