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Abstract— Sitting is the most common status of modern human
beings. Some sitting postures may bring health issues. To pre-
vent the harm from bad sitting postures, a local sitting posture
recognition system is desired with low power consumption and low
computing overhead. The system should also provide good user
experience with accuracy and privacy. This paper reports a novel
posture recognition system on an office chair that can categorize
seven different health-related sitting postures. The system uses six
flex sensors, an Analog to Digital Converter (ADC) board and a
Machine Learning algorithm of a two-layer Artificial Neural Network
(ANN) implemented on a Spartan-6 Field Programmable Gate Array
(FPGA). The system achieves 97.78% accuracy with a floating-point
evaluation and 97.43% accuracy with the 9-bit fixed-point implementation. The ADC control logic and the ANN are
constructed with a maximum propagation delay of 8.714 ns. The dynamic power consumption is 7.35 mW when the
sampling rate is 5 Sample/second with the clock frequency of 5 MHz.

Index Terms— Smart Chair, Sitting Posture Recognition, Flex Sensors, Artificial Neural Network, Real-time Machine
Learning.

I. INTRODUCTION

Sitting is the most common status of modern human beings

and poor postures may affect head/neck posture and cervico-

thoracic muscle activity [1], bring health problems, especially

for young students [2]. For example, Keeping a neutral lumbar

position is very important for health. However, the habitual

sitting posture causes more flexed lower lumbar spine [3],

which may increase health risks. According to a survey [4],

people are sitting on an average of 13 hours a day. However,

a long period of sitting may increase risk of obesity and

metabolic diseases [5]. With bad postures, it may bring more

health problems like postural pain [1]. Besides, improper sit-

ting postures with a long period sedentary life may increase the

risk of hyperflexion injury [6], and may cause musculoskeletal

disorders such as back pain with deteriorating lung function

[7], low back pain or injury [8], pains in muscle and connective

tissues of tendons [9], increasing spine load [10], changing

cervical spine position [11], neck pain [12], pressure ulcers in
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some patients [13] and shoulder pain [14].

For the above-mentioned long-time sitting caused heart

disease problems, wearable sensors [15], [16] were proposed

to monitor the status of the heart. The warning systems were

created to prevent delayed treatment, such as the wireless

transceivers [17], the integrated Ultra-wideband (UWB) com-

munication system [18], [19] using On-off Keying (OOK)

and Frequency-shift Keying (FSK), and the system [20] with

Delta-sigma encoder. Though, those solutions may help people

avoid serious conditions, considering user experience, privacy,

reliability, and hardware resource overhead, a low-power local-

implemented real-time monitoring system for directly sitting

posture recognition is expected [21]. Thus, the sitting posture

recognition system has become an attractive topic with help

from novel sensors and machine-learning technologies.

The current sitting posture recognition systems proposed in

the literature can be categorized by the sensor types. The main

types of sensors include vision sensors, accelerometer sensors,

pressure sensors, and textile sensors. For example, [22] re-

ports vision-based system with the webcam and [23], [24]

present recognition systems applying the Microsoft Kinect

sensor. Accelerometer sensors are applied in [25], [26], and

skin-mounted electromagnetic tracking sensors are used in

[27]. However, the vision-based and the accelerometer-based

systems suffer from poor robustness and susceptibility to the

interference from the environment [24]. Moreover, the feeling

of being spied results in a bad user experience. Furthermore,
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Fig. 1: System building blocks of the sitting posture recogni-

tion system.

background cluster and occlusion cause challenge to the

vision-based sitting recognition system [28].

In contrast to those sensors, pressure sensors [29] and textile

sensors [30] can provide an acceptable user experience with

dignity and reliable results. However, these methods usually

apply a large sensor array. For instance, 1176 sensors (42x28)

were deployed in [29] and 96 sensors were consumed in [30].

This aggravates the processing complexity and hardware re-

source overhead, which is usually associated with a shortened

battery life. As a result, the classifier of [29] is running on the

computer which cannot be simply merged on the chair. A hard-

ware friendly sitting detection solution was reported in [31],

which applies 4x4 force-sensitive resistor (FSR) sensors and

the processing algorithm is implemented on a microcontroller

(MCU). However, it only detects whether someone is sitting on

the chair, but cannot classify different sitting postures. Besides,

the systems [29]–[31] that use personal computers (PCs) to

process real-time data bring privacy issues.

To address the aforementioned problems, a novel smart chair

solution in terms of sensing and processing for sitting posture

recognition is proposed. The system building block diagram

is illustrated in Fig. 1. The main contribution of this work is

to introduce flex sensors with a machine learning algorithm

to build a low-complexity hardware system for sitting posture

recognition. In this work, only six passive flex sensors are

attached to the chair with a sampling rate at 5 Hz. Each

sensor is connected to a simple voltage divider to convert the

variation of its resistance, which is caused by the deformation

of the sensor, into an analog voltage. An ADC board is used

to collect the analog voltage from the flex sensors and convert

them into digital format. The digital signal is then processed on

an FPGA with a machine learning algorithm. The algorithm is

implemented as a two-layer artificial neural network (ANN) as

the classifier that classifies seven different health-related sitting

postures. The hyperbolic tangent (tanh) activation function

is applied because of its simplicity, which made it friendly

for Very-large-scale integration (VLSI) implementation [32].

For example, the hyperbolic tangent activation function was

applied for optical pattern classification [33]. The overall

system is implemented on an office chair.

The main research contributions of this paper are: (1) The

proposed system reduces the number of sensors and com-

putation complexity compared with the pressure and textile

sensor systems, which results in less hardware overhead. This

energy-efficient, private, and reliable continuous sitting posture

recognition system will play a more valuable role in preventing

people from getting harmed from musculoskeletal disorders

while protecting the dignity of the users; (2) The proposed

method does not have a drift problem, so frequent calibrations

can be avoided. Therefore, it is more reliable and power-

efficient than the accelerometer-based system, which means

longer battery life; (3) This proposed system provides a better

user experience on privacy than the vision-based system. The

rest of the paper is organized as follows: Section II presents

the system design overview. Section III describes the hardware

implementation. Section IV provides the experimental results.

Section V concludes the paper.

II. SYSTEM DESIGN

The smart chair system consists of an array of six flex

sensors, an ADC board, and an FPGA implementing the

Artificial Neural Network. The output of the system is the

classification result of the sitting posture. We selected seven

health-related sitting postures, which are shown on the top of

Fig. 2. The sitting postures are: (a) sit straight; (b) left recline;

(c) right recline; (d) lounge; (e) lean backward; (f) cross left

leg; (g) cross right leg. Fig. 2 also illustrated the recorded

sensor output waveforms, belonging to three participants,

from the six sensors according to the sitting posture. The

seven different postures are selected for the following reasons.

Posture (a) and (d) are very common postures. Posture (b) and

(c) may cause contractures and exacerbate muscle imbalances

[34], while posture (e) may increase tension in the muscles,

which may in turn cause pain [35]. Posture (f) and (g) may

cause sagittal imbalance, coronal imbalance, pelvic obliquity,

and lordosis angle [36]. The following subsections describe

the sensor interface and signal processing in detail.

A. Flex Sensor

The flex sensor is made up of a polymer ink with conductive

particles and plastic flake. When a flex sensor is bent into

different shapes, the distance of conductive particles changes

with the shape of the sensor, which results in the difference

of resistance. The short flex sensor applied in the application

is FS-L-0055-253-ST from Spectra Symbol. The sensor has a

length of 73.7mm. The active length is 55.4 mm. The width is

6.4 mm and the thickness is 0.5 mm. Its weight is 0.27 g. The

flat resistance is 25k Ohm. The bending resistance can reach

45k to 125k Ohms. The change of the resistance is converted

to the change of voltages using voltage dividers with a 5V

power supply. Each flex sensor, as shown in Fig. 3 (a), has two

terminals. The resistance between the two terminals changes

with the flexing or bending (Fig. 3 (b)) of the sensor. The

individual sensor is connected to a resistor to form a voltage

divider (Fig. 3 (c)). The voltage output of the voltage divider

represents the distortion of the sensor.

B. Ethical approval and Participant Selection

Ethical approval for this work has been granted by The

Office of Research Compliance of New Mexico State Univer-

sity. Each participant has been explained the Key Information

and has signed the Informed Consent Form. The selected

participants consist of 11 healthy young people (4 female and
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classification.

to Arduino board or ADC board, is shown in Fig.1 as well.

The ADC in the Arduino board has a 10-bit resolution with a

sampling rate of up to 9.6 kS/s while the ADC board equipped

by the device with a 16-bit resolution and sampling rate up

to 200 kS/s. The Tensorflow 1.12 is installed on a PC with

a Core i5 CPU, a GTX 1060 GPU and an Ubuntu 16.04

Operating System. The Arduino device was used to collect

the training data. The training process is performed off-line

on a PC with TensorFlow. In the training process, the voltage

at one end of each sensor was sampled by the built-in ADCs

of the Arduino. The training data were then transmitted to

the PC using Universal Asynchronous Receiver/Transmitter

(UART) and processed by the python program on the PC. In

the inference stage, the system uses an ADC board to obtain

real-time data from the sensors. Then the ADC sends the data

to the FPGA for inference. The sensors are deployed on the

top of the seat, the backrest, and the armrests on the chair as

shown in Fig. 4. The hardware board and power supply are

attached on the back of the chair.

D. Artificial Neural Network

A two-layer Artificial Neural Network is applied in the

system as shown in Fig. 5. The ANN has six inputs from

the six flex sensors. The input layer is not considered as an

ANN layer since it does not perform computing. The inputs

are connected to the internal nodes in the hidden layer. Then

the output layer generates a classification result, which is one

of the seven different sitting postures.

The ANN design procedure includes four main steps. The

first step is to find the number of layers (k) and the number

of the nodes (l) in the hidden layer. This is done using

TensorFlow simulation on the PC with the stored training

data to perform cross-validations to evaluate the classification

accuracy of each combination of (k, l), and find the optimized

numbers. We used 10-fold cross-validation to find out the best

combination of k and l. In the experiment, we set the number

of layers k to 1 or 2. This is because when k is larger than

2, the computation overhead will increase more than double.

Then the number of nodes l at the hidden layer is set between

13 and 30. This is because our number of the input node is 6,

and the number of the hidden layer nodes should be 3-5 times

of the number of the input nodes, which is a rule-of-thumb of

choosing the number of nodes in the hidden layers. The results

of each combination of k and l for the 10-fold cross-validation

are in Table I.

In Table I, the first column is the number of layers; the

second column is the number of nodes of the hidden layer;

from the third to the twelfth columns are the accuracy of the

first round to the tenth round of the 10-fold cross-validation;

the last column is the accuracy with each combination where

m stands for mean and s stands for standard deviation. The

experiment shows that the best combination is k = 2, l = 28.

The second step is to obtain the floating-point weight

and bias by training the ANN with back propagation (BP)

algorithm with iterative and adaptive process, in which we

set the feed batch size as 100 and the epoch as 990. In

the third step, the fixed point weight and bias are finalized

using Matlab fixed point converter by evaluating the system

performance at the different numbers of bits and fractions. This

step also estimates the fixed-point model with the activation

function. In this experiment, the word length is finalized as

9 bits with 5 bits as the fraction. The activation function

is finalized as a 9-bit Look-up Table. The last step before

hardware implementation is to simulate the overall fixed-point

model in Matlab with the raw input data and evaluate the

system performance.

E. ANN vs. SVM

In order to compare the performance between different

machine-learning methods, we also studied the support vector

machine (SVM) algorithm as an alternative method in our

sitting posture recognition system. It is well known that

compared to neural network methods, SVM with linear kernel

has lower computational overhead, which makes it easier to

be implemented in wearable sensors. However, neural network

methods may achieve higher accuracy in scenarios with looser

power consumption requirements. To compare their perfor-

mance, We built a linear SVM based classifier. The sensor

inputs are applied as features. We used the same 10-fold cross-

validation to find out the best penalty parameter C for the

SVM. The optimized C is found as 128. Then we trained and

evaluated the SVM model with the same dataset as the ANN.

The SVM achieved an accuracy of 88.37%, which is lower

than the ANN (97.43%). The results of the 10-fold cross-

validation are shown in Table II.

In Table II, the first column is the penalty parameters, and

the parameters range from 2−5 to 29; from the second to

the eleventh columns are the accuracy of the first round to

the tenth round of the 10-fold cross-validation with different

penalty parameters; the twelfth column is the average accuracy

and the standard deviation. C stands for penalty parameter,

Rnd1 to Rnd10 stand for the first to the tenth fold cross-

validation, m and s stands for mean and standard deviation,

respectively. The results show that in our smart chair setup,

ANN achieves a higher accuracy than SVM. It is possible
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TABLE I: 10-fold cross-validation for different combination of number of layers and number of nodes in the hidden layer.

Accuracy
# of

layers
# of

nodes Rnd1 Rnd2 Rnd3 Rnd4 Rnd5 Rnd6 Rnd7 Rnd8 Rnd9 Rnd10
Analysis
(m±s)

1 N/A 0.758 0.705 0.710 0.727 0.712 0.735 0.712 0.745 0.657 0.757 0.7216±0.0301
2 13 0.945 0.905 0.962 0.934 0.929 0.940 0.932 0.917 0.949 0.929 0.9341±0.0161
2 14 0.960 0.948 0.957 0.943 0.903 0.937 0.952 0.942 0.952 0.934 0.9427±0.0163
2 15 0.943 0.939 0.952 0.979 0.932 0.980 0.940 0.919 0.934 0.951 0.9467±0.0196
2 16 0.952 0.949 0.966 0.960 0.971 0.955 0.917 0.949 0.972 0.951 0.9543±0.0157
2 17 0.959 0.959 0.940 0.948 0.946 0.949 0.974 0.925 0.954 0.955 0.95077±0.0129
2 18 0.935 0.957 0.969 0.942 0.931 0.965 0.946 0.949 0.952 0.968 0.95138±0.0133
2 19 0.942 0.957 0.975 0.974 0.928 0.972 0.955 0.929 0.939 0.979 0.95492±0.0196
2 20 0.962 0.965 0.971 0.955 0.955 0.982 0.951 0.937 0.975 0.962 0.96138±0.0128
2 21 0.975 0.931 0.982 0.982 0.940 0.992 0.963 0.939 0.955 0.959 0.9617±0.0208
2 22 0.951 0.968 0.959 0.963 0.955 0.968 0.951 0.955 0.969 0.968 0.96063±0.0073
2 23 0.959 0.942 0.969 0.963 0.949 0.963 0.969 0.943 0.991 0.946 0.95939±0.0151
2 24 0.966 0.960 0.975 0.955 0.975 0.952 0.945 0.948 0.971 0.971 0.96186±0.0114
2 25 0.963 0.957 0.975 0.969 0.937 0.979 0.974 0.955 0.974 0.935 0.96184±0.0155
2 26 0.975 0.945 0.974 0.943 0.928 0.982 0.955 0.962 0.955 0.966 0.95846±0.0167
2 27 0.963 0.960 0.966 0.948 0.968 0.975 0.963 0.949 0.971 0.940 0.96032±0.0112
2 28 0.957 0.946 0.982 0.963 0.959 0.991 0.966 0.962 0.969 0.982 0.96754±0.0135

2 29 0.988 0.949 0.985 0.963 0.929 0.968 0.982 0.952 0.963 0.959 0.96369±0.0179
2 30 0.977 0.942 0.972 0.963 0.939 0.965 0.968 0.954 0.983 0.952 0.96138±0.0146

TABLE II: 10-fold cross-validation for different penalty parameters with the linear SVM.

Accuracy

C
Rnd1 Rnd2 Rnd3 Rnd4 Rnd5 Rnd6 Rnd7 Rnd8 Rnd9 Rnd10

Analysis
(m±s)

0.0312 0.6863 0.6906 0.7151 0.7151 0.6806 0.6763 0.6734 0.7036 0.6791 0.7094 0.69295±0.0164
0.0625 0.7022 0.7165 0.7266 0.7511 0.7079 0.7165 0.7108 0.7094 0.6763 0.7453 0.71626±0.0213
0.125 0.777 0.7525 0.7899 0.7986 0.7727 0.7914 0.777 0.7799 0.741 0.7971 0.77771±0.0187
0.25 0.7626 0.7914 0.7914 0.8014 0.7842 0.7871 0.7799 0.7856 0.7511 0.8058 0.78405±0.0165
0.5 0.8158 0.8014 0.823 0.836 0.7971 0.8245 0.8273 0.8216 0.7957 0.8432 0.81856±0.0161
1 0.8432 0.823 0.8432 0.8475 0.8043 0.8475 0.8489 0.8345 0.8259 0.8518 0.83698±0.0151
2 0.8561 0.8317 0.8561 0.859 0.8288 0.8604 0.8576 0.8388 0.8388 0.8719 0.84992±0.0143
4 0.8604 0.8345 0.859 0.859 0.8331 0.859 0.859 0.8489 0.8504 0.8748 0.85381±0.0126
8 0.8691 0.8374 0.8619 0.8647 0.8518 0.8647 0.859 0.8518 0.8633 0.8791 0.86028±0.0113
16 0.8791 0.8547 0.8734 0.8705 0.8662 0.8719 0.8791 0.8662 0.8705 0.895 0.87266±0.0105
32 0.8777 0.8619 0.8863 0.8806 0.8705 0.8777 0.8892 0.8676 0.8691 0.9065 0.87871±0.0129
64 0.8806 0.8647 0.8921 0.882 0.8863 0.8748 0.8892 0.8691 0.8719 0.9094 0.88201±0.0131
128 0.882 0.8719 0.8921 0.8806 0.8892 0.8777 0.8863 0.8705 0.8734 0.9137 0.88374±0.0128

256 0.882 0.8691 0.8921 0.882 0.8878 0.8748 0.8849 0.8719 0.8734 0.9137 0.88317±0.0130
512 0.8791 0.8647 0.8935 0.882 0.8878 0.8719 0.8835 0.8719 0.8719 0.9137 0.882±0.0141

that other machine learning algorithms or other sensor systems

may achieve a higher accuracy, which is an interesting topic

for future studies.

III. HARDWARE IMPLEMENTATION

Several efforts are made to implement the ANN on the

FPGA. This section presents the specific steps and consid-

erations of the hardware-algorithm interface.

A. Data Normalization

The first step in hardware implementation is to normalize

the input signal. With a 5V power supply, the input signal

from the flex sensor is between 2.5 V and 3.3 V, which is

normalized to a data range from -1 to +1 for the input of the

ANN. Normalization of the input signal is achieved by a Look-

up Table (LUT) in order to avoid a hardware divider. Then the

ANN performs multiply-and-accumulate (MAC) operations

using the input data, as well as the weights and biases data.

The data range of the weight and bias is between -9.7 and

7.949 which is truncated to the range from -8 to 7.949. The

output ranges of the two-layer ANN are (-6.254, 7.239) at

the hidden layer and (-25, 29) at the output layer. Since

the floating-point operation is power-hungry in hardware, we

implement the fixed-point operation for MAC in the ANN.

For example, in this design, all data, weights, and biases used

as input operands for the MAC operation in the ANN are

quantized to signed 2’s complement binary numbers with a

word length of 9-bit, including 5 bits for the fraction. The

outputs of MAC have a word length of 18-bit with 10 bits for

the fraction. These parameters for fixed-point binary number

guarantee enough range to cover and present data, weights,

and biases with reasonable accuracy and the performance in

classification.
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B. Look-up Table

Each output of the MAC should be processed by the

nonlinear activation function. Thanks to the nature of differ-

entiability, the Hyperbolic tangent activation function is fit for

the back propagation algorithm. For example, the Hyperbolic

tangent is also applied in the ANN [32], [33] which is used

as a classifier. The activation function is also implemented

using a LUT to save the hardware resource. In order to fit

the fixed point system with the word length of 9-bit and 5

bits as the fraction, the LUT is designed to cover the input

range from -8 to +8 with a standard deviation of residual as

0.0056. The floating-point Hyperbolic tangent sequences and

quantized Hyperbolic tangent sequences with a word length

of input data as 6 bits, 7 bits, 8 bits, and 9 bits are shown in

Fig. 6. The LUT for Hyperbolic tangent has a size of 512x9
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Fig. 8: Flowchart of the ANN on the FPGA.

bits.

C. System Implementation

The system architecture implemented on the FPGA is

illustrated in Fig. 7. The flowchart of the ANN on the FPGA

is shown in Fig.8.

The system consists of a Control Part module and a Data-

path module.

1) Control Logic: The Control Part contains an ADC logic

module, a flow control module and three control models for

computation at the input layer, the hidden layer, and the output

of the ANN. The system operates as follows: First, the ADC

Control module sends control signals to the ADC and receives

data from the ADC with a sampling rate of 5 samples/second.

Then, the Flow Control module manages the ANN processing

flow. Each layer of the ANN starts running after receiving

the beginning signals from the Flow Control module. At each

layer, the Layer Control module sends the address of the

operands to the Operand Fetch module. Then the Operand

Fetch module fetches the corresponding operands from the

LUT. Next, the Operation Control module sends the operand

from the Operand Fetch module, along with control signals, to

the Datapath module. The difference between Layer 1 control

logic and Layer 2 control logic is the address generation

operations due to the structure of the LUT. The control logic

for the output layer consists of the Output Control module and

the Data Transfer Control module. The Output Control module

starts work after receiving the beginning signal from the Flow

Control module. Then the Output Control module sends the

control signals to the Data Transfer Control module. After that,

the Data Transfer Control module converts data from signed
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2’s complement binary code to the true binary code, which

facilitates the comparison operations.

2) Datapath: The Datapath module is composed of a Data

& Operation Selection module, a Multiply-Accumulate (MAC)

module and a Result Calculate module. The Data & Operation

Select module contains the ports connected to Control Part

and the MAC and multiplexers. The data and control signals

are sent to this module from the Control Part, then the specific

data and operation are selected by controlling the multiplexers.

Then the MAC module performs the MAC calculation. After

calculation, the result is sent back to the Data & Operation

Section unit. Finally, The result is sent to a specific layer. The

Result Calculate unit is responsible for finding the maximum

value from the seven different values. Finally, the output data

are transferred to the Datapath Result Calculate module. The

output of the system is the classified sitting posture.

Predicted Label

Fig. 10: Confusion matrix with the floating-point model and

the data from the first part of the dataset.

IV. EXPERIMENT RESULTS

In order to evaluate the performance of the smart chair

sitting recognition system, we obtained data from a total of

11 people (4 females and 7 males). Each person participated

in the experiment is required to sit on the chair to exercise

all seven postures. The participant keeps one posture for 30

seconds and then change to another posture. The sensing

system records data from sensors during the experiment. The

total data are separated into two parts. The first part contains

data from 9 people (4 females and 5 males) for training and

evaluation, including the cross-validation of the ANN model.

The second part of the data (2 people) is only used to validate

the generalization of the ANN model to avoid over-fitting.

A. Validation results

The first part of the dataset collected from 9 participants

has a total of 9791 samples from each sensor. The data

are then organized in rows. Each row has six data samples

corresponding to six sensors. The setup of the system when

collecting the data are shown in Fig.4. Due to the different

initial resistance of each sensor, the voltages at the six sensors

have different ranges. Thus, data of each column (sensor) are

normalized with its specific parameters into the range between

-1 and 1 for training the ANN model. The curves for each

sensor with three participants are also shown at the bottom

of Fig. 2, corresponding to seven typical sitting postures. To

recognize the different sitting postures, each row of the data is

sent to the training stage or evaluation stage as an independent

feature set. Then, 6527 (67%) samples are selected randomly

to be the data for training a model, while other 3264 (33%)

samples are selected as data to evaluate both of the trained

floating-point model and the quantized fixed-point model. The

2-layer model with 28 nodes in the hidden layer achieves

the accuracy at 97.86% at the training stage. The accuracy

curve during training is shown in Fig. 9. At the evaluation

stage, the data for evaluation is used to evaluate both of

Predicted Label

Fig. 11: Confusion matrix with the floating-point model and

the data from the second part of the dataset.
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TABLE III: Comparison between this work and state-of-the-art works

Works
Sensor

Type

Number of

Sensors

(Power of

Sensors)

Power of

Sampling

Device
Algorithm

Platforms

(Hardware

Resource)

Power of

Processor

Processing

Time
Accuracy

[22] Camera
2

(N/A)
N/A SVM

MATLAB
(N/A)

N/A
(PC)

N/A 61.9%

[23] Kinect
2

(5W)
N/A KNN

N/A
(N/A)

35W avg
(i7 CPI)

N/A 94%

[25] Accelerometer
1

(1.65mW)
232.5mW
(Arduino)

SVM

MCU
PC

(N/A)

N/A
(PC)

N/A 95.33%

[29]

Pressure
Distribution

Sensors

42x28
(N/A)

N/A PCA
PC

(N/A)

35W avg
(Pentium

CPU)
N/A 96%

[30] Textile Sensors
96

(N/A)
1.89mW
(ADC)

Bayes

MCU
PC

(N/A)

N/A
(PC)

N/A 82%

[31]
Force Sensitive

Resistor
4x4 ((N/A))

198mW max
(MCU)

Vector
Measurement

Algorithm

MCU
PC

(N/A)

N/A
(PC)

N/A N/A

[37]
Strain Gauge

Sensor
8

(N/A)
N/A Bayes

Mobility
Monitor
(N/A)

2.7W max
(Mobility
Monitor)

N/A 72.1% ± 12%

[38] Accelerometer
1

(N/A)
N/A

(Smartphone)
ANN

Smartphone
FPGA

(81 DSP
569 FF

3466 LUT)

120mW
(FPGA)

270ns 94.6%

this
work

Flex Sensor
6

(2.34mW)
100mW max

(ADC)
ANN

ADC
FPGA

(755 Slice Register
911 FF

659 LUT)

7.33mW
(FPGA)

267.4µs 97.43%

Predicted Label

Fig. 12: Confusion matrix with the fixed-point model and the

data from the first part of the dataset.

the floating-point model and the fixed-point model, obtaining

the accuracy at 97.78% and 97.43% respectively. The posture

lean backward can be recognized with accuracy at 100% for

both the floating-point model and the fixed-point model. The

confusion matrix which shows the classification result with

the floating-point model and data from the first part of the

dataset is shown in Fig.10. The fixed-point system results

Predicted Label

Fig. 13: Confusion matrix with the fixed-point model and the

data from the second part of the dataset.

are shown in Fig. 12. According to the confusion matrices,

the lowest accuracy, 90.1%, is recorded on the posture of

cross-left-leg when applying the floating-point model, which

is caused by the confusion between the posture of sit-straight

and the posture of cross-left-leg. To find out the reason of

notable confusion between these two sitting postures, the data

from different participants has been analyzed. Some data about
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posture cross left leg is close to the value about the posture sit

straight, as shown in the Fig.2. The confusion in the data which

was caused by personal sitting habits results in the confusion

between posture sit straight and posture cross left leg.

The second part of the dataset has 1806 rows of the data

collected from the other 2 participants (2 male). This part of

data are used to validate the generalization of the ANN model,

since the data is alien to the ANN model. The accuracy of the

floating-point model and the fixed-point model reaches 96%

and 96.3%, respectively, which validates the generalization of

the ANN model. The confusion matrix of the classification

result with the floating-point model and the data from the

second part of the dataset is shown in Fig.11. The fixed-point

system results are shown in Fig. 13.

As shown in the confusion matrices, when the fixed-point

model is applied, over 7% of data from posture left recline

is recognized as posture right recline, resulting in the low

accuracy, 91%, of posture left recline.

B. Hardware and power results

Based on the verification of the fixed-point model and hard-

ware structure design, a processing system is realized on an

FPGA board of Spartan 6 XC6SLX9, using 755 slice registers,

659 slice LUTs, and 911 Flip-Flop pairs. The processing

system has a maximum propagation delay as 8.714 ns with

dynamic power as 7.35 mW, when the sampling rate is 5

Sample/second and the clock frequency is 5 MHz.

The sensor power consumption is very low in our system.

Each voltage divider consists of two parts, one is the flex

sensor while another part is a resistor with resistance as 42k

ohm. According to the data we collected, the highest voltage

is 3.3 V on the sensor, which means the current is 0.078 mA

for each voltage divider with the power supply of 5 V. The

total power consumption is 2.34 mW for all 6 voltage dividers

and sensors.

V. DISCUSSION AND FUTURE WORK

The comparison between our system and state-of-the-art

works, [22], [23], [25], [29]–[31], [37], [38], is presented

in Table III. To the best of our knowledge, this work has

achieved the lowest power consumption, the lowest hard-

ware simplicity and the highest accuracy among the related

works. The proposed system can be more energy-efficient and

powerful. For example, the ADC board consumes the power

up to 100mW, which is over 91% of the power budget of

the entire system. In order to reduce power consumption, an

integrated ADC will be designed to replace the ADC board.

Besides, this recognition system will be a part of a smart health

monitoring system which brings challenges of processing large

amounts of data with higher dimension and achieving high

performance with complicated tasks. The algorithms with

complicated architecture like Convolutional Neural Network

(CNN) will be considered as a potential choice to meet the

challenges. Besides, the system will be optimized with respect

to the real-time processing, the user usability and acceptability

as well as mobility and comfortability.

VI. CONCLUSION

A low-power private smart sitting posture recognition sys-

tem was realized. The system achieved an accuracy of 97.78%

with floating-point model and 97.43% with 9-bit fixed-point

model. The dynamic power consumption is 7.35 mW with

sampling rate as 5 Sample/second and maximum propagation

delay as 8.714 ns. The primary novelty of the paper is the

new type of sensor combined with fixed-point two-layer ANN

model to achieve high accuracy, low computing overhead,

and power consumption. The proposed system brings longer

battery life, better user experience, and robustness compared

to other types of sensing systems.
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