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Rethinking phonons: The issue of disorder
Hamid Reza Seyf1, Luke Yates1, Thomas L. Bougher2, Samuel Graham1,2,3, Baratunde A. Cola1,2,3, Theeradetch Detchprohm4, Mi-Hee Ji4,
Jeomoh Kim4, Russell Dupuis4, Wei Lv1 and Asegun Henry1,2,3

Current understanding of phonons treats them as plane waves/quasi-particles of atomic vibration that propagate and scatter. The
problem is that conceptually, when any level of disorder is introduced, whether compositional or structural, the character of
vibrational modes in solids changes, yet nearly all theoretical treatments continue to assume phonons are still waves. For example,
the phonon contributions to alloy thermal conductivity (TC) rely on this assumption and are most often computed from the virtual
crystal approximation (VCA). Good agreement is obtained in some cases, but there are many instances where it fails—both
quantitatively and qualitatively. Here, we show that the conventional theory and understanding of phonons requires revision,
because the critical assumption that all phonons/normal modes resemble plane waves with well-defined velocities is no longer
valid when disorder is introduced. Here we show, surprisingly, that the character of phonons changes dramatically within the first
few percent of impurity concentration, beyond which phonons more closely resemble the modes found in amorphous materials.
We then utilize a different theory that can treat modes with any character and experimentally confirm its new insights.
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INTRODUCTION
The dominant mechanism for heat conduction in non-metals is via
atomic vibrations. In solids, the vibrations experienced by an atom
are a superposition of collective motions that groups of atoms
make together at a single frequency, which are often termed
normal modes of vibration.1–3 The amplitudes of these normal
modes follow the rules of quantum mechanics, occurring in
integer steps with different energy levels.1–3 Each step in
vibrational mode energy is then thought of as a quasi-particle
termed a phonon, and the theory describing their transport is
known as the phonon gas model (PGM).1–9 The PGM was largely
born out of the types of vibrations that would exist in an infinitely
large, pure, homogeneous crystal (IPHC). In such a system, one can
solve the equations of motion in the harmonic limit and find that
all solutions correspond to plane wave modulated vibrations, as a
result of the periodicity. If one adds together solutions with similar
wave vectors, one then obtains a wave packet that propagates
energy at the group velocity dω

dk

� �
and resembles a particle

moving. The essence of the PGM is then that it assumes the
energy of the vibrational modes can be treated as analogous to
particles that travel and scatter with each other, similar to a gas of
molecules—hence the name “phonon gas model”.
According to the PGM the heat flux carried by a phonon is

described by the product of its energy, its group velocity, divided
by the volume it occupies, Q ¼ 1

V hωð Þv, and this is the underlying
assumption for virtually all theoretical expressions of phonon
transport.1–3,5,8,10 The validity of this assumption has been in many
ways validated5,11–20 and consequently, the PGM has been used
almost ubiquitously to understand phonon transport in all classes
of solids.13,18,19,21–25 However, here we will examine more deeply
the behaviors in a random alloy as a representative example,
because its compositional disorder reveals a rather fundamental

issue with the way phonons have been conceptualized, namely
considering them to be plane waves/quasi-particles that travel
and scatter. Our revision to this fundamental issue with the
common PGM-based theory/conception of phonons is then tested
by comparing to experiments. Our alternative perspective is based
on correlation rather than scattering and yields excellent
agreement with the experimental data. The inaccuracy of the
scattering-based perspective vs. the consistent accuracy of the
correlation-based perspective strongly suggests that a rethinking
of how phonons behave in general is warranted, and a correlation-
based physical picture is likely to be more useful and insightful.

The current theory: the virtual crystal approximation (VCA)
The current theory for phonon transport in alloys is based on the
VCA. In the VCA, one essentially treats the alloyed system, which is
compositionally a mixture of two or more pure crystals, as an
effective crystal that has phonon properties (i.e., dispersion,
velocities, specific heat etc.) that are compositionally weighted
averages of the phonon properties of the constituent base
crystals. However, the thermal conductivity (TC) of crystalline
alloys is not well described by a simple rule of mixtures of the base
crystal TCs. Instead, the VCA accounts for the deviation from such
a simplified model by superimposing an additional mechanism for
phonon scattering, namely that of compositional impurities/
defects. In this sense, the VCA treats the presence of dissimilar
elements in an alloy lattice as though they act as scattering
centers for the phonon gas, and the expressions used to model
this effect were derived by Tamura26 in the context of modeling
isotope scattering. This additional scattering mechanism then
ultimately yields much more frequent scattering, which reduces
the TC in much better agreement with experimental data,13,22,23,25

as compared to a simple rule of mixtures. The impurity scattering
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term is then what qualitatively causes the VCA to correctly predict
the typical U-shaped curve observed for TC vs. composition in
most alloys (see Fig. 1a).13,22,23,25 For alloys, TC typically decreases
by ~10 times as the composition of a single impurity approaches
~10–25% and then it remains approximately constant until
approximately 75–90% after which it quickly increases to the
other pure crystal’s TC (see Fig. 1a).
Until the more recent pioneering work of Garg and Marzari,22

the approach of modeling alloy TC lacked predictive capability,
because both the process of determining the phonon–phonon
scattering rates and the defect scattering rates relied on fitting to
existing experimental data. Thus, comparisons with experimental
data often yielded good agreement, particularly when compared
to the alloy TC vs. composition (see Fig. 1a). However, with the ab
initio approach developed by Broido and coworkers16,19,25 as well
as Esfarjani and coworkers,14,19 one can now evaluate the two
scattering mechanisms (e.g., phonon–phonon anharmonic scat-
tering and phonon impurity scattering—often termed mass

disorder scattering) without fitting to any experimental data. As
a result, the VCA still represents the most advanced theoretical
understanding of phonon transport in alloys, and this has largely
been justified by the instances in the literature, where good
agreement between the VCA and experiments has been
observed.22–25,27,28

Unfortunately there are instances where the VCA fails,29–32 even
when adjustable parameters are used to fit the data to which it is
compared.30,31 It is also important to note that these failures are
not only quantitative,29–32 but also qualitative,29,30,32 particularly
with respect to describing TC vs. temperature. This is because
some alloys exhibit monotonically increasing TC or seemingly
constant TC vs. temperature,29,30,32 and the VCA will rather
inherently always yield the same qualitative temperature depen-
dence as a pure crystal, which consists of a low-temperature peak
(dictated by the competition between phonon–phonon scattering
and phonon–impurity scattering) followed by monotonically
decreasing TC due to anharmonic phonon–phonon scattering.

Fig. 1 Thermal Conductivity (TC) and the eigenvector periodicity parameter for InxGa1− x As. a TC of InxGa1− xAs vs. Indium composition at 300 K as
predicted by the VCA using the Tersoff empirical potential, VCA using fitting parameters, molecular dynamics simulations using the Tersoff potential
and the Green Kubo (GK) formalism, as compared to experiments.55 The GK error bars were determined based on the standard deviation of results
from independent simulations at a given Indium composition. Here, it should be noted that at 300 K there is a minimal effect from quantum
corrections and thus, to reduce computational expense, GK as opposed to GKMA calculations were performed, b Average eigenvector periodicity
parameter and fraction of propagating modes vs. Indium composition, c Eigenvector periodicity parameter for different alloy compositions
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These clear failures29–32 of the current theory have prompted our
rethinking of phonon transport in general, with a random alloy
used here as an example.

A revised perspective
The fundamental problem with applying the PGM/VCA to an alloy
is the presumption that all of the phonons/modes correspond to
plane waves thereby justifying invocation of expressions for TC
that are based on the PGM. In reality, when one adds a dissimilar
atom or a defect/impurity into a previously pure homogenous
crystal, one breaks the symmetry/periodicity that gave rise to all
plane wave like solutions to the equations of motion. As a result,
one obtains solutions to the equations of motion for the atoms
that have a very different character than a plane wave modulated
distribution of atom displacement/velocities (see Fig. 1b, c). Here,
we used the eigenvector periodicity (EP) approach33 recently
developed by Seyf and Henry to analyze the modes in a random
alloy, namely In1 − xGaxAs. Interestingly, as predicted by Allen and
Feldman, the eigenvectors (e.g., the displacement/velocity
fields33) for the normal modes in a crystalline random alloy fall
into the same three categories identified by Allen and Feldman in
1999 for amorphous materials, namely propagons, diffusons and
locons.10

Propagons are delocalized modes with sinusoidally modulated
velocity field that exhibit a rather identifiable wavelength and
correspond to low frequencies that in concept must occur in the
low frequency limit as one recovers sound waves. Diffusons are
delocalized modes (i.e., they extend through the entire system)
that do not exhibit periodicity or a sinusoidally modulated velocity
field, but instead appear to exhibit random vibrations similar to
the randomized structure/composition itself. Lastly, locons corre-
spond to localized vibrations that often center on atoms with
significant deviations in local coordination than the rest of the
structure. Localized modes can be distinguished from propagons
and diffusons using the participation ratio34 defined as,

PRn ¼
P
i
~ei;n

2
� �2

N
P
i
~ei;n

4 ; (1)

where ~ei;n is the eigenvector, N is the number of atoms in the
system, n is the mode index, and index i runs over all the atoms in
the supercell. The above definition implies that the extended
modes have a large value of PRn whereas localized modes have
small ratios that can reach a minimum value of 1=N for a mode
completely localized on a single atom. In concept, locons are
modes that involve a small minority of the system and typically
have PRn values below 0.15. However, it is important to point out
that the spectrum of PR values is continuous and there is in
general no strict set of rules that would require any abrupt shift in
mode character, as has been shown by Seyf and Henry.33

An important challenge that remained after the seminal work
by Allen and Feldman was the issue of how to rigorously
distinguish between the two types of delocalized modes, namely
propagons and diffusons. This issue, however, was overcome by
Seyf and Henry, who introduced the EP approach, which classifies
modes on an individual and universal basis by purely considering
their individual mode character, as opposed to a frequency or
Ioffe-Rogel cross-over-based argument, which relies on an
assessment of many modes collectively. This EP method uses
the equilibrium atomic positions and eigenvectors of atoms in
given vibrational mode and then calculates the degree of
periodicity in the mode’s velocity field. It then compares the EP
of a mode to another fictitious mode that has pure sinusoidal
modulation. In this way, the method normalizes the EP so that
every mode falls between zero and unity. The extremes of zero
and unity then correspond to a 0 and 100% sinusoidal/

propagating velocity field for a given mode. A detailed derivation
of the EP, which measures the degree of spatial periodicity for the
eigenvectors, has been given by Seyf and Henry,33 but here we
briefly explain the approach. The degree of periodicity of
eigenvectors in a mode can be calculated by

Ψ ~k;φ
� �

¼
X
i

X
j�i

~ei;n �~ej;n
� 	

f ~k �~ri þ φ
� �

f ~k �~rj þ φ
� �h i











; (2)

where jj~kjj ¼ 2π=λ and φ are the wave vector and phase of a
periodic wave propagating in the structure, respectively. Variables
~r and ~e represent the atom position vector and eigenvector,
respectively. The function f represents the periodic function
chosen for comparison. Here, any spatially oscillatory function
such as sin ~k �~r

� �
, cos ~k �~r

� �
, or exp i �~k �~r

� �
can be used. The

subscripts i and n refer to an atom and a mode in the structure,
respectively. The function Ψ ~k;φ

� �
becomes large if the mode

velocity field resembles that of the periodic function, and it
provides a direct and quantitative measure of the degree of
resemblance. Equation (2) can be normalized by comparing the
value of Ψ ~k;φ

� �
for the actual mode, with Ψ ~k;φ

� �
for a fictitious

mode that is based on the value of ~k0 and φ′ that maximize
Ψ ~k;φ
� �

for the mode in question. Thus, the appropriate fictitious
mode for comparison is one that is oriented along the ~k0vector
with phase φ′. The final expression for normalized EP is then given by,

γn ¼

P
i

P
j�i

~ei;n �~ej;n
� 	

f ~k0 �~ri þ φ0
� �

f ~k0 �~rj þ φ0
� �h i












P
i

P
j�i

~si;n �~sj;n
� 	

f ~k0 �~ri0 þ φ0
� �

f ~k0 �~rj0 þ φ0
� �h i












; (3)

where ~s is the eigenvector of fictitious mode. The value of γn
therefore represents the degree of EP on a normalized scale from
zero to unity. For a mode with 100% propagating character γn = 1,
while modes with γn values far from unity correspond to non-
propagating modes and could be either localized or de-localized.
It is important to note here that the demarcation between
propagons and diffusons (EP ~ 0.2) was determined by direct
inspection of the modes observed in amorphous materials and
represents a rather universal transition regime that is applicable to
any mode, regardless of what type of material it exists in (e.g.,
alloys, molecules defected crystals etc.).33 This demarcation of EP
= 0.2 was used herein to distinguish between propagons and
diffusons in the In1 − xGaxAs alloy and it is important to note that it
was not used as a fitting parameter.
Figure 1 shows an example calculation of the fraction of modes

that are propagons in In1 − xGaxAs as a function of In content.
Based on the data in Fig. 1, one might expect that an expression
for alloy TC that is based on the PGM might exhibit significant
errors in its description of TC vs. temperature for alloys in the
15–85% composition range, because they would be in a regime
where less than 2% of the modes are propagons. Again, this is
because the PGM is built on the assumption that all modes
propagate, and thus when situations occur where this is not true,
one would expect PGM-based theories/models to breakdown, e.g.,
for alloys in the 15–85% composition range. Furthermore, there
are clear qualitative resemblances between Fig. 1a–c that suggest
that even in the dilute limit, the steep decrease in TC may be more
so related to the change in mode character (see Supplementary
Materials for example animations of modes with less than 100%
plane wave character) as opposed to impurity scattering.
It is also remarkable that even in the dilute limit, for impurity

concentrations between 0.1–2%, most of the modes in what
would generally be considered a rather pure crystal, are far from
being pure plane waves. Figure 1b, c shows examples of how the
mode character evolves in this regime and it is clear that
the eigenvectors retain the sinusoidal periodicity most strongly in
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the wave vector direction, but it is most quickly lost in the
perpendicular directions. This realization is insightful, because it
shows very clearly what aspects of a mode’s propagating
character are lost first and how the transition from propagon to
diffuson occurs. Furthermore, given that the momentum of
phonons (ħk) emanates from the assumption that phonons are
plane waves, the results in Fig. 1b, c suggest that significant
rethinking of how phonons in non-pure crystals interact with
other quantum particles such as electrons, photons and neutrons
is necessary. It should be emphasized here that the results in
Fig. 1b, c suggest that “pure” for phonons implies impurity
concentrations less than 0.1–1%, yet many materials used in
industrial applications are only 97–99% pure. The data in Fig. 1
also suggests that the reason the alloy TC drops quickly within the
first 10% may be associated with the loss of propagating character
as opposed to impurity scattering, which is another fundamental
shift in thinking.
A key question then becomes, what are the respective

contributions that each category of modes (e.g., propagons,
diffusons and locons) makes to TC?—answering this question
requires a different theory, because the existing PGM theory
cannot be invoked for the diffusons and locons. This is because
one cannot define their velocities. For propagons, one can find an
associated wavelength10,33 and could still envision treating such
modes via the PGM/VCA. However, propagons only comprise a
small fraction of the modes for 15–85% compositions (see Fig. 1b)
and thus, it is not clear a priori, that all other modes can simply be
neglected. For diffusons and locons, one must use alternative
methods for describing their potentially significant TC contribu-
tions. Towards this end, Lv and Henry4 have developed a very
general approach termed Green–Kubo modal analysis (GKMA),
which combines supercell lattice dynamics (SCLD) with the fully
anharmonic dynamics generated by a molecular dynamics (MD)
simulation to solve this problem. The GKMA approach involves a
projection of the anharmonic atomic trajectories onto the normal
mode shapes (e.g., the velocity fields33) for each mode, without
making any assumptions or modifications to the formalism for the
different mode types. In this sense the GKMA method can more
directly assess a mode’s TC contribution, without any invocation of
the PGM, as one only needs to utilize the mode level contributions
to each atom’s velocity to then determine each mode’s
contribution to the heat flux operator in an equilibrium MD
simulation. In this sense, the key attribute of the GKMA approach
is that it describes phonon transport in terms of correlation, rather
than scattering, which is a major shift in perspective from the
current understanding. The GKMA approach has been discussed in
detail in previous work4 but here we briefly explain the approach.
First, the harmonic frequencies and eigenvectors are obtained
from a SCLD calculation. To obtain the modal contributions to the
velocity of each atom (e.g., _xi n; tð Þ atom i, mode n) the atom
velocities from MD are projected onto the normal mode basis. The
detailed formulation is given in previous work by Lv and Henry,4

but in the end the heat flux associated with each mode is
calculated by substituting the modal velocity into heat flux
operator,

Q n; tð Þ ¼ 1
V

X
i

Ei _x n; tð Þ þ
X
j

�∇riΦj � _x n; tð Þ� �
rij

" #
; (4)

where Ei is the sum of potential and kinetic energy of atom i, Φj is
the potential energy of atom j, V is the volume of the supercell,
and rij is the distance between atom j and atom i. Finally, the TC of
each vibrational mode can be calculated by substituting the
modal heat flux into the commonly used Green–Kubo expression,

κ nð Þ ¼ V
kBT2

Z1
0

Q n; tð Þ � Q 0ð Þh idt (5)

Equation (5) expresses the TC as a direct summation over
individual mode contributions. The reason it is useful to know the
contributions of individual modes is multi-fold. For one, under-
standing the breakdown in mode level contributions allows each
contribution to be associated with the mode’s frequency. This is
useful because one can then apply quantum heat capacity
corrections, e.g., x2ex

ex�1ð Þ2 to the TC contribution of every individual

vibrational mode, where x ¼ hω
kBT

, thereby allowing classical MD
predictions to be extended to low temperatures where they are
generally known to fail.6 The second advantage of knowing the
mode level contributions is because one can then look at trends
in the behaviors with respect to the mode character. For example,
Gordiz and Henry8,35,36 observed profound features in the way
different modes were correlated that had different characters.
Similarly here, it would be useful to separate the contributions of
propagons and diffusons to see if the trends in TC contributions or
underlying mechanisms differ significantly, or if somehow despite
the differences in character, the PGM physical picture still holds.
Thus far, the GKMA method has been tested and validated

against various materials including, crystalline silicon,4 amorphous
silicon,4 amorphous silica8,37 and amorphous carbon,6 yielding
excellent agreement with experiments in every case, via a single
unified formalism. Given the GKMA method’s generality and
accuracy, in the following analysis we have used it to study an
example random alloy, namely In1 − xGaxAs, and we compare its
results to that of the PGM/VCA in order to test the hypothesis that
the key fundamental information missing in the VCA is knowledge
of the mode character.

RESULTS AND DISCUSSION
To illustrate why considering the mode character matters, we first
modeled the In1 − xGaxAs system using both VCA and GKMA. We
then determined the TC as a function of composition at room
temperature and then separately studied the TC of the
In0.53Ga0.47As alloy vs. temperature for several film thicknesses.
The accuracy of the interatomic potential was verified first by its
predictions of the TC vs. temperature for the IPHCs (InAs and
GaAs) separately. These calculations show that in the limit of an
IPHC, the PGM and GKMA are consistent. Good agreement with
experiments is also obtained for the TC vs. composition for In1 −
xGaxAs (see Fig. 1a) at 300 K, when using both methods. However,
some differences between the two approaches show up in the
predictions of the TC vs. temperature for the alloy.
One reason temperature reveals some discrepancy between the

two methods is because phonon contributions to TC are
proportional to the individual phonon heat capacities. Quantum
mechanically, the heat capacity of phonons is strongly tempera-
ture dependent and decays to zero in a temperature range
determined by the mode’s frequency. At low temperatures, only
low-frequency modes are excited, due to Bose–Einstein statistics,
while the high-frequency modes only become active at higher
temperatures. As a result, temperature serves as a rather broad-
band filter for the mode-level contributions to TC. Consequently,
at low temperatures, one can single out the contributions each
model assigns to low frequency modes, while at higher
temperatures, higher frequency mode contributions are also
included. Thus, one can probe the non-specific heat-related TC
contributions for each method by comparing TC vs. temperature,
because the specific heat portion of each respective model is
identical—leaving the major distinction as each model’s descrip-
tion of the phonon-phonon interactions. Figure 2 shows the TC
calculated by each methodology as compared to the experimental
data38,39 for a thick 1.6 micron film, which are likely the bulk
values. The results show that the VCA values are in the correct
range, but the trends with temperature differ somewhat from the
experimental data.
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Although there are some appreciable differences between the
two methodologies, the VCA predictions of total TC are not
drastically different from the experimental data, which might then
lead one to assume that, maybe for this specific system at least,
the physical picture described by the VCA is still valid.
Furthermore, it might seem as though considering the mode
character shift illustrated in Fig. 1b, c, is unnecessary. However, if
this is true, the VCA should still provide correct guiding intuition
and predictions for cases beyond the bulk crystalline behavior,
and we are specifically interested in investigating a case that will
highlight the difference between the two physical pictures (i.e.,
PGM/VCA via scattering vs. GKMA via mode character and
correlation). In this respect, we note that a fundamental difference
between the modes of an IPHC (e.g., plane waves), which are
similar to propagons, and the predominant modes (by number) in
the alloy, namely diffusons, is that the diffusons cannot be
associated with a well-defined velocity. This then rigorously
prevents them from being associated with a corresponding mean
free path (MFP), and because the addition of multiple diffuson
velocity fields presumably does not yield a traveling wave packet,
it is intuitive to expect that diffusons should not exhibit significant
classical size effects.3 A classical size effect is a well-known
phenomenon that is well explained by the PGM and is one of the
most valuable pieces of intuition it provides.3 According to the
PGM, TC is proportional to the average distance a phonon can
travel before it scatters (i.e., its MFP). Therefore, as one shrinks the
size of a material, the propagation of phonons becomes
constrained by the material’s boundaries where it must scatter/
reflect. As a result, the reduced size of a material eventually limits
the MFPs and consequently reduces TC in a predictable way.1,3,5

Diffusons and locons, however, do not propagate, and thus it is
intuitive that they should not experience such size effects.
Therefore it is intuitive that their contributions to TC should be
unaffected by reduced dimensions, i.e., in a thinner film. It is
important to also highlight here that locons have an associated
length scale which can be quantified by a localization length,10

but diffusons do not since they are delocalized. Although Allen
and Feldman10 proposed a length scale (l2ω) associated with the
mode diffusivity (Di(ω)), to our knowledge this definition has never
been shown to be a useful quantity.
Nonetheless, from this progression of logic, we compared the

predictions of both methods (GKMA and VCA) to the TCs of much

thinner films of In0.53Ga0.47As (280 and 120 nm thick) whereby,
according to the revised intuition, we hypothesized that the
propagons would most certainly experience classical size effects,
but the diffusons and locons should not. The details associated
with the respective predictions and the subsequent experimental
fabrication and measurements are described in detail in the
Supplementary Materials. It should be emphasized here that the
theoretical predictions were generated prior to the acquisition of
the experimental data and thus served as a true test of the
predictive capabilities of the respective methods/intuition. The
VCA predictions were generated using the same methods used for
the results shown in Fig. 2 and boundary scattering was applied to
all the modes in the VCA using Mathissen’s rule with the diffuse
limit L=2v boundary scattering relaxation time.1,3,17,20 It should be
noted, that boundary scattering was also applied to the results in
Fig. 2, however, because the film thickness was large (1.6 micron)
it essentially had no effect on the TC results. Thus the only change
between the predictions in Fig. 2 and Fig. 3 was the value of L,
which was changed to the smaller film thicknesses for the results
in Fig. 3. Based on our revised understanding for GKMA, size
effects were applied to the propagons only, and not the diffusons
or locons. The propagon relaxation times were calculated using
the standard normal mode analysis (NMA) technique pioneered
by McGaughey and Kaviany40 and the propagon contributions
determined from GKMA were then scaled down according to the
decreased relaxation times the propagons would experience in
the thinner films, i.e.,

κpropagons ¼
X1

i�EPPcut

κGKMA
τi;eff
τi

(6)

In the above equation EPPcut is the minimum eigenvector
periodicity parameter of non-propagating modes, namely 0.2.
Above EPP = 0.2, vibrational modes behave like a plane wave
vibrational mode and we assume their contributions to depend on
MFPs as prescribed by the PGM. Here, τi is the net phonon-phonon
and phonon-defect relaxation time calculated using NMA in MD
and τi,eff is the effective net relaxation time after superimposing
the effect of boundary scattering. This approach was used to avoid
the excessively large computational expense associated with
simulating the entire thickness of the film with free boundaries.
Furthermore, the fact that an application of this basic intuition/
understanding can allow us to avoid the large computational
expense associated with simulating the entire film, is precisely

Fig. 2 TC of In0.53Ga0.47 As. Temperature dependent TC of
In0.53Ga0.47 As film38, 39 and the corresponding theoretical predic-
tions using VCA and GKMA. The error bars were determined based
on the standard deviation of GK results at a given temperature. Each
labeled curve highlights the respective contributions associated
with propagons, diffusons and locons, according to the GKMA and
EP methodologies

Fig. 3 TC of In0.53Ga0.47 As thin films. Temperature-dependent TC of
In0.53Ga0.47 As for different thin film thicknesses and the correspond-
ing theoretical predictions using VCA and GKMA. Mathiessen’s rule
was used to apply boundary scattering to all the modes in VCA. For
GKMA, the size effects were applied only to propagons by scaling
their GKMA contributions by a reduction factor corresponding to
the reduction in net relaxation time, which would occur after adding
a boundary scattering term (diffuse limit) via Mathiessen’s rule. In
this approach, the base relaxation time for propagons was obtained
via NMA. The error bars were determined based on the standard
deviation of GK results at a given temperature
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why it is so valuable to test and confirm that the intuition is
correct in the first place. The predictions were then compared to
TC measurements determined by time domain thermoreflectance
measurements of single crystalline In0.53Ga0.47As thin film samples
that were grown on single crystalline InP substrates via
metal–organic chemical vapor deposition (see Supplementary
Materials for details).
The results in Fig. 3 show that the GKMA approach exhibits

remarkable agreement with the experimental data and most
notably, it properly captures the correct trends and magnitudes
for each film. The VCA, on the other hand, provides a much poorer
description as the added phenomenon of size effects exacerbates
its key shortcoming. Of particular concern is the fact that both
applications of the VCA (e.g., VCA-1 and VCA-2) incorrectly predict
a lower-temperature peak ~50–100 K, while only the GKMA
method correctly predicts that the peak occurs slightly above
200 K.
It is also interesting to note that even if one discards the

arguably more rigorous implementation of the VCA (e.g., VCA-1) in
favor of the approach utilized more frequently before the advent
of first principles methods (VCA-2), namely using fitting para-
meters, one still cannot properly predict the size effects seen in
the thin films. When fitting parameters are used, it is interesting
that the thicker 1.6 micron film TC and the overall shape of the TC
accumulations (see Supplementary Materials) more closely match
that predicted by the GKMA over the entire temperature range.
However, because the PGM/VCA implicitly assumes that all of the
modes are plane wave like in nature and should therefore
experience size effects, the fitted version significantly under-
predicts the TC of the films (i.e., error > 2X for the 120 nm at 300 K).
Nonetheless, by more properly accounting for the fact that the
majority of the modes are diffusons, which should not experience
significant size effects, the GKMA predictions agree well with the
measurements.
In conclusion, the results show that in a random alloy, the mode

character changes dramatically with composition and the steep
drop in TC between 0–2% corresponds with a decrease in plane
wave/propagating character. This provides an alternative explana-
tion to the more widely held understanding that associates this
drop with impurity scattering. Furthermore, when 15–85% of the
lattice sites are occupied by dissimilar atoms, the diffusons
become the predominant mode type (by number—see Fig. 1b, c)
and at high temperatures they can dominate the TC. The results
also show that, consistent with their character, diffusons do not
experience significant size effects at the 100 nm-length scales
probed herein, and as a result the TC of thin films differs
significantly from VCA predictions, even when fitting parameters
are employed. Thus, the theory of alloy TC and the concept of
phonons more generally should be reconsidered to account for
changes in mode character vs. disorder. Such rethinking has far
reaching implications for phonon interactions with other quantum
particles such as neutrons, electrons and photons, since the
momentum associated with diffusons and locons is unclear.41–49

Furthermore, the results herein have shown that phonons cannot
in general be thought of exclusively as plane waves. Instead, we
believe a more general perspective is to classify phonons
according to the three groups identified by Allen and Feldman,10

and more generally think of a phonon as “a quanta of normal
mode vibrational energy”. Ultimately the value and importance of
these classifications is that they account for the strong possibility
that each classification may have its own distinct physics for how
it transports heat and interacts with other quantum particles (e.g.,
electrons, photons, neutrons etc.).

METHODS
The equilibrium MD simulations were performed using the large-scale
atomic/molecular massively parallel simulator (LAMMPS). Prior to collecting

statistics, structural relaxation was performed using a constant tempera-
ture, number of atoms, and volume for 500 ps. All simulations were run
with a 0.5 fs time step under the microcanonical ensemble for 15 ns to
collect sufficient statistics for the TC calculations. One way to reduce
computational expense in application of the GKMA method is to skip time
steps when computing the modal contributions. The effect of the size of
the computational domain on TC was also studied carefully, and we
observed that a 18 × 18 × 18 supercell was sufficiently large to include
converged contributions of long wavelength phonons (e.g., propagons).
We have calculated the modal TC contributions at eight temperatures for
the In0.53Ga0.47As system. For the intermediate temperatures, we linearly
interpolated the TC of each mode, using data for 50, 100, 200, 300, 400,
500, 600, and 700 K. The GKMA results of individual mode TC are then
multiplied by the quantum-corrected specific heat at the temperature of
interest,

κT nð Þ ¼ κT1 nð Þ T2 � Tð Þ þ κT2 nð Þ T � T1ð Þ
T2 � T1ð Þ : (7)

To calculate each vibrational mode’s relaxation time, in order to apply the
effect of boundary scattering to the propagons, the atomic trajectories
generated by MD simulations were also used. The normal modes
amplitudes S(k, υ) can be expressed as a sum over the positions of the
atoms in the system.

Si k; υð Þ ¼ N
�1=2

X
j

M
1=2
j exp �ik: rj;o

� �
e�i k; υð Þ: rj tð Þ � rj0

� �
; (8)

where ei(k, υ) is the eigenvector, υ is mode polarization, Mj is mass of atom
j, k is wave vector, N is total number of atoms in the system, rj0 and rj(t) are
the equilibrium lattice position and the atom’s position vectors,
respectively.
Under harmonic approximation, the total energy of each mode is given

by

Ei tð Þ ¼ Ej;P þ Ej;K ¼ ω2
i Si S

�
i

2
þ

_Si _S�i
2

; (9)

where * denotes complex conjugate and ωi is the frequency of a
given normal mode. The first term in Eq. (9) corresponds to the potential
energy (Ej,P) and the second term corresponds to the kinetic energy (Ej,K).
The vibrational mode relaxation time can be calculated from the decay of
the autocorrelation of each mode’s total energy via,

τi ¼

R1
0

Ei tð ÞEi 0ð Þh idt
E2i 0ð Þ� � (10)

The eigenvectors are calculated using General Utility Lattice Program
(GULP) at the gamma point (k = 0), which represents a SCLD calculation,
whereby the entire system is treated as the basis of a simple cubic crystal,
as opposed to a more standard Lattice Dynamics calculation that exploits
symmetry within the supercell. It is important to note that the relaxation
times calculated using this method measure the net phonon–phonon
scattering rate and it doesn’t distinguish between umklapp and normal
processes or the interactions with the alloying elements. This is due to the
comprehensive inclusion of temperature dependent anharmonicity
expressed through the atomic trajectory.
To calculate the TC using VCA, we first calculated harmonic

and anharmonic interatomic force constants (IFCs) using the direct
displacement method17,50 and then by using Fermi’s golden rule, the
anharmonic phonon lifetimes were calculated.14,15 The total lattice TC
was determined under the relaxation time approximation by summing up
the modal contributions. The ground state energy of a crystal can be
expressed in terms of IFCs by Taylor expanding about the equilibrium
positions,

V ¼ V0 þ
X
ηlα

Πα
ηlu

α
ηl þ

1
2!

X
ηlα;η0 l0β

Φα;β
ηl;η0 l0u

α
ηlu

β
η0 l0 þ

1
3!

X
ηlα;η0 l0β;η00 l00γ

Ψα;β;γ
ηl;η0 l0 ;η00 l00u

α
ηlu

β
η0 l0u

γ
η000 l000 þ :::;

(11)

where Φ and ψ are harmonic and cubic IFCs, respectively. Subscripts α, β,
and γ indicate the direction of the Cartesian displacement u from the
equilibrium position. Indices denote the ηth atom in lth primitive cell. The
residual force Π is zero since the potential is expanded around
the minimum energy configuration, hence,

Fαηl ¼ �Πα
ηl �

X
ηlα;η0 l0β

Φα;β
ηl;η0 l0u

β
η0 l0 �

1
2!

X
ηlα;η0 l0β;η00 l00γ

Ψα;β; γ
ηl;η0 l0 ;η00 l00u

β
η0 l0u

γ
η000 l000 þ ::: (12)
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The IFCs are obtained by the real-space direct displacement method.17,50 In
this approach, various sets of force-displacement data are calculated by
displacing atoms in the supercell. Then, the displacement-force data are
fitted to Eq. (9), taking the translational and rotational invariances into
account. In the present study, we have considered only up to the cubic
terms. For further details, readers are directed to the associated
references.17,50

To model the atomic interactions and calculate the forces we used an
empirical potential, namely the Abell–Tersoff potential, which was
optimized using ab initio data.51 The potential is able to correctly
reproduce DFT–LDA calculated values of the elastic properties, cohesive
energy, lattice constants and nonlinear effects in the strain within 1.2%.51

Before sampling force-displacement data, the cell parameter was
optimized and we have obtained lattice parameter of 6.058 Å for InAs
and 5.653 Å for GaAs, which is in excellent agreement with the
experimental values52 of 6.058 Å and 5.653 Å, respectively. We then used
a cubic supercell of a 2 × 2 × 2 conventional unit cell, which consists of 64
atoms in total, to compute the various terms in Eq. (9).
After obtaining harmonic IFCs, the dynamical matrix for a given wave

vector k can be calculated by Fourier transformation,

Dα;β
ηη0 kð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

MηMη0
p X

l0
Φα;β

η0;η0 l0e
iq:Rl0 ; (13)

where R and M are atomic position of the primitive cell and mass,
respectively. The cubic IFCs are used to scattering matrix elements given
by

V3 ks; k0s0; k00s00ð Þ ¼ h

8N0ω ksð Þω k0s0ð Þω k00s00ð Þ
� �1=2

X
η

X
η0 l0

X
η00 l00

X
αβγ

Ψα;β; γ
0l; η0 l0 ;η00 l00e

ik0 �Rl0 eik
00 �Rl00

eαη ksð Þeβη0 k0s0ð Þeγη00 k00s00ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MηMη0Mη00

p
(14)

Where N0 is the total number of mode in the first Brillouin zone, ħ is the
Planck constant divided by 2π, and s denotes different polarizations.
Phonon lifetimes due to umklapp and normal three-phonon scattering
processes can then be calculated using Fermi’s golden rule,14,15

1
τks

¼ π
P
k0s0

P
s

V3 ks; k0s0; k00s00ð Þj j2

´ 2 nk0s0 � nk00s00ð Þ δ ω ksð Þ þ ω k0s0ð Þ � ω k00s00ð Þð Þ½

þ 1þ nk0s0 þ nk00s00ð Þ δ ω ksð Þ � ω k0s0ð Þ � ω k00s00ð Þð Þ�

(15)

where nks is the Bose–Einstein distribution. Conservation of momentum
requires k + k′ + k″ =G, where G is the reciprocal lattice vector. For normal
process G = 0, while for Umklapp process G ≠ 0. Finally TC can be
calculated based on relaxation time approximation,

κ ¼ 1
3ΩN0

X
ks

v2ksτks�hωks
∂nks
∂T

; (16)

where vks is the group velocity and Ω is the volume of unit cell. We used a
30 × 30 × 30 k-mesh within the first Brillouin zone, and we have confirmed
that the TC is converged with respect to grid size when a 30 × 30 × 30 grid
is used.
The VCA introduced by Abeles13 was used to take into account the

alloying effects. In this approach the disordered crystal is replaced with an
ordered one with compositionally weighted IFCs, atomic mass and lattice
constant according to composition.22 The mass disorder and anharmoni-
city are both treated as a perturbation. The net scattering rate of a phonon
mode is calculated as the sum of scattering rate due to mass disorder and
anharmonicity, according to Matthiessen’s rule:

1
τks

¼ 1
τp�p
ks

þ 1
τmks

(17)

The first term is the phonon–phonon scattering rate which is calculated in
the same way as the IPHCs except that for the virtual crystal, the
compositionally weighted mass and lattice constants are used. The second
term is the Tamura harmonic mass disorder scattering rate, which is
calculated by using perturbation theory:11,14,15,22–25,27,28

1
τmks

¼ π

2N
ω2
ks

X
k0s0

δ ωks � ωk0s0ð Þ
X
σ

g2 σð Þ e�k0s0 σð Þ � eks σð Þ

 

2; (18)

where g2 σð Þ ¼ P
i fi σð Þ 1� mi σð Þ=mi;eff σð Þ

� 	2
, fi(σ) and mi(σ) are the atomic

concentration and mass of ith isotope of the σ atom. The quantity
mi;eff σð Þ ¼ P

i fi σð Þmi σð Þ, is the weighted average mass of atom σ and e is
its polarization vector. This method has been applied to calculate TC of
disordered alloys, such as Si–Ge alloy,22 PbTe(1 − x)Sex,

24 (Bi(1 − x)Sbx)2Te3,
25

and Mg2SixSn1 − x
28 previously.

Finally the size effects are introduced via Matthiessen’s rule,

1
τks;eff

¼ 1
τks

þ 1
τks;b

(19)

where the second term is the boundary scattering rate, τ�1
ks;b

¼ L=2 vksj j.
Using this approach, the room temperature bulk TC of In0.53Ga0.47As

using first-principles and the VCA by Vermeersc et al.53 is calculated as
8.28Wm−1 K−1 while the prediction using the same methodology, but
where the atomic interactions are modeled by the EIP is 8.07 Wm−1 K−1.
This good agreement between the EIP and experiments further indicates
that the EIP accurately describes the interatomic forces for the alloy
sufficiently well for the purposes herein.
In this study, we also employed a second method for calculating the TC

of the alloy using VCA, whereby fitting parameters were used to describe
phonon–phonon and phonon–impurity relaxation times, via an expression
originally developed by Wang and Mingo.54 In this approach the TC is
given by,

κ ¼
Z�hωc=kBT

0

k4BT
3

2π2v�h3
τ T ; yð Þy4 ey

ey � 1½ �2 dy;
(20)

where kB is Boltzmann’s constant, T is temperature, ħ is Planck’s constant
divided by 2π, y ¼ �hω=kBT is a dimensionless parameter, ωc is the cut-off
frequency and obtained using Debye model. The average velocity v is

calculated by v ¼ 1� xð Þv�2
GaAs þ x v�2

InAs

� 	�1=2, where x is the InAs concen-
tration and vInAs and vGaAs are the average speeds of sound in InAs and
GaAs, respectively. The scattering time for a given frequency is related to
individual processes via Mattheissen’s rule

τ ¼ τ�1
p�p þ τ�1

m þ τ�1
b

� ��1
; (21)

where τ�1
p�p , τ

�1
m , and τ�1

b are the umklapp, mass disorder, and boundary
scattering times, respectively. These are given by

τp�p ¼ 1� xð Þτ�1
GaAs þ xτ�1

InAs

� 	�1
; τm ¼ x 1� xð ÞAω4

� 	�1
; τ�1

b
¼ L=2v; (22)

where,

τ�1
GaAsðInAsÞ ¼ BGaAsðInAsÞω2 exp �CGaAsðInAsÞ=Tð Þ; (23)

where L is film thickness and constants A, B, and C are fitting parameters.
For more detail about the model, the reader is directed to the associated
reference.54
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