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Abstract—Real-time wearable electrocardiogram(ECG) moni-
toring sensor is one of the best candidates in assisting cardio-
vascular disease(CVD) diagnosis. In this paper, we present a
novel real-time machine learning system for Arrhythmia classi-
fication. The system is based on the parallel Delta modulation
and QRS/PT wave detection algorithms. We propose a patient
dependent rotated linear-kernel support vector machine (SVM)
classifier that combines the global and local classifiers, with
three types of feature vectors extracted directly from the Delta
modulated bit-streams. The performance of the proposed system
is evaluated using the MIT-BIH Arrhythmia Database. According
to the AAMI standard, two binary classifications are performed
and evaluated, which are supraventricular ectopic beat(SVEB)
versus the rest four classes, and ventricular ectopic beat(VEB)
versus the rest. For SVEB classification, the preferred SkP-32
method’s F1 score, sensitivity, specificity and positive predictivity
value are 0.83, 79.3%, 99.6% and 88.2%, respectively, and for
VEB classification, the numbers are 0.92, 92.8%, 99.4% and
91.6%, respectively. The results show that the performance of our
proposed approach is comparable to that of published research.
The proposed low-complexity algorithm has the potential to be
implemented as an on-sensor machine learning solution.

Index Terms—ECG, parallel delta modulator, SVM.

I. INTRODUCTION

According to the World Health Organization(WHO)’s statis-
tics, people die each year from CVDs, holds estimated 31% of
all deaths worldwide, and it has been recognized as the leading
health problem in many countries [1]. American Heart Asso-
ciation’s report shows that $329.7 billion was spent on CVD
and stroke in the United States annually directly and indirectly,
which includes $199.2 direct expenditures [2]. Though CVDs
seem as the leading-cause-of-death diseases, study shows that
estimated 90% heart attacks are preventable [3], if people
could control the risk factors beginning in youth: preventing
obesity, smoking cessation, etc. Timely diagnosis is also cru-
cial, and ECG is one of the necessary methods for diagnosing
CVDs. Among the CVDs, Arrhythmia is an important portion,
and if there is no timely treatment, acute arrhythmic symptoms
may cause high death rate. Even for some arrhythmias that
are not looming life-threatening, patients may need medical
care or attention for preventing future health deterioration.
Therefore continuous ECG monitoring is needed by patients
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and even by normal people with uncomfortable heart feelings.
Most doctor’s choice for continuous ECG monitoring is the
Holter monitor, it usually records patient’s ECG data for 24
to 48 hours, but the Holter monitor system cannot perform
diagnosis in real time and only the data of recorded period is
analyzed, if there were severe Arrhythmic heart beats happen-
ing during recording or Arrhythmic heart beats happen outside
the recorded episode, patients cannot get timely warning or
medical care, so continuous ECG monitoring in real time is
needed and wearable ECG sensors in wireless body sensor
network(WBSN) become one of the best candidates.

Lots of research efforts have been done in designing wear-
able ECG sensors [4]–[7], most of the researches have ability
to detect QRS complexes and transmit ECG data to a remote
center for real time ECG monitoring. However, in this era of
big data, more data has been created in the past two years
than the entire human history [8], and the scenario of the
significantly increased computation and data transmission re-
quirement makes the wearable ECG sensors with the ability of
processing data locally an eager option. Researches designed
for detecting Arrhythmias usually process data in two main
steps, QRS complex detection and the following Arrhythmia
classification based on extracted features from the detected
heart beat data [9]–[13], and power consumption should be
taken into account in designing the classifiers, since wearable
ECG sensors cannot afford power hungry circuits, for example,
researches [10], [14], [15], are high performance classifiers but
are not suitable to be implemented inside the wearable sensors.

Machine learning has recently been applied to continuous
monitoring of physiological signals for on-sensor processing
[16]. Due to latency, security, and privacy requirement, on-
sensor processing rather than sending the raw data to the
cloud is preferred in medical devices [8]. Most of the wearable
sensors need to keep the power consumption in the level of
milliwatts (mW) or less in order to keep a reasonable the
battery lifetime [17], [18]. However, to implement deep learn-
ing inference using neural network would consume hundreds
of mW due to the intensive multiply-and-accumulate (MAC)
operations and the data movement between memory and the
processing unit [8]. Therefore, a machine learning algorithm
that can accommodate real-time processing without too much
data storage and movement is preferred in wearable sensor
applications.

In this paper, we present a real-time machine learning
system based on parallel delta modulation to perform classi-
fication of normal heartbeats and Arrhythmic heartbeats with
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Fig. 1. The proposed real-time Arrhythmia classification system. After parallel
Delta modulation and QRS/PT wave detection, this work emphasizes new
Feature Extraction and Combined Classifier design.

AAMI standard [19]. The system is based on our previous
work of parallel delta modulation based QRS and PT detection
system [20]. As illustrated in Fig. 1, the proposed system
first converts the input ECG signals into Delta modulated
bit-streams using parallel Delta modulators, then the QRS
complex, P wave, and T wave are detected from the bit-
streams using Local Maximum or Minimum Point algorithms.
In this paper, following the detected wave information, features
can be directly extracted from the bit-streams using the pro-
posed Feature Extraction algorithm (SkW, SkR, SkP), then the
Combined Classifier performs classification of the Arrhythmic
heartbeats.

In the future application scenario, the proposed system are
designed to perform training on computers that contains most
of the computation, then upload the combined classifier back
to the wearable sensor for continuously monitoring and classi-
fications as shown in Fig. 2. Cooperating with communication
circuits [21]–[23], collected delta modulated ECG data for a
certain time length, with information from QRS/PT detection
algorithm and extracted features are sent out to a base station.
Meantime at the base station, ECG signals are recovered
and labeled by certified technicians and powerful automatic
algorithms that do not need to care power consumptions, then
the local classifier could be trained with the labeled data. With
the proposed method, the combined classifier is computed and
sent back to the sensor, thus the sensor could keep performing
classifications at a very low power consuming level, and only
classified Arrhythmia beats are recorded and sent out for a
secondary certification if needed, which could reduce huge
transmission power compared to transmitting all the data.

The main contributions of this paper are (1) proposed a new
ECG machine learning algorithm including feature extraction
and inference based on Parallel Delta modulation, (2) proposed
a patient dependent rotation SVM classifier to identify Ar-
rhythmias, which utilizes the linear kernel to reduce hardware

Recover ECG signal

Label, train and

combine classifier

Send data for 

a certain time length

(Original data, extracted features)

Upload the
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Fig. 2. The proposed system applied in future practice scenario, training
on computers, low power consuming Arrhythmia heartbeats classification on
wearable sensor.

cost, and (3) evaluated the performance of the proposed
method in SVEB and VEB classification using the MIT-IBH
database and compared with other reported algorithms. Due
to the low complexity operation, the overall system has the
potential to be implemented on the sensor circuits. The paper
is organized as follows: Section II describes the ECG database
and the challenges in ECG classification. Section III presents
the structure of the parallel Delta modulation based sampler
and the QRS/PT detection algorithm. Section IV provides the
proposed rotation support vector machine classifier and the
proposed extracted feature vectors. The performance evalu-
ation results and the corresponding comparison with other
published literatures are shown in Section V. Finally, Section
VI concludes the paper.

II. HEARTBEAT CLASSIFICATION CHALLENGE AND ECG
DATA DESCRIPTION

ECG signal classification is a difficult challenge because
of the large interpatient and intrapatient morphology variation
of QRS complexes. Especially since heartbeats that belong
to Ventricular ectopic beat(VEB) are initiated by ectopic
focuses in ventricles instead of the sinoatrial node, the reverse
depolarization process could generate various QRS complex
morphologies. For example, nearly half of the 48 recordings
of MIT-BIH Arrhythmia Database have multiform Premature
ventricular contractions(PVC). This makes classifiers modeled
by machine learning techniques uneasy to work when they
meet new patients. Patient-dependent design is a promising
method to mitigate the problem, and has been achieved by
several researchers. For instance, Hu et.al [24] combined a
global classifier with a local classifier through a mixture of ex-
perts approach(MOE), the global classifier was designed from
a large database of labeled ECG data, and the local classifier
was trained by patient dependent data; Chazal et.al [25] and
Alexander et.al [12] also combine the global classifier and
local classifier that are realized by linear discriminant analysis
(LDA) technique; Ince et.al [13] proposed a multi-dimensional
particle swarm optimization technique and trained with small
amount of common and patient-specific data; Li et.al [10]
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proposed a parallel general regression neural network (GRNN)
and used half of the randomly chosen data as training data and
the other half data for testing; Kiranyaz et.al [26] proposed
an 1-D convolutional neural networks and trained with 245
common beats and a first 5 minutes of each patient data. These
researches have shown that the patient-dependent designs have
the ability to improve classification accuracy. Therefore, our
proposed parallel Delta modulation based machine learning
system also integrate the combination of global classification
and local classification for patient-specific training.

To evaluate the performance of our proposed system, we
used the MIT-BIH Arrhythmia Database [27], [28], which
includes 48 records. Each record has two channels and both
of the channels are fully annotated with 30 minutes duration.
Most records in MIT-BIH Arrhythmia Database have one
channel ECG data from the modified limb lead II (MLII),
while the other channel may come from the modified leads
V1, V2, V4 or V5. Data from MLII is used in this paper.
All data from the MIT-BIH Arrhythmia Database has already
been processed by a passband filter from 0.1 to 100 Hz.
Though there are still a number of artifacts such as baseline
wondering, electromyographic noise and motion that influence
the quality of the signals, we decide to feed original data from
this database directly into our system, so that the signal quality
meets practical scenarios of wearable ECG monitoring sensors.

Heartbeats from the MIT-BIH Arrhythmia database are
classified into 20 classes. According to the Advancement of
Medical Instrumentation(AAMI) standard [19], these 20 types
are relabeled into 5 classes: N for beats originating in the sinus
node, S for Supraventricular ectopic beats (SVEB), V for VEB,
F for fusion beats and Q for unknown beats. The classifications
of S and V are used to evaluate the performance of the
proposed algorithm. The SVEB data include beats labeled as
Atrial premature beat, Aberrated atrial premature beat, Nodal
(junctional) premature beat and Supraventricular premature
beat in the MIT-BIH database. The VEB data contain PVC
and Ventricular escape beats.

For patient specific design, according to [12] and [25], the
recordings of the MIT-BIH Arrhythmia database are divided
into two groups, the training data group (Tg): 101, 106, 108,
109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205,
207, 208, 209, 215, 220, 223, 230, and the inference data group
(Ig): 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,
212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234. The
first 500 beats of each recording in Ig plus a basis dataset
are selected to train the according local classifiers while all
data in Tg are selected for training the global classifier, then
the rest data of each recording in Ig are used for inference
to evaluate the proposed classifier and the performance of the
system. The classification tasks are distinguishing V versus
the rest four classes (N, S, F, Q) and S versus the rest classes
(N, V, F, Q), which are two binary classification tasks.

III. PARALLEL DELTA MODULATORS AND QRS/PT
DETECTION

QRS complex detection is one of the most important parts
in wearable ECG monitoring sensor design. There have been
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Fig. 3. Parallel Delta modulation of ECG data (Record 100). Top: Input ECG
waveform. Middle: Delta-qrs output to detect R wave, where ecgS length
measures the duration of the R peak. Features are extracted from the six
segments of the bit-stream. Bottom: Delta-pt output to detect P wave and T
wave, where QR and RS segment are measured.

several QRS complex detection algorithms proposed in the
past, which can be categorized in two types. The first type
uses wavelet transforms [29], or artificial neural networks [30],
which utilized CPU or DSP to achieve very accurate detection
results. The second type applies on-chip cross-correlation [31],
pulse triggered and time-assisted pulse triggered [32], integrate
and fire pulse train automaton [33], or input-feature correlated
algorithm [34], which have the samplers combining analog
to digital converter (ADC) and data processing to achieve
reasonably precise results with low hardware cost. In our
proposed system, we use a sub-micro watts paralleled Delta
modulator based sampler [20] that follows the second type
strategy.

The parallel delta modulator is shown in Fig. 1. Two first-
order three-state Delta modulators (Delta− qrs and Delta−
pt) with the following QRS and PT detection algorithms are
used to detect QRS and PT waves separately. In the system,
the PT detection algorithm obtains information of the detected
R peak from the QRS detection algorithm in order to locate
P and T waves. Delta− qrs and Delta − pt are both three-
state Delta modulators with different trigger reference voltages
and integration gains. Lower trigger reference voltage and
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integration gain make Delta − pt sensitive to low amplitude
variations of the ECG signal, that includes P, T, and U waves
which will be neglected by Delta − qrs. This also makes
Delta−pt easily saturate in processing large amplitude waves
such as R waves. The input ECG signal Vin subtracts the
integrated feedback voltage Vfb to generate the delta voltage
Vd. Then Vd is compared with the trigger reference voltages
+Vref and −Vref . The comparison has three potential results,
i.e., three states: S+1, S0, and S−1. Here S+1 indicates the
input signal is rising, which is labeled as ecgR. Similarly,
S−1 means the input signal is falling and labeled as ecgF .
S0 means Vd is between the window formed by +Vref and
−Vref , it is labeled as ecgS. Denser ecgRs mean the input
signal is rising with a higher slope, and vice versa. A long
period of time of ecgS means the input signal stays in the
range of ±Vref . An example of the Delta modulator output
with an ECG signal input is shown in Fig. 3.

The parallel Delta modulated bit-streams provide slope
information of both the QRS complex and P/T waves. In
[20], we proposed the Local Maximum Point (LMaP) and
Local Minimum Point (LMiP) algorithms to process the Delta
modulated bit-streams in order to detect the location of the
QRS complex, as well as the P waves and T waves. Here
we briefly summarize the algorithm. The LMaP or LMiP
algorithm counts the number of consecutive ecgR or ecgF

labels in the bit-streams, and compare the number with a pre-
defined threshold value to detect a real rising or falling slope.
On the other hand, the LMaP or LMiP algorithm includes a
protection mechanism: if the duration between the ecgR or
ecgF labels is more than a pre-defined value, the algorithm
resets the detection process. Therefore, both slow variations
and low amplitude variations in the waveforms do not trigger
the QRS and PT detection process. Moreover, the QRS and
PT detection process can help each other by exchanging the
detection processing status and timing information. A more
detailed description of the algorithm can be found in our
previous paper [20]. Since the LMaP/LMiP algorithm is based
on counters, which is more power efficient than arithmetic
operations, the system can perform real-time processing on
the sensor hardware.

IV. PATIENT-DEPENDENT ROTATION SVM
CLASSIFICATION

A. Feature Extraction

Features used in this study mainly focus on the morphology
of QRS complexes. The features should be easily extracted
from the Delta modulated bit-stream using a counter based
method, which avoids power hungry computation functions.
In the proposed system, once an R wave peak is identified,
the QRS detection algorithm sends two 215 ms length bit-
streams in the local memory for feature extraction, one from
Delta− qrs and the other from Delta− pt. Since the Delta
modulator is working at 1K sample/second, a 215 ms bit-steam
means 215 bits. The bit-stream from Delta − qrs is divided
into six segments. As shown in Fig. 3, among the six segments,
three 35 bit segments are after the R peak, while two 35 bit
and one 40 bit segments are before the R peak. The selected

features are then extracted from each segment. The feature
vector are designed as follows:

1) Skewness weight. The skewness weights are calculated
by the number of ecgR and ecgF events in each of the six
segments. So there are total twelve skewness weight values
from a 215 bit Delta − qrs bit-stream. When calculating
the skewness weight, a solitary ecgR relates to added weight
of 1. If there are consecutive ecgR events, the latter added
weight doubles and the maximum is set to 8. For example, in
calculating the skewness weight of a bit-stream ‘0100111110’,
the skewness weight equals to ‘0+1+0+0+1+2+4+8+8+0’,
which is 24. Skewness weight of ecgF is calculated in the
same method.

2) ecgR and ecgF events. The number of ecgR and ecgF

events in each segment. There are total twelve values, six for
ecgR events and six for ecgF events from a 215 bit Delta−
qrs bit-stream.

3) R wave polarity, ecgS length, and QR/RS length. R wave
polarity is obtained from the first bit of the 35-bit data right
after R peak. ecgS length is calculated by counting the number
of zeros in the first consecutive zero bit stream section from
the 40-bit segment in a reverse order. The QR and RS length
are calculated by counting the maximum length of continuous
ecgR and ecgF respectively in the 215-bit data from Delta−
pt if the R peak polarity is positive, otherwise by counting
that of ecgF and ecgR, respectively.

4*) RR intervals, P/T wave polarities. Pre-RR interval, Post-
RR interval and polarities of P and T waves can be obtained
using our previously proposed algorithm in [20], which are
applied as extra feature values.

Three types of feature vectors are applied in this paper
for classification: SkW-28 includes 28 feature values of (1)-
(3), SkR-30 includes SkW-28 and the Pre-RR and Post-RR
intervals, and SkP-32 includes all features (1)-(4*).

B. SVM Hyperplane Rotation

Many classifiers have been proposed for Arrhythmia clas-
sification. Beside previously mentioned LDA classifier [12],
[35], parallel general regression neural network [10], 1-D
convolutional neural networks [26], and ANN with multidi-
mensional particle swarm optimization(MD PSO) technique
[13], there are also Block-Based Neural Networks [36], linear
discriminant classifier with feature extracted from discrete
wavelet transform [37], and SVM classifiers [11], [38]–[40].
Among these classifiers, SVM has been broadly used to solve
practical classification problems due to its excellent general-
ization ability. However, SVM’s hardware implementation cost
depends on its kernel function. A practical SVM classifier
[41] shows that the classifier with kernel function of radical
basis function (RBF) costs more than 50000 times power
consumption per classification compared to a linear kernel
function. Therefore, SVM classifiers with kernel function
of RBF [11], [38]–[40] may not be suitable for wearable
ECG sensors. Also, if implemented on integrated circuits,
the features extraction process using wavelet transform [11]
is also power hungry. Thus, in this paper, a linear kernel is
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implemented by rotating the global classifier to a certain angle
to obtain a patient dependent SVM classifier.

We apply a similar strategy described in [12] to achieve the
patient dependent classification. In [12], the author used LDA
method and defined a parameter that weighs the local and
global classifiers. In this paper, based on features extracted
from the Delta modulated bit-stream, we introduce an angle θ

to rotate the global SVM classification hyperplane. The local
and global SVM classifiers are implemented through LIBSVM
library [42].

A simplified explanation of the proposed hyperplane rota-
tion method is illustrated in Fig. 4, where a two dimensional
feature vector and two classes (class A and class B) are used as
an example. The global classifier decision boundary is formed
by training all the data from Tg, and the local classifier is
trained by the patient dependent dataset including the first 500
samples from each record in Ig and a basis dataset. Let θgl to
be the angle between the global and local decision boundary.
Since a linear kernel function is applied, the global and local
decision boundaries are two one dimension lines that has an
inter section point. We use a parameter Kk that weighs the
rotation angle. Kk is defined in relation to the number of
samples in a given class as in [12] and [25]:

Kk = max

{

1−
N

g
k

10
, 1−W

}

(1)

where N
g
k is the number of samples in class k and the

parameter W is usually set to 0.7. Thus the global hyperplane
pivots the intersection point Pi with an angle θ = Kk · θgl to
the direction as shown in Fig. 4, the formed new boundary is
the patient dependent decision boundary.

Unlike in [12], in the case that a certain heartbeat class
may not be included in the local training set due to the

limited data volume (which make the local classifier invalid),
records 209 and 215 are selected to be added into local
classifier’s training dataset as the basis dataset, plus the patient
dependent training set (500 samples), the local classifier could
be trained. Since even if there is only one class in the patient
dependent training set, it includes useful information to form
the classification boundary. In the following, we present the
process of combining the two classifiers.

As stated above, we use data from Tg to train the global
classifier Fglobal(x) = 0, where

Fglobal(x) =

N
∑

i=1

wgixi + bg0 (2)

Also, we can find the local classifier Flocal(x) = 0 in
training with the 500 samples of each record in Ig (including
record 209 and 215 as basis):

Flocal(x) =

N
∑

i=1

wlixi + bl0 (3)

To combine the global and local classifiers, we rotate
the hyperplane defined by the global classifier towards the
hyperplane defined by the local classifier for θ degrees, around
the N − 1 dimension intersection hyperplane of the two
classifiers, and the rotated hyperplane is the new classification
boundary. Before we proceed to find the new classifier, we
introduce several notations and a general assumption. First,
define ~ng = (wg1, wg2, · · ·, wgn) and ~nl = (wl1, wl2, · · ·, wln)
as the normal vectors of hyperplane Fglobal and Flocal, re-
spectively. Then assume that the inner product of ~ng and
~nl are positive, denoted as 〈 ~ng, ~nl〉 > 0. Otherwise, let
~ng = (−wg1,−wg2, · · ·,−wgn) instead. Without losing of
generality, we assume that

wg1wl2 − wg2wl1 6= 0 (4)

To find the exact expression of the new classifier, we use
the following three steps.

At first, we define a linear equation system
{

∑N

i=1
wgixi + bg0 = 0

∑N

i=1
wlixi + bl0 = 0

(5)

and find a special solution of the above equation system. From
the assumption there are infinite solutions when N > 2. Here
we choose the special solution ξ0 = (x0

1, x
0
2, 0, · · ·, 0) where

x0
1 =

wg2bl0 − wl2bg0

wg1wl2 − wg2wl1

(6)

x0
2 =

wl1bg0 − wg1bl0

wg1wl2 − wg2wl1

(7)

In the second step, we define the normal vectors of a
family of hyperplanes between the hyperplane defined by
Fglobal(x) = 0 and Flocal(x) = 0. Let

~nt = [(1− t) ~ng + t~nl] (8)
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For t ∈ (0, 1). We solve the solution ~nt
∗ ∈ ~nt with equation

arccos(

〈

~ng, ~n
∗

t

〉

| ~ng| ·
∣

∣

∣

~n∗

t

∣

∣

∣

) = θ (9)

where θ = Kk · θgl and θgl is the angle between Fglobal and
Flocal and is calculated by

θgl = arccos(
〈 ~ng, ~nl〉

| ~ng| · |~nl|
) (10)

Finally, we reach the desired classifier

Frotate(x) =

N
∑

i=1

wrixi + br0 (11)

by solving the equation
〈

~n∗

t ,
~x− ξ0

〉

= 0 (12)

The rotated classifier defines a classification hyperplane for
any fixed angle of θ. When θ = 0, the hyperplane is defined
by Fglobal(x) = 0, and it is defined by Flocal(x) = 0 when
θ = θgl, and for θ ∈ [0, θgl], the hyperplane stays in the
between.

V. RESULTS

A. Performance evaluation

Since the proposed system is targeted on wearable applica-
tion, the QRS detection algorithm is evaluated by both the
MIT-BIH Arrhythmia database and another noisy database
used for the PhysioNet/Computing in Cardiology Challenge
2014 [43], the Robust Detection of Heart Beats in Multimodal
Data(RDHBMD). Following [20] we modified our algorithm
by using a more stringent rule for detecting QRS complexes,
which aims at collecting more stable and uniform data for
heatbeats classification, and all performances are shown in
Table. I including both the previously reported algorithm
and the modified one using the MIT-BIH database. The
four paced recordings (102, 104, 107 and 217) that are not
included in Tg and Ig are also included to evaluate the
QRS detection performance. The New Augmented Training
Set in RDHBMD(RDHBMD-NATS) is much noisier than the

Training Set(RDHBMD-TS), both datasets include 100 10-
min ECG recordings. Some recordings in RDHBMD-NATS
contain lots of noise that the heartbeats could not be identified
by ECG signal like part of the record 2283 and 2800 as shown
in Fig. 5. Some recordings lose ECG information for part of
the recording like record 1522 and 1715, and record 42878
does not have ECG signal at all. Those heartbeats annotations
could only be defined by other associated information in the
database, such as blood pressure, photoplethysmograms, etc.
Overall the proposed algorithm could get sensitivity value for
over 91% and positive predictive value for over 95%, which
are defined in the following paragraph.

TABLE I
HEARTBEATS DETECTION RESULTS BY THE PROPOSED QRS DETECTION

ALGORITHM

Database Total Beats FN FP SE PPV
MIT-BIH 109966 911 494 99.17 99.55

RDHBMD-TS 72416 392 416 99.46 99.43
RDHBMD-NATS 78622 6387 3399 91.88 95.51

MIT-BIH(modified) 109966 1556 669 98.59 99.39

The performance of the proposed heartbeats classification
system is evaluated using the collected data from the modified
QRS detection algorithm of [20] in MIT-BIH Arrhythmia
Database with AAMI standard. Five parameters: F1 score(F1),
accuracy(ACC), sensitivity(SE), specificity(SP) and positive
predictive value(PPV) are used to evaluate the performance
of the algorithm, which are defined as follows:

F1 =
2× TP

2× TP + FP + FN
(13)

ACC(%) =
TN + TP

TN + TP + FN + FP
(14)

SE(%) =
TP

TP + FN
(15)

SP (%) =
TN

TN + FP
(16)

PPV (%) =
TP

TP + FP
(17)

where TP, TN, FP and FN represent true positive, true negative,
false positive and false negative classifications, respectively.
The 22-fold recording-by-recording cross validation method
proposed in [25] is applied to Tg, for assessing the classifier
performance and finding the optimum W . The folds were
split into training data that includes 21 folds with each fold
containing one recording, and test data containing data from
the remaining fold(recording). The average results of this
recording-by-recording cross validation on Tg are reported
in Table. III. The global classifier was trained on training
data and local classifier was trained on the first 500 beats
of the test data. The classifier performance was assessed on
the remaining beats of the test recording. With the W the
detailed evaluation on Ig is reported in Table. II. Since the
data used for evaluation are collected by the modified QRS
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TABLE II
CLASSIFICATION RESULTS USING THE SKP-32 FEATURE VECTORS FOR EACH OF THE TEST PATIENTS

Number of Beats Number of Beats Detected SVEB VEB

REQ N S V F+Q N S V F+Q FP F1 ACC SE PPV SP F1 ACC SE PPV SP

100 1744 28 1 0 1741 28 1 0 1 1 100.00 100.00 100.00 100.00 0 99.89 0.00 0.00 99.94

103 1582 2 0 0 1580 2 0 0 0 0 99.87 0.00 100.00 - - 100.00 - - 100.00

105 2041 0 26 5 1963 0 26 3 144 0 99.53 - 99.53 0.00 0 95.46 0.00 0.00 96.64

111 1623 0 1 0 1613 0 1 0 7 - 100.00 - 100.00 - 0 99.81 0.00 0.00 99.88

113 1293 2 0 0 1289 2 0 0 0 1 100.00 100.00 100.00 100.00 - 100.00 - - 100.00

117 1034 1 0 0 1029 1 0 0 1 0 99.90 0.00 100.00 - - 100.00 - - 100.00

121 1361 1 1 0 1351 1 1 0 3 0 99.93 0.00 100.00 - 0 99.93 0.00 - 100.00

123 1016 0 2 0 1014 0 2 0 0 - 100.00 - 100.00 - 0.67 99.90 50.00 100.00 100.00

200 1390 28 681 2 1385 28 677 1 36 0 97.32 0.00 98.62 0.00 0.97 98.07 95.42 98.48 99.31

202 1569 54 12 1 1559 49 1 1 0 0.58 97.45 57.14 98.72 58.33 0 99.94 0.00 - 100.00

210 1959 20 162 9 1924 15 142 7 4 0.63 99.38 73.33 99.57 55.00 0.89 98.66 83.80 95.97 99.74

212 2248 0 0 0 2239 0 0 0 4 0 99.96 - 99.96 0.00 0 99.96 - 0.00 99.96

213 2252 27 199 273 2247 27 195 269 0 0.93 99.85 92.59 99.93 92.59 0.87 97.99 91.28 82.41 98.51

214 1564 0 197 1 1555 0 197 1 0 - 100.00 - 100.00 - 0.72 93.90 71.57 73.44 96.72

219 1604 3 47 0 1602 3 47 0 0 0 99.82 0.00 100.00 - 0.89 99.46 80.85 100.00 100.00

221 1626 0 301 0 1622 0 296 0 0 - 100.00 - 100.00 - 0.99 99.84 98.99 100.00 100.00

222 1774 209 0 0 1695 209 0 0 8 0.21 89.59 12.44 99.06 61.90 0 99.53 - 0.00 99.53

228 1300 3 250 0 1283 3 247 0 50 0 98.74 0.00 98.92 0.00 0.95 98.29 97.98 91.67 98.35

231 1071 0 0 0 1065 0 0 0 0 - 100.00 - 100.00 - - 100.00 - - 100.00

232 271 1009 0 0 270 1006 0 0 10 0.96 94.01 97.12 82.86 95.32 0 99.69 - 0.00 99.69

233 1873 4 696 6 1869 4 696 6 0 0 99.84 0.00 100.00 - 0.99 99.65 98.85 99.85 99.95

234 2200 50 3 0 2198 50 3 0 0 0.82 99.33 70.00 100.00 100.00 1 100.00 100.00 100.00 100.00

detection algorithm, the classifier is not able to be evaluated by
those missed heartbeats(part of the FNs in Table. I, including
302 missed N beats, 13 missed S beats, 47 missed V beats,
7 missed F beats and 2 missed Q beats). Moreover, 268 FP
beats are taken into classification as shown in Table. II. Thus in
practice, the two classification tasks are performed as S versus
N, V, F, Q and FP beats, and V versus N, S, F, Q and FP
beats, respectively. The Average classification performances
compared with other published state-of-the-art literatures are
reported in Table. III.

From Table. III the proposed methods is at the same level
of the best performance among the references. Compared
to [12], [13], [24]–[26], the proposed SkW-28 has better
performance in classifying SVEB, while SkR-30 and SkW-32
have medium SE value(less than 10% compared to the best)
but better PPV and F1 score. For classifying VEB, [25] has
the best SE value(94.3%), PPV(96.2%) and F1 score(0.95) that
are 1.5%(1.6%), 4.6% and 0.03 better than SkP-32(SkR-30),
respectively, with SP at the same level, and are 4.2%, 4.2%,
and 0.04 better than SkW-28. Above all we note that [26] used
only a tiny amount of data for training both the global and
local classifiers to achieve such good results. [10] achieved
92.3% PPV in distinguishing SVEB that is 9.9%, 6.3%,
4.1% better than our proposed method SkW-28, SkR-30, SkP-
32, respectively. However, [10] is not targeted on wearable-
device applications and GRNN is a GPU-based algorithm,
while our proposed SVM classifier with linear kernel needs
only 28-32 multiplications and 29-33 additions to complete
a classification, which is more friendly to low power circuit
design.

B. Discussions

The performance of proposed SkW-28 is better than SkR-
30 and SkP-32 mainly because of record 222. Record 222
has a very large amplitude variation as shown in Fig. 6, some

TABLE III
AVERAGE CLASSIFICATION RESULTS COMPARED TO THE STATE OF ART

Methods
SVEB VEB

F1 ACC SE SP PPV F1 ACC SE SP PPV

Hu et.al [24] 0.80 95.5 82.6 97.1 77.7 - - - - -

Ince et.al [13] 0.58 97.4 63.5 99.0 53.7 0.86 98.3 84.6 98.7 87.4

Chazal et.al [25] 0.61 95.9 87.7 96.2 47.0 0.95 99.4 94.3 99.7 96.2

Alexander et.al [12] 0.68 - 86.2 97.5 56.7 0.94 - 92.4 99.6 94.8

Li et.al [10] 0.89 99.4 85.5 99.4 92.3 0.90 98.9 88.0 98.9 92.6

Kiranyaz et.al [26] 0.62 97.6 60.3 99.2 63.5 0.92 99.0 93.9 98.9 90.6

Proposed SkW-28 0.86 98.9 90.0 99.3 82.4 0.91 98.8 90.1 99.4 92.0

Proposed SkR-30 0.82 98.7 78.5 99.5 86.0 0.92 99.0 92.7 99.4 91.6

Proposed SkP-32 0.83 98.8 79.3 99.6 88.2 0.92 99.0 92.8 99.4 91.6

Proposed SkW-28a 0.84 98.9 88.3 99.2 79.7 0.91 98.8 90.1 99.4 92.3

Proposed SkR-30a 0.89 99.2 91.0 99.5 86.8 0.92 98.9 92.7 99.4 91.9

Proposed SkP-32a 0.90 99.3 90.7 99.6 89.0 0.92 98.9 92.8 99.4 91.9

Proposed SkW-28b 0.87 99.0 92.4 99.2 82.4 0.91 98.8 90.1 99.4 92.0

Proposed SkR-30b 0.84 98.8 80.0 99.6 88.3 0.92 98.9 92.7 99.4 91.6

Proposed SkP-32b 0.84 98.9 80.1 99.6 89.3 0.92 98.9 92.8 99.4 91.6

Proposed SkW-28c 0.47 98.0 45.5 99.0 48.7 0.82 99.5 85.3 98.2 78.4

Proposed SkR-30c 0.82 99.3 84.3 99.6 80.5 0.82 94.7 86.4 98.0 77.7

Proposed SkP-32c 0.84 99.3 86.8 99.6 80.6 0.82 97.2 86.5 98.1 77.9

Proposed SkW-28d 0.36 97.6 35.1 98.8 37.7 0.81 96.8 86.8 97.8 75.9

Proposed SkR-30d 0.81 99.2 88.2 99.4 74.4 0.81 97.1 87.4 97.8 76.0

Proposed SkP-32d 0.81 99.2 88.6 99.4 73.9 0.82 97.1 87.5 97.9 76.3

Proposed SkW-28e 0.77 98.0 89.2 98.3 67.4 0.85 97.9 88.5 98.5 81.3

Proposed SkR-30e 0.72 97.8 77.8 98.5 67.5 0.86 98.0 91.0 98.5 81.3

Proposed SkP-32e 0.73 97.9 78.6 98.6 68.9 0.86 98.0 91.1 98.5 81.3

a Averaged evaluation results without record 222.
b Averaged evaluation results without record 202.
c Reverse dataset evaluation results.
d 22-fold Cross-validation results.
e Worst case scenario results.

heart beats with very small amplitude may result in missing
recognition of QRS detection algorithm, the average amplitude
of R wave peak in region 1 is two or three times larger
than that in region 2 as shown in bottom panel of Fig. 6.
The large amplitude variation caused missing QRS detections
makes the feature vector of the next identified heart beat a
large pre-RR interval value and the previous feature vector
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Fig. 6. Large amplitude variation in record 222 caused missing QRS
detections which make pre/post-RR interval irregular. Top: the whole ECG
waveform of record 222. Middle: ECG waveform of the large amplitude
variation part of record 222. Bottom: detailed ECG waveform that showing
small amplitude QRS complexes which caused missing detection.

a large post-RR interval value, which becomes features of
irregular heart beats thus brings confusion to classifiers. The
advantages of adding RR intervals as elements of feature
vectors then become disadvantages. Table. III also shows the
performance of the proposed method without record 222.
Overall, SkP-32 has better performance if there are no large
amplitude variations in ECG signals under test. By analyzing
the evaluation results of global, local and the rotated classifiers,
we also found that in all global classifiers, global classifier
of SkP-32 has best performance. SkW-28’s local classifier of
record 222 performs much better than the others, which is a big
help for its final best results. Overall, patient rotated classifiers
bring obvious SE improvements compared with using global
classifiers only. Taking advantages of the proposed technique,
43%, 19%, and 18% of SE value of SkW-28, SkR-30 and
SkP-32 are enhanced in classifying SVEB compared with
using global classifiers only, respectively, and 38%, 36% and
36% for classifying VEB, respectively. PPV of SkW-28 in
classifying SVEB improves 14% while PPV of SkR-30 and
SkP-32 deduct 5% and 2%, respectively. ACC and SP values
have no distinct improvement or degradation.

Moreover, record 201 and 202 come from the same patient,
but are splitted into Tg and Ig, so we also include the results
without record 202 in Table. III. The results show that it does
not affect the performance.

Another potential issue is that such splitting the dataset into
Tg and Ig may cause selection bias, so we run a reverse

evaluation, i.e., trained with Ig and test with Tg, the results are
also included in Table. III. The results show that such splitting
dataset will cause selection bias and affect SkW-28 method in
classifying SVEB. SE and PPV value reduced to below 50%.
However, it has little influence on detecting VEB or on SkR-
30 and SkP-32. By analyzing each patient’s ECG signal, one
possible reason of decadence of SkW-28 is that the morpho-
logical difference of SVEB in Ig is more distinct than that in
Tg, like record 222 and record 232 that contain large amount
of SVEBs, while in record 209 of Tg, only a small amount of
SVEBs have recognizable morphological difference, and could
be classified by SkW-28. Moreover, in record 220 and 223,
one can hardly tell the difference between a normal heartbeat
and an SVEB without considering RR interval difference or
P/T waves, thus SkW-28 fails to work. Though the results
show that such splitting dataset causes selection bias for SkW-
28 method, this method is effective especially in processing
ECG signals like record 222. Also [44] expressed concern that
such patient dependent classification scheme is not a realistic
performance measure of automatic heartbeat classification,
and it leads to optimistic results for less interpatient ECG
characteristics variation. We have to admit the limitation of
the universal applicability of such patient-adapting researches
[10], [12], [13], [24]–[26], so we proposed a future realistic
customization based application situation as shown in Fig. 2,
to overcome this limitation and take advantage of obviously
improved classification performance by sacrificing cost of data
transmission and labor force in base station.

The missed heartbeats is a shortcoming in the evaluation
process of the proposed classifier. To compare with other
published researches, we consider the worst case scenarios
that (1) all missed N, V, F, and Q beats are FP in classifying
SVEB; (2) all missed N, S, F, and Q beats are FP in classifying
VEB; (3) all missed S beats are FN in classifying SVEB; and
(4) all missed V beats are FN in classifying VEB. The results
of the worst case scenarios are also shown in Table. III. In the
worst case scenarios, the performance of the preferred SkP-32
in classifying SVEB is still comparable to other researches,
but the PPV of classifying VEB reduces around 10% and is
worse than others. However, since only a small amount of S
and V beats are missed (0.9% for S and 1.8% for V), the SE

values has not changed much by the missed heartbeats.

In the future work, one possible solution of improving the
performance of the system is to modify the QRS detection
algorithm [20], making an alert signal when detecting a
prolonged RR interval. At the meantime, an R peak value
detection block can be included in the front analog circuits
[23] to identify if there is large variation in amplitude like
record 222, so that the classifier to switch to a better feature
option. The proposed system could detect heartbeats in a
medium noise infected ECG signal, for noise signal that has
morphology and location similar to the real QRS complex, or
severe baseline drift, the system needs extra assistance, and a
well designed band-pass filter in analog front end circuits [45]
may be a solution.
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VI. CONCLUSION

This paper describes a real-time ECG processing algorithm
to classify two Arrhythmic heartbeats with AAMI standard.
The proposed method is based on low-power parallel Delta
modulators and targeting for low computing overhead on-
sensor machine learning systems. The overall system contains
the parallel Delta modulator as the sampler and the following
QRS detection algorithm, as well as the patient dependent
linear-kernel SVM classifier with feature vectors extracted
directly from the output of the sampler. The proposed pa-
tient dependent classifier is formed by rotating of the global
classifier around the intersection hyperplane with the local
classifier to a certain angle. The performance of the classifier
is evaluated on F1 score, sensitivity, specificity and positive
prediction values through the MIT-BIH Arrhythmia database,
and the results show that in classifying SVEB, our proposed
and preferred method SKP-32 could reach 0.83, 79.3%, 99.6%
and 88.2% for the four metrics, respectively, and 0.92, 92.8%,
99.4% and 91.6% for VEB classification, respectively, which
is at the same level of those best classifiers in the published
researches. SkR-28 method is susceptible to selection bias, but
is effective especially in processing data like record 222 in the
database. With future modification of the according algorithm
and assistance from other circuits, SkR-28 may play important
role in some cases. Since the sampler presented in [20] is a
sub-micro watts implementation, and the proposed classifier in
this paper is based on a linear kernel function, the inference
only take 28-32 multiplications and 29-33 additions based
on different type of feature vectors. Therefore, the proposed
system is very promising in future low power wearable ECG
monitoring sensors with real time on-site signal processing
applications.
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