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The majority of intuition on phonon transport has been derived from studies of homogenous
crystalline solids, where the atomic composition and structure are periodic. For this specific
class of materials, the solutions to the equations of motions for the atoms (in the harmonic limit)
result in plane wave modulated velocity fields for the normal modes of vibration. However, it
has been known for several decades that whenever a system lacks periodicity, either
compositional or structural, the normal modes of vibration can still be determined (in the
harmonic limit), but the solutions take on different characteristics and many modes may not
be plane wave modulated. Previous work has classified the types of vibrations into three primary
categories, namely, propagons, diffusions, and locons. One can use the participation ratio to dis-
tinguish locons, from propagons and diffusons, which measures the extent to which a mode is
localized. However, distinguishing between propagons and diffusons has remained a challenge,
since both are spatially delocalized. Here, we present a new method that quantifies the extent to
which a mode’s character corresponds to a propagating mode, e.g., exhibits plane wave modula-
tion. This then allows for clear and quantitative distinctions between propagons and diffusons.
By resolving this issue quantitatively, one can now automate the classification of modes for any
arbitrary material or structure, subject to a single constraint that the atoms must vibrate stably
around their respective equilibrium sites. Several example test cases are studied including crys-
talline silicon and germanium, crystalline silicon with different defect concentrations, as well as
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amorphous silicon, germanium, and silica. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4955420]

INTRODUCTION

The most widely used descriptions of phonon transport
are all based on the phonon gas model (PGM), whereby the
energy of phonons is treated like a gas of particles that scat-
ter with each other and/or other obstructions in their path
such as defects, boundaries, interfaces, or impulrities.l’3 The
PGM, however, hinges on a very basic assumption, namely,
that every mode/particle must have a velocity, which then
sets the speed at which it can transport energy. This assump-
tion is perfectly justified for a pure homogenous infinite crys-
tal, where all atoms are perfectly arranged in a periodic
structure. However, any degree of inhomogeneity in the
composition or structure breaks the periodicity, and as a
result, rigorously speaking, one can no longer properly define
the phonon dispersion in terms of wave-vectors. As a sec-
ondary consequence, one can also no longer define the pho-
non velocities, and one must therefore resort to various
levels of approximations to continue using the PGM for sys-
tems that are not infinitely periodic compositionally pure
crystals. For many decades, applying such approximations
has demonstrated excellent success for finite sized materi-
als,l’5 even nanostructured crystalline materials, and also
arguably for alloys in some cases.'~ However, for strongly
disordered systems, such as amorphous materials, adaptation
of the PGM becomes exceedingly problematic and alterna-
tive methods such as that of Allen and Feldman (A—F),6
or more recently the Green-Kubo modal analysis
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(GKMA) method by Lv and Henry,” must be used to more
accurately calculate the modal contributions to thermal
transport.

Arguably, one of the major reasons that the A-F and
GKMA methods find better agreement with experimental
data than adaptations of the PGM, such as the ki, model,>®
is because the fundamental foundation of the approach is not
to assume that all modes have the same character. In 1993,
A-F® reported the first lattice dynamics (LD) calculation of
an entire supercell of atoms in an amorphous structure and
remarkably found that the normal modes of vibration natu-
rally segregated into three predominant types of modes.
Here, the term “type” of mode is used to indicate that each
classification has a different mode character, which here we
take to be the spatial variations in the atomic motions,
accounting for both magnitudes and directions. In the follow-
ing, we refer to the eigen vectors that represent the solutions
to the equations of motion in the harmonic limit, as a normal
mode velocity field, due to its similarity to a fluid flow veloc-
ity field, which varies in magnitude and direction as a func-
tion of location. In this sense, the mode character is simply a
way of terming the features of mode velocity field, i.e., if it
is spatially periodic, randomized, or localized, and so on. A-
F named these three mode types as propagons, diffusions,
and locons. Propagons are delocalized modes with sinusoi-
dally modulated velocity fields that exhibit a rather identifia-
ble wavelength and corresponded to low frequencies that in
concept must occur in the low frequency limit as one must

Published by AIP Publishing.
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eventually observe sound waves. Diffusons are delocalized
modes that do not exhibit sinusoidally modulated velocity
fields, but instead appear to exhibit random vibrations similar
to the randomized amorphous structure itself. Lastly, locons
correspond to localized vibrations that often center on atoms
with significant deviations in local coordination than the rest
of the structure, and A-F have already shown that they can
be distinguished from diffusons and propagons by calcula-
tion of the participation ratio.

Considering the seminal work of A-F.° it has been
known that any degree of compositional or structural disor-
der should give rise to a change in mode character, yet due
to the lack of alternatives, the PGM is still applied to systems
consisting of propagons, diffusons, and locons.®'°
Conceptually, one might expect that each of the three classes
of modes might contribute to thermal transport in a funda-
mentally different way. For example, one might expect that
propagons can still be treated with the PGM, since they
largely resemble the normal definition of a phonon as a sinu-
soidally modulated vibration (propagating modes), that can
carry energy from one location to another a speed given by
its group velocity. However, it is still not clear how diffusons
or possibly locons contribute to thermal transport, although
the A-F approach, as well as the GKMA method appear to
offer useful means of quantifying their contributions.
Nonetheless, an absolutely critical first step towards develop-
ing a revised framework for thermal transport that properly
accounts for the role a mode’s character plays in its contribu-
tion is to first develop a means of identifying each type of
mode, in a quantitative/systematic way.

Distinguishing locons from propagons and diffusons is
straightforward, by using the participation ratio""

(o)
PR, =~ 2 (1)

N )
N E e,',,,4
i

where €, is the eigenvector, N is the number of atoms in the
system, n is the mode index, and index i runs over all the
atoms in the supercell. The above definition implies that spa-
tially extended modes have a large value of PR,,, on the order
of 1, whereas localized modes have small ratios that can
reach a minimum value of% for a mode completely localized
on a single atom. In concept, locons are modes that involve a
small minority of the system and typically have PR values
below 0.1. However, here it is important to point out that the
spectrum of PR values is continuous and there is in general
no strict set of rules that would require any abrupt shift in
mode character. Thus, even though any scheme for identify-
ing modes will be somewhat arbitrary, it is no different than
the distinctions between photons. For example, the border
between visible and infrared (IR) photons is approximate/ar-
bitrary, and it is well acknowledged that the regime of wave-
lengths between 699 and 701 nm is approximately the
regime where the transition occurs. Thus, one cannot strictly
claim that a photon with a wavelength of 701.5 nm is not in
the visible spectrum, but rather that it lies near the border
between visible and IR light as the exact boundary is
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arbitrary. Nonetheless, distinguishing photons by terms such
as visible, IR, ultra-violet, and X-Rays is still quite useful,
since each regime has rather unique and distinguishing types
of interactions with matter, despite the fact that all photons
are simply excitations of the electromagnetic field. Similarly,
it is likely to be quite valuable to distinguish between differ-
ent types of phonons, since each group may contribute to
thermal transport in fundamentally different ways. With this
potential utility established, the key question then becomes
how to distinguish between propagons and diffusons.

Using structure factor based methods is an approach to
distinguishing between propagons and diffusons by testing
the plane-wave character of vibrational modes at a particular
polarization and wave vector.''? The primary problem,
however, is that structure factor methods yield different mag-
nitudes for different materials. Therefore, the magnitude of
the structure factor alone cannot distinguish propagons or
diffusons on a universal scale, and as a result, one must com-
pare the relative magnitudes for different modes in the same
structure. This approach is nonetheless useful, but it is pref-
erable to have a universal scale by which a mode’s character
can be judged more generally, which would allow propagons
and diffusons to be directly compared for different material
systems. Recently, Larkin and Mcgaughy'* estimated the
transition cut-off frequency between propagons and diffu-
sons in amorphous silicon and silica by calculating relaxa-
tion times for modes using molecular dynamics (MD)
simulations. However, this only resulted in an estimated
transition frequency and could not be used to distinguish an
individual mode based on its character alone.

To distinguish between propagons and diffusons, one of-
ten manually looks for the frequency range where the mode
character changes, which is usually quite narrow <1 THz.
This is also generally regarded as the frequency regime
where the relaxation times deviate from the well-known
inverse frequency squared behavior, termed the Ioffe—Regel
cut-off. For this reason, the distinction between propagons
and diffusons is often described by a transition/cut-off fre-
quency, above which the modes are all diffusons and locons
and below which the modes are all propagons. However, it
should be noted that rigorously there is no requirement that
the mode character must change abruptly with respect to fre-
quency. In essence, there are almost no rigid or strict rules
for the mode character, other than the fact that in the low fre-
quency limit one will likely always observe the existence of
sound waves, which are propagons, for large systems (e.g.,
not small individual molecules with a finite extent). Thus,
one cannot rule out the possibility of finding a system where
very low frequency diffusons and locons and/or high fre-
quency propagons exist, despite the fact that in practice one
typically observes rather sharp transitions and segregations
with respect to frequency. For example, if one were to make
a bulk material that consisted of an crystalline matrix with
amorphous nano particles embedded that are distributed
throughout the structure randomly, it might be possible to
observe localized modes in each nanoparticle at low frequen-
cies. Thus, it would be particularly useful to develop an
approach that can distinguish propagons from diffusons that
is general and will measure the extent to which a mode is
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propagon-like or diffusion-like, on a universal scale that is
material agnostic.

Inspired by the automated scheme for sorting modes in
interfacial systems developed by Gordiz and Henry," as
well as the original work of A-F'? here, we introduce a gen-
eral method for classifying vibrational modes and specifi-
cally distinguishing propagons from diffusons. The method
uses equilibrium atomic positions and eigenvectors of atoms
in each vibrational mode and then calculates the degree of
periodicity in the mode’s velocity field—termed eigenvector
periodicity (EP). It then compares the EP of a mode to
another fictitious mode that has pure sinusoidal modulation.
In this way, the method normalizes the EP so that every
mode falls between zero and unity. The extremes of zero and
unity then correspond to a 0% and 100% sinusoidal/propa-
gating velocity field for a given mode. Herein, we demon-
strate its application to several crystalline and amorphous
solids, which for the first time allows us to clearly quantify
what fraction of the modes in a given structure are propagons
as a function of the degree of disorder. The key here is that
calculation of the EP for a mode is well-defined for any nor-
mal mode of vibration and can be evaluated in its entirety for
a single mode, without any reference or relative scaling to
the values of other modes.

EIGENVECTOR PERIODICITY ANALYSIS

Starting with a harmonic or anharmonic lattice dynamics
(LD) calculation (e.g., at the gamma point, since the wave
vectors are not well-defined for non-periodic systems and the
objective here is to remain general), the eigenvectors (e.g.,
the velocity field) are calculated for all atoms in a supercell.
For N atoms that can move in 3 dimensions, one then obtains
all 3N solutions to the equations of motion at one time, each
of which consists of a list of eigenvectors that describe the
direction and magnitude of each atom’s motion (referred
herein as its velocity field) and a frequency for each of the
3N solutions/normal modes.

We then seek to calculate the degree of spatial periodic-
ity for the eigenvectors of each mode. Here, in essence, we
are defining the key characteristic that makes a mode a prop-
agon as motions of the atoms that repeat spatially, in some
way. This trait is not observed for diffusons, as diffusons
seem to exhibit almost random velocity fields, with no clear
preferred direction or periodicity that is indicative of the
underlying structure or composition that is disordered/non-
symmetric. Towards measuring the degree of spatial perio-
dicity, we note that what periodicity implies is that two
atoms separated by some distance in a particular direction
will have eigenvectors pointing in the same or opposite
directions, with similar magnitudes. For such pairs of atoms,
the inner product of their eigenvectors € - €; will be a larger
number than a pair of atoms that have randomly pointed vec-
tors. This distinction then becomes the basis of distinguish-
ing propagons from diffusons.

By comparing the inner product of the eigenvectors for
a pair of atoms to the corresponding value that would have
been obtained if the eigenvectors followed a periodic func-
tion oriented along a particular direction denoted by k = 27“,
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where 4 is the wavelength/period of spatial repetition, one
can then assess the extent to which the functions match. This
matching can be determined by simply taking the product of
the two functions integrated over the entire super cell, via

¥, (K, p) = Z Z |[Ajjn] - [Bijnll

iz

- ’ZZEﬂW?j,n} F(K-F +@)f(K-F; +9)]|,

ij>i
@)

where the function f represents the periodic function chosen
for comparison. Here, any spatially oscillatory function such
as sin (k- ), cos(K-T), or ¢*T can be used for f and
each will yield the same final answer when properly normal-
ized. The first product in brackets €; , - €;, measures whether
the two atoms have the same direction and magnitude. If this
is true for many pairs, then the sum of the products will be a
large number. The second product in brackets f(K - F; + ¢)
fk - I; + ¢) yields the corresponding value that would be
obtained if the velocity field corresponded to a periodic func-
tion with wavelength /, phase ¢, and direction K. The sum-
mation over all pairs then yields the equivalent of a spatial
integral, which only becomes large when the values in each
set of brackets match for many pairs of atoms. As a result,
the function W, (K, ¢) becomes large if the mode velocity
field resembles that of the periodic function, and it provides
a direct and quantitative measure of the degree of resem-
blance. The problem is then that one does not know for a
given propagon, a priori, what direction and what wave-
length will best resemble its motion. Thus, one can simply
search over a wide range of values for K and phase ¢, to
determine which values maximize ‘¥, (E, ¢). In the ensuing
description, the prime superscript and n subscript will be
used to denote the values of K and ¢ that maximize ¥, for
mode 7.

The next issue then becomes the criterion used to deter-
mine the search space for K and ¢. To minimize computa-
tional expense, one would prefer to minimize the search
space as much as possible. Therefore, for crystalline solids,
including alloys, the k-space can be defined using reciprocal
lattice vectors of the primitive cell. For strongly structurally
disordered systems, such as an amorphous solid, since the
wave vector cannot be defined, the search space for K can be
based on the maximum (R,,x) and minimum (R,,;,) distance
lletween any two atoms in the super cell, i.e., lgmin = % ,
Kmax :1%. The spacing between adjacent points on the
three-dimensional & point grid can then be calculated based
on the maximum possible wavelength that can occur in that
supercell, namely, Ak = l;min. In addition, since the underly-
ing function is periodic, one only needs to search through
phase factors between [0,7].

The next issue becomes the normalization, since we spe-
cifically seek to define a value that measures the degree of
EP, which should be 100% for a perfectly periodic propagat-
ing mode and likely near zero for a non-propagating mode
such as a diffuson. The normalization can then be done by
comparing the value of W, for the actual mode, with ¥, for
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a fictitious mode that is based on the value of K and ¢’ that
maximized ¥, for the mode in question. Thus, the appropri-
ate ﬁCtlthUS mode for comparlson is one that is oriented
along the K vector with phase ¢’. To do so, we construct a
fictitious mode and assign a displacement vector propor-

tional to f(K - F; + ¢') for every atom i as follows:
7 ez N
dir) = o p (K% + ), 3)

€l

where the/ subscrlpt index o denotes the equilibrium position,
and d,, k, and ¢’ are the displacement vector of atom i in
the fictitious mode, wave vector, and phase angle corre-
sponding to maximum value of V¥, respectively. Therefore,
the polarization vector of each atom in the fictitious mode
used for comparison can be written as

) “4)

where \/ > d; (r,o) -d;*(F;,) is the normalization factor for
the eigenvectors, s, is the eigenvector of the fictitious
mode, and the superscript * indicates the complex conjugate.
Therefore, the normalized ¥, can be calculated as

. [E[ﬁn'é’j,n] |:f.(E/'Fi+(P/)f<E,'Fj+(p,>:| ‘

gl [ e ) ()|
(5)

The value of y, therefore represents the degree of EP on a
normalized scale from zero to unity. For a mode with 100%
propagating character y, = 1, while modes with y, values far
from unity correspond to either localized or de-localized but
non-propagating modes.

APPLICATION OF EP (y,,) TO CRYSTALLINE AND
AMORPHOUS SOLIDS

We now examine several example test cases, including
crystalline and amorphous silicon and germanium, with dif-
ferent defect concentrations as well as amorphous SiO,.
First, we calculated the ), for crystalline (denoted by the “c
“prefix) and amorphous (denoted by the “a-"prefix) silicon
and germanium supercells with 216 atoms and compared the
results to visual, qualitative inspection to confirm that the
method correctly distinguishes individual eigenmodes.
Second, we consider larger systems of a-Si, a-Ge, and a-SiO,
to study size effects and examine convergence to the infinite
system size limit.

The frequencies and eigenvectors were computed using
harmonic LD calculations in the General Utility Lattice
Program (GULP),'® employing the Tersoff potential for each
material (Si,)” Ge,'® SiO,'). For crystalline silicon (c-Si)
and germanium (c-Ge), we used 216 atom supercells and the
lattice constants were 5.431 A and 5.658 A, respectively. The
amorphous structures have between 216 and 4100 atoms,
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and the densities of a-Si, a-Ge, and a-SiO, were 2.33 g/cm3,
5.32g/em’, and 2.35g/em’, respectively. The amorphous
structures were generated using the melt and quench method
as discussed in the report by Larkin and McGaughey.'* In
order to avoid structural metastability, the initial structures
were annealed at 1000 K for 10 ns (Ref. 14) using the Large-
scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)? and subsequent energy relaxation performed
in GULP.

Figures 1 and 2 illustrate the EP vs. frequency for c-Si
and a-Si and c-Ge and a-Ge. It can be seen that in crystalline
systems, all of the vibrational modes are periodic (y, ~ 1)
and therefore correspond to propagons, as would be
expected. However, in the amorphous materials, only some
of the low frequency modes have a large value of y,,, and the
majority of the modes have less than 10% eigenvector perio-
dicity. It is also particularly interesting to note that in the a-
Si structure, there are several modes with high values of y, at
significantly higher frequencies ~1 THz, higher than what
would have been deemed the loffe—Regel cut-off, which is
where the predominant shift in character occurs at 2 THz.
This is particularly interesting and is the first direct evidence
that even in a typical amorphous structure, the transition
between propagon-like and diffusion-like behavior may not
occur at a particular frequency. Instead, the new methodol-
ogy employed here shows that propagons and diffusons can
exist at different frequencies with a significant amount of
overlap. Figure 3 shows illustrations of the eigenvectors
associated with several example propagons, diffusons, and
locons in the a-Si studied, as identified in Figure 1. In the
top, middle, and bottom panels, the three propagons, labeled
Py, P>, and P, three diffusons, labeled D, D, and D5, and
the three locons, labeled L;, L, and L3, were identified by
their respective EP in Fig. 1. Video files illustrating the
motions are also included in the supplementary material. The
propagating modes (P, P, and P3) from the top panel have
some plane-wave-like character. These modes are represen-
tative of modes with large values of EP, where modes with
v, > 0.2 show similar features to that shown in top panel.
The high frequency modes (L, L,, and L3) corresponding to
bottom panel are highly localized. The diffusons (D, D,
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FIG. 1. Eigenvector periodicity for crystalline and amorphous silicon (c-Si,
a-Si).
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FIG. 2. Eigenvector periodicity for crystalline and amorphous germanium
(c-Ge, a-Ge).

and Dj3) are neither plane-wave-like nor localized and appear
to correspond to values of 7y, < 0.2.

In performing calculations of y,, it is important to ensure
that the resolution of the k point grid is sufficiently high.
This can make it challenging to evaluate y, for large systems
due to significant increase in computational cost, but it can
have a significant effect, particularly for propagating modes
with high values of y, as shown in Figs. 4 and 5. As depicted,
propagating modes are strongly sensitive to the k-space den-
sity while non-propagating modes are not and they can be
calculated using a coarser k-space grid. This is due to the
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FIG. 4. Effect of reciprocal space resolution on the determination of EP in
c-Si with 512 atoms.

fact that the non-propagating modes are not well represented
by any periodic function, and thus, their values of ), con-
verge quickly with increasing k-point resolution, while prop-
agating modes are described by a single unique K vector,
that may not exactly lie on the [kmin,kmax] based grid.
Therefore, in order to decrease the computational cost, one
can use the baseline k-point density based on [kmin, kmax] and
for modes with low values of 7y,, and for modes with higher
values of y, > 0.25, an increasingly finer grid can be used
until convergence. Furthermore, one can center the refine-
ment on k of each iteration, thereby reducing the size of the

FIG. 3. Illustration of the velocity field
for example, normal modes in a-Si
System as identified by their EP in
Fig. 1.
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FIG. 5. Effect of reciprocal space resolution on the determination of EP in
a-Si with 512 atoms.

search space and making the procedure efficient. As seen,
there is a discernible k-space density dependence for resolu-
tions smaller than 9 x 9 x 9 for c¢-Si, while less k-space reso-
lution is needed for the diffusons and locons in a-Si. It is also
important to note that the phase ¢ has a significant effect on
the value of y, for the modes with high values of y,, while
locons and diffusons are quite insensitive to phase offsets.
The participation ratio and 7, for large structures of a-
Si, a-Ge, and a-SiO,, consisting of 4096, 4096, and 4608
atoms, respectively, are shown in Figs. 6-8. For a-SiO,,
there are two regions of locons separated by diffusons. For a-
Si and a-Ge, it can be seen that the PR dramatically drops at
both low and high frequency ends of spectrum. In the high-
phonon frequency regime, the modes involve a considerably
reduced number of atoms corresponding to locons. This fea-
ture is independent of the sample size suggesting that truly
localized states exist in this regime. Such localized vibra-
tional states have also been observed in grain-boundary
structures, a-Ge, a-Si, and so on. The drop at the low end of
the frequency spectrum, however, is due to the presence of
resonant or localized modes.'? Resonant modes are not truly
localized, because they are an artifact of the finite size of the
supercell and diminish as the size of the system increases."?
With this new approach, we can now use a universal
scale for judging whether a mode is a propagon or diffuson.
In reality, just as the cut-off between different types of
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FIG. 6. Eigenvector periodicity and participation ratio for a-Si.

J. Appl. Phys. 120, 025101 (2016)

100
S a-Ge
Z o
9 104-‘6
© [
o c
5 2
. a
9 1079
5 =
o g
c
% .
i woee 100
. . . . Alattetla
0 2 4 6 8 10 12 14

Frequency (THz)

FIG. 7. Eigenvector periodicity and participation ratio for a-Ge.

photons (visible vs. IR) is somewhat arbitrary, one cannot
define a single value cut-off for y, that will determine
whether a mode is a propagon or diffuson. However, with
this now physically meaningful normalization embedded in
the definition of y,, one can define a regime on the absolute
scale between zero and unity where the transition between
the two occurs, albeit heuristically. Based on the relative
magnitudes of 7y, for different modes as well as visual
inspections of the eigenvector periodicity for various cases,
it appears that the transition regime between propagon- and
diffusion-like character occurs between y, = 0.15 and 0.25.
Lastly, with an approximate transition region now
defined, we can unambiguously evaluate what fraction of the
modes fall above a certain value of ), and are therefore
deemed propagons. In the following, we have deemed any
mode with 7, above 0.2 as a propagon, and with this fixed
threshold, we can now systematically examine how the num-
ber of propagons changes with respect to increasing disorder.
For example, we calculated y, for c-Si silicon with increas-
ing amounts of Si vacancies. The results, shown in Fig. 9,
show that when a vacancy is encountered in a crystal, it not
only acts as a scattering site for other propagating phonons
but also changes some of the mode characters converting
them to non-propagating modes (diffusons and locons).
Figure 9 shows how this effect occurs as a function of defect
concentration. What is remarkable is that there is a major
effect with only 5% defects (25% of the modes become non-
propagating). Although 5% would be an extremely high
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FIG. 8. Eigenvector periodicity parameter and participation ratio for a-SiO,.
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FIG. 9. Mode population for c-Si with different defect concentrations.

defect concentration for most materials, it still provides a
strong indication that the mode character changes may be
non-negligible even at the low defect concentrations typi-
cally encountered in rather pristine samples.

CONCLUSION

We have developed and tested a new method for classi-
fying normal modes of vibrations that is general and based
on their individual mode character. Previous classification
methods have been restricted to structure factor based meth-
ods and qualitative relative sorting of the vibrational modes
according to their frequencies, which may not be accurate in
many instances. However, with the introduction of our defi-
nition for EP, one can classify the propagating vibrational
modes based on their mode character, which is more general
and provides a universal scale that can allow for comparisons
between different materials. We confirmed that by using an
EP based scheme for classifying the modes in c-Si and c-Ge,
all modes are in fact propagons as expected. However, in
a-Si, a-Ge, and a-Si0,, the majority of the modes are
non-propagating. Furthermore, the results for a-Si, a-Ge, and
a-Si0O, indicated that there is no sharp cut off frequency
between propagating and non-propagating modes, as has
been assumed in the literature. Instead, we find that there is
no strict rule that requires such a transition, and it is possible
for propagons to exist above the loffe—Regel crossover

J. Appl. Phys. 120, 025101 (2016)

frequency and for diffusons to exist below it. Furthermore,
by studying how the number of propagons decreases with
respect to defect concentration, we found that even small
defect concentrations may have a significant effect on the
mode character, as the majority of the modes become non-
propagating above a 10% defect concentration in c-Si. These
results provide important guidance and assessment of the va-
lidity of the approximations associated with defect scattering
mechanisms and on the importance of incorporating mode
character into examinations of phonon interactions.

SUPPLEMENTARY MATERIAL

See supplementary material for video files illustrating
the motions of atom in vibrational modes.
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