
Just-in-Time Compilation for Verilog
A New Technique for Improving the FPGA Programming Experience

Eric Schkufza

VMware Research

Palo Alto, CA

eschkufza@vmware.com

Michael Wei

VMware Research

Palo Alto, CA

mwei@vmware.com

Christopher J. Rossbach

UT Austin and VMware Research

Austin, TX

rossbach@cs.utexas.edu

Abstract
FPGAs offer compelling acceleration opportunities for mod-

ern applications. However compilation for FPGAs is painfully

slow, potentially requiring hours or longer. We approach this

problemwith a solution from the software domain: the use of

a JIT. Code is executed immediately in a software simulator,

and compilation is performed in the background. When fin-

ished, the code is moved into hardware, and from the user’s

perspective it simply gets faster. We have embodied these

ideas in Cascade: the first JIT compiler for Verilog. Cascade

reduces the time between initiating compilation and run-

ning code to less than a second, and enables generic printf

debugging from hardware. Cascade preserves program per-

formance to within 3× in a debugging environment, and has

minimal effect on a finalized design. Crucially, these prop-

erties hold even for programs that perform side effects on

connected IO devices. A user study demonstrates the value to

experts and non-experts alike: Cascade encourages more fre-

quent compilation, and reduces the time to produce working

hardware designs.

CCSConcepts •Hardware→Reconfigurable logic and
FPGAs; • Software and its engineering→ Just-in-time
compilers.

Keywords Cascade, Just-in-Time, JIT, Compiler, FPGA, Ver-

ilog

ACM Reference Format:
Eric Schkufza, Michael Wei, and Christopher J. Rossbach. 2019. Just-

in-Time Compilation for Verilog A New Technique for Improv-

ing the FPGA Programming Experience. In 2019 Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS ’19), April 13–17, 2019, Providence, RI, USA. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3297858.3304010

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00

https://doi.org/10.1145/3297858.3304010

1 Introduction
Reprogrammable hardware (FPGAs) offer compelling acceler-

ation opportunities for high-performance applications across

a wide variety of domains [19, 20, 27, 41, 42, 44, 46, 57, 60, 66,

82, 85, 90]. FPGAs can exceed the performance of general-

purpose CPUs by several orders of magnitude [21, 71] and

offer dramatically lower cost and time to market than ASICs.

In coming years, FPGA density and clock rates are projected

to grow steadily while manufacturing costs decline. As a

result, hardware vendors have announced plans for server-

class processors with on-die FPGA fabric [10], and cloud

providers have begun to roll out support for virtual ma-

chines with FPGA accelerators and application development

frameworks [29].

While the benefits are substantial, so too are the costs.

Programming an FPGA is a difficult task. Writing code in a

hardware description language (HDL) requires a substantially
different mental model than it does for a Von Neumann ar-

chitecture. The rapid growth of Domain Specific Languages

with HDL backends [16, 24, 56] has begun to address this

issue. But regardless of frontend language, HDL must ulti-

mately be compiled to an executable bitstream format which

can be consumed by an FPGA. The key open problem we

address in this paper is that this is an extremely slow process.

Trivial programs can take several minutes to compile, and

complex designs can take hours or longer.

We believe that compiler overhead is a serious obstacle to

unlocking the potential of FPGAs as a commodity technology.

First, long compile times greatly weaken the effectiveness

of the compile-test-debug cycle. Second, large-scale deploy-

ments of FPGAs are likely to consist of FPGAs of varying

sizes, architectures, and even vendors. Requiring developers

to maintain, build, optimize, and test on every possible con-

figuration makes it impossible to distribute FPGA logic at the

same scale as software executables. For software developers

used to the ability to rapidly prototype changes to their code,

this is a serious barrier to entry. It diminishes interest in

experimenting with FPGAs, and keeps the total number of

active hardware developers much lower than it should be.

The obvious solution is to improve the compiler. How-

ever there are two reasons why this is not possible. First,

the source is unavailable. FPGA hardware and toolchains

are produced almost exclusively by two major manufactur-

ers, Intel and Xilinx, and neither has a commercial incentive

https://doi.org/10.1145/3297858.3304010
https://doi.org/10.1145/3297858.3304010

1: module Rol(

2: input wire [7:0] x,

3: output wire [7:0] y

4:);

5: assign y = (x == 8'h80) ? 1 : (x<<1);

6: endmodule

1: module Main(

2: input wire clk,

3: input wire [3:0] pad, // dn/up = 1/0

4: output wire [7:0] led // on/off = 1/0

5:);

6: reg [7:0] cnt = 1;

7: Rol r(.x(cnt));

8: always @(posedge clk)

9: if (pad == 0)

10: cnt <= r.y;

11: else
12: $display(cnt); // unsynthesizable!

13: $finish; // unsynthesizable!

14: assign led = cnt;

15: endmodule

Figure 1. A Verilog implementation of the running example.

to open their platforms to developers. Open source initia-

tives have begun to change this [3, 5]. However most are in

their infancy and support a single target at best. The second

reason is that compilation for FPGAs is theoretically hard.

Transforming HDL into a bitstream is a two-step process.

The first involves translation to a register-transfer level (RTL)
style intermediate representation (IR) and the second involves
lowering (generating a mapping from) that IR onto FPGA

fabric. Crucially, this amounts to constraint satisfaction, a

known NP-hard problem for which no fast general-purpose

solution method exists. While constraint solvers have im-

proved dramatically in the past decade and continue to do

so, it is unlikely that a polynomial-time HDL compiler is on

its way.

Instead, the current practice is to rely on hardware simula-
tion. Running HDL in a simulator does not require a lengthy

compilation. However it does have serious drawbacks. First,

most FPGA programs involve IO peripherals which must

be replaced by software proxies. Building and guaranteeing

the correctness of those proxies (assuming the simulation

environment supports them — most don’t) distracts from

the goal of producing a working hardware design. Second,

because compilation is NP-hard, functional correctness does

not guarantee that a program can be successfully lowered

onto an FPGA. Instead, programmers must experiment with

many functionally correct designs, attempting a lengthy com-

pilation for each, before arriving at one which works on their

architecture. Finally, software debugging techniques such

as printf statements cannot be used once a program has left

simulation. When bugs inevitably appear in production code

running in hardware, they can be difficult to track down.

In this paper, we take a new approach. Rather than attempt

to reduce the latency of the compiler, we propose a strategy

for hiding it behind a simulator in a just-in-time (JIT) environ-
ment. The key idea is to use a sequence of transformations

guided entirely by the syntax of Verilog to translate a pro-

gram into many small pieces. Importantly, almost no user

annotation is required. The pieces are organized into an IR

which expresses a distributed system and supports communi-

cation between hardware and software. Pieces which interact

directly with IO peripherals are automatically replaced by

pre-compiled standard components and the remaining pieces

begin execution in a software simulator while a potentially

lengthy compilation is initiated for each in the background.

As these compilations finish, the pieces transition from soft-

ware to hardware. From the user’s point of view, the code

runs immediately and simply gets faster over time.

We have implemented these ideas in an open-source sys-

tem called Cascade
1
, the first JIT compiler for Verilog. Cas-

cade reduces the time between initiating compilation and

running code to less than a second, preserves program per-

formance to within 3× in a debugging environment, and

has minimal effect on a finalized design. In addition to tight-

ening the compile-test-debug cycle, Cascade also improves

portability and expressiveness. Automatically mapping IO

peripherals onto pre-compiled standard components reduces

the burden of porting a program from one architecture to

another, and allows programmers to test their code in the

same environment as they intend to release it. No IO proxies

or simulators are necessary. Furthermore, the use of a run-

time which supports communication between software and

hardware allows Cascade to support printf-style debugging

primitives even after a program has been migrated to hard-

ware. The effect is substantial. We demonstrate through a

user study that Cascade encourages more frequent compila-

tion and reduces the time required for developers to produce

working hardware designs.

To summarize, our key contribution is a compilation frame-

work which supports a novel programming experience with

strong implications for the way that hardware development

is taught and carried out in practice. For developers who

insist on extracting the fastest designs out of the smallest

amount of fabric, there is no substitute for the traditional

HDL design flow. However, for developers who are willing to

sacrifice a small amount of runtime performance or spatial

overhead, Cascade transforms HDL development into some-

thing which much more closely resembles writing JavaScript

or Python. In short, we take the first steps towards bridging

the gap between programming software and programming

hardware.

1https://github.com/vmware/cascade

https://github.com/vmware/cascade

1: procedure Eval(e)
2: if e is an update then
3: perform sequential update

4: else
5: evaluate combinational logic

6: end if
7: enqueue new events

8: end procedure

1: procedure ReferenceScheduler
2: while ⊤ do
3: if ∃ activated events then
4: Eval(any activated event)

5: else if ∃ update events then
6: activate all update events

7: else
8: advance time t ; schedule recurring events

9: end if
10: end while
11: end procedure

Figure 2. The Verilog reference scheduler, shown simplified.

2 Background
We begin with a high level overview of HDLs and the tool

flows typical of the hardware programming experience. We

frame our discussion in terms of a running example.

2.1 Running Example
Consider an FPGA with a connected set of IO peripherals:

four buttons and eight LEDs. The task is to animate the LEDs,

and respond when a user presses one of the buttons. The

LEDs should illuminate one at a time, in sequence: first, sec-

ond, third, etc., and then the first again, after the eighth. If the

user presses a button, the animation should pause. This task

is a deliberate simplification of a representative application.

Even still, it requires synchronous and asynchronous event

handling, and computation that combines user inputs with

internal state. More importantly, the task is complicated by

the diversity of platforms on which it might be deployed.

Debugging code in a simulator with proxies to represent the

IO peripherals is no substitute for running it in the target

environment and verifying that the buttons and LEDs indeed

work as intended.

2.2 Verilog
A Verilog [6] implementation of the running example is

shown in Figure 1. Verilog is one of two standardHDLswhich

are used to program FPGAs. The alternative, VHDL [7], is

essentially isomorphic. The code is organized hierarchically

in units called modules (Rol, Main), whose interfaces are
defined in terms of input/output ports (x, y, clk, pad, led).
The inputs to the root (top-most) module (Main) correspond

1: module Rol ... endmodule
// next eval'ed declaration here ...

1: module Main();

2: Clock clk(); // implicitly

3: Pad#(4) pad(); // provided by

4: Led#(8) led(); // environment

5:

6: reg [7:0] cnt = 1;

7: Rol r(.x(cnt));

8: always @(posedge clk.val)

9: if (pad.val == 0)

10: cnt <= r.y;

11: ...

14: // next eval'd statement here ...

15: endmodule

CASCADE >>> assign led.val = □

Figure 3. The Cascade REPL-based user interface, shown

with a partial implementation of the running example.

to IO peripherals. Modules can consist of nested modules,

arbitrary width wires and registers, and logic gates.

A module with a single assignment (Rol) produces the
desired animation: when x changes, y is assigned the next

value in the sequence, a one bit rotation to the left. The

state of the program is held in a register, cnt (Main:6),
which is connected to an instance of Rol (Main:7) and
used to drive the LEDs (Main:14). The value of cnt is

only updated to the output of r (Main:10) when the clock

transitions from 0 to 1 (Main:8) and none of the buttons

are pressed (Main:9).

2.3 Synthesizable Core
The language constructs discussed so far are part of the syn-
thesizable core of Verilog. They describe computation which

can be lowered on to the physical circuitry of an FPGA.

Outside of that core are system tasks such as print state-

ments (Main:12) and shutdown directives (Main:13). In
Figure 1, they have been used to print the state of the pro-

gram and terminate execution whenever the user presses a

button, perhaps as part of a debugging session. While invalu-

able to a developer, there is no general purpose way for a

compiler to preserve system tasks in a release environment.

It is not uncommon to deploy an FPGA in a setting where

there is no terminal, or there is no kernel to signal.

2.4 Design Flow
The design flow for the code in Figure 1 would typically begin

with the use of a software simulator [73, 76]. For programs

whose only IO interaction is with a clock, this is an effective

way to catch bugs early. Simulation begins in seconds and

1: module Main(

2: input wire clk,

3: input wire [3:0] pad_val,

4: output wire [7:0] led_val,

5: output wire [7:0] r_x,

6: input wire [7:0] r_y

7:);

8: reg [7:0] cnt = 1;

9: assign r_x = cnt;

10: always @(posedge clk_val)

11: if (pad_val == 0)

12: cnt <= r_y;

13: else
14: $display(cnt);
15: $finish;
16: assign led_val = cnt;

17: endmodule

Figure 4.Cascade’s distributed system IR. Modules are trans-

formed into stand-alone Verilog subprograms.

unsynthesizable Verilog is useful for diagnosing logic errors.

However as with most programs, the running example in-

volves IO peripherals. As a result, simulation would only

be possible if the user was willing to implement software

proxies, a task which is time consuming and error prone.

The next step would be the use of a synthesis tool [39, 88,
89] to transform the program into an RTL-like IR consisting

of wires, logic gates, registers, and state machines. Synthesis

can take from minutes to hours depending on the aggressive-

ness of the optimizations (eg. state machine minimization)

which are applied. Unsynthesizable code is deleted and fur-

ther debugging still requires the use of proxies. While the

resulting code would be closer to what would be lowered

onto hardware, it would now need to be run in a waveform

viewer [33].

The last step would be the use of a place and route tool to
lower the RTL onto the FPGA fabric, establish connections

between top-level input/outputs and peripheral IO devices,

and guarantee that the critical path through the resulting cir-

cuit does not violate the timing requirements of the device’s

clock. As with synthesis, this process can take an hour or

longer. Once finished, a programming tool would be used to

reconfigure the FPGA. This process is straightforward and

requires less than a millisecond to complete.

Finally, the program could be tested in hardware. As buggy

behavior was detected and repaired, the design flow would

be restarted from the beginning. To summarize, compilation

is slow, code is not portable, and the developer is hampered

by the fact that foundational (eg. printf-style) debugging

facilities are confined to a different environment than the

one in which code is deployed.

2.5 Simulation Reference Model
The reason the code in Figure 1 can be run in so many envi-

ronments (simulator, waveform viewer, or FPGA) is because

the semantics of Verilog are defined abstractly in terms of

the reference scheduling algorithm shown (simplified) in Fig-

ure 2. The scheduler uses an unordered queue to determine

the interleaving of two types of events: evaluation (combi-

national logic) and update (sequential logic). Evaluations

correspond to changes to stateless components such as logic

gates, wires, or system tasks (a change in cnt triggers an

evaluation of r.x, or the rising edge of clk may trigger a

print statement) and updates correspond to changes to state-

ful components such as registers (assigning the value of r.y
to cnt). Events are performed in any order but only once

activated (placed on the queue). Evaluations are always ac-

tive, whereas updates are activated when there are no other

active events. When the queue is emptied the system is said

to be in an observable state. The logical time is advanced, and

some events such as the global clock tick are placed back on

the queue.

Intuitively, it may be useful for a developer to think of a

Verilog program in terms of its hardware realization. Eval-

uations appear to take place continuously, and updates ap-

pear to take place simultaneously whenever their trigger (eg.

posedge clk) is satisfied. However, any system that pro-

duces the same sequence of observable states, whether it be

a software simulator, an executable bitstream, or the system

described in this paper which transitions freely between the

two, is a well-formed model for Verilog.

3 Cascade
We now describe Cascade, the first JIT compiler for Verilog.

Cascade is based on the following design goals which are

derived from the shortcomings of the hardware development

process. We defer an extended discussion of anti-goals to

Section 7.

Interactivity Code with IO side effects should run im-

mediately, and a user should be able to modify a run-

ning program.

Portability Code written on one platform should run

on another with little or no modification.

Expressiveness Unsynthesizable Verilog should remain

active after a program has moved to hardware.

Performance Users may trade native performance for

expressiveness, but not be forced to sacrifice it for

interactivity.

3.1 User Interface
Cascade’s user interface, a Read-Eval-Print-Loop (REPL) sim-

ilar to a Python interpreter [83], is shown in Figure 3 with

a nearly identical copy of the code from Figure 1. Verilog is

lexed, parsed, and type-checked one line at a time, and errors

are reported to the user. Code which passes these checks is

HW

SW

Runtime

C
on

tro
lle

r

Vi
ew

Interrupt Queue

Data / Control Plane

C

P

RM

L

Scheduler

Figure 5. The Cascade runtime architecture.

integrated into the user’s program: module declarations are

placed in the outer scope, and statements are inserted at the

end of a root module which is implicitly instantiated when

Cascade begins execution. Code begins execution as soon as

it is placed in an instantiated module and IO side effects are

visible immediately. Cascade can also be run in batch mode

with input provided through a file. The process is the same.

3.2 Standard Library
The only difference between the code Figures 1 and 3 is Cas-

cade’s treatment of IO peripherals, which are represented as

pre-defined types:Clock,Pad, andLed. Thesemodules are

implicitly declared and instantiated when Cascade begins ex-

ecution, along with whatever other types (eg. GPIO, Reset)
are supported by the user’s hardware environment. Several

other types supported by all environments (Memory, FIFO,
etc, not shown) may be instantiated at the user’s discretion.

The Verilog parameterization syntax (#(n)) is similar to

C++ templates, and used to indicate object width (ie. four

buttons, eight LEDs). This design supports portability by

casting IO configuration as a target-specific implementation

detail which can be managed by the compiler. Additionally,

it allows Cascade to treat IO peripherals identically to user

logic.

3.3 Intermediate Representation
Cascade uses the syntax of Verilog to manage programs

at the module granularity. An IR expresses a distributed

system composed of Verilog subprograms with a constrained

protocol. Each subprogram represents a single module whose

execution and communication are mediated by messages

sent over a data/control plane.

When the user eval’s code which instantiates a new mod-

ule or places a statement at the end of the root module,

Cascade uses a static analysis to identify the set of variables

accessed by modules other than the one in which they were

defined (in Figure 3, clk.val, led.val, pad.val, r.x,
and r.y). Verilog does not allow naming through pointers,

1: procedure EvalAll(E, t)
2: while events e of type t in E’s queue do
3: Eval(e)
4: end while
5: end procedure

1: procedure CascadeScheduler
2: while ⊤ do
3: if ∃ engine E with evaluation events then
4: EvalAll(E, evaluation)
5: else if ∃ engine E with update events then
6: for all E with update events do
7: EvalAll(E, update)
8: end for
9: else
10: service interrupts; end step for all engines

11: advance time t
12: end if
13: end while
14: end for all engines

15: end procedure

Figure 6. The Cascade scheduler.

so this process is tractable, sound, and complete. Cascade

then modifies the subprogram source for the modules those

variables appear in. Figure 4 shows the transformation for

Main. First, the variables are promoted to input/outputs and

renamed (r.x becomes r_x). This provides the invariant
that no module names a variable outside of its syntactic

scope. Next, nested instantiations are replaced by assign-

ments (Main:9). The result is that while Verilog’s logical
structure is hierarchical (main contains an instance of Rol),
Cascade’s IR is flat (main and that instance are peers).

The runtime state of a subprogram (recall that instanti-

ated code begin execution immediately) is represented by

a data structure known as an engine. Subprograms start as

quickly compiled, low-performance, software simulated en-

gines. Over time they are replaced by slowly compiled, high-

performance FPGA resident hardware engines. If a subpro-

gram is modified, its engine is transitioned back to software,

and the process is repeated. Specifics, and considerations for

standard library engines, are discussed in Section 4. Being

agnostic to whether engines are located in hardware or soft-

ware, and being able to transition freely between the two is

the mechanism by which Cascade supports interactivity.

3.4 Runtime
The Cascade runtime is shown in Figure 5 during an execu-

tion of the running example. Boxes C through P represent

engines for the five modules clk through pad. Some are

in software, others in hardware, but to the user, it appears

1: struct Engine {

2: virtual State* get_state() = 0;

3: virtual void set_state(State* s) = 0;

4:

5: virtual void read(Event* e) = 0;

6: virtual void write(Event* e) = 0;

7:

8: virtual bool there_are_updates() = 0;

9: virtual void update() = 0;

10: virtual bool there_are_evals() = 0;

11: virtual void evaluate() = 0;

12: virtual void end_step();

13: virtual void end();

14:

15: virtual void display(String* s) = 0;

16: virtual void finish() = 0;

17:

18: virtual void forward(Core* c);

19: virtual void open_loop(int steps);

20: };

Figure 7. The Cascade target-specific engine ABI.

as though they are all in hardware. The user interacts with

Cascade through a controller and observes program outputs

through a view, which collectively form the REPL. The user’s

input, system task side effects, and runtime events are stored

on an ordered interrupt queue, and a scheduler is used to

orchestrate program execution by sending messages across

the control/data plane.

The Cascade scheduler is shown in Figure 6. While for-

mally equivalent to the reference, it has several structural

differences. First, the scheduler batches events at the module

granularity. If an engine has at least one active evaluation,

the scheduler requests that it perform them all. If at least

one engine has at least one active update event, it requests

that all such engines perform them all. Second, the prop-

agation of events generated by these computations takes

place only when a batch has completed rather than as they

become available. Finally, because eval’ing new code can

affect program semantics, it is crucial that it happen when it

cannot result in undefined behavior. This is guaranteed to be

true in between time steps, when the event queue is empty,

and the system is in an observable state. Cascade uses this

window to update its IR by creating new engines in response

to module instantiations, and rebuilding engines based on

new read/write patterns between modules. The replacement

of software engines with hardware engines as they become

available, as well as interrupt handling (ie. passing display
events to the view, or terminating in response to finish),
and rescheduling recurring events like the global clock tick,

take place during this window as well.

3.5 Target-Specific Engine ABI
Cascade is able to remain agnostic about where engines

are located by imposing a constrained protocol on its IR.

This protocol is captured by the Application Binary Inter-
face (ABI) shown in Figure 7. Creating new implementations

of this class is the mechanism by which developers can ex-

tend Cascade’s support for new backend targets (we discuss

two such implementations in Section 5). Importantly, this is
not a user-exposed interface. The implementation details of

target-specific engines are deliberately hidden from Verilog

programmers inside Cascade’s runtime.

Engines must support get and set methods so the run-

time can manage their internal state (e.g. when Main’s en-
gine transitions from software to hardware, cnt must be

preserved rather than reset it to 1, as this would disturb the

LED animation). Again, the absence of pointers implies the al-

gorithm for identifying this state is tractable, sound, and com-

plete. The there_are_updates, there_are_evals,
update, and evaluate methods are invoked by the Cas-

cade scheduler (lines 3–7), and the two optional end_step
and end methods are invoked when the interrupt queue is

empty (line 10), and on shutdown (line 14) respectively (e.g.

this is how the standard clock re-queues its tick event as in

Section 2.5). Engines must also support read and write
methods, which are used to broadcast and discover changes

to subprogram input/outputs which result from evaluations

and updates. Finally, display and finish methods are

used to notify the runtime of system task evaluation. Requir-

ing these methods of all engines, enables expressiveness
by providing support for unsynthesizable Verilog even from

hardware.

4 Performance
Cascade’s performance is a function of its runtime overhead

and time spent performing engine computation and com-

munication. A depiction is shown in Figure 8, which sets

aside the running example and shows the runtime (top), a

single software engine (middle), and a single hardware en-

gine (bottom). Time proceeds left to right and computation

moves between engines as the runtime invokes their ABIs

through the data/control plane. In this section, we describe

the optimizations Cascade uses to achieve performance,
that is, to minimize communication and runtime overhead,

and maximize the amount of computation in fast FPGA fab-

ric.

4.1 Goals
Hardware and software engines occupy different clock do-

mains: software operates in GHz, and FPGAs inMHz. Further,

the number of cycles a software engine takes to process an

ABI request may be very different than for a hardware engine

(e.g. thousands of CPU instructions versus a single FPGA

clock tick). We define Cascade’s performance in terms of

Ru
nt
im

e
So

ftw
ar
e

Ha
rd
w
ar
e

MHz

GHz

Virtual

Compute
Comm.
Overhead

Figure 8. Cascade measures performance in terms of an aperiodic virtual clock defined over multiple physical clock domains.

its virtual clock, the average rate at which it can dispatch

iterations of its scheduling loop (variable amounts of user

interaction and ABI requests per iteration imply aperiod-

icity). Because the standard library’s clock is just another

engine, every two iterations of the scheduler correspond to

a single virtual tick (up on the first, down on the second).

Cascade’s goal is to produce a virtual clock rate that matches

the physical clock rate of the user’s FPGA. Figure 9 shows

the process for doing so.

4.2 User Logic
Returning to the running example, user logic (modules Main
and r) begin execution in separate software engines (Fig-

ure 9.1). Because Cascade’s IR is flat, all communication

passes through the data/control plane, even though r’s in-
put/outputs are referenced exclusively by Main. The first
optimization that Cascade performs is to inline user logic

into a single subprogram. Verilog does not allow dynamic

allocation of modules, so the process is tractable, sound,

and complete. A new engine is allocated for the inlined sub-

program (Figure 9.2), it inherits state and control from the

old engines, and the number of read and write requests

sent across the data/control plane, along with the number

of evaluate and update requests required for the event

queue to fixed point, are significantly reduced. At the same

time, Cascade creates a new hardware engine which begins

the process of compiling the inlined subprogram in the back-

ground. When compilation is complete, the hardware en-

gine inherits state and control from the inlined software

engine (Figure 9.3). From this point on, nearly all ABI re-

quests are processed at hardware speed.

4.3 Standard Library Components
Standard library components with IO side effects must be

placed in hardware as soon as they are instantiated, as em-

ulating their behavior in software doesn’t make sense (Fig-

ure 9.1). This means the time to compile them to hardware

can’t be hidden by simulation. To address this, Cascade main-

tains a small catalog of pre-compiled engines for the modules

in its standard library. While this allows a program in any

compilation state (Figure 9.1–3) to generate IO side effects

immediately, interacting with those pre-compiled engines

still requires data/control plane communication. Worse, once

user logic has migrated to hardware (Figure 9.3), this over-

head can represent a majority of Cascade’s total runtime.

For these components, inlining is insufficient for elimi-

nating the overhead. There is no source to inline; they are

pre-compiled code which respond to requests as though they

were user logic. The solution is to observe that if they were

inlined into the user logic engine (Figure 9.3), it would be-

come the single entry and exit point for all runtime/hard-

ware communication. As a result, engines may support ABI

forwarding (Figure 7). If so, the runtime can cease direct in-

teraction with standard components and trust the user logic

engine to respond to requests on behalf of itself and any

standard components it contains (eg. by recursively invok-

ing evaluate requests on those engines, or responding

true to there_are_updates requests if it or those en-

gines have updates). With this (Figure 9.4), the only obstacle

to pure hardware performance becomes the interaction with

the runtime’s virtual clock.

4.4 Open-Loop Scheduling
Processing ABI requests in hardware can be done in a single

FPGA clock tick (Section 5). Nonetheless, sending even one
message between hardware and software per scheduler iter-

ation can be prohibitive. The bandwidth to sustain a virtual

clock rate in a typical FPGA range (10–100 MHz) would be

an order of magnitude greater (0.1–1 GB/s), a value unlikely

to be achieved outside of a very high-performance setting.

The key to overcoming this limit is to relax the requirement

of direct communication on every scheduler iteration.

Observe that any program in the state shown in Figure 9.4

will exhibit the same schedule. Every iteration, the clock

reports there_are_updates, an update causes a tick,

and the user logic alternates between invocations ofupdate
andevaluate until boththere_are_updates and also

there_are_evals return false. Thereafter, the process

repeats. To take advantage of this, hardware engines may

support the open_loop request (Figure 7) which tells an

Ru
nt

im
e

So
ftw

ar
e

H
ar

dw
ar

e

1 2 3 4 5

L

M R

P

Data / Control Plane Data / Control Plane Data / Control Plane Data / Control Plane Data / Control Plane

L P

(open loop)C C

M

R

L P

C

M

R

C C

L

P

M

R

L

P

M

R

Figure 9. Cascade’s optimization flow. Engines transition from software to hardware, and reduced interaction with the runtime.

engine to simulate asmany iterations as possible of the sched-

ule described above. Control remains in the engine either

until an upper limit of iterations is reached, or the evaluation

of a system task requires runtime intervention (Figure 9.5).

Because placing control in an engine stalls the runtime,

adaptive profiling is used to choose an iteration limit which

allows the engine to relinquish control on a regular basis

(typically a small number of seconds). Cascade does its best

to transition to open loop quickly and stay there for as long

as possible. However, whenever a user interaction causes an

update to program logic, engines must be moved back into

software and the process started anew.

4.5 Native Mode
Open-loop scheduling can achieve virtual clock rates within

a small constant of native performance (Section 6). However,

applications which do not use unsynthesizable Verilog and

are no longer undergoing active modification are eligible

for one final optimization. Placing Cascade in native mode

causes it to compile the user’s program exactly as written

with an off-the-shelf toolchain. This sacrifices interactivity,
but achieves full native performance, and is appropriate for

applications which are no longer being actively debugged.

5 Target-Specific Details
We conclude our discussion of Cascade with implementa-

tion notes for simulator-based software engines and FPGA-

resident hardware engines. This material in particularly low-

level and provided for the sake of completeness. Readers

who wish to return later may safely skip ahead to the evalu-

ation (Section 6).

5.1 Software Engines
Software engines use a cycle-accurate event-driven simula-

tion strategy similar to iVerilog [73]. The Verilog source for

a subprogram is held in an in-memory AST data structure

along with values for its stateful elements. Cascade computes

data dependencies at compile-time and uses a lazy evaluation

strategy for AST nodes to reduce the overhead of recomput-

ing outputs in response to changes to subprogram inputs.

Software engines inhabit the same process as the runtime;

communication and interrupt scheduling take place through

the heap.

5.2 Hardware Engines
Hardware engines translate the Verilog source for a sub-

program into code which can be compiled by a blackbox

toolchain such as Quartus [39] or Vivado [89]. The code uses

an AXI-style memory-mapped IO protocol to interact with a

software stub which inhabits the same process as the run-

time and mediates communication and interrupt scheduling.

We describe these transformation by example. The effect on

the code in Figure 4, after inlining r, is shown in Figure 10.

The port declaration on lines 1–8 is typical of AXI and

replaces the original. CLK is the native FPGA clock, RW in-

dicates a write or read request at address ADDR, IN and

OUT are the buses for those requests, and WAIT is asserted

when the FPGA requires more than one cycle to return a re-

sult. A kernel module and top-level connections (not shown)

map the code’s address space into software memory and

guarantee that C-style dereferences in the stub produce the

appropriate interactions with the resulting hardware. The

shorthand <LATCH>, <OLOOP>, etc., represents checks for
write requests to distinguished addresses, which serve as an

RPC mechanism.

Auxiliary variables are introduced on lines 9–13. _vars
is a storage array with one element for each of Main’s in-
puts (clk_val and pad_val), stateful elements (cnt),
and instance of a variable in a display statement (cnt again),

_umask and _tmask are used for tracking updates and sys-

tem tasks, _oloop and _itrs are used while running in

open-loop mode, and the set of shadow variables _nvars,
_numask, etc., are used to store values for their counterparts
on the (n)ext update request. Mappings between these vari-

ables and the names in the original code appear on lines

15–18. The text of the original program appears on lines

20–27, only slightly modified. Update targets are replaced

by their shadow variable counterparts (_nvars[2]), and
the corresponding bit in the update mask is toggled. System

tasks are treated similarly. Values which appear in display

1: module Main(28: wire _updates = _umask ^ _numask;

2: input wire CLK, 29: wire _latch = <LATCH> |

3: input wire RW, 30: (_updates & _oloop);

4: input wire [31:0] ADDR, 31: wire _tasks = _tmask ^ _ntmask;

5: input wire [31:0] IN, 32: wire _clear = <CLEAR>;

6: output wire [31:0] OUT, 33: wire _otick = _oloop & !_tasks;

7: output wire WAIT 34:

8:); 35: always @(posedge CLK)

9: reg [31:0] _vars [3:0]; 36: _umask <= _latch ? _numask : _umask;

10: reg [31:0] _nvars [3:0]; 37: _tmask <= _clear ? _ntmask : _tmask;

11: reg _umask = 0, _numask = 0; 38: _oloop <= <OLOOP> ? IN :

12: reg [1:0] _tmask = 0, _ntmask = 0; 39: _otick ? (_oloop-1) :

13: reg [31:0] _oloop = 0, _itrs = 0; 40: _tasks ? 0 : _oloop;

14: 41: _itrs <= <OLOOP> ? 0 :

15: wire clk_val = _vars[0]; 42: _otick ? (_itrs+1) : _itrs;

16: wire [3:0] pad_val = _vars[1]; 43: _vars[0] <= _otick ? (_vars[0]+1) :

17: wire [7:0] led_val; 44: <SET 0> ? IN : _vars[0];

18: wire [7:0] cnt = _vars[2]; 45: _vars[1] <= <SET 1> ? IN : _vars[1];

19: 46: _vars[2] <= <SET 2> ? IN :

20: always @(posedge clk_val) 47: _latch ? _nvars[2] : _vars[2];

21: if (pad_val == 0) 48:

22: _nvars[2] <= pad_val << 1; 49: assign WAIT = _oloop;

23: _numask <= ~_umask; 50: always @(*)

24: else 51: case (ADDR)

25: _nvars[3] <= cnt; 52: 0: OUT = clk_val;

26: _ntmask <= ~_tmask; 53: // cases omitted ...

27: assign led_val = cnt; 54: endmodule

Figure 10. Verilog code generated by the hardware engine associated with the inlined user logic from the running example.

statements are saved (_nvars[3]), and the bit in the task

mask that corresponds to each system task is toggled.

The remaining code supports the Engine ABI. read and

write, and get_state and set_state are defined in

terms of memory dereferences. Lines 49–53 provide access

to any of the subprogram’s outputs, stateful elements, or

variables which appear in a display statement, and lines 43–

47 provide write access to its inputs and stateful elements.

there_are_updates is defined in terms of a read of the

_updates variable (line 28), which becomes true when one

or more shadow variables are changed, and update is de-

fined in terms of a write to the _latch variable, which

synchronizes those variables with their counterparts and

clears the update mask (lines 36 and 46). The definition of

evaluate involves reading the subprogram’s output vari-

ables and checking the _tasks variable (line 31) which

becomes true when one or more tasks are triggered. If any

of those tasks are display statements, the values of their ar-

guments at the time of triggering are read out (lines 49-53),

formatted in the software stub, and forwarded to the runtime.

Thereafter, writing the _clear variable (line 32) resets the

task mask. Writing the _oloop variable (line 38) places the

code into the control loop described in Section 4.4. Control

alternates between toggling the clock variable (line 38) and

triggering updates (line 29) until either the target number of

iterations is achieved or a task is triggered (lines 33 and 38).

Hardware engines may also establish ABI forwarding (not

shown) for the standard components they contain. For com-

binational elements such as the pads and LEDs in the run-

ning example, this involves promoting the two subprogram

variables led_val and pad_val to subprogram input/out-

puts, and connecting them to the corresponding IO periph-

erals.

6 Evaluation
We evaluated Cascade using a combination of real-world ap-

plication and user study. All of the experiments described in

this section were performed using the initial open-source re-

lease of Cascade (Version 1.0). The release consists of 25,000

lines of C++ code, along with several thousand lines of target-

specific Verilog. As an experimental platform, we used an

Intel Cyclone V SoC device [9] which consists of an 800 MHz

dual core ARM processor, a reprogrammable fabric of 110K

logic elements with a 50 MHz clock, and 1 GB of shared

DDR3 memory. Cascade’s runtime and software engines

were configured to run on the ARM cores, and its hardware

0 100 200 300 400 500 600 700 800 900

Time (s)

1
K

H
z

1
M

H
z

F
re

q
u

en
cy

(1
/
s)

iVerilog

Quartus

Cascade

Figure 11. Proof of work performance benchmark.

engines on the FPGA. Compilation for the code generated

by Cascade’s hardware engines was performed using Intel’s

Quartus Lite compiler (Version 17.0). In order to isolate Cas-

cade’s performance properties, the compiler was run on a

separate networked server consisting of a four core 2.5 GHz

Core i7 with 8 GB of DDR3 memory. In all cases, Cascade’s

software behavior was compute bound, exhibiting 100% CPU

utilization with a memory footprint of less than 10 MB.

6.1 Proof of Work
We used Cascade to run a standard Verilog implementation

of the SHA-256 proof of work consensus algorithm used in

bitcoin mining [4]. The algorithm combines a block of data

with a nonce, applies several rounds of SHA-256 hashing,

and repeats until it finds a nonce which produces a hash less

than a target value. The algorithm is typical of applications

which can benefit from FPGA acceleration: it is embarrass-

ingly parallel, deeply pipelineable, and its design may change

suddenly, say, as the proof of work protocol evolves over

time.

Figure 11 compares Cascade against Intel’s Quartus com-

piler, and the open source iVerilog simulator [73]. Clock rate

over time is shown on a log scale. iVerilog began execution

in under one second, but its performance was limited to a

virtual clock rate of 650 Hz. Quartus was able to lower the

design onto the FPGA and achieve the full 50 MHz native per-

formance, but only after ten minutes of compilation. Cascade

was able to achieve the best of both worlds. Cascade began

execution in under one second, and achieved a 2.4× faster

virtual clock rate through simulation, while performing hard-

ware compilation in the background. When compilation was

finished and control was transitioned to open-loop hard-

ware execution, Cascade was able to achieve a virtual clock

rate within 2.9× of the native clock while still providing

support for unsynthesizable Verilog. The spatial overhead

of the bitstream generated by Cascade’s hardware engine

was small but noticeable: 2.9× that of a direct compilation

using Quartus, mainly due to support for get_state and

0 100 200 300 400 500 600 700 800 900

Time (s)

2
0
K

5
0
K

2
0
0
K

5
0
0
K

M
em

o
ry

L
a
te

n
cy

(I
O

/
s) Quartus

Cascade

Figure 12. Streaming regular expression IO/s benchmark.

set_stateABI requests. In native mode, Cascade’s perfor-

mance and spatial requirements were identical to Quartus’s.

6.2 Regular Expression Streaming
We used Cascade to run a streaming regular expression

matching benchmark generated by a tool similar to the Snort

packet sniffer [80] or an SQL query accelerator [40]. In con-

trast to the previous example, this benchmark also involved

an IO peripheral: a FIFO queue used to deliver bytes from

the host device to the matching logic. While a real-world

application would batch its computation to mask communi-

cation overhead, we modified the benchmark to process one

byte at a time. This allowed us to measure Cascade’s ability

to match the memory latency to an IO peripheral provided

by the Quartus compiler.

Figure 12 compares Cascade against Intel’s Quartus com-

piler. IO operations per second (tokens consumed) are plotted

against time on a log scale. No comparison is given to iVer-

ilog as it does not provide support for interactions with IO

peripherals. The implementations are identical, with one

exception: the Quartus implementation used the FIFO IP pro-

vided by the Quartus IDE, while the Cascade implementation

used the FIFO data structure provided by Cascade’s standard

library. In both cases, host to FPGA transport took place over

a memory mapped IO bus [8]. The details were distinct, but

not meaningfully different with respect to performance.

Cascade began execution in under one second and achieved

an IO latency of 32 KIO/s through simulation. In the same

amount of time required for the Quartus implementation

to finish compiling (9.5 minutes), Cascade was able to tran-

sition to open-loop hardware execution and achieve an IO

latency of 492 KIO/s, nearly identical to the 560 KIO/s of the

Quartus implementation. In this case, the spatial overhead

of the bitstream generated by Cascade’s hardware engines

was slightly larger (6.5×), though commensurate with that of

similar research architectures [47]. As before, Cascade’s per-

formance and spatial requirements were identical to Quartus

when run in native mode.

0 10 20 30

Builds

0

10

20

30

40

E
x
p

er
im

en
t

T
im

e
(m

)

0.0 0.5 1.0 1.5

Avg Compile Time (m)

0

1

2

3

A
v
g

T
es

t/
D

eb
u

g
T

im
e

(m
)

Figure 13. Timing results from user study (data points for

the Quartus IDE shown in blue, for Cascade shown in green).

6.3 User Study
We used Cascade to perform a small user study (n= 20)

to test whether JIT compilation can improve the hardware

development process. Subjects were drawn from a pool of

Computer Science PhD students and full time research staff

at VMware, and familiarity with hardware programming was

mixed, ranging from none to strong. Subjects were given

a 30 minute primer on Verilog and taken to a workstation

consisting of an FPGA with IO peripherals, and a hardware

development environment. The control group’s environment

was the Quartus IDE, and the experiment group’s was Cas-

cade. In both cases the peripherals were the same: four but-

tons and strip of 72 individually addressable multi-colored

LEDs. Also in both cases, the environments were pre-loaded

with a small (50 line) program intended to produce a behav-

ior described in the primer (e.g. pressing one button would

cause the LEDs to turn red, pressing another would cause

the LEDs to blink in sequence). The subjects were then told

that the program contained one or more bugs which would

prevent the FPGA from behaving as described. Their task

was to fix the bugs and demonstrate a working program as

quickly as possible.

Figure 13 summarizes the results of the study. For each

participant, we recorded total number of compilations per-

formed, time spent compiling, and time spent testing and

debugging in between compilations. The left scatter plot

compares number of compilations against time required to

complete the task. On average, participants who used Cas-

cade performed 43% more compilations, and completed the

task 21% faster than those who used Quartus. Free responses

indicated that Cascade users were less concerned with ‘wast-

ing time’, and more likely to consider using an FPGA in the

future. The right scatter plot compares time spent compil-

ing against time spent in between compilations. Participants

who used Cascade spent 67× less time compiling, but spent

only slightly less time testing and debugging. This agreed

with free responses which suggested that while Cascade

mean min max
Lines of Verilog code 287 113 709

Always blocks 5 2 12

Blocking-assignments 57 28 132

Nonblocking-assignments 7 2 33

Display statements 11 1 32

Number of builds 27 1 123

Table 1. Aggregate statistics characterizing student solu-

tions to Needleman-Wunsch using Cascade.

encouraged faster compilation, it did not encourage sloppy

thought.

6.4 UT Concurrency Class Study
We used Cascade as teaching tool for an honors undergrad-

uate concurrency course taught at UT Austin in Fall 2018.

The course was designed to provide students with hands-on

experience with parallel hardware and programming models

that expose concurrency. The assignment asked students to

implement a well-known genomics algorithm: Needleman-

Wunsch [15]. Students were tasked with comparing scalabil-

ity with increasing problem size for sequential and parallel

CPU implementations, as well as Cascade-based implemen-

tations running in software and hardware. For most students,

the assignment was a first exposure to Verilog programming.

Students were asked to use an instrumented build of Cascade

which captured a complete history of compilations to a file

that they were encouraged (but not required) to submit along

with their completed assignments. Table 1 summarized the

results for on analysis of 31 submissions, 23 of which were

accompanied by log files.

Students wrote an average 287 lines of verilog (not nor-

malized for boilerplate), tended toward solutions with a

very small amount of sequential logic, and over-used block-

ing assignments (8× more than non-blocking in aggregate,

some using none at all). Only 29% of the students arrived at

pipelined solutions. In general, students relied overwhelm-

ingly on printf support both in debugging and to verify their

final design. Because log capture was not required, it is diffi-

cult to make conclusive statements about the impact of JIT

support on development times. However, the logs we did

collect reflect over 100 build cycles. Even the most conser-

vative assessment of how much the development cycle was

shortened based on this data should find it is substantial.

Anecdotally, students were frustrated with some infras-

tructure aspects of the project. Many submissions which ran

correctly in simulation did not pass timing closure during

the later phases of JIT compilation. This suggests an impor-

tant tradeoff between rapid development and feedback on

hardware-dependent issues, a topic we defer to future work.

Despite this, there was a significant overall positive response.

The class featureed a final research project for which stu-

dents could choose a combination of problem and platform:

nearly 1/3 of the class chose to do further work with Cascade,

more than any other combination of technologies.

7 Limitations
Before closing, we briefly consider Cascade’s technical limi-

tations and anti-goals that it does not seek to achieve.

7.1 Timing Critical Applications
Cascade presents the illusion that modifications to a running

program produce immediately visible hardware side-effects.

This is possible because Cascade abstracts away the details

of how hardware-located standard library components in-

teract with software-located user logic. For peripherals such

as LEDs, the effects of the timing mismatch between the

domains are negligible. For others such as FIFOs, back pres-

sure (e.g. a full signal) is sufficient for guaranteeing that

the data rate of the peripheral does not outstrip the com-

pute throughput of Cascade’s software engines. However

for applications that use high-performance peripherals (eg.

a giga-bit ethernet switch) it is unclear how to preserve

higher-order program semantics such as QoS guarantees

for compilation states in which user logic has not yet been

migrated to hardware.

7.2 Non-Monotonic Language Features
The soundness of executing code immediately after it is

eval’ed depends on the invariant that subsequent eval’s do

not affect the semantics of that code. This is the reason why

Cascade’s REPL gives users the ability to add code to a run-

ning program, but neither the ability to edit nor delete it.

Supporting either feature would violate this property. The

Verilog specification describes support for several language

features that would violate this property for insertions as

well. Specifically, it is syntactically legal to re-parameterize

modules after they have been instantiated (this is akin to

changing a C++ template parameter after an object is cre-

ated). While Cascade does not support these features, they

are deprecated, and will not appear in subsequent revisions

of the specification.

8 Related Work
FPGAs are a mature technology with a long history as target

of research. We offer a necessarily brief survey of that work.

8.1 Programming and Compilation
FPGAs are programmed at many levels of abstraction. They

are often the target of domain specific languages [16, 24, 53,

56, 64, 70, 75, 79] or extensions that integrate FPGAs with

high-level imperative languages [1, 13, 14, 25, 38, 48, 54–56].

Frameworks such as OpenCL [48] and Lime [14] or commer-

cial high-level synthesis tools such as Xilinx AutoESL [25],

transform C-style code into synthesizable RTL, or HDLs such

as Verilog [6], VHDL [7], or BlueSpec [65]. For applications

with strict runtime requirements, experts may target these

lowest-level languages directly. Compilation at this level is a

serious bottleneck and the primary focus of our work.

Many systems in the software domain seek to reduce the

overhead of existing compilers. ccache [84], distcc [69], and

icecream [32] are gcc frontends that minimize redundant re-

compilation of sub-components and execute non-interfering

tasks simultaneously. Microsoft Cloudbuild [30], Google

Bazel [12], and Vesta [37] are distributed caching build sys-

tems. These systems do not translate to the hardware domain,

where whole-program compilation is the norm. Cascade is

an instance of a JIT system. It makes multiple invocations of

the compiler in the context of a runtime environment. JIT

techniques are used in the compilers for many popular soft-

ware languages including Java, JavaScript, Python, Matlab,

and R.

8.2 Simulation
Hardware simulators can be classified into two partially over-

lapping categories: event-driven and cycle-accurate. High-

fidelity simulators such as those provided by Quartus [39]

and Vivado [89] operate at speeds on the order of 10–100

Hz, but are accurate with respect to asynchronous logic and

multiple clock domains. Interpreted simulators such as iVer-

ilog [73] do not offer all of these features, but are somewhat

faster, approaching 1 KHz. Compiled simulators such as Ver-

ilator [76] can operate in the 10 KHz range. Cascade uses JIT

compilation techniques to interpolate between these perfor-

mance domains and native rates of 10 to 100 MHz.

8.3 Hardware-Software Partitioning
Palladium [2] allows users to actively migrate between simu-

lation, accelerated simulation, and emulation environments

at runtime. Lime [14] provides a high level language and

runtime environment capable of dynamically repartition-

ing programs across hardware and software. Both systems

are capable of moving code back and forth between soft-

ware and hardware, but neither provides features similar

to Cascade’s native mode, neither provides a software-style

environment for debugging, and neither allows execution of

unsynthesizable Verilog in hardware. Unlike Lime, Cascade

does not rely on higher-level language support. And unlike

Palladium, Cascade does not require expensive hardware

support. Instead, Cascade uses source-to-source translation

to provide these features on low-cost development boards,

and can easily be extended to new targets.

LEAP [11] is a compiler-supported OS for FPGAs that en-

ables flexible partitioning of modules which communicate

over OSmanaged latency insensitive channels. LEAP enables

dynamic management of FPGA resources and hardware/-

software partitioning of Bluespec modules using a compiler

extension interface called SoftServices. SoftServices provide a

portability mechanism for service-specific functionality sim-

ilar to Cascade’s standard library support for clocks and IO

(Section 3.2). Unlike LEAP, Cascade does not rely on program-

mer exposed interfaces or channel abstractions for dynamic

partitioning of work between software and hardware.

8.4 Operating Systems and Virtualization
Coordinating software simulation and native execution in

a runtime environment requires design choices which re-

semble operating system and virtualization primitives. Many

of these have been explored in the context of FPGAs: spa-

tial multiplexing [23, 31, 81, 86], task preemption [59], re-

location [43], context switching [58, 72], and interleaved

hardware-software execution [18, 34, 81, 86]. Several projects

have extended these concepts to full-fledged operating sys-

tems for FPGA. These include ReconOS [61], Borph [77, 78],

and MURAC [35]. Others have extended these concepts to

FPGAhypervisors. These include CODEZERO [67], Zippy [68],

TARTAN [63], and SCORE [28]. Chen et al. explore virtual-

ization challenges that arise in a setting where FPGAs are

a shared resource [22]. The work integrates Xilinx FPGAs

in OpenStack [74] and Linux-KVM [51], and supports iso-

lation across processes in different virtual machines. Ama-

zon’s EC2 F1 FPGA instances [29] are connected to each

other through a dedicated isolated network such that shar-

ing between instances, users, and accounts is not permitted.

Microsoft Azure Olympus [62] servers are expected to fol-

low a similar model. AmorphOS [47] provides an OS-level

management layer to concurrently share FPGAs for accel-

eration among mutually distrustful processes, based on a

compatibility layer that targets F1 [29] and Catapult [71].

8.5 Communication Models
Many connection strategies exist for exposing FPGAs as

hardware accelerators. In coprocessor-coupled platform such

as ZYNQ [26] and Arria [36] an FPGA is connected to a

dedicated CPU which is tasked with mediating interaction

with the host system. In host-coupled platforms, there is no

coprocessor. Instead, FPGA fabric must be set aside for the

implementation of a mediation layer such as a PCIe bridge

or an Avalon Memory Bus [8]. Cascade’s hardware engines

are an instance of the latter strategy.

8.6 Abstraction and Compatibility
Cascade’s runtime environment is an instance of an over-

lay system. FPGA overlays implement a virtualization layer

to abstract a design from specific FPGA hardware [17, 87],

enabling fast compilation times and lower deployment la-

tency [45, 52], at the expense of reduced hardware utilization

and performance. Examples of overlays include ZUMA [17],

VirtualRC [50], and RCMW [49] which provide bitstream

independence across different hardware and toolchains, and

VForce [64] which enables the same application to be run

on different reconfigurable supercomputers. AmorphOS [47]

implements a compatibility layer at the OS interface.

9 Conclusion and Future Work
Compilation is a painfully slow part of the hardware design

process and a major obstacle to the widespread adoption

of FPGA technology. In this paper we presented Cascade,

the first JIT compiler for Verilog. Cascade allows users to

test and deploy code in the same environment, ignore the

distinction between synthesizable and unsynthesizable Ver-

ilog, and to enjoy cross-platform portability, while requiring

only minimal changes to their code. Cascade tightens the

compile-test-debug cycle and allows users to modify pro-

grams as they are run. Side-effects on IO peripherals become

visible immediately, debugging incurs no more than a 3× per-

formance penalty, and near native performance is supported

for finalized designs.

Future work will explore the development of dynamic

optimization techniques which can produce performance

and layout improvements by specializing a program to the

input values it encounters at runtime. Future work will also

consider the use of Cascade as a platform for FPGA virtu-

alization. Specifically, multi-runtime aware backends could

be used to temporarily and spatially multiplex FPGA fabric,

and Cascade’s ability to move programs back and forth be-

tween hardware and software could be used to bootstrap

virtual machine migration for systems that use hardware

accelerators.

Acknowledgments
We thank the VMware employees and interns who partic-

ipated in our user study. We also thank the UT Austin CS

378H Fall 2018 students for being the first external group to

use Cascade, and for their enthusiastic contributions to its

open source code.

References
[1] [n. d.]. AppArmor. http://www.xilinx.com/products/design-

tools/software-zone/sdaccel.html.

[2] [n. d.]. Cadence Palladium XP II Verification Computing Platform.

https://www.cadence.com/content/dam/cadence-www/global/
enUS/documents/tools/system-design-verification/palladium-xpii-
tb.pdf. (Accessed January 2019).

[3] [n. d.]. Debian – Details of Package fpgatools. https://
packages.debian.org/stretch/fpgatools. (Accessed July 2018).

[4] [n. d.]. FPGAMiner. https://github.com/fpgaminer/Open-Source-
FPGA-Bitcoin-Miner. (Accessed July 2018).

[5] [n. d.]. SymbiFlow. https://symbiflow.github.io/. (Accessed July

2018).

[6] 2006. IEEE Standard for Verilog Hardware Description Language. IEEE
Std 1364-2005 (Revision of IEEE Std 1364-2001) (2006), 1–560.

[7] 2009. IEEE Standard VHDL Language Reference Manual. IEEE Std
1076-2008 (Revision of IEEE Std 1076-2002) (Jan 2009), c1–626.

[8] 2017. Avalon Interface Specifications.

[9] 2017. Device Handbook — Altera Cyclone V.

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/palladium-xpii-tb.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/palladium-xpii-tb.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/palladium-xpii-tb.pdf
https://packages.debian.org/stretch/fpgatools
https://packages.debian.org/stretch/fpgatools
https://github.com/fpgaminer/Open-Source-FPGA-Bitcoin-Miner
https://github.com/fpgaminer/Open-Source-FPGA-Bitcoin-Miner
https://symbiflow.github.io/

[10] 2017. Intel unveils new Xeon chip with integrated FPGA, touts 20x
performance boost - ExtremeTech. https://www.extremetech.com/
extreme/184828-intel-unveils-new-xeon-chip-with-integrated-fpga-
touts-20x-performance-boost

[11] Michael Adler, Kermin E. Fleming, Angshuman Parashar, Michael

Pellauer, and Joel Emer. 2011. Leap Scratchpads: Automatic Memory

and Cache Management for Reconfigurable Logic. In Proceedings of
the 19th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’11). ACM, New York, NY, USA, 25–28.

[12] K Aehlig et al. 2016. Bazel: Correct, reproducible, fast builds for every-

one. https://bazel.io
[13] Erik Anderson, Jason Agron, Wesley Peck, Jim Stevens, Fabrice Baijot,

Ron Sass, and David Andrews. 2006. Enabling a Uniform Programming

Model across the Software/Hardware Boundary. FCCM ’06.

[14] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah.

2010. Lime: A Java-compatible and Synthesizable Language for Het-

erogeneous Architectures. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’10). ACM, New York, NY, USA, 89–108.

[15] Saul B. Needleman and Christian D. Wunsch. 1970. A General Method

Applicable to Search for Similarities in Amino Acid Sequence of 2

Proteins. Journal of molecular biology 48 (04 1970), 443–53. https:
//doi.org/10.1016/0022-2836(70)90057-4

[16] Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew

Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.

2012. Chisel: constructing hardware in a Scala embedded language.

In The 49th Annual Design Automation Conference 2012, DAC ’12, San
Francisco, CA, USA, June 3-7, 2012. 1216–1225.

[17] Alexander Brant and Guy GF Lemieux. 2012. ZUMA: An open FPGA

overlay architecture. In Field-Programmable Custom Computing Ma-
chines (FCCM), 2012 IEEE 20th Annual International Symposium on.
IEEE, 93–96.

[18] Gordon J. Brebner. 1996. A Virtual Hardware Operating System for

the Xilinx XC6200. In Proceedings of the 6th International Workshop
on Field-Programmable Logic, Smart Applications, New Paradigms and
Compilers (FPL ’96). Springer-Verlag, London, UK, UK, 327–336.

[19] Stuart Byma, Naif Tarafdar, Talia Xu, Hadi Bannazadeh, Alberto Leon-

Garcia, and Paul Chow. 2015. Expanding OpenFlow Capabilities

with Virtualized Reconfigurable Hardware. In Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’15). ACM, New York, NY, USA, 94–97.

[20] Jared Casper and Kunle Olukotun. 2014. Hardware Acceleration of

Database Operations. In Proceedings of the 2014 ACM/SIGDA Inter-
national Symposium on Field-programmable Gate Arrays (FPGA ’14).
ACM, New York, NY, USA, 151–160.

[21] Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy

Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet

Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov,

Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou, and

Doug Burger. 2016. A Cloud-Scale Acceleration Architecture, In Pro-

ceedings of the 49th Annual IEEE/ACM International Symposium on

Microarchitecture.

[22] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao

Chang, and Kun Wang. 2014. Enabling FPGAs in the Cloud. In Pro-
ceedings of the 11th ACM Conference on Computing Frontiers (CF ’14).
ACM, New York, NY, USA, Article 3, 10 pages.

[23] Liang Chen, Thomas Marconi, and Tulika Mitra. 2012. Online Sched-

uling for Multi-core Shared Reconfigurable Fabric. In Proceedings of
the Conference on Design, Automation and Test in Europe (DATE ’12).
EDA Consortium, San Jose, CA, USA, 582–585.

[24] Eric S. Chung, John D. Davis, and Jaewon Lee. 2013. LINQits: Big

Data on Little Clients. In 40th International Symposium on Computer
Architecture. ACM.

[25] Philippe Coussy and Adam Morawiec. 2008. High-level synthesis: from
algorithm to digital circuit. Springer Science & Business Media.

[26] Louise H Crockett, Ross A Elliot, Martin A Enderwitz, and Robert W

Stewart. 2014. The Zynq Book: Embedded Processing with the Arm
Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc. Strathclyde
Academic Media.

[27] Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. 2016. FPGP:

Graph Processing Framework on FPGA A Case Study of Breadth-First

Search. In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA ’16). ACM, New York, NY,

USA, 105–110.

[28] André DeHon, Yury Markovsky, Eylon Caspi, Michael Chu, Randy

Huang, Stylianos Perissakis, Laura Pozzi, Joseph Yeh, and John

Wawrzynek. 2006. Stream computations organized for reconfigurable

execution. Microprocessors and Microsystems 30, 6 (2006), 334–354.
[29] Amazon EC2. 2017. Amazon EC2 F1 Instances.

[30] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik

Mavrinac, Wolfram Schulte, Newton Sanches, and Srikanth Kandula.

2016. CloudBuild: Microsoft’s distributed and caching build service. In

Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion Volume. 11–
20.

[31] W. Fu and K. Compton. 2008. Scheduling Intervals for Reconfigurable

Computing. In Field-Programmable Custom Computing Machines, 2008.
FCCM ’08. 16th International Symposium on. 87–96.

[32] K Funk et al. 2016. icecream. https://github.com/icecc/icecream
[33] GNU. [n. d.]. GTKWave. http://gtkwave.sourceforge.net. (Accessed

July 2018).

[34] Ivan Gonzalez, Sergio Lopez-Buedo, Gustavo Sutter, Diego Sanchez-

Roman, Francisco J. Gomez-Arribas, and Javier Aracil. 2012. Virtualiza-

tion of Reconfigurable Coprocessors in HPRC Systems with Multicore

Architecture. J. Syst. Archit. 58, 6-7 (June 2012), 247–256.
[35] B. K. Hamilton, M. Inggs, and H. K. H. So. 2014. Scheduling Mixed-

Architecture Processes in Tightly Coupled FPGA-CPU Reconfig-

urable Computers. In Field-Programmable Custom Computing Machines
(FCCM), 2014 IEEE 22nd Annual International Symposium on. 240–240.

[36] Arria V Device Handbook. 2012. Volume 1: Device Overview and

Datasheet. (2012).

[37] Allan Heydon, Timothy Mann, Roy Levin, and Yuan Yu. 2006. Software
Configuration Management Using Vesta. Springer.

[38] SRC Computers Inc. 2006. Carte Programming Environment.

[39] Intel. 2018. Intel Quartus Prime Software. https:
//www.altera.com/products/design-software/fpga-design/quartus-
prime/download.html

[40] Zsolt István, David Sidler, and Gustavo Alonso. 2017. Caribou: Intelli-

gent Distributed Storage. PVLDB 10, 11 (2017), 1202–1213.

[41] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016.

Consensus in a Box: Inexpensive Coordination in Hardware. In Pro-
ceedings of the 13th Usenix Conference on Networked Systems Design and
Implementation (NSDI’16). USENIX Association, Berkeley, CA, USA,

425–438.

[42] Alexander Kaganov, Asif Lakhany, and Paul Chow. 2011. FPGA Ac-

celeration of MultiFactor CDO Pricing. ACM Trans. Reconfigurable
Technol. Syst. 4, 2, Article 20 (May 2011), 17 pages.

[43] H. Kalte and M. Porrmann. 2005. Context saving and restoring for

multitasking in reconfigurable systems. In Field Programmable Logic
and Applications, 2005. International Conference on. 223–228.

[44] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Si-

mon Kuhnle, Seyed VahidMohammadi,Wolfgang Schröder-Preikschat,

and Klaus Stengel. 2012. CheapBFT: Resource-efficient Byzantine Fault

Tolerance. In Proceedings of the 7th ACM European Conference on Com-
puter Systems (EuroSys ’12). ACM, New York, NY, USA, 295–308.

[45] Nachiket Kapre and Jan Gray. 2015. Hoplite: Building austere overlay

NoCs for FPGAs. In FPL. IEEE, 1–8.

https://www.extremetech.com/extreme/184828-intel-unveils-new-xeon-chip-with-integrated-fpga-touts-20x-performance-boost
https://www.extremetech.com/extreme/184828-intel-unveils-new-xeon-chip-with-integrated-fpga-touts-20x-performance-boost
https://www.extremetech.com/extreme/184828-intel-unveils-new-xeon-chip-with-integrated-fpga-touts-20x-performance-boost
https://bazel.io
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://github.com/icecc/icecream
http://gtkwave.sourceforge.net
https://www.altera.com/products/design-software/fpga-design/quartus-prime/download.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/download.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/download.html

[46] Kaan Kara and Gustavo Alonso. 2016. Fast and robust hashing for data-

base operators. In 26th International Conference on Field Programmable
Logic and Applications, FPL 2016, Lausanne, Switzerland, August 29 -
September 2, 2016. 1–4.

[47] Ahmed Khawaja, , Joshua Landgraf, Rohith Prakash, Michael Wei, Eric

Schkufza, and Christopher J. Rossbach. 2018. "Sharing, Protection and

Compatibility for Reconfigurable Fabric with AmorphOS". In Proceed-
ings of the 12th USENIX Symposium on Operating Systems Design and
Implementation. (OSDI). Carlsbad, CA.

[48] Khronos Group 2009. The OpenCL Specification, Version 1.0. Khronos
Group.

[49] Robert Kirchgessner, Alan D. George, and Greg Stitt. 2015. Low-

Overhead FPGA Middleware for Application Portability and Produc-

tivity. ACM Trans. Reconfigurable Technol. Syst. 8, 4, Article 21 (Sept.
2015), 22 pages.

[50] Robert Kirchgessner, Greg Stitt, Alan George, and Herman Lam. 2012.

VirtualRC: A Virtual FPGA Platform for Applications and Tools Porta-

bility. In Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA ’12). ACM, New York, NY, USA,

205–208.

[51] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.

2007. kvm: the Linux virtual machine monitor. In Proceedings of the
Linux symposium, Vol. 1. 225–230.

[52] Dirk Koch, Christian Beckhoff, and Guy G. F. Lemieux. 2013. An

efficient FPGA overlay for portable custom instruction set extensions.

In FPL. IEEE, 1–8.
[53] David Koeplinger, Christina Delimitrou, Raghu Prabhakar, Christos

Kozyrakis, Yaqi Zhang, and Kunle Olukotun. 2016. Automatic Gener-

ation of Efficient Accelerators for Reconfigurable Hardware. In Pro-
ceedings of the 43rd International Symposium on Computer Architec-
ture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 115–127. https:
//doi.org/10.1109/ISCA.2016.20

[54] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,

Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,

Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A Language

and Compiler for Application Accelerators. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI 2018). ACM, New York, NY, USA, 296–311.

[55] James Lebak, Jeremy Kepner, Henry Hoffmann, and Edward Rutledge.

2005. Parallel VSIPL++: An open standard software library for high-

performance parallel signal processing. Proc. IEEE 93, 2 (2005), 313–

330.

[56] Ilia A. Lebedev, Christopher W. Fletcher, Shaoyi Cheng, James Martin,

Austin Doupnik, Daniel Burke, Mingjie Lin, and John Wawrzynek.

2012. Exploring Many-Core Design Templates for FPGAs and ASICs.

Int. J. Reconfig. Comp. 2012 (2012), 439141:1–439141:15.
[57] Christian Leber, Benjamin Geib, and Heiner Litz. 2011. High Frequency

Trading Acceleration Using FPGAs. In Proceedings of the 2011 21st
International Conference on Field Programmable Logic and Applications
(FPL ’11). IEEE Computer Society, Washington, DC, USA, 317–322.

[58] Trong-Yen Lee, Che-Cheng Hu, Li-Wen Lai, and Chia-Chun Tsai. 2010.

Hardware Context-Switch Methodology for Dynamically Partially

Reconfigurable Systems. J. Inf. Sci. Eng. 26 (2010), 1289–1305.
[59] L. Levinson, R. Manner, M. Sessler, and H. Simmler. 2000. Preemptive

multitasking on FPGAs. In Field-Programmable Custom Computing
Machines, 2000 IEEE Symposium on. 301–302.

[60] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn, Anuj Kalia,

Michael Kaminsky, David G. Andersen, O. Seongil, Sukhan Lee, and

Pradeep Dubey. 2015. Architecting to Achieve a Billion Requests Per

Second Throughput on a Single Key-value Store Server Platform. In

Proceedings of the 42Nd Annual International Symposium on Computer
Architecture (ISCA ’15). ACM, New York, NY, USA, 476–488.

[61] Enno Lübbers and Marco Platzner. 2009. ReconOS: Multithreaded

Programming for Reconfigurable Computers. ACM Trans. Embed.

Comput. Syst. 9, 1, Article 8 (Oct. 2009), 33 pages.
[62] Microsoft. 2017. Microsoft Azure Goes Back To Rack Servers With

Project Olympus.

[63] MahimMishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkatara-

mani, Seth C. Goldstein, and Mihai Budiu. 2006. Tartan: Evaluating

Spatial Computation for Whole Program Execution. SIGOPS Oper. Syst.
Rev. 40, 5 (Oct. 2006), 163–174.

[64] Nicholas Moore, Albert Conti, Miriam Leeser, Benjamin Cordes, and

Laurie Smith King. 2007. An extensible framework for application

portability between reconfigurable supercomputing architectures.

[65] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct

RTL from high level specifications. In Formal Methods and Models for
Co-Design, 2004. MEMOCODE’04. Proceedings. Second ACM and IEEE
International Conference on. IEEE, 69–70.

[66] Tayo Oguntebi and Kunle Olukotun. 2016. GraphOps: A Dataflow

Library for Graph Analytics Acceleration. In Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’16). ACM, New York, NY, USA, 111–117.

[67] K. Dang Pham, A. K. Jain, J. Cui, S. A. Fahmy, and D. L. Maskell.

2013. Microkernel hypervisor for a hybrid ARM-FPGA platform. In

Application-Specific Systems, Architectures and Processors (ASAP), 2013
IEEE 24th International Conference on. 219–226.

[68] Christian Plessl and Marco Platzner. 2005. Zippy-A coarse-grained

reconfigurable array with support for hardware virtualization. In

Application-Specific Systems, Architecture Processors, 2005. ASAP 2005.
16th IEEE International Conference on. IEEE, 213–218.

[69] M Pool et al. 2016. distcc: A free distributed C/C++ compiler system.

https://github.com/distcc/distcc
[70] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian

Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle

Olukotun. 2017. Plasticine: A Reconfigurable Architecture For Parallel

Paterns. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 389–402.

[71] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros

Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,

Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,

Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, Jim Larus,

Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao,

andDoug Burger. 2014. A Reconfigurable Fabric for Accelerating Large-

Scale Datacenter Services. In 41st Annual International Symposium on
Computer Architecture (ISCA).

[72] Kyle Rupnow, Wenyin Fu, and Katherine Compton. 2009. Block, Drop

or Roll(back): Alternative Preemption Methods for RH Multi-Tasking.

In FCCM 2009, 17th IEEE Symposium on Field Programmable Custom
Computing Machines, Napa, California, USA, 5-7 April 2009, Proceedings.
63–70.

[73] J. Russell and R. Cohn. 2012. Icarus Verilog. Book on Demand. https:
//books.google.co.uk/books?id=ZNanMQEACAAJ

[74] Omar Sefraoui, MohammedAissaoui, andMohsine Eleuldj. 2012. Open-

Stack: toward an open-source solution for cloud computing. Interna-
tional Journal of Computer Applications 55, 3 (2012).

[75] Yi Shan, BoWang, Jing Yan, YuWang, Ning-Yi Xu, and Huazhong Yang.

2010. FPMR: MapReduce framework on FPGA.. In FPGA (2010-03-01),

Peter Y. K. Cheung and John Wawrzynek (Eds.). ACM, 93–102.

[76] W Snyder, D Galbi, and PWasson. 2018. Verilator. https://veripool.org/
wiki/verilator

[77] Hayden Kwok-Hay So and Robert Brodersen. 2008. A Unified Hard-

ware/Software Runtime Environment for FPGA-based Reconfigurable

Computers Using BORPH. ACM Trans. Embed. Comput. Syst. 7, 2,
Article 14 (Jan. 2008), 28 pages.

[78] Hayden Kwok-Hay So and Robert W. Brodersen. 2007. BORPH: An
Operating System for FPGA-Based Reconfigurable Computers. Ph.D. Dis-
sertation. EECS Department, University of California, Berkeley. http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-92.html

https://doi.org/10.1109/ISCA.2016.20
https://doi.org/10.1109/ISCA.2016.20
https://github.com/distcc/distcc
https://books.google.co.uk/books?id=ZNanMQEACAAJ
https://books.google.co.uk/books?id=ZNanMQEACAAJ
https://veripool.org/wiki/verilator
https://veripool.org/wiki/verilator
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-92.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-92.html

[79] Hayden Kwok-Hay So and John Wawrzynek. 2016. OLAF’16: Sec-

ond International Workshop on Overlay Architectures for FPGAs. In

Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’16). ACM, New York, NY, USA,

1–1.

[80] Haoyu Song, Todd S. Sproull, Michael Attig, and John W. Lockwood.

2005. Snort Offloader: A Reconfigurable Hardware NIDS Filter. In

Proceedings of the 2005 International Conference on Field Programmable
Logic and Applications (FPL), Tampere, Finland, August 24-26, 2005.
493–498.

[81] C. Steiger, H. Walder, and M. Platzner. 2004. Operating systems for

reconfigurable embedded platforms: online scheduling of real-time

tasks. IEEE Trans. Comput. 53, 11 (Nov 2004), 1393–1407.
[82] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei

Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao. 2016. Throughput-

Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolu-

tional Neural Networks. In Proceedings of the 2016 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays (FPGA ’16).
ACM, New York, NY, USA, 16–25.

[83] Lambert M. Surhone, Mariam T. Tennoe, and Susan F. Henssonow.

2010. Node.Js. Betascript Publishing, Mauritius.

[84] A Tridgell, J Rosdahl, et al. 2016. ccache: A Fast C/C++ Compiler Cache.

https://ccache.samba.org

[85] A. Tsutsui, T. Miyazaki, K. Yamada, and N. Ohta. 1995. Special Pur-

pose FPGA for High-speed Digital Telecommunication Systems. In

Proceedings of the 1995 International Conference on Computer Design:
VLSI in Computers and Processors (ICCD ’95). IEEE Computer Society,

Washington, DC, USA, 486–491.

[86] G. Wassi, Mohamed El Amine Benkhelifa, G. Lawday, F. Verdier, and S.

Garcia. 2014. Multi-shape tasks scheduling for online multitasking on

FPGAs. In Reconfigurable and Communication-Centric Systems-on-Chip
(ReCoSoC), 2014 9th International Symposium on. 1–7.

[87] Tobias Wiersema, Ame Bockhorn, and Marco Platzner. 2014. Em-

bedding FPGA overlays into configurable Systems-on-Chip: ReconOS

meets ZUMA. In ReConFig. IEEE, 1–6.
[88] Clifford Wolf. [n. d.]. Yosys Open SYnthesis Suite. http://

www.clifford.at/yosys/. (Accessed July 2018).

[89] Xilinx. 2018. Vivado Design Suite. https://www.xilinx.com/products/
design-tools/vivado.html

[90] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Ja-

son Cong. 2015. Optimizing FPGA-based Accelerator Design for Deep

Convolutional Neural Networks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA
’15). ACM, New York, NY, USA, 161–170.

https://ccache.samba.org
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

	Abstract
	1 Introduction
	2 Background
	2.1 Running Example
	2.2 Verilog
	2.3 Synthesizable Core
	2.4 Design Flow
	2.5 Simulation Reference Model

	3 Cascade
	3.1 User Interface
	3.2 Standard Library
	3.3 Intermediate Representation
	3.4 Runtime
	3.5 Target-Specific Engine ABI

	4 Performance
	4.1 Goals
	4.2 User Logic
	4.3 Standard Library Components
	4.4 Open-Loop Scheduling
	4.5 Native Mode

	5 Target-Specific Details
	5.1 Software Engines
	5.2 Hardware Engines

	6 Evaluation
	6.1 Proof of Work
	6.2 Regular Expression Streaming
	6.3 User Study
	6.4 UT Concurrency Class Study

	7 Limitations
	7.1 Timing Critical Applications
	7.2 Non-Monotonic Language Features

	8 Related Work
	8.1 Programming and Compilation
	8.2 Simulation
	8.3 Hardware-Software Partitioning
	8.4 Operating Systems and Virtualization
	8.5 Communication Models
	8.6 Abstraction and Compatibility

	9 Conclusion and Future Work
	Acknowledgments
	References

