Quantifying Information Leakage of Deterministic Encryption

Mireya Jurado
Florida International University
School of Computing and Information Sciences
Miami, Florida, USA
mjurado@fiu.edu

ABSTRACT

In order to protect user data while maintaining application func-
tionality, encrypted databases can use specialized cryptography
such as property-revealing encryption, which allows a property of
the underlying plaintext values to be computed from the ciphertext.
One example is deterministic encryption which ensures that the
same plaintext encrypted under the same key will produce the same
ciphertext. This technology enables clients to make queries on sen-
sitive data hosted in a cloud server and has considerable potential
to protect data. However, the security implications of deterministic
encryption are not well understood.

We provide a leakage analysis of deterministic encryption through
the application of the framework of quantitative information flow.
A key insight from this framework is that there is no single “right”
measure by which leakage can be quantified: information flow
depends on the operational scenario and different operational sce-
narios require different leakage measures. We evaluate leakage
under three operational scenarios, modeled using three different
gain functions, under a variety of prior distributions in order to
bring clarity to this problem.

CCS CONCEPTS

« Security and privacy — Information-theoretic techniques;
Management and querying of encrypted data; Formal security
models.

KEYWORDS

Quantitative Information Flow; Deterministic Encryption; Leakage

ACM Reference Format:

Mireya Jurado and Geoffrey Smith. 2019. Quantifying Information Leakage
of Deterministic Encryption. In 2019 Cloud Computing Security Workshop
(CCSW’19), November 11, 2019, London, United Kingdom. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3338466.3358915

1 INTRODUCTION

Sensitive user data continues to be stolen in large-scale data breaches.

While standard encryption protects data confidentiality, it restricts
database application functionality. An alternative solution is to use

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCSW’19, November 11, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6826-1/19/11...$15.00
https://doi.org/10.1145/3338466.3358915

Geoffrey Smith
Florida International University
School of Computing and Information Sciences
Miami, Florida, USA
smithg@cis.fiu.edu

specialized cryptography to enable encrypted databases such that
some application functionality is preserved. One approach to en-
crypted databases is property-revealing encryption which allows a
property of the underlying plaintext to be computed from the cipher-
text. An example of property-revealing encryption is deterministic
encryption which ensures that the same plaintext encrypted under
the same key will produce the same ciphertext. A client can deter-
ministically encrypt a column with sensitive information and then
host the data in a remote location, such as a cloud database. The
client can then create a query, encrypt the query’s keywords locally,
retrieve the encrypted column’s matching items from the cloud,
and decrypt them locally. Another example of property-revealing
encryption is order-revealing encryption, which allows the order of
two plaintexts to be computed from the ciphertexts. Order-revealing
encryption facilitates sorting and range queries.

Property-revealing encryption is controversial. The CryptDB sys-
tem, introduced by Popa, Redfiled, Zeldovich, and Balakrishnan in
2011, implements property-revealing encryption to enable the func-
tionality of database management systems [30]. In 2015, Naveed,
Kamara, and Wright presented attacks on columns encrypted under
deterministic and order-revealing encryption, based on the design
of CryptDB [28]. Naveed et al. demonstrated that an attacker with a
well-correlated auxiliary database can perform an inference attack
on encrypted database columns in order to recover private data. In
response, Popa, Zeldovich, and Balakrishnan provided guidelines
for the safe use of the CryptDB system in which they claimed de-
terministic encryption is safe to use for a sensitive field if every
value in a column appears only once; deterministic encryption for
non-unique fields is described as “allowing some leakage” [31]. But
there does not currently exist a clear understanding of the leakage
of these encryption schemes.

There is considerable interest in the field of encrypted databases:
many cryptographic constructions are being considered [1, 7, 8,
13, 15, 16], different sophisticated attacks continue to be devel-
oped [9, 18, 21, 22, 32], and several academic workshops that focus
on this topic have been established [19, 34]. Furthermore, there
are existing commercial products that encrypt data to preserve
application functionality such as Bitglass [5], CipherCloud [14],
McAfee MVISION Cloud [24], Microsoft Always Encrypted [27],
Netskope [29], and Symantec CloudSOC [36]. While encrypted data-
base solutions are extremely attractive, at present their security
implications are not well understood.

1.1 Contributions

In this paper, we undertake a detailed analysis of the leakage as-
sociated with deterministic encryption through the framework of
quantitative information flow (QIF). QIF is an information-theoretic
framework used to quantify the amount of information flow in a

system. In contrast with machine learning approaches, QIF can
provide concrete upper bounds that reflect the best results that
an optimal adversary is able to achieve. A key insight from this
framework is that there is no one “correct” way to measure leak-
age. Information flow depends on the operational scenario and
different operational scenarios require different leakage measures.
We contribute a leakage analysis under three different operational
scenarios in order to develop a much clearer understanding of the
information leakage associated with deterministic encryption.

Imagine a medical database in which there is a single column
with one row per patient that consists of the patient’s disease diag-
nosis. Let there be n patients and k possible diagnosis; assume k is
small. With strong encryption, the adversary is unable to determine
anything about the ciphertext. With deterministic encryption, the
adversary can see which entries are the same and possibly perform
some type of inference attack. Given this scenario, we would like
to quantify the leakage under different adversarial goals. For exam-
ple, the adversary may try to guess the entire column of diseases;
in Section 4, we see this corresponds to Bayes vulnerability. She
could also try to guess the disease of a patient, either a particular
patient i or an arbitrary patient. These operational scenarios are
evaluated in Section 5. We analyze leakage with respect to these
three operational scenarios and under various prior distributions
and as we will see, they are quite different. In some cases, there is
no leakage at all and in others, there is quite a bit.

o In the scenario where the adversary attempts to guess the en-
tire column, regardless of the distribution on diseases, there
is a large amount of leakage for large n. For some disease
distributions, the adversary can achieve a success proba-
bility close to 1, while for others, the adversary’s success
probability is far less than 1.

e In both scenarios where the adversary tries to guess the
disease of a single patient, under a uniform distribution on
diseases, there is no leakage at all.

1.2 Related Work

How to meaningfully discuss leakage within the field of encrypted
databases is an open question. The approach to leakage began
when Curtmola, Garay, Kamara and Ostrovsky defined a trace as
the information one is willing to leak about the interaction between
the client and the server [15]. Chase and Kamara then defined more
precise leakage functions as a way to precisely capture what is
being leaked by ciphertext and tokens [12]. This approach is first
applied to order-preserving encryption by Chenette, Lewi, Weis,
and Wu [13]. More recently, leakage is discussed in terms of leakage
patterns that describe what data is revealed at a specific operation;
these compose to form a scheme’s leakage profile [20, 23]. The
leakage profile is fundamental to a scheme’s security definition, but
the threat posed by a leakage profile is unclear [10, 23].

Despite the existence of leakage profiles, cryptoanalysis research
has exploited different sets of intentionally revealed information
to accomplish adversarial goals such as data or query recovery [9,
18, 21, 22, 28, 38]. The following is only a sample of cryptoanalysis
research on property-revealing encryption. As discussed previously,
Naveed et al. develop attacks in which a well-correlated auxiliary
database is used to infer ciphertext values [28]. The adversarial

goal is to recover as many plaintext values in a single encrypted
column as possible, but the success of the attack depends on the de-
gree to which the auxiliary database is correlated. Grubbs, Sekniqi,
Bindschaedler, Naveed, and Ristenpart empirically evaluate order-
revealing and order-preserving encryption but explicitly “leave as
an open question providing a more formal analysis of inference
attacks” [21]. Durak, DuBuisson, and Cash explore the behavior of
leakage profiles on data under a non-uniform distribution and cross-
column correlations but could not quantify the attacks theoreti-
cally [18]. Bindschaedler, Grubbs, Cash, Ristenpart, and Shmatikov
also evaluate cross-column correlations and provide an attack that
functions as a maximum likelihood estimator which maps plain-
texts to ciphertexts given some prior distribution from an auxiliary
database. [4]. This attack corresponds to the operational scenario in
which the adversary attempts to guess as many positions correctly
as possible; in this work, we consider three different scenarios.

Prior work has analyzed leakage and quantified security in the
encrypted search domain. Sedghi, Doumen, Hartel, and Jonker pro-
vide an information-theoretic analysis of searchable encryption in
which they evaluate three seminal schemes [35]. De Capitani Di
Vimercati, Foresti, Jajodia, Paraboschi, and Samarati examine the
leakage associated with data indexing over fragments, where index-
ing is defined as a function mapping plaintext values to obfuscated
values. They enumerate ways in which combinations of indexing
and adversary knowledge can recover sensitive information [17].
Ceselli et al. provide a graph-based approach to quantify the secu-
rity provided by indexing [11]. Our work is the first application of
the QIF framework to this domain.

Organization. Section 2 provides an overview of the QIF frame-
work and Section 3 explains how deterministic encryption is mod-
eled within this framework. Sections 4 and 5 evaluate deterministic
encryption with respect to three different operational scenarios.
Section 6 then discusses computational challenges specific to our
leakage calculations and gives a detailed look at posterior vulnera-
bility. Lastly, Section 7 discusses future directions and concludes.

2 QUANTITATIVE INFORMATION FLOW

In this section, we provide a brief overview of the key concepts of
quantitative information flow (QIF). An excellent short introduction
can be found in Mclver [25] and a book-length treatment can be
found in Alvim et al. [2]; this book includes all definitions and
theorems mentioned in this section, as well as proofs for these
theorems.

QIF is an information-theoretic approach that assumes that an
adversary’s prior knowledge about a secret input X drawn from
a finite set of possible secret values X is modeled as a probability
distribution . Intuitively, a uniform 7 means that X has more
secrecy while a non-uniform 7 means the secret has less secrecy.
A system takes the secret X as input and produces observable
output Y, which may help the adversary achieve some goal, such
as guessing the secret or a property of the secret.

We can statically model all possible inputs and outputs of the
system as an information-theoretic channel matrix C that gives the
conditional probabilities p(y|x).

Definition 2.1 (Channel Matrix). Let X and Y be finite sets, in-
tuitively representing input values and observable output values.

T C y1 y2 ys ys J 1 y2 y3s ya [r>C] V4 Y3 724 18
1/4 x1 Y2 Y2 0 0 N x1 Y8 Y8 0 0 N X1 2 .33 0 0
12 x3 0 V4 12 14 x 0 Vs lYa g X 0 3 67 1
14 x3 Y2 13 16 0O x3 Y8 Viz 124 0 X3 Y2 Y4 Y7 0

Figure 1: An example of how a prior 7 and a channel C are mapped to joint matrix] and then to hyper-distribution [> C]

A channel matrix C from X to Y is a matrix, indexed by X x Y,
whose rows give the distribution on outputs corresponding to each
possible input. That is, entry Cy,, denotes p(y|x), the conditional
probability of getting output y given input x. Note that all entries in
a channel matrix are between 0 and 1 and each row sums to 1. O

We assume the adversary knows C and can update her knowl-
edge about X to a posterior distribution px|, given each output y.
Each output y also has a probability p(y) of occurring. The funda-
mental insight is that the information-theoretic essence of a channel
matrix C is a mapping from priors 7 to distributions on posterior
distributions, which we call hyper-distributions and denote [> C].
This mapping is called the abstract channel denoted by C.

Figure 1 provides an example of how channel matrix C maps
a prior & to hyper-distribution [> C]. First we form the joint
matrix J, where] , gives the joint probability of each input-output
pair. Note that J is computed by multiplying row x of C by the
prior probability 7. Next we find the marginal distribution py by
summing the columns of J; thus here we get py = (1/4,1/3,7/24,1/8).
Now each possible value of Y gives a posterior distribution on X, by
Bayesian updating. Those posterior distributions can be calculated
by normalizing the columns of J; the posterior distributions here
are (1/2, 0, 1/2), (3/s, 3/8, 1/4), (0, 6/7,1/7), and (0, 1, 0).

We can imagine these posterior distributions as worlds that an
adversary seeing the output of C could end up in; we also refer to
these posterior distributions as inner distributions. It is important
to realize these worlds are not equally likely. These inner distri-
butions themselves have probabilities of occurring, which we call
the outer distribution; in this example, the outer distribution is
(1/4, 1/3,7/24, 1/8). Notice in the last world, the adversary knows that
the secret is x2. However, this world only occurs with probability
1/8. It is more likely that the adversary ends up in a different world
in which she is less sure about the secret. The fundamental effect
of the channel is to enable each output y to provide the adversary
with different knowledge about the secret X. Finally, we observe
that the particular output labels y1, y2, . . . do not matter at all, as
renaming them to z1, z, . . . would have no effect on the leakage.
As a result, the essence of the effect of channel C on prior 7 is
simply the hyper-distribution [z > C] shown on the right-hand side
of Figure 1.

2.1 Gain Functions and g-Vulnerability

We can use gain functions to measure the vulnerability of X with
respect to specific operational scenarios. We define gain functions
in the following way:

Definition 2.2 (Gain function). Given a finite, non-empty set X (of
possible secret values) and a non-empty set ‘W (of possible actions),
a gain function is a function g : W x X — R. O

We let g (w, x) dictate the adversary’s gain for performing action
w when the secret’s value is x. Often, actions are guesses the ad-
versary could make about the secret, but sometimes the best action
is to not make any guess at all, as in a scenario where making an
incorrect guess triggers a penalty.

An obvious and often relevant gain function addresses the ad-
versarial goal of guessing the entire secret correctly in one try;
we refer to this as the identity gain function denoted g;4. In this
scenario, the set of actions available to the adversary is equal to
the set of secrets ‘W = X. The adversary will receive a gain of 1 if
she guesses the entire secret correctly and 0 otherwise. The gain
function gyq is defined in the following way:

Definition 2.3 (Identity gain function). The identity gain function
gid : X x X — {0, 1} is given by

1, ifw=x,
0, ifw#x

id (w,x) = {
o

More generally, gain functions allow us to express a variety of
operational scenarios. For example, we can model the case in which
the adversary is allowed to make k guesses to correctly guess the
value of X. Or we can model the case in which the adversary must
guess whether or not X satisfies some property. We can also model
the case in which the adversary is penalized for making an incorrect
guess.

Given a gain function g, an optimal adversary will choose an
action that maximizes her expected gain with respect to 7. We
define g-vulnerability in the following way:

Definition 2.4 (g-Vulnerability). The g-vulnerability of = is de-
fined as
V, 1=
g(n) = max 3 meg(w.)
xeX
m]

We refer to this as prior g-vulnerability as it represents how
vulnerable the secret is before the channel is run. For example,
notice that the gjq-vulnerability of 7 is maxy 7x. Intuitively, an
adversary attempting to guess the secret will guess a value with
highest probability of occurring. Because Vg, () represents such a
basic security concern, we have for it a special terminology Bayes
vulnerability and special notation V;(rr); this notation emphasizes
that we are focusing on guessing the secret in one try.

To measure the vulnerability of the secret after the channel is run,
we define posterior g-vulnerability as the average g-vulnerability in
the hyper-distribution:

Definition 2.5 (Posterior g-Vulnerability). Given a prior r, gain
function g and channel matrix C from X to Y, the posterior g-
vulnerability Vy[r » C] is

VlmoCli= > p)Vy(pxy)
yey
p(y)#0

]

Itis a theorem (from Alvim et al. [3]) that posterior g-vulnerability
can be calculated directly from the channel matrix without calcu-
lating the posterior distributions:

THEOREM 2.6. Given prior 7, gain function g, and channel matrix
C from X to Y, we have

Volr>Cl=)7 max > meCuyg(w.x)
yeywe xeX

2.2 Leakage

The prior g-vulnerability V,(rr) represents how vulnerable the se-
cret is without information from the channel. The posterior g-
vulnerability Vy[x > C] represents how vulnerable the secret will be
to an adversary who can see the output of the channel. Given that,
it is natural to measure the leakage of the channel by comparing
the prior g-vulnerability with the posterior g-vulnerability. This
comparison can be done additively or multiplicatively.

Definition 2.7 (Multiplicative and Additive g-Leakage). Given
prior probability distribution 7, a gain function g, and channel
C, the multiplicative g-leakage is

Vglm e C]

L5 Q)= =50s

and the additive g-leakage is
.C;(n, C) == Vy[r» C] = Vy(r)

In the case of g;q, we use the name Bayes leakage and the notation

L (7w, C) and L] (, C). o

Itis a theorem (from Alvim et al. [3]) that posterior g-vulnerability
is always greater than or equal to prior g-vulnerability:

THEOREM 2.8. Posterior g-vulnerability is always greater than or
equal to prior g-vulnerability: for any prior 7, channel C and gain
function g, we have Vg[r > C] 2 Vy(rr). O

This implies that multiplicative leakage is always greater or equal
to 1! and additive leakage is greater or equal to 0. If equality holds,
there is no leakage.

A crucial insight of QIF is that there is not a single “right” way
to measure leakage. There are many possible leakage measures
captured by the g-leakage family. The precise leakage is dependent
on the gain function g and the prior distribution 7.

!We assume that gain functions are restricted so that g-vulnerability is always non-
negative.

2.3 Refinement

A common situation when comparing two channels A and B is that
under some conditions channel A leaks more, and in others channel
B leaks more. Hence for robustness it is desirable to determine
when one channel never leaks more than another. This leads to the
notion of refinement:

Definition 2.9 (Refinement). Given channels A and B over input
space X, we say that A is refined by B, written A C B, if for any
prior 7 and gain function g we have Vy[x > A] > Vy[r > B]. O

Remarkably, the Coriaceous Theorem (from Mclver et al. [26],
though actually dating from the 1950’s and the work of David
Blackwell [6]) shows that refinement has a structural characteriza-
tion:

THEOREM 2.10 (CORIACEOUS THEOREM). For channel matrices A
and B over input space X, we have A T B iff there exists a post-
processing channel matrix R such that B = AR. O

As an example, consider the following channels (from [26]):

A z1 zp oz B y1 y2 uy3
x1 s 0 35 X1 1 0 0
x2 110 34 320 xo Y4 Y2 14
x3 Y5 Y2 310 x3 Y2 Y3 e

While A and B look very different, it turns out that they actually
refine each other—we have both A C B and B C A, as shown here:

B y1 y2 ys A z1 z2 z3 Ri y1 y2 ys

xx 1 0 0 — x1 25 0 3 z1 1 0 0

xo Y4 Y2 V4 x2 110 3/4 320 z2 0 23 13

x3 12 V3 s x3 15 Y2 310 zz 1 0 0
and

A z1 z2 z3 B y1 y2 y3 Ry z1 z2 z3

x1 %5 0 35 x1 1 0 0 y1 25 0 35
x2 V10 34 3/20 xo Y4 Y2 VY4 y2 0 1 0
x3 VY5 12 310 x3 Y2 Y3 Vs y3 0 1 0

As a result, we have by Theorem 2.10 that B never leaks more than
A, and also that A never leaks more than B. As a result, A and B
always have exactly the same leakage.? Note that when we model
deterministic encryption in Section 3, we will encounter exactly this
phenomenon of two channels that look very different but actually
have the same leakage.

3 DETERMINISTIC ENCRYPTION MODEL

Secret. We define X to be a database column consisting of plain-
text values that are independently chosen at each index according to
a distribution 8. We therefore assume the distribution 7 on columns
comes from an underlying distribution of values §.

%In fact, because refinement is a partial order on abstract channels [26], A and B
actually denote the same abstract channel.

Channel. A dilemma that we face is that QIF is information-
theoretic, while encryption assumes a computationally-bounded ad-
versary. As a result, we cannot directly model the deterministic en-
cryption channel that maps a column of plaintexts (x1, x2, . .., xp)
to the column of ciphertexts (c1, ¢z, . . ., ¢p) under some randomly-
chosen key — the trouble is that the resulting channel matrix leaks
everything, since each of its columns contains just one non-zero
entry (as is necessary for decryption to be possible).

Fortunately, cryptographers often consider an “ideal object” that
is conjectured to be computationally indistinguishable from the
actual cryptographic scheme, and the ideal object may be suitable
for QIF analysis. For deterministic encryption of b-bit strings, the
ideal object is a random permutation of type {0,1}* — {0,1}?,
so that all such functions are equally likely to be chosen.? As far
as implementation is concerned, note that if our plaintexts are
128 bits long, then it suffices to encrypt them with AES under a
randomly-chosen key. Dealing with longer plaintexts requires more

care.t
The ideal object is hence a probabilistic channel | that maps a
column (x1, Xz, . .., xp) of plaintexts to a column (vy, v, . ..,v,)

of random independent values, subject only to the constraint that
equality is preserved: x; = x; iff v; = v;.

While we could analyze the leakage of | directly, we can make the
analysis easier by observing that I’s leakage is exactly the same as a
deterministic channel C that maps (x1, x2, . . ., xp) to a partition of
the indices {1, 2, . . ., n} where each block in the partition consists of
those indices for which the corresponding x-values are equal. (For
example, (a, b, b, c, a) maps to the partition {{1, 5}, {2, 3}, {4}}.) For
we observe that | and C refine each other: | T Cand C C I. For C can
be factored into a cascade of | followed by a post-processing channel
R that maps a tuple (v1, v, . .., vy) to the partition of {1, 2, ..., n}
based on the equalities among the v;’s. Similarly, | = CS, where S
maps a partition into a tuple (v1, vy, . . ., vp) of independent random
values that respects the partition (i.e. v; = v; iff i and j belong to
the same block). Because | and C refine each other, by Theorem 2.10
their leakage is always exactly the same.’

Running Example. Our running example is a database column
of medical diagnoses where every index corresponds to a patient.
We depict this database column as a tuple; for example, (a, c, b,
a) would indicate that the first patient has disease a, the second
patient has c, and so forth. Let n be the length of the column (the
number of patients) and let there be k possible values (the number
of possible diseases). Figure 2 illustrates the channel matrix given
three possible diseases a, b, ¢ (k = 3) and three patients (n = 3). The
channel matrix has 27 rows and 5 columns.

4 BAYES VULNERABILITY ANALYSIS

The first operational scenario we consider is Bayes vulnerability
in which the adversary attempts to guess the entire column. As an
intuition behind how an adversary would be able to do this, suppose
that the distribution on diseases is non-uniform such that §(a) = 1/2,

3This was an explicit criterion in the NIST AES design competition: “Algorithms will
be judged on ... the extent to which the algorithm output is indistinguishable from a
random permutation.”

4Section 3.1 of the CryptDB paper [30] describes a way to do this correctly.

SLike channels A and B in Section 2, | and C actually denote the same abstract channel.

C yelY

xeX {1,2,3} {1,2}{3} {1.3}{2} {2,3}{1} {1}{2}{3}

(=)
(=)
[=)
(=)

(a, a, a)
(a, a, b)
(a, a, c)
(a, b, a)
(a, b, b)
(a, b, ¢
(a, ¢, a)
(a, ¢, b)
(a, ¢ c)
(b, a, a)
(b, a, b)
(b, a, ¢
(b, b, a)
(b, b, b)
(b, b, ¢)
(b, ¢, a)
(b, ¢, b)
(b, ¢,)
(¢, a,a)
(c, a, b)
(¢, a, ¢
(c, b, a)
(c, b, b)
(¢, b, ¢)
(¢, ¢, a)
(¢, ¢, b)
(¢, ¢ 0)

_H O O O O O OO0 OO O OO R OO0 O0OO0O OO0 OO OO R
O = RO OO0 OO OO OO RO R OO0 00O O ==
O O O B OO PR OO0 O R OO0 OO O R OO O RO O =Oo o
O O OO B O OO R MH OOOOODOOFRMEOODOR,ROOO
O O OO O R O R OO0 R OO0 R OO O R ORFROO OO

Figure 2: Channel matrix C whenn =3 and k =3

d(b) = 1/3, and &(c) = 1/6. For large n, we would expect that the
partition would have one block that is large, one that is medium
sized, and another that is small. Provided with this distribution
on diseases, there is an obvious guessing strategy: that the largest
block corresponds to a, the medium block corresponds to b, and
the smallest block corresponds to c¢. We can understand Bayes
vulnerability precisely by graphing the prior and posterior Bayes
vulnerability as a function of n. In order to limit the complexity
of the graphs while providing some insights, we limit ourselves to
three diseases (k = 3) which we call a, b, and c.

While we could explicitly graph the additive or multiplicative
leakage, a graph of the prior and posterior Bayes vulnerability is
more revealing. In a real world scenario, we expect one would
encounter a variety of distributions that illustrate many charac-
teristics. The distributions seen here were chosen because they
are simple, easy to understand, and illustrate the phenomena we
expect with more complicated distributions. In Figures 3 and 4,
we graph the prior and posterior Bayes vulnerabilities under four
disease distributions §: 1) a uniform distribution, 2) an arbitrarily
chosen non-uniform distribution, 3) a distribution in which two
diseases have the same probability, and 4) a distribution in which

Bayes vulnerability under § = (1/3,1/3,1/3)

Bayes vulnerability under § = (1/2,1/3, 1/6)

1.0

1.0

—— prior —— prior T 0.9951
-==- posterior -=-=- posterior e
0.8 0.81
> >
£06 £ 06
=2 =}
[Ju
[y (7]
£ £
204 204
8 4
& &
o 0
021 I 0.2
___ -
0.1667
007 0.0000 007 0.0000
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

n

(a)

n

(b)

Figure 3: Prior and posterior Bayes vulnerability under (a) a uniform distribution § = (1/3, 1/3, 1/3) and (b) a non-uniform distri-

bution § = (1/2,1/3, 1/6)

two diseases are very close but not the same. (Please note that the
graphs are annotated with rounded values.)

4.1 Uniform vs Non-uniform

Let us first examine the prior and posterior Bayes vulnerability
under a uniform distribution of diseases & = (1/3,1/3,1/3) depicted
in Figure 3(a). The solid blue line indicates an adversary who only
knows the prior distribution attempting to guess the entire column.
At n = 1, the prior Bayes vulnerability is 1/3. Given a single disease
to guess about, the adversary can guess a, b, or c and be correct with
equal probability. As n increases, the adversary will have to guess
the disease at every index and her probability of success quickly
goes towards 0, exactly (1/3)". The dashed green line represents
the posterior Bayes vulnerability which corresponds to how well
the adversary can do given the output which indicates the way the
column is broken into blocks. We can observe that the posterior
curve is going to 1/6. Once n is large, we can generally expect three
blocks. The adversary must guess which is which and there are 6
possible ways the diseases could be allocated to the three blocks.®
There is leakage under a uniform prior because the output has made
the adversary’s task much easier.

We can contrast this graph with Figure 3(b) which displays the
prior and posterior Bayes vulnerability under a non-uniform distri-
bution of diseases § = (1/2,1/3,1/6). The prior Bayes vulnerability
again goes towards 0, but on the posterior side, as n grows, the
output is likely to consist of a large block, a medium block, and a
small block which the adversary will be able to reliably map to a, b,
and c and her success will go to 1.

SWhile most index partitions where k = 3 can result from six possible plaintext
columns, the one exception is the partition with a single block which corresponds
to only three possible columns. This results in a posterior Bayes vulnerability that is
slightly higher than 1/6. For example, at n = 4, the posterior Bayes vulnerability is
roughly 0.173.

Comparing Figure 3(a) and Figure 3(b), we can see that additive
Bayes leakage is clearly higher in Figure 3(b). Surprisingly, the
multiplicative Bayes leakage is higher in Figure 3(a), although this
is not visible. While prior Bayes vulnerabilities under both priors
are close to zero, the prior vulnerability under the uniform prior is
much smaller than the prior vulnerability under the non-uniform
prior.

Let us examine when n = 200. Under the non-uniform prior,
the prior Bayes vulnerability is (1/2)?°° and the posterior Bayes
vulnerability is close to 1 therefore the multiplicative leakage is
close to 2200 ~ 1.61 x 10%. In contrast, under the uniform prior,
the prior Bayes vulnerability is (1/3)?°° and the posterior Bayes
vulnerability is around 1/6. Therefore, the multiplicative leakage
under the uniform prior is close to 1/6 x 320 ~ 4.43 x 10°* and
orders of magnitude higher than under the non-uniform prior.

4.2 Same vs Close

Now let us compare the prior and posterior Bayes vulnerability
when the probabilities of two diseases are the same and when they
are very close, illustrated in Figure 4 .

Under § = (1/2,1/4, 1/4), the posterior Bayes vulnerability in Fig-
ure 4(a) approaches 1/2. In terms of blocks, we expect one large
block and two roughly equal-sized blocks. The adversary will likely
be able to distinguish disease a as it is expected to be the largest
block, but she will have an equal chance of guessing which small
block is disease b and which is c. However, because it is possible that
the block sizes will not conform to the distribution, the posterior
Bayes vulnerability at n = 200 is slightly less than 0.5 at roughly
0.499986.

In comparison, Figure 4(b) shows that under § = (1/2, 26/100, 24/100),
the posterior Bayes vulnerability slowly continues to grow, appar-
ently converging to 1. The largest n value for which we have done
the calculation is n = 5000, at which point the posterior Bayes

Bayes vulnerability under § = (1/2,1/4, 1/2)

Bayes vulnerability under § = (1/2, 26/100, 2%/100)

1.0 1.0
—— prior —— prior
—-=-=- posterior -==- posterior
0.8 0.81
___________ °
Zo61 £06{ 0 mmmemmmmmmmTTTTTTTTTT 0.6553
= B PR
S | | e * g ptas
£ LT 05000 £ e
2 04 el 2044 /
] 1924] \/
& &
o 0
0.2 0.2
007 0.0000 007 0.0000
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

n

(a)

(b)

Figure 4: Prior and posterior Bayes vulnerability when (a) two diseases have the same probability § = (1/2,1/4,1/4) and (b) two

diseases have close probabilities § = (1/2, 26/100, 24/100)

Table 1: Top 10 major diagnostic categories at a large inpa-
tient acute palliative care service [33].

Diagnosis Percentage
Cancer 41.3%
Cardiac Disease 17.4%
Pulmonary Disease 14.0%
Stroke 9.4%
Renal Disease 3.5%
Dementia 2.4%
Liver Disease 1.7%
AIDS 0.4%
Lou Gehrig’s Disease 0.2%
Other 9.6%

vulnerability is 0.977.7 As n grows, the small probability differences
between b and ¢ will become more visible in the block sizes and
the adversary will be more likely to correctly assign them to their
respective diseases.

4.3 Towards a More Realistic Distribution

As a gesture towards considering more realistic distributions, Ta-
ble 1 shows a distribution of the top 10 most prevalent diagnostic
categories at a large inpatient acute palliative care service [33] and
Figure 5 graphs the prior and posterior Bayes vulnerability under
that distribution.

The phenomenon we observed from the simple non-uniform
distribution in Section 4.1 is visible in this more complicated dis-
tribution: as n increases, the adversary’s ability to correctly guess

7The computation for such large n values becomes very expensive due to combinatorial
explosion. This is discussed further in Section 6.

Bayes vulnerability under a realistic distribution, k = 10

1.0
— prior
-=--- posterior
0.81
>
= 0.6
=]
@
I3
£
2 04
8
&
m
0.21
0.0 1
0 25 50 75 100 125 150 175 200

Figure 5: Prior and posterior Bayes vulnerability of ten diag-
nostic categories when ¢ is set according to Table 1.

the column increases. As can be seen in Figure 5, when n = 200 the
adversary has an 8% chance of guessing the entire column correctly.

5 SINGLE INDEX GAIN FUNCTION ANALYSIS

Next, we examine the case in which an adversary attempts to guess
the disease corresponding to a single index representing a single pa-
tient. We evaluate two variations of this scenario: (1) the adversary
is free to choose any index corresponding to a patient and guess
their disease and (2) the adversary is forced to guess the disease at
a given index belonging to a particular patient.

For the free gain function, the adversary is free to choose an
index in the column and a disease d € D. Intuitively, this scenario
reflects the case when an adversary does not care about discovering

Single Index g-Vulnerability, 6 = (1/3,1/3,1/3)

Single Index g-Vulnerability, 6 = (1/2, 1/3,/6)

1.0 1.0
0.81 0.8 1
> >
=061 = 0.6
= =2
i Jud
o [
£ £
H 2
T 041 T 0.4 1
024 — prior 021 — prior
posterior, free posterior, free
------ posterior, forced posterior, forced
0.0 T T T T T T 0.0 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
n n
(a) (b)

Figure 6: Prior and posterior g-vulnerability for both single index gain functions under (a) a uniform distribution § = (1/3, 1/3, 1/3)

and (b) a non-uniform distribution § = (1/2,1/3, 1/6)

a particular patient’s disease but instead is content with discovering
anyone’s diagnosis.

Definition 5.1 (Free gain function). The free gain function ggee :
W xX — {0,1} when W :={(i,d) | 1 <i<nAde D} isgiven
by

1 ifx;=d
i,d), x) :=
e ().) {0 otherwise

]

For the forced variation of this gain function, the adversary is
given a specific index i where 1 < i < n and is forced to guess
a disease at this index. Intuitively, this gain function reflects the
scenario in which the adversary wants to discover the disease of a
high-value patient.

Definition 5.2 (Forced gain function). The forced gain function
Ftorced : W XX — {0,1} when W :={d | d € D} is given by

1 ifxj=d

0 otherwise

Gforced (d,X) = {

]

The prior g-vulnerability for both variations is always the same.
The adversary’s strategy in both scenarios is simply to guess the
most likely disease; the only difference is that she can choose an
index for the free variation, but without insight from the channel,
it makes no difference as to which index she picks. The probability
that she is correct is equal to the probability of the most likely
disease and will be the same in both cases. Therefore, we can graph
the prior g-vulnerability alongside the posterior g-vulnerability for
both operational scenarios.

Note that under both distributions, the prior g-vulnerability in
Figure 6 is much higher than the prior Bayes vulnerability in Fig-
ure 3. Intuitively, this is because the task of guessing about a single

index correctly in one try is much easier than guessing correctly
about all n indices.

As Figure 6(a) demonstrates, under a uniform prior the three lines
coincide; this indicates that deterministic encryption leaks nothing
with respect to both single index gain functions. The channel pro-
vides the adversary with no additional information to determine
which block corresponds to which disease, and so whether she is
forced to guess about a particular index or is free to choose one, she
will only be correct with probability 1/3. As discussed previously,
given a uniform distribution on diseases, the additive leakage in
the Bayes scenario was approximately 1/6 but the additive leakage
in the single index scenarios is 0.

In the non-uniform case represented by Figure 6(b), the solid
blue line indicates that there is a 1/2 chance of guessing an index
correctly a priori. In the free scenario, the adversary can guess
about whatever block is most advantageous to guess about and
the posterior g-vulnerability goes up to 1 very quickly. But in the
forced scenario, the adversary may be forced to guess about a block
she is not sure about, and so the vulnerability goes up more slowly.

As we can see, the prior distribution can drastically affect the
leakage of the channel. The two prior distributions chosen here
show many aspects of the story but one could examine different
priors or a greater number of diseases which could exhibit other
details.

6 DISCUSSION

The following section describes some of the computational chal-
lenges involved with calculating prior and posterior g-vulnerability,
the differences in technique behind calculating the free and forced
g-functions, as well as a more detailed look at what comprises the
g-vulnerability for a given n.

Table 2: Number of corresponding integer and index parti-
tions per n where k =3

n Integer Partitions Index Partitions

1 1 1

50 234 1.20 x 1023
100 884 8.59 x 104°
150 1,951 6.17 x 107°
200 3,434 4.23 x 10%

6.1 Computational Challenges

As discussed in Section 2, prior and posterior g-vulnerability can be
calculated from the channel matrix. However, the channel matrices
given a reasonably large n become enormous. For example, let
n = 100 and let k = 3. The resulting channel matrix has 3'%° ~
5.15x 107 rows. To calculate the number of columns in the channel
matrix (which represent all possible channel outputs), we need to
count the number of ways that n items can be partitioned into at
most k non-empty subsets. To this end, we can use a summation of
Stirling Numbers of the Second Kind [37]. The number of columns
in the channel matrix can then be calculated as follows:

min (n,k) n
"5
Therefore, the number of columns in C whenn = 100 and k = 3
is approximately 8.59 x 10%®. Given the size of this matrix, the
computation of prior and posterior g-vulnerability cannot be done
naively.

We can avoid addressing each index partition in isolation by
observing that the position of specific indices (the location of each
disease) does not affect the adversary’s strategy. Instead, the ad-
versary’s strategy is reliant on just the sizes of each block. We can
represent these block sizes as an integer partition of n into at most
k integers.

Briefly, let us examine the case with 4 patients (n = 4) and 3 unique
diseases (k = 3). An adversary could observe the following blocks
that indicate the first two diseases are the same and the second
two are the same: {1, 2}{3, 4}. She could also observe {1,3}{2, 4}
or {1,4}{2,3}. All of these observations correspond to the integer
partition [2, 2, 0] and will generate the same probabilities.

Since index partitions that correspond to the same integer parti-
tion generate the same probabilities, the key strategy to calculate
prior and posterior g-vulnerability is to use integer partitions in-
stead of index partitions. In the previous example where n = 100
and k = 3, only 884 integer partitions can account for all index
partitions. Table 2 illustrates that as the number of index partitions
grows explosively, the number of corresponding integer partitions
remains manageable. However, it should be acknowledged that as k
grows, the number of index partitions and integer partitions grow
even more explosively. For example, when k = 25 and n = 100,
there are 139,620,591 integer partitions that account for 4.37 x 10114
index partitions. But for small values of k, integer partitions pro-
vide a mechanism by which we can work out the probabilities in a
tractable fashion.

6.2 Free vs Forced

For both single index g-functions, given an integer partition that
represents block sizes, we determine the best guess for every block
and its probability of being correct. For the free variation, we choose
the maximum over all probabilities, but in the forced variation, we
calculate a weighed average that addresses the probability that the
adversary will be asked to guess about an index in that block. One
can view the forced variation as restricting the adversary’s choices;
instead of being able to guess the optimal answer given a particular
channel output, she may be forced to guess about a block she is not
sure about.

6.3 A Detailed Look For a Given n

If we examine the uppermost dashed orange line in Figure 6(b),
we can see that when n = 12 and § = (1/2,1/3, 1/6), the posterior
g-vulnerability in the free scenario is slightly above 0.8. How this
value is calculated is quite complicated. There are many possible
outputs that can arise and these outputs have different threats that
they represent. Figure 7 illustrates the complexity behind this value
by depicting all possible outputs and their respective threats to the
secret.

Given 12 patients and 3 diseases, there are 88,574 possible index
partitions that can be output by the channel but these can be ac-
counted for with only 19 integer partitions. These integer partitions
represent the block structures that the adversary could observe.
Figure 7 visually represents these block structures as stacked bars
such that the first blue bar represents the largest block, the next
orange bar represents the second largest block, and the last green
bar represents the smallest block.

For every integer partition, annotated purple circles indicate
which block and disease guess the adversary should make given that
output while the position of these circles indicate the adversary’s
probability of being correct. For example, let us examine the integer
partition [12, 0, 0] which represents the case that every patient has
the same disease. Given this partition, the adversary should guess
about any index in this block and she should guess that this index
corresponds to disease g; this guess will be correct 99.2% of the
time. In contrast, if the adversary observes the integer partition
[6, 5, 1], her best option is to guess that the index represented by
smallest block of size 1 corresponds to disease c.

The purple line at the bottom of the graph indicates the probabil-
ity of each block structure actually occurring. As stated previously,
given the integer partition [12, 0, 0], the adversary is very likely to
correctly guess a. Unfortunately for the adversary, this outcome is
very unlikely; she is much more likely to see an integer partition
that more closely reflects the distribution such as [6, 4, 2].

Posterior g-vulnerability summarizes this table by calculating the
adversary’s probability of being correct (the purple circles) weighed
by the probability that the output occurs (the purple line). In this
case where n = 12, the posterior g-vulnerability for the free vari-
ation is approximately 0.813. Recall that the prior g-vulnerability
at n = 12 was 0.5. The posterior g-vulnerability is greater than
the prior, which is consistent with the theorem that states the
posterior g-vulnerability is always greater than or equal to prior
g-vulnerability. Yet while the overall posterior g-vulnerability can

Vo[> C] when n = 12, 6 = (1/2, /3, 1/s)

1.0

12 659

a,11 2,10 @ @
10 ®O
@ r0.8
8_
r0.6
8 £
& =
=
5 07 ® 2
=] <]
= =4
r0.4
3 ®
ro.2
2_
=) =) =) =) =2 = =) w — = 10 = =) ~ 2 =) 2 =) +
=} — — o o [r>) ™ o < o [T) o0 < < o ') < [ty <
o — =] =} o = o = ~ =) 123 ~ = o = ~ T2 o =
o = =3 =3 o o, o, ®, = ©, o, [®, =3 o, = o, o =

integer partitions

Figure 7: An in-depth view of the posterior g-vulnerability in the free scenario when n = 12 under the prior § = (1/2,1/3, 1/6)

only increase, the g-vulnerability of certain posteriors can be less,
as illustrated by the [4, 4, 4] case which has a g-vulnerability of 1/3.

7 CONCLUSION AND FUTURE WORK

This paper provides a leakage analysis of deterministic encryption
under three operational scenarios: (1) the adversary must guess the
entire column, (2) the adversary is free to guess about an arbitrary
patient, and (3) the adversary is forced to guess about a particular
patient. We see that in some scenarios and under various priors,
there is considerable leakage while in others, there is no leakage at
all. This application of the quantitative information flow framework
provides more nuance than the coarse discussion of the leakage of
deterministic encryption that exists in the literature and contributes
a much clearer understanding of information leakage associated
with deterministic encryption.

We leave to future work considering correlations across columns.
There have already been inference attacks that address this sce-
nario [4, 18], and we would like to formally analyze leakage in this
setting. From the QIF perspective, leakage of a secret and another
correlated secret via a joint distribution is called Dalenius leakage.

Another important future direction is to analyze the leakage of var-
ious order-revealing encryption schemes. We would like to explore
if there exists a refinement order among schemes such that one
scheme is not more dangerous than another, regardless of prior
or gain function. Lastly, we would like to understand mitigation
strategies, such as inserting fake entries prior to uploading the
database to the cloud. Given that leakage is dependent on the prior,
we would like to know if one can functionally alter the prior by
inserting fake data to reduce the amount of leakage.

ACKNOWLEDGMENTS

We are grateful to Alexandra Boldyreva and Adam O’Neill for early
discussions of this work and to the anonymous reviewers for their
helpful comments. This work was partially supported by the Na-
tional Science Foundation under grant CNS-1749014.

REFERENCES

[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.
Order Preserving Encryption for Numeric Data. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’04). ACM,
New York, NY, USA, 563-574. https://doi.org/10.1145/1007568.1007632

8

=

[9

=

[10]

[11

[12

[13]

[14
[15]

[16]

[17

(18]

[19]

[20]

Mario S Alvim, Konstantinos Chatzikokolakis, Annabelle Mclver, Carroll Morgan,
Catuscia Palamidessi, and Geoffrey Smith. 2019. The Science of Quantitative
Information Flow. Springer International Publishing.

Mario S Alvim, Kostas Chatzikokolakis, Catuscia Palamidessi, and Geoffrey
Smith. 2012. Measuring information leakage using generalized gain functions. In
Computer Security Foundations Symposium (CSF), 2012 IEEE 25th. IEEE, 265-279.
Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly
Shmatikov. 2018. The Tao of Inference in Privacy-protected Databases. Proc. VLDB
Endow. 11, 11 (July 2018), 1715-1728. https://doi.org/10.14778/3236187.3236217
Bitglass. 2014. Bitglass. https://www.bitglass.com/

David Blackwell. 1951. Comparison of Experiments. In Proc. Second Berkeley
Symposium on Mathematical Statistics and Probability. 93-102.

Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2009.
Order-Preserving Symmetric Encryption. In Advances in Cryptology - EURO-
CRYPT 2009, Antoine Joux (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
224-241.

Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. 2015. Semantically Secure Order-Revealing Encryption: Multi-
input Functional Encryption Without Obfuscation. In Advances in Cryptology -
EUROCRYPT 2015, Elisabeth Oswald and Marc Fischlin (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 563-594.

David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
Abuse Attacks Against Searchable Encryption. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security (CCS ’15). ACM,
New York, NY, USA, 668-679. https://doi.org/10.1145/2810103.2813700

David Cash, Feng-Hao Liu, Adam O’Neill, and Cong Zhang. 2016. Reducing the
Leakage in Practical Order-Revealing Encryption. IACR Cryptology ePrint Archive
(2016), 661. https://eprint.iacr.org/2016/661.pdf

Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani Di Vimercati, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati. 2005. Modeling and Assessing
Inference Exposure in Encrypted Databases. ACM Transactions on Information and
System Security 8, 1 (Feb 2005), 119-152. https://doi.org/10.1145/1053283.1053289
Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled
Disclosure. In Advances in Cryptology - ASIACRYPT 2010, Masayuki Abe (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 577-594.

Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. 2016. Practical
Order-Revealing Encryption with Limited Leakage. In Fast Software Encryption,
Thomas Peyrin (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 474-493.
CipherCloud. 2010. CipherCloud. http://www.ciphercloud.com/

Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable
Symmetric Encryption: Improved Definitions and Efficient Constructions. In
Proceedings of the 13th ACM Conference on Computer and Communications Security
(CCS ’06). ACM, New York, NY, USA, 79-88. https://doi.org/10.1145/1180405.
1180417

Dawn Xiaoding Song, D. Wagner, and A. Perrig. 2000. Practical techniques for
searches on encrypted data. In Proceeding 2000 IEEE Symposium on Security and
Privacy. S P 2000. 44-55. https://doi.org/10.1109/SECPRI.2000.848445

Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi,
and Pierangela Samarati. 2013. On Information Leakage by Indexes over Data
Fragments. (2013), 94-98. https://doi.org/10.1109/ICDEW.2013.6547434

F. Betiil Durak, Thomas M. DuBuisson, and David Cash. 2016. What Else is
Revealed by Order-Revealing Encryption?. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,
NY, USA, 1155-1166. https://doi.org/10.1145/2976749.2978379

ESSAZ2. 2018. Second Workshop on Encryption for Secure Search and other Algo-
rithms. https://www.cc.gatech.edu/~aboldyre/ESSA/

B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally, R. Shay,
J. D. Mitchell, and R. K. Cunningham. 2017. SoK: Cryptographically Protected

[21

[22]

(23]

S
[

™
S

~
=

[31

[32

[36]
(37]

[38

Database Search. In 2017 IEEE Symposium on Security and Privacy (SP). 172-191.
https://doi.org/10.1109/SP.2017.10

P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. 2017.
Leakage-Abuse Attacks against Order-Revealing Encryption. In 2017 IEEE Sym-
posium on Security and Privacy (SP). 655-672. https://doi.org/10.1109/SP.2017.44
Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern Disclosure on Searchable Encryption: Ramification, Attack and Mitiga-
tion.. In Network and Distributed System Security Symposium (NDSS’12).

Seny Kamara, Tarik Moataz, and Olya Ohrimenko. 2018. Structured Encryption
and Leakage Suppression. In Advances in Cryptology — CRYPTO 2018, Hovav
Shacham and Alexandra Boldyreva (Eds.). Springer International Publishing,
Cham, 339-370.

McAfee. 2018. McAfee MVISION Cloud. https://www.mcafee.com/enterprise/en-
us/products/mvision-cloud.html

Annabelle Mclver. 2019. Experiments in Information Flow Analysis. In Math-
matics of Program Construction. Springer International Publishing.

Annabelle McIver, Carroll Morgan, Geoffrey Smith, Barbara Espinoza, and Larissa
Meinicke. 2014. Abstract Channels and Their Robust Information-Leakage Or-
dering. In Principles of Security and Trust, Martin Abadi and Steve Kremer (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 83-102.

Microsoft. 2016. Always Encrypted (Database Engine). https://msdn.microsoft.
com/en-us/library/mt163865.aspx

Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference
Attacks on Property-Preserving Encrypted Databases. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security (CCS ’15).
ACM, New York, NY, USA, 644-655. https://doi.org/10.1145/2810103.2813651
Netskope. 2013. Netskope. https://www.netskope.com/

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. 2011. CryptDB: Protecting Confidentiality with Encrypted Query
Processing. In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles (SOSP °11). ACM, New York, NY, USA, 85-100. https:
//doi.org/10.1145/2043556.2043566

Raluca Ada Popa, Nickolai Zeldovich, and Hari Balakrishnan. 2015. Guidelines
for Using the CryptDB System Securely. IACR Cryptology ePrint Archive (2015).
https://eprint.iacr.org/2015/979.pdf

David Pouliot and Charles V. Wright. 2016. The Shadow Nemesis: Inference At-
tacks on Efficiently Deployable, Efficiently Searchable Encryption. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’16). ACM, New York, NY, USA, 1341-1352. https://doi.org/10.1145/2976749.
2978401

Philip H. Santa-Emma, Ralph Roach, Mary Ann Gill, Pam Spayde, and Robert M.
Taylor. 2002. Development and Implementation of an Inpatient Acute Palliative
Care Service. Journal of Palliative Medicine 5, 1 (2002), 93 - 100.

Encrypted Search. 2019. Encrypted Search Workshop. https://icerm.brown.edu/
topical_workshops/tw19-1-es/

Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker. 2008. Towards
an Information Theoretic Analysis of Searchable Encryption. In Information and
Communications Security, Liqun Chen, Mark D. Ryan, and Guilin Wang (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 345-360.

Symantec. 2016. Symantec CloudSOC. https://www.symantec.com/products/
cloud-application-security-cloudsoc

J.H.vanLintand R. M. Wilson. 2001. A Course in Combinatorics (2 ed.). Cambridge
University Press. https://doi.org/10.1017/CB0O9780511987045

Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your
Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable
Encryption. In 25th USENIX Security Symposium (USENLX Security 16). USENIX
Association, Austin, TX, 707-720.

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Quantitative Information Flow
	2.1 Gain Functions and g-Vulnerability
	2.2 Leakage
	2.3 Refinement

	3 Deterministic Encryption Model
	4 Bayes Vulnerability Analysis
	4.1 Uniform vs Non-uniform
	4.2 Same vs Close
	4.3 Towards a More Realistic Distribution

	5 Single Index Gain Function Analysis
	6 Discussion
	6.1 Computational Challenges
	6.2 Free vs Forced
	6.3 A Detailed Look For a Given n

	7 Conclusion and Future Work
	Acknowledgments
	References

