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Abstract— We present an Analog to Digital Feature Converter
system based on oversampling modulators. The system consists of
a Delta Sigma Modulator, two Delta Modulator, and one Second-
order Delta Modulator in parallel. The goal of the Analog to
Digital Feature Converter is to extract the waveform features
from the analog signal during analog to digital conversion
to save system power. We demonstrated this system in an
example application of electrocardiogram (ECG) delineation with
a counting based feature extraction algorithm. Compared the
conventional ECG delineation methods using wavelet transform,
the proposed method has much lower power consumption for
data conversion and computation.

Index Terms—Analog to Digital Feature Converter, Oversam-
pling Modulators, Feature extraction, ECG delineation.

I. INTRODUCTION

Future wearable wireless biomedical sensors demand novel
technologies to overcome the increasing challenge in imple-
menting intelligent signal sensing and processing and the
shortage of battery lifetime [1]. Such devices are expected to
provide automatic monitoring and processing of physiological
signals, and be capable of identifying abnormal signals and
contacting medical systems if necessary [2]. Wearable Electro-
cardiogram (ECG) sensor [3] is one of the important wearable
medical devices for arrhythmia detection. However, most of
the current solutions on ECG monitoring lack local signal
processing capabilities on the wearable sensor and heavily
rely on wireless data communication [4], [5] and the remote
processing, which is power hungry and brings the security,
privacy and latency issues. The reason is that on-sensor ECG
signal analysis is power hungry due to the high computing
overhead of the circuits and systems that performs the digital
signal processing algorithms. For example, researches [6], [7],
achieve high-performance classifiers, but are not suitable to
be implemented on the wearable sensors due to the high
computing overhead.

Machine learning is a promising solution and has recently
been applied to continuous monitoring of physiological signals
for on-sensor processing [8]. The wearable sensors need
to keep the power consumption at the level of milliwatts
(mW) or less in order to keep a reasonable battery lifetime.
However, the implementation of deep learning inference using
neural network would consume hundreds of mW due to the
intensive multiply-and-accumulate (MAC) operations and the
data movement between memory and the processing unit [9].
Therefore, a machine learning algorithm that can accommo-
date real-time processing without too much data storage and
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Fig. 1. Diagram of the proposed Oversampling based Analog to Digital
Feature Converter with bit-stream processing algorithm.
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movement is preferred in wearable sensor applications. One
of the most power-hungry parts in machine learning is feature
extraction, which requires extracting key features of the input
analog signal. The features should be in digital format since
most of machine learning systems are implemented in digital.
To address this issue, one idea is to extract the features
during data conversion. However, current Nyquist rate analog
to digital converter (ADC) are converting data by sampling,
which does not have the capability of extracting features. In
order to extract features, the samples should be compared with
its neighboring samples. Oversampling data conversion meets
this requirement.

Compared to the conventional ADC [10], which focuses on
preserve the signal quality in the digital domain so that the
reconstruction of the analog signal is accurate, our proposed
analog to digital feature converter (ADFC) emphasis on ex-
tracting the features from the analog signal during analog to
digital conversion, without considering signal reconstruction.
Our goal is to find an alternative analog to digital architecture
to adapt hardware friendly algorithm for power limited sensors
so that machine learning algorithms can be applied.

II. SYSTEMS AND CIRCUITS DESIGN

The proposed ADFC consists of parallel oversampling mod-
ulators including the Delta Sigma modulator, the Delta modu-
lator, and the second-order Delta Modulator as shown in Fig.
1. The oversampling modulators generate digital bit-streams
from the analog waveform. The bit-streams are pulse-density
modulation of the analog features. For example, the pulse
density of the Delta-Sigma modulator output is proportional to
the amplitude of the analog waveform, while the pulse density
of the Delta modulator and the second-order Delta modulator
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Fig. 2. Schematic of the Oversampling Modulators (a) Delta Sigma modu-
lator; (b) Delta modulator; (¢) Second-order Delta modulator.

are proportional to the derivative and the second derivative
of the analog waveform, respectively. Therefore, using the
combination of the oversampling converters, the amplitude,
slope, and turning points of the analog waveform can be
identified using a counter that counts the number of pulses
in a pre-defined timing window.

The topology of the Delta-Sigma modulator and the first
and second Delta modulators are shown in Fig. 2. In order to
save system power, the Delta modulators are modified into a
ternary architecture as we reported in [11]. In the modulator
circuits, The discrete switched capacitor integrator generates
the feedback voltage, which is subtracted from the input, then a
three state comparator detects the residue voltage and controls
the switches to feed the according voltage to the integrator
for generating the feedback. The proposed second-order Delta
modulator is similar to the first order Delta modulator in
[11], while the residue voltage V' d is now generated by Vin
subtracting the sum of the outputs from both the integrators.
The Delta Sigma modulator [12] is achieved by a simple
topology like in [13].

The behavior of the ternary Delta modulator and the second-
order Delta modulator is simulated in Fig. 3. The Delta
modulator detects the slope of the input waveform. If the
input has a rising slope, the output generates a positive bit-
stream and vice versa. While the second-order Delta modulator
detects the turning point of the input waveform. When there
is an upward turning point, the output generates a positive bit-
stream where the first positive bit represents the moment of
the turning point. Thus, the second-order Delta modulator can
be used to detect the onset, peak and end point of the input
waveform. Fig. 3 (a) shows the first order Delta modulator’s
outputs for ramp signals with different slopes. A larger slope
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Fig. 3. Example input/output waveform of the first and second-order Delta
modulators. (a) First order Delta modulator with input of ramp signals;
(b) Second-order Delta modulator with input of upward turning points; (c)
Second-order Delta modulator with input of downward turning points.
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Fig. 4. The definition of onset, peak, and end of each wave, as well as the
segment and intervals in ECG signal.

in the input signal generates a higher density in the output
pulses and vice versa. Fig. 3 (b) and (c) illustrates the second-
order Delta modulator’s output signals with different upward
and downward turning angles of the input waveform. A larger
upward or downward turning angle (#) produce a higher pulse
density at the positive or negative output, respectively.

The design parameters of the oversampling modulators
include the sampling rate, the bandwidth, the integration gain,
the threshold voltages, and the reference voltage. Due to the
space limit, we plan to introduce the systematic design method
in another paper. Since the oversampling modulators generate
only one bit at a time, the total power consumption is much
lower than a conventional multi-bit ADC. Given the fact that
biomedical signal acquisition and processing usually require
oversampling [8], the parallel architecture of the oversampling
modulators can extract digital features directly from the analog
waveform during the analog to digital conversion, which costs
less power than the combined power of the conventional ADC
and its following digital signal processing circuits.

III. ECG DELINEATION ALGORITHM
One application example of the proposed ADFC is ECG
delineation. ECG delineation detects the timing information
of the peak, onset, and end points of different ECG waves,
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Fig. 5. The operation flow of the proposed bit-stream feature extraction
algorithm.

including P, Q, R, S, and T waves, in order to measure
the intervals and segments between these waves, which is
shown in Fig. 4. During delineation, the detection of the QRS
complex is one of the most important tasks because the QRS
complex indicates the contraction process of the ventricles.
Besides the QRS complex, the P wave and T wave detection
also play very important roles in extracting the features, since
P wave indicates that if the heartbeat is initiated by the sinus
node while the end of T wave shows the repolarization of
the ventricles. Moreover, the PR/RT/QT intervals and the
ST segment have strong relationships with diagnosing some
arrhythmia [14]-[16].

The proposed system contains four parallel oversampling
modulators. The Delta Sigma modulator Delta — sigmalst,
the second-order Delta Modulator Delta — qspt2nd, and the
two Delta modulator Delta — grslst and Delta — ptlst with
different integration gain for detecting the QRS and the P/T
waves, respectively. The delineation algorithm is presented in
Fig. 5. In the first step, the QRS complexes are detected by
the Delta modulator Delta — qrslst with the QRS detection
algorithm proposed in [11]. The main idea is to find the waves
that meet the defined requirement of the slope. In the second
step, the Delta modulator Delta — ptlst starts to search back
to find the rough P wave location, and wait for detecting the
T wave location. Meanwhile, a moving average value register
records the maximum point in the QRS detection area from the
bit-stream of the Delta Sigma modulator Delta — stgmalst.
Then, the onset, peak, and the end point of the P/T wave, as
well as the onset of Q wave, and the end point of S wave are
detected by the second-order Delta modulator Delta—gspt2nd
since the second-order Delta modulator is good at detecting
the turning point of the input waveform. A pulse filter using
erosion and dilation algorithm is designed for reducing the
disturbance of small waves, noise, or baseline drift for the
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Fig. 6. Simulation results of the Delta Sigma modulator and the parallel first
order Delta modulators with an ECG signal input.

oversampling modulators.

The bit-stream processing algorithm is based on counting
the number of pulses in a moving window, without performing
addition and multiplication such as in the wavelet transform
algorithm. The features extracted from the counting results can
be used in machine learning algorithms like support vector
machines. The digital counting circuits use much less power
than the MAC circuits at the same clock frequency. This is
another benefit of using the ADFC.

IV. SIMULATION RESULT AND POWER ESTIMATION

We simulate the system with an input of a typical ECG
signal. The operating frequency of all the oversampling mod-
ulators is set to 1 kHz. From the simulation results as shown
in Fig. 6, we can see that the QRS complex is detected by
Delta — qrslst and the proposed algorithm, while Delta —
ptlst detects P/T waves and Delta — sigmalst identifies the
peak of the R wave. Q wave onset is decided by the first
downward turning point in the QRS detection area from the
bit-stream of Delta —qspt2nd, and the J point (S wave offset)
is located at the first downward turning point after consecutive
upward turning points of the R-S segment as shown in Fig. 7.
Onset, peak and end point of P/T waves can also be clearly
identified from bit-stream of Delta — gspt2nd in P/T wave
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Fig. 7. Simulation results of the second-order Delta modulator in detecting
onset, peak and end points of the ECG signal input.

detection area. With the information of onset, peak and end
point of each wave, we can obtain PR/RT/QT intervals and
the ST segment data.

The power consumption of the proposed Analog to Digital
Feature Converter is estimated based on the fabricated Delta
modulators using IBM 0.13 pm technology [11]. The two
Delta modulators consume 720 nW with a +0.6V power
supply and work at 1k Hz. For the second-order Delta mod-
ulator, since the second stage integrator cost approximately
50% power of the first stage integrator, the second-order Delta
modulator is expected to consume 540 nW. Because the Delta
Sigma modulator has almost the same main circuit block to the
Delta modulator, we estimate the total power of the proposed
converter as 1.62 pyW. Compared to the ECG delineation
system that applied Pan and Tompkins (PAT) algorithm and
realized in 65 nm technology [17], which consumes 614 uW,
or system with digital wavelet transform (DWT) based ECG
delineation algorithm that is achieved in a microcontroller
[18], which consumes minimum 6.6 mW, our proposed system
can achieve much lower power and has great potential for
future low-power wearable ECG sensors.

V. CONCLUSION

An analog to digital feature converter which is aimed at
providing a low-power feature extraction method for machine
learning on wearable ECG sensors has been presented. The
proposed system includes parallel Delta-sigma modulator, two
ternary Delta modulators, and a ternary second-order Delta
modulator, which can extract features such as the peak, onset,
end point, slope, and turning angle of the analog waveform.
An example application of ECG delineation demonstrated the
feasibility of the ADFC with the delineation algorithm. The
simulation results show that the key measurement of ECG
waveform is able to be performed with much lower power
compared to the existing solutions. The system has a great
potential for future wearable ECG monitoring sensors.
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