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Abstract— We present an Analog to Digital Feature Converter
system based on oversampling modulators. The system consists of
a Delta Sigma Modulator, two Delta Modulator, and one Second-
order Delta Modulator in parallel. The goal of the Analog to
Digital Feature Converter is to extract the waveform features
from the analog signal during analog to digital conversion
to save system power. We demonstrated this system in an
example application of electrocardiogram (ECG) delineation with
a counting based feature extraction algorithm. Compared the
conventional ECG delineation methods using wavelet transform,
the proposed method has much lower power consumption for
data conversion and computation.

Index Terms—Analog to Digital Feature Converter, Oversam-
pling Modulators, Feature extraction, ECG delineation.

I. INTRODUCTION

Future wearable wireless biomedical sensors demand novel

technologies to overcome the increasing challenge in imple-

menting intelligent signal sensing and processing and the

shortage of battery lifetime [1]. Such devices are expected to

provide automatic monitoring and processing of physiological

signals, and be capable of identifying abnormal signals and

contacting medical systems if necessary [2]. Wearable Electro-

cardiogram (ECG) sensor [3] is one of the important wearable

medical devices for arrhythmia detection. However, most of

the current solutions on ECG monitoring lack local signal

processing capabilities on the wearable sensor and heavily

rely on wireless data communication [4], [5] and the remote

processing, which is power hungry and brings the security,

privacy and latency issues. The reason is that on-sensor ECG

signal analysis is power hungry due to the high computing

overhead of the circuits and systems that performs the digital

signal processing algorithms. For example, researches [6], [7],

achieve high-performance classifiers, but are not suitable to

be implemented on the wearable sensors due to the high

computing overhead.

Machine learning is a promising solution and has recently

been applied to continuous monitoring of physiological signals

for on-sensor processing [8]. The wearable sensors need

to keep the power consumption at the level of milliwatts

(mW) or less in order to keep a reasonable battery lifetime.

However, the implementation of deep learning inference using

neural network would consume hundreds of mW due to the

intensive multiply-and-accumulate (MAC) operations and the

data movement between memory and the processing unit [9].

Therefore, a machine learning algorithm that can accommo-

date real-time processing without too much data storage and
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Fig. 1. Diagram of the proposed Oversampling based Analog to Digital
Feature Converter with bit-stream processing algorithm.

movement is preferred in wearable sensor applications. One

of the most power-hungry parts in machine learning is feature

extraction, which requires extracting key features of the input

analog signal. The features should be in digital format since

most of machine learning systems are implemented in digital.

To address this issue, one idea is to extract the features

during data conversion. However, current Nyquist rate analog

to digital converter (ADC) are converting data by sampling,

which does not have the capability of extracting features. In

order to extract features, the samples should be compared with

its neighboring samples. Oversampling data conversion meets

this requirement.

Compared to the conventional ADC [10], which focuses on

preserve the signal quality in the digital domain so that the

reconstruction of the analog signal is accurate, our proposed

analog to digital feature converter (ADFC) emphasis on ex-

tracting the features from the analog signal during analog to

digital conversion, without considering signal reconstruction.

Our goal is to find an alternative analog to digital architecture

to adapt hardware friendly algorithm for power limited sensors

so that machine learning algorithms can be applied.

II. SYSTEMS AND CIRCUITS DESIGN

The proposed ADFC consists of parallel oversampling mod-

ulators including the Delta Sigma modulator, the Delta modu-

lator, and the second-order Delta Modulator as shown in Fig.

1. The oversampling modulators generate digital bit-streams

from the analog waveform. The bit-streams are pulse-density

modulation of the analog features. For example, the pulse

density of the Delta-Sigma modulator output is proportional to

the amplitude of the analog waveform, while the pulse density

of the Delta modulator and the second-order Delta modulator
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Fig. 2. Schematic of the Oversampling Modulators (a) Delta Sigma modu-
lator; (b) Delta modulator; (c) Second-order Delta modulator.

are proportional to the derivative and the second derivative

of the analog waveform, respectively. Therefore, using the

combination of the oversampling converters, the amplitude,

slope, and turning points of the analog waveform can be

identified using a counter that counts the number of pulses

in a pre-defined timing window.

The topology of the Delta-Sigma modulator and the first

and second Delta modulators are shown in Fig. 2. In order to

save system power, the Delta modulators are modified into a

ternary architecture as we reported in [11]. In the modulator

circuits, The discrete switched capacitor integrator generates

the feedback voltage, which is subtracted from the input, then a

three state comparator detects the residue voltage and controls

the switches to feed the according voltage to the integrator

for generating the feedback. The proposed second-order Delta

modulator is similar to the first order Delta modulator in

[11], while the residue voltage V d is now generated by V in

subtracting the sum of the outputs from both the integrators.

The Delta Sigma modulator [12] is achieved by a simple

topology like in [13].

The behavior of the ternary Delta modulator and the second-

order Delta modulator is simulated in Fig. 3. The Delta

modulator detects the slope of the input waveform. If the

input has a rising slope, the output generates a positive bit-

stream and vice versa. While the second-order Delta modulator

detects the turning point of the input waveform. When there

is an upward turning point, the output generates a positive bit-

stream where the first positive bit represents the moment of

the turning point. Thus, the second-order Delta modulator can

be used to detect the onset, peak and end point of the input

waveform. Fig. 3 (a) shows the first order Delta modulator’s

outputs for ramp signals with different slopes. A larger slope
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Fig. 3. Example input/output waveform of the first and second-order Delta
modulators. (a) First order Delta modulator with input of ramp signals;
(b) Second-order Delta modulator with input of upward turning points; (c)
Second-order Delta modulator with input of downward turning points.
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Fig. 4. The definition of onset, peak, and end of each wave, as well as the
segment and intervals in ECG signal.

in the input signal generates a higher density in the output

pulses and vice versa. Fig. 3 (b) and (c) illustrates the second-

order Delta modulator’s output signals with different upward

and downward turning angles of the input waveform. A larger

upward or downward turning angle (θ) produce a higher pulse

density at the positive or negative output, respectively.

The design parameters of the oversampling modulators

include the sampling rate, the bandwidth, the integration gain,

the threshold voltages, and the reference voltage. Due to the

space limit, we plan to introduce the systematic design method

in another paper. Since the oversampling modulators generate

only one bit at a time, the total power consumption is much

lower than a conventional multi-bit ADC. Given the fact that

biomedical signal acquisition and processing usually require

oversampling [8], the parallel architecture of the oversampling

modulators can extract digital features directly from the analog

waveform during the analog to digital conversion, which costs

less power than the combined power of the conventional ADC

and its following digital signal processing circuits.

III. ECG DELINEATION ALGORITHM

One application example of the proposed ADFC is ECG

delineation. ECG delineation detects the timing information

of the peak, onset, and end points of different ECG waves,
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Fig. 5. The operation flow of the proposed bit-stream feature extraction
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including P, Q, R, S, and T waves, in order to measure

the intervals and segments between these waves, which is

shown in Fig. 4. During delineation, the detection of the QRS

complex is one of the most important tasks because the QRS

complex indicates the contraction process of the ventricles.

Besides the QRS complex, the P wave and T wave detection

also play very important roles in extracting the features, since

P wave indicates that if the heartbeat is initiated by the sinus

node while the end of T wave shows the repolarization of

the ventricles. Moreover, the PR/RT/QT intervals and the

ST segment have strong relationships with diagnosing some

arrhythmia [14]–[16].

The proposed system contains four parallel oversampling

modulators. The Delta Sigma modulator Delta − sigma1st,

the second-order Delta Modulator Delta − qspt2nd, and the

two Delta modulator Delta− qrs1st and Delta− pt1st with

different integration gain for detecting the QRS and the P/T

waves, respectively. The delineation algorithm is presented in

Fig. 5. In the first step, the QRS complexes are detected by

the Delta modulator Delta − qrs1st with the QRS detection

algorithm proposed in [11]. The main idea is to find the waves

that meet the defined requirement of the slope. In the second

step, the Delta modulator Delta− pt1st starts to search back

to find the rough P wave location, and wait for detecting the

T wave location. Meanwhile, a moving average value register

records the maximum point in the QRS detection area from the

bit-stream of the Delta Sigma modulator Delta− sigma1st.

Then, the onset, peak, and the end point of the P/T wave, as

well as the onset of Q wave, and the end point of S wave are

detected by the second-order Delta modulator Delta−qspt2nd

since the second-order Delta modulator is good at detecting

the turning point of the input waveform. A pulse filter using

erosion and dilation algorithm is designed for reducing the

disturbance of small waves, noise, or baseline drift for the
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Fig. 6. Simulation results of the Delta Sigma modulator and the parallel first
order Delta modulators with an ECG signal input.

oversampling modulators.

The bit-stream processing algorithm is based on counting

the number of pulses in a moving window, without performing

addition and multiplication such as in the wavelet transform

algorithm. The features extracted from the counting results can

be used in machine learning algorithms like support vector

machines. The digital counting circuits use much less power

than the MAC circuits at the same clock frequency. This is

another benefit of using the ADFC.

IV. SIMULATION RESULT AND POWER ESTIMATION

We simulate the system with an input of a typical ECG

signal. The operating frequency of all the oversampling mod-

ulators is set to 1 kHz. From the simulation results as shown

in Fig. 6, we can see that the QRS complex is detected by

Delta − qrs1st and the proposed algorithm, while Delta −

pt1st detects P/T waves and Delta− sigma1st identifies the

peak of the R wave. Q wave onset is decided by the first

downward turning point in the QRS detection area from the

bit-stream of Delta−qspt2nd, and the J point (S wave offset)

is located at the first downward turning point after consecutive

upward turning points of the R-S segment as shown in Fig. 7.

Onset, peak and end point of P/T waves can also be clearly

identified from bit-stream of Delta − qspt2nd in P/T wave
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Fig. 7. Simulation results of the second-order Delta modulator in detecting
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detection area. With the information of onset, peak and end

point of each wave, we can obtain PR/RT/QT intervals and

the ST segment data.

The power consumption of the proposed Analog to Digital

Feature Converter is estimated based on the fabricated Delta

modulators using IBM 0.13 µm technology [11]. The two

Delta modulators consume 720 nW with a ±0.6V power

supply and work at 1k Hz. For the second-order Delta mod-

ulator, since the second stage integrator cost approximately

50% power of the first stage integrator, the second-order Delta

modulator is expected to consume 540 nW. Because the Delta

Sigma modulator has almost the same main circuit block to the

Delta modulator, we estimate the total power of the proposed

converter as 1.62 µW. Compared to the ECG delineation

system that applied Pan and Tompkins (PAT) algorithm and

realized in 65 nm technology [17], which consumes 614 µW,

or system with digital wavelet transform (DWT) based ECG

delineation algorithm that is achieved in a microcontroller

[18], which consumes minimum 6.6 mW, our proposed system

can achieve much lower power and has great potential for

future low-power wearable ECG sensors.

V. CONCLUSION

An analog to digital feature converter which is aimed at

providing a low-power feature extraction method for machine

learning on wearable ECG sensors has been presented. The

proposed system includes parallel Delta-sigma modulator, two

ternary Delta modulators, and a ternary second-order Delta

modulator, which can extract features such as the peak, onset,

end point, slope, and turning angle of the analog waveform.

An example application of ECG delineation demonstrated the

feasibility of the ADFC with the delineation algorithm. The

simulation results show that the key measurement of ECG

waveform is able to be performed with much lower power

compared to the existing solutions. The system has a great

potential for future wearable ECG monitoring sensors.
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