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ABSTRACT: The divalent metallocene complexes Ln-
(CpiPr5)2 (Ln = Tb, Dy) were synthesized through the
KC8 reduction of Ln(CpiPr5)2I intermediates and
represent the first examples of neutral, linear metallocenes
for these elements. X-ray diffraction analysis, density
functional theory calculations, and magnetic susceptibility
measurements indicate a 4fn5d1 electron configuration
with strong s/d mixing that supports the linear
coordination geometry. A comparison of the magnetic
relaxation behavior of the two divalent metallocenes
relative to salts of their trivalent counterparts, [Ln-
(CpiPr5)2][B(C6F5)4], reveals that lanthanide reduction
has opposing effects for dysprosium and terbium, with
magnetic relaxation times increasing from TbIII to TbII

and decreasing from DyIII to DyII. The impact of this
effect is most notably evident for Tb(CpiPr5)2, which
displays an effective thermal barrier to magnetic relaxation
of 1205 cm−1 and a 100-s blocking temperature of 52 K,
the highest values yet observed for any nondysprosium
single-molecule magnet.

Lanthanide elements possess contracted valence 4f orbitals,
a characteristic that impacts both molecular structure and

magnetism.1 These core-like orbitals engage in weak,
predominantly electrostatic interactions with ligands and are
therefore nearly degenerate in energy, giving rise to
unparalleled single-ion magnetic anisotropies in lanthanide
complexes.2,3 Due to the electrostatic nature of the 4f−ligand
interactions, steric constraints tend to dictate molecular
structure and coordination geometry can be challenging to
predict.4 This situation is in contrast to transition metal
complexes, where covalent interactions between ligands and
diffuse valence d orbitals typically quench orbital angular
momentum, but lead to predictable geometries.5

Fine control over coordination geometry is essential to the
design of single-molecule magnets. For instance, increasing the
axiality of the ligand field can maximize the thermal barrier to
magnetization reversal (Ueff) for oblate Dy

III and TbIII ions and
reduce transverse anisotropy, which can, in turn, decrease the

rate of through-barrier relaxation.6,7 Enforcing a high symmetry
is also important, particularly for complexes containing
lanthanide ions with integer spin (non-Kramers ions)such
as TbIIIfor which ±MJ degeneracy is not guaranteed.8

Recent studies have demonstrated that molecular complexes
containing LnII centers can be isolated across the entire
lanthanide series and that these ions can in some instances
possess 4fn5d1 electron configurations.9,10 We reasoned that
such an electronic structure might enable the synthesis of
complexes with predictable, high-symmetry geometries
arising from covalent interactions between ligands and the
valence 5d electronthat also maintain the high anisotropy
imparted by the 4fn electrons. As complexes of the type
[Dy(CpR)2]

+ possess the highest operating temperatures
reported to date for single-molecule magnets, we chose to
study the effect of metal reduction on bis(cyclopentadienyl)
lanthanide complexes.11 Increasing the axial symmetry in such
molecules could enhance magnetic properties and this
approach could also provide a valuable opportunity to study
the impact of reducing LnIII to LnII on single-molecule magnet
behavior.
Molecules containing nontraditional LnII centers are still

quite rare and are mostly limited to trigonal, anionic [Ln(L)3]
−

complexes with L = C5H4SiMe3, C5H3(SiMe3)2, or N-
(SiMe3)2.

9 In designing a synthetic route to neutral, divalent
lanthanide metallocenes, we identified reports of the reduction
of Ln(Cpttt)2I (Ln = Tm, Dy; Cpttt = 1,2,4-tri(tert-butyl)-
cyclopentadienyl).12 Reduction of Tm(Cpttt)2I with KC8 in a
nonpolar solvent enabled isolation of the bent THF adduct
Tm(Cpttt)2(THF), while reduction of Dy(Cpttt)2I was only
successful in the presence of 18-crown-6, leading to an iodide-
bridged “ate” complex (Cpttt)2Dy(μ-I) K(18-crown-6).12 We
reasoned that a Ln(CpR)2I intermediate containing the more
strongly donating, bulkier, and more symmetric pentaisopro-
pylcyclopentadienyl (CpiPr5) ligand could facilitate clean
reduction to Ln(CpR)2 species.
In order to make direct comparisons between neutral and

cationic complexes, we synthesized the terbium(III) complex
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salt [Tb(CpiPr5)2][B(C6F5)4] (1) via iodide abstraction from
Tb(CpiPr5)2I, in a procedure analogous to the synthesis of
[Dy(CpiPr5)2][B(C6F5)4] (Scheme 1).11d Crucially, reduction
of Ln(CpiPr5)2I (Ln = Tb, Dy) in benzene with KC8 and
subsequent crystallization from hexane afforded orange-amber
crystals of Ln(CpiPr5)2 (Ln = Tb (2), Dy (3)), the first neutral,
linear metallocenes for any divalent lanthanide more reducing
than samarium(II) (Scheme 1).13 Both 2 and 3 are indefinitely
stable under argon in the solid state and hexane solution at 25
°C, in contrast to the aforementioned [Ln(L)3]

− complexes,
which are prone to decomposition at ambient temperatures.9b

The solid-state structures of 1−3 were determined by single-
crystal X-ray diffraction analyses (Figure 1). Although the
cyclopentadienyl rings in 1 are nearly parallel, the TbIII site is
situated slighty off-center, with an average Cp−Tb−Cp angle
of 159.8(4)°. The metal center is disordered over four
positions, analogous to the disorder observed in [Dy(CpiPr5)2]-

[B(C6F5)4].
11d In contrast, the metal ions in 2 and 3 are

located on an inversion center, resulting in a Cp−Ln−Cp angle
of 180° and Cp−Ln−Cp core symmetry (excluding isopropyl
groups) of D5d. The high-symmetry structures of 2 and 3 are
significant, as most 4fn lanthanide metallocenes are bent.14−16

The solid-state structures of 1−3 can also provide insight
into electronic configuration. In [LnCpR3]

− complexes
featuring LnII centers with 4fn+1 configurations, the Ln−CpR
(centroid) distances are larger than those of the trivalent
analogues by 0.1−0.2 Å. In contrast, for LnII centers with
4fn5d1 configurations, the increase in the Ln−CpR distance is
much smaller, 0.02−0.05 Å.9 The average Tb−Cp distance in 1
is 2.356(6) Å, lengthening to 2.416(1) Å in 2, while the
average Dy−Cp distance in [Dy(CpiPr5)2][B(C6F5)4] is
2.336(4) Å, lengthening to 2.385(1) Å in 3. A similar trend
is observed for the average Ln−C distance. The average Tb−C
distances in 1 and 2 are 2.635(8) and 2.704(2) Å, respectively,
and the average Dy−C distances in [Dy(CpiPr5)2][B(C6F5)4]
and 3 are 2.621(2) and 2.673(4) Å, respectively. These
differences support a 4fn5d1 configuration for 2 and 3.9c,f,g,17,18

Density functional theory (DFT) calculations performed on
optimized structures of Tb(CpiPr5)2 and Dy(CpiPr5)2 afforded
8A (in C1 symmetry) and 7A1 (in D5 symmetry) ground terms,
respectively, corresponding to a 4fn5d1 configuration (see
Supporting Information for details). These calculations
support a nondegenerate highest occupied molecular orbital
(HOMO) with significant 5dz2 character (Figure 2). Natural
population analysis revealed that the HOMO also has
considerable 6s character due to 5dz2-6s orbital mixing.19

Covalent σ-bonding interactions between these metal-based
orbitals and the cyclopentadienyl ligands likely support the
linear coordination geometry observed for these divalent
metallocenes. The lowest unoccupied molecular orbital
(LUMO) is doubly degenerate and has significant dxy/dx2−y2
character, consistent with the orbital ordering found in
ferrocene.20

The dc magnetic susceptibility data were collected for 1−3
from 2 to 300 K under an applied magnetic field of 1000 Oe
(Figures S13−S18). The room temperature χMT value for 1 is
11.96 emu K/mol, which agrees well with the expected value of

Scheme 1. Synthetic Routes to the Terbium(III) Metallocenium Salt 1 and Lanthanide(II) Metallocene Complexes 2 and 3

Figure 1. Solid-state molecular structures of 1 and 2. Maroon and
gray spheres represent Tb and C atoms, respectively; hydrogen atoms,
the [B(C6F5)4]

− counteranion in 1, and positional disorder are
omitted for clarity. Compound 3 is isostructural to 2.
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11.82 emu K/mol for a free TbIII ion (4f8). Slightly larger
values were found for the divalent complexes: 12.72 emu K/
mol for 2 and 15.15 emu K/mol for 3. These values are distinct
from the values of 14.13 and 14.07 emu K/mol predicted for a
4f9 TbII ion and a 4f10 DyII ion, respectively. Previously
reported LnII complexes with 4fn5d1 configurations follow an
L−S coupling scheme, resulting in room temperature χMT
values close to the predicted values of 14.42 and 17.01 emu K/
mol for TbII and DyII, respectively.9f−h The values for 2 and 3
are substantially lower, suggesting a deviation from L−S
coupling that can be explained by the strong 5dz2−6s mixing.
Indeed, gas-phase spectra of Ln2+ ions with 4fn6s1 config-
urations reveals that these ions follow a j−j coupling scheme
due to weak spin−spin coupling between the 4f and 6s
orbitals.21,22 Evaluating the nature of such complex electronic
structures is challenging and we are currently pursuing further
insights through a variety of spectroscopic measurements.
Magnetic relaxation in 1−3 was probed by ac magnetic

susceptibility and dc magnetic relaxation experiments (Figures
S19−S58). Under zero dc field, a polycrystalline sample of
compound 1 exhibited peaks in the out-of-phase susceptibility
(χM″) between 2 and 40 K, indicative of slow magnetic
relaxation. Pronounced curvature in a corresponding plot of
magnetic relaxation time (τ, log scale) versus T (inverse scale)
is indicative of Raman relaxation (Figure 3, yellow symbols).23

Magnetic relaxation is ∼5 orders of magnitude faster in 1 than
in [Dy(CpiPr5)2][B(C6F5)4], consistent with previous reports
on [Ln(Cpttt)2][B(C6F5)4] (Ln = Tb, Dy).11d,24 This result
can be attributed to the noninteger spin of TbIII, which enables
mixing of the ground ±MJ pseudodoublet that can promote
rapid through-barrier relaxation.24

A polycrystalline sample of compound 2 exhibited
frequency-dependent χM″ signals under zero dc field from 74
to 92 K. The data could be fit to an Orbach mechanism with a
large effective barrier to magnetic relaxation of Ueff = 1205
cm−1 (Figure S61). Additionally, a 100-s magnetic blocking
temperature (Tb) of 52 K was extracted from dc relaxation
experiments (Figure 3, maroon symbols). The values of Ueff
and Tb for 2 are the highest yet reported for any single-
molecule magnet that is not a dysprosium(III) complex and
are only surpassed by the complex [Dy(OtBu)2(py)5][BPh4]
and molecules of the type [Dy(CpR)2]

+.8f,11,25,26 The
substantial increase of over 5 orders of magnitude in the
magnetic relaxation times of 2 as compared to 1 can be

attributed to at least two factors. Reduction from terbium(III),
a non-Kramers ion, to terbium(II), a Kramers ion, enforces
degeneracy of the ground ± MJ doublet in 2.27 In addition,
increasing the axial symmetry of the coordination environment
should reduce transverse anisotropy, suppressing tunneling of
the magnetization.
Lanthanide reduction has the opposite effect on magnetic

relaxation in the dysprosium metallocene complexes. A
polycrystalline sample of 3 does not display slow magnetic
relaxation on the time scale of dc magnetic relaxation
experiments (τ > 50 s), although a 100-s magnetic blocking
temperature of 5 K could be extracted from data obtained for a
dilute (28 mM) toluene solution of 3. This blocking
temperature is substantially lower than the value of Tb = 56
K observed for [Dy(CpiPr5)2][B(C6F5)4], likely due to
conversion from dysprosium(III), a Kramers ion, to
dysprosium(II), a non-Kramers ion.11d While fast compared
to [Dy(CpiPr5)2][B(C6F5)4], the rate of magnetic relaxation in
3 is nearly 104 times slower than observed for 1, underscoring
the importance of axial symmetry in complexes containing
non-Kramers ions.8a

Magnetic hysteresis measurements further confirmed the
trends in magnetic relaxation behavior observed for 1−3.
While hysteresis is largely absent for 1, even at 2 K (Figure
S71), 2 exhibits open magnetic hysteresis loops at zero field up
to 55 K (Figure 4). Surprisingly, the coercive field for 2
increases from 2 to 30 K (Figure S73), implying that the rate of
magnetic relaxation decreases with increasing temperature.
Indeed, dc relaxation measurements performed on polycrystal-
line 2 and a dilute (19 mM) toluene solution of 2 revealed that
the relaxation time increases slightly from 2 to 15 K (Tables S3
and S5).28 Polycrystalline 3 exhibits butterfly magnetic
hysteresis from 2 to 75 K (Figures S78−S80), while
measurements performed on a dilute (28 mM) toluene
solution of 3 revealed hysteresis loops that are open at zero
field as high as 10 K (Figures S81 and S82). Significantly,
compounds Tb(CpiPr5)2 and Dy(CpiPr5)2 represent the first
single-molecule magnets based on a divalent lanthanide ion to
show magnetic hysteresis.29 Importantly, unlike [Dy(CpR)2]

+

salts, these charge-neutral molecules may also be stable to

Figure 2. HOMO (left, 170Aα, contour value 0.03) and LUMO
(right, 172Aα, contour value 0.03) for 2 with hydrogen atoms
excluded for clarity. The HOMO and LUMO for 3 are isolobal.

Figure 3. Plot of magnetic relaxation time (τ, log scale) versus
temperature (T, inverse scale) for polycrystalline samples of 1
(yellow) and 2 (maroon). Black lines represent fits to the data.

Journal of the American Chemical Society Communication

DOI: 10.1021/jacs.9b05816
J. Am. Chem. Soc. 2019, 141, 12967−12973

12969

http://dx.doi.org/10.1021/jacs.9b05816


sublimation, offering a ready means of depositing them onto
surfaces and within devices.
In order to investigate the unusual low-temperature

hysteresis behavior, magnetic relaxation in 2 and 3 was probed
by ac susceptibility measurements from 2 to 20 K. The
resulting data reveal complicated relaxation dynamics featuring
multiple relaxation processes (Figures S60−S70), which persist
in data collected on dilute solution samples of each compound.
This behavior likely arises from the complex electronic
structure of the divalent metallocenes, and clearly warrants
further investigation.30

The foregoing results demonstrate that lanthanide reduction
in bis(pentaisopropyl)cyclopentadienyl metallocenes has a
substantial impact on both the coordination geometry and
magnetic properties. In particular, the 4fn5d1 electronic
configuration of Ln(CpiPr5)2 supports axial, high-symmetry
structures, likely a result of enhanced covalency in metal−
ligand interactions. Notably, the more axial symmetry of
Dy(CpiPr5)2 results in higher hysteresis temperatures relative to
[Tb(CpiPr5)2]

+, although both complexes feature non-Kramers
ions. Reduction of terbium(III) to terbium(II) also results in a
drastic enhancement of the magnetic relaxation time for
Tb(CpiPr5)2 and gives rise to the highest thermal barrier to
magnetic inversion and highest magnetic blocking temperature
yet observed for a nondysprosium single-molecule magnet. In
total, these results highlight the utility of lanthanide redox
chemistry in modulating magnetic relaxation. We are currently
pursuing a more detailed understanding of the complex
electronic structure and magnetism of these new divalent
metallocenes via a variety of spectroscopic methods.
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