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Characterizing the elastic properties of soft materials through bulge testing relies on accurate measurement of deformation, which
is experimentally challenging. To avoid measuring deformation, we propose a hydrodynamic bulge test for characterizing the
material properties of thick, pre-stressed elastic sheets via their fluid—structure interaction with a steady viscous fluid flow. Specif-
ically, the hydrodynamic bulge test relies on a pressure drop measurement across a rectangular microchannel with a deformable
top wall. We develop a mathematical model using first-order shear-deformation theory of plates with stretching, and the lubrica-
tion approximation for Newtonian fluid flow. Specifically, a relationship is derived between the imposed flow rate and the total
pressure drop. Then, this relationship is inverted numerically to yield estimates of the Young’s modulus (given the Poisson ratio),
if the pressure drop is measured (given the steady flow rate). Direct numerical simulations of two-way-coupled fluid—structure
interaction are carried out in ANSYS to determine the cross-sectional membrane deformation and the hydrodynamic pressure
distribution. Taking the simulations as “ground truth,” a hydrodynamic bulge test is performed using the simulation data to as-
certain the accuracy and validity of the proposed methodology for estimating material properties. An error propagation analysis
is performed via Monte Carlo simulation to characterize the susceptibility of the hydrodynamic bulge test estimates to noise. We
find that, while a hydrodynamic bulge test is less accurate in characterizing material properties, it is less susceptible to noise, in

the input (measured) variable, than a hydrostatic bulge test.
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1 Introduction

Bulge testing is a standard technique for measuring mechani-
cal properties of thin films of elastic materials [1, 2]. In the de-
velopment of microfluidic platforms, soft polymeric materials,
such as polydimethylsiloxane (PDMS) [3], are used for rapid
manufacture of fluid-conveying microchannels [4, 5] via soft
lithography [6]. However, the mechanical properties (such as
the Young’s modulus and Poisson ratio) of such materials are
sensitive to how the polymers are mixed, how long the mixture
is cured, and the ambient thermal conditions [7]. Therefore,
bulge testing is used to estimate the elastic properties of soft
materials, such as PDMS and also polyurethane (PU), used in
microfluidics [8, 9].

* Author to whom correspondence should be addressed.
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A bulge test involves clamping a thin elastic sheet over an
orifice (or a window) and, then, measuring its deformation un-
der a known (usually uniform) pressure field [2, 8, 9]. The
measured deformation as a function of the known pressure
load can then be converted to strain as a function of stress,
by employing a suitable structural mechanics model (e.g., the
theory of linear elasticity). In turn, knowing the stress as a
function of the imposed strain allows for straightforward es-
timation of the elastic modulus of the material (assuming that
the Poisson’s ratio is known) [2, 8, 9]. Knowledge of the stress
distribution within the structure is also used to estimate frac-
ture properties of the material [10, 11, 12]. Several techniques
have been proposed to improve the accuracy of “traditional”
bulge tests. These improvements include, but are not limited
to, accounting for the film’s bending stiffness [13], account-
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ing for pre-stress in the film [1, 2], considering the possibility
of buckling [14] and better prediction of the stress distribution
near edges [15] by using elastically clamped (instead of the
traditional rigidly clamped) boundary conditions [10, 11].

One of the main sources of uncertainty in bulge tests is
the experimental measurement of the film’s deformation [9].
Traditionally, deformation has been measured by interfero-
metric techniques and, less frequently, by high-resolution mi-
croscopy. Both of these measurement techniques have certain
limitations. On the one hand, interferometers are prone to er-
rors induced from external sources of vibrations [9], which
limits the spatial resolution of the measurements and makes it
difficult to accurately resolve deformations in the small-strain
regime relevant to bulge testing [2, 9]. On the other hand,
microscopes are not well suited to analyze samples with high
reflectance, such as PDMS [9]. Thus, there is motivation for
developing bulge testing techniques that bypass the deforma-
tion measurement altogether.

Often, bulge testing techniques discussed in the literature
have focused on circular membranes [2], with only a few stud-
ies addressing the case of rectangular membranes with pre-
stress [10, 11, 12, 16] using energy minimization methods [1].
Residual pre-stress (pre-tension) is common in samples being
tested because the thin film of material has to be stretched taut
over an orifice (say, a rectangular microchannel) to ensure that
it is flat before the commencement of the experiment [17, 18].
Furthermore, most of the bulge testing theories in the litera-
ture assume that the film has negligible thickness and defor-
mations due to shear along the transverse direction are, thus,
not accounted for.

To improve upon some of these drawbacks of static bulge
testing, we propose a theory of hydrodynamic bulge tests, in
which the applied pressure load on the thin structure is due
to viscous fluid flow underneath it. We account for both uni-
form isotropic pre-stress and the finite thickness of a rectangu-
lar elastic sheet. The novelty of this approach is that it does not
require a measurement of the deformation profile of the elastic
membrane. Through this approach, we are able to characterize
the elastic properties of a soft material using a mathematical
model derived to relate the rotal pressure drop, at steady state,
over the length of the elastic sheet to the imposed volumetric
flow rate of the fluid flow underneath it.

The interplay of pre-stress-induced stretching, pressure-
induced bending and the finite thickness of a plate-like struc-
ture leads to several different physical regimes of flow-induced
deformation. Thus, a hydrodynamic bulge test is an exam-
ple of low-Reynolds-number fluid—structure interaction (FSI)
[19]. This problem, rather than the problem of the deflection
of circular membranes typically studied in the bulge testing lit-
erature, is more relevant to microfluidics because PDMS mi-
crochannels’ walls are generally not circular but rectangular
[9, 20]. A mathematical model of such FSI requires the use of
the lubrication approximation to obtain the leading-order (with
the flow-wise aspect ratio as the small parameter) fluid flow
field, and then coupling it to a deformation profile obtained
under an appropriate structural mechanics model (herein, a
plate theory) [20, 21, 22]. The main result of the mathematical
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derivations in this work is the flow rate—pressure drop relation-
ship for flow in a long and shallow rectangular microchannel
with deformable top wall. In [23], this relationship was em-
ployed to non-invasively measure the non-uniform hydrody-
namic pressure distribution (within a microchannel) from the
wall deformation. Here, we pose the opposite FSI problem:
if the pressure profile is known, can a mathematical model be
used to infer the deformation? Then, can the total pressure
drop be used to infer the material properties of the thin solid
film that comprises the deformable channel wall?

To answer these questions in the affirmative, in Sec. 2,
we first derive the governing equations of a first-order shear-
deformation plate theory, incorporating finite transverse thick-
ness and pre-stress. Specifically, for a long and wide geome-
try, the problem is reduced to two coupled ordinary differential
equations (in the spanwise coordinate) for the rotation of the
normal and the vertical displacement (Sec. 2.2). Three regimes
of deformation are delineated, and a solution for the deforma-
tion, given an axially-varying pressure load, is found in each
regime (Sec. 2.3). Section 3 summarizes the hydrodynamics
problem under the lubrication approximation for viscous flow
in slender geometries, and we obtain the flow rate—pressure
drop relation by coupling the fluid and solid mechanics prob-
lems. In Sec. 4, we compare the latter theoretical result to
direct numerical simulations of FSI in ANSYS, showing good
agreement. On the basis of this validation, a hydrodynamic
bulge testing theory is proposed, and a sensitivity (error prop-
agation) analysis is performed on it via Monte Carlo simula-
tions in Sec. 5. Conclusions are stated in Sec. 6, and three ap-
pendices (Supplemental Material) provide further mathemat-
ical details: the derivation of the governing partial differen-
tial equations of the thick-plate plate theory (Appendix A),
results regarding the deformation profile in different regimes
(Appendix B), and the special case of a “classical” thin-plate
theory (Appendix C).

2 Structural Mechanics

Consider the geometry depicted in Fig. 1. An elastic plate,
clamped on all its edges, is placed as the top wall over a rect-
angular channel that is long and wide. The plate’s thickness is
smaller than its spanwise width (¢/w < 1), but it is not neg-
ligible (t/w +> 0). Furthermore, the reference configuration
of the plate is assumed to have an uniform (isotropic) pre-
tension 7', defined as a force per unit length (stress resultant).
In this section, we we summarize the key points of a plate the-
ory, based on the Reissner—-Mindlin (RM) approach [24, 25],
that also accounts for the pre-tension/pre-stress/stretching in
the elastic body. A more complete discussion is available in
Supplemental Material Appendix A. RM, or “thick-plate,” the-
ories are also referred to as first-order shear-deformation theo-
ries (FOSDT) (see the recent historical overview of the devel-
opment of these theories by Challamel and Elishakoff [26]).
Then, we show how this pre-stressed thick-plate theory can be
used to obtain a complete description of hydrodynamic bulge
testing of elastic structures.
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x=0

X=-w/2

Figure 1: Geometry of the problem and notation. A slen-
der elastic membrane (plate) represents the top wall of an
otherwise rigid channel. A steady flow is established in
the z-direction, which gives rise to a pressure gradient that
leads to a deformation of the membrane in the y-direction.
The membrane is clamped on all ends (not shown at
z = 0 for clarity). Reprinted and adapted from Jour-
nal of Non-Newtonian Fluid Mechanics 264, Vishal Anand,
Joshua David JR, Ivan C. Christov, “Non-Newtonian fluid—
structure interactions: Static response of a microchannel
due to internal flow of a power-law fluid,” 62—-72 Elsevier
[27], Copyright (2019), with permission from.

2.1 Differential Equations for the Displacement

To define a FOSDT with both stretching and bending, one ob-
tains substitutes the stress resultants from Eqs. (A8), (A9) and
(A1l) from the Supplemental Material into the equations of
equilibrium (AS5), to obtain a set of differential equations for
the displacements (uxo, 4y, uz0) and the rotations of the nor-

mal (¢, ¢2):

62ux0 621,!20 62ux0 82u20
S =V, 1
(6x2 Voxaz) TN 92t awaz) O U
82uzo azuxo 82uzo 62ux0
KGt( 2 + ox0z + Dy 722 +V6x6z =0, (1b)
Puy uy) dg.  I¢.
Kth( o2 + 02 + g 8_z +N+p=0, (lc)
62¢x 62¢z l-v 62¢x 62¢Z
D D
”(ax2 +V6x(9z)+ ”( 2 )(622 +V(9x62)
Ouy
kGt | —=+¢,| =0, (1d)
ox
9’¢x  0%¢: L-v\(9¢x  3¢:
D D
b (V6x61+ 922 |7\ T2 axdz " ox
duy
kGt |—=+¢.| =0, (le)
0z

where D;, := E3/[12(1 — v?)] is the bending rigidity, and
Dy = Et/(1 — v) is the extensional rigidity, of the plate
with Young’s modulus E and Poisson ratio v [28, 29]. Here,
G := E/[2(1+v)] is the shear modulus, and « is Timoshenko’s
“shear correction factor” [30], which is commonly introduced
to account for nonuniform distribution of the transverse shear
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strain across the thickness [31, 32, 33]. Following Zhang [33],
and as in previous works [27, 34], we take « = 1 to ensure con-
sistency of three-dimensional (3D) linear elasticity and RM
plate theory in the limit of 7/w — 0.

Equations (1a) and (1b) completely describe the in-plane
displacement field, which is independent of the transverse de-
flection and/or rotations. In the analysis below, this in-plane
displacement field will not be necessary, thus we discard these
two equations.

Finally, in this work, we assume that the stretching response
of the plate is due to a known isotropic, uniform pre-tension 7,
i.e., the normal stress and in-plane shear stress resultants are
simply given by

Ny 1
N |=T|1 2)
Nx; 0
Then, Eq. (1¢) becomes,
d¢x 09, 62uy 62uy
G —= T + kG =-p, (3
K t(ax + 7z + (T + «Gt) e T p, (3)

Together, Eqgs. (3), (1d) and (le) describe the transverse de-
flection and rotations of the normal to the mid-plane of a thick,
pre-stressed plate. A subtle consequence of imposing the pre-
stress on the model a priori, rather than computing it through
internal strains, is that the equations of the present weakly non-
linear theory become equivalent to equations of von Kdrman’s
plate theory with given constant isotropic pre-tension [28, 35].

2.2 Shallow, Slender Plates: Regimes of Deformation
First, we rewrite the governing differential equations (3), (1d)
and (1e) using the following dimensionless variables:

X=x/w, Z=z/l, U=u,/U.,

q)x=¢x/ﬂ, q)Z :¢Z/7:Z P:p/PC’ (4)

Here, ¥, ¥, and U, are the characteristic scales for the ro-
tation of the normal in the x and z directions, and the char-
acteristic scale for the deformation itself, respectively. These
scales will be determined self-consistently through the math-
ematical analysis below. The characteristic pressure scale is
P, which will be obtained from the analysis of the fluid me-
chanics problem. For a long and wide microchannel, following
[21], assume that

hy<w<s/{ = exoxl,

(&)

where € := ho/C and 6 := ho/w, and hg is the undeformed
height of the channel (recall Fig. 1). Substituting the dimen-
sionless variables from Eq. (4) into Egs. (3), (1d) and (le)
yields a dimensionless set of governing equations:

o (52 00x | 72 00,
w 0X t 0Z
U. 0°U U, d*U
+ (T+ KGI) (Wm 7@) = —PCP, (63)
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RN 1Db(1 -v)
T" ox2 "2 ¢ T’“ 6Z2
1D,(1+v) _ 0%®, U 0U\ _
3wt Tigxaz <O\t Trax) 7O
(6b)
82<I> 1D,,(1 —v) __ 0%,
TZ T “ax?
lDb(1+v) 0’D, U 0U\ _
3wt axaz KON\T0r gz T
(6¢)

In Egs. (6b) and (6¢), the terms involving AU /0 X and U /0Z
arise from the transverse shear resultant, meaning they are a
key aspect of the FOSDT. To retain these terms asymptotically,
we take

(N

Next, we substitute the expressions for ¥y and ¥, from
Eq. (7) into Eq. (6b) and multiply by h% to obtain:

1 ,0°Dy

5%),,9% X4 D1 =9 Fre ——

— kGth3 T (cpx + g—g) =0. (8)

a2q>z
~FDp(1 .
’ 27" R %
Under the assumed asymptotic scaling given in Eq. (5), we
retain terms of O(6?) in the last equation, while dropping the
terms of O(€?) in Eq. (8), to obtain:

9’y
§’D
bTox2

— kGth} (CDX + a—U) =0. 9)

0X

To balance all terms in the last equation, we must require that
62Dy, ~ kGthj. This scaling can be interpreted in two ways.
First, in the “stiffness space,” it can be rewritten as

KGth%
Dy,

52 transverse shear stiffness

bending stiffness (10)
which means that the ratio of the transverse shear stiffness to
the bending stiffness, though small, is still finite, unlike “thin-
plate” (Kirchhoff-Love) theory [36, 37] (referred to as “clas-
sical plate theory” in [38]), in which it is identically zero. Sec-
ond, by using the definition of the bending stiffness Dj and
the shear modulus G given above, Eq. (10) can be rewritten as

(1)

which is an equivalent relation in the “dimensions space,” and
portrays the relationship between the thickness and the width
of the plate in an order of magnitude sense.

Next, Eq. (9) can be rewritten as

6k(1 —v) ~ (t/w)2,

82Dy
X2

ou
0X

(t/w)?

rye 6k(l—v)’

((DX ) 0, T:= (12)

where a scaled dimensionless thickness .7 has been defined
for convenience.
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Similarly, for Eq. (6a), we substitute . and 7, from Eq. (7)
and multiply by h2w?/D), to obtain:

i 526®X + 26@2 " TW 5262 262

T 0X 0z Db 9 5X2 022
P
R KT (13)

Again, we neglect terms of O(€”) and retain terms of O(62),
arriving at

1 (,0Px ,0%

7 (5 9X )+ (ﬂ 9) (5 axZ)
where 1 := Tw?/D; has been defined as a dimensionless
tension-to-bending number. Although 4 < 0 is possible as
well (pre-compressed plate), we restrict ourselves to the case
of 1 > 0 to avoid potentially having to deal with buckled states
of the membrane [16].

To summarize, the FOSDT equations (in terms of the defor-
mation U and the rotation of the normal ®@x) for bending of

a long and wide plate, initially subject to a uniform isotropic
pretension, are

P
Do (14)

Rl oU
T axi ((DX ax) 0, (152)
1 0dy 1) 82 h2w? P
Zox T (’” ?) X2~ 62Dy U. P (58

The corresponding (four) clamping boundary conditions
(BCs) at the channel’s lateral sidewalls are

Ulx=+1/2 =0, Dx[x=11/2 = 0. (16)

The characteristic deformation scale U/, remains unknown.
It will be determined by considering appropriate balances in
Eq. (15b), depending on the order of magnitude of A.

2.3 Solution of the Deformation Equations

It was shown in [21] (see also Sec. 3 below) that, under the lu-
brication approximation, the hydrodynamic pressure load can
vary at most in the flow-wise direction; i.e., P = P(Z) only.
Then, the governing differential equations Eqs. (15) for ®x
and U are a set of coupled, inhomogeneous, ordinary differen-
tial equations (ODEs) in X with constant coefficients.

Based on the definition of A from Eq. (15b), we can delin-
eate four regimes of structural deformation:

e Regime | (1 < 1): Pre-tension is negligible compared to
transverse shear and bending, i.e., TWZ/D}, < 1.

e Regime 2 (4 = O(1)): Pre-tension and transverse
shear are comparable to bending: Tw?/D;, = O(1), or
Th}/Dp = O(6%).

e Regime 3a (1 = O(1/6?)): Pre-tension is much stronger

that transverse shear and bending: Tw?/D;, = O(1/6%),
or Th(%/Db =0(1).
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e Regime 3b (1 > 1/6%): Again, pre-tension is much
stronger that transverse shear and bending, but there are
no longer dominant balances involving A in the governing
equation: Th(%/Db > 1.

Regime 1 is bending dominated, and the problem reduces to
the no-pre-tension case considered in previous work [27, 34].
In Regime 3b, the problem reduces to the trivial case of bi-
axial stretching of a bar, without any FSI, which is not of in-
terest either. In Regime 2, both pre-tension and bending ef-
fects are important. Thus, Regime 2 is of primary interest in
this paper, and a solution will be sought for the displacement
in this regime. Then, the displacement under Regimes 1 and
3a can be easily found from the solution in Regime 2 as spe-
cial/limiting cases. A brief independent treatment of Regimes
1 and 3a is presented in Supplemental Material Appendix B
for completeness.
Next, Eq. (15b) can be solved for 0®x /0 X:

P+ |4+ 1) 02U

T)ox?|’
which, in turn, can be differentiated twice with respect to X,
to obtain:

WAP,
DU,

0Dy

0X

= —9[ (17)

8Dy 1\ o'Uu

——=-T(1l+=]|—.

e =7 1)

Taking 0/0X of Eq. (15a) and substituting into it the results
from Eq. (17) and (18), yields a single ODE for U:

(18)

64 62U
axz

. wiP,
DU,

- (AT + 1) P =0, (19)
Thus, to balance all terms (and account for bending, stretching
and pressure loading), we must choose the scale of deforma-
tion to be
whP,.
Dy
Equation (19) is subject to the four BCs from Eq. (16).
Again, two of them need to be converted from BCs on ®x
to corresponding BCs on U. To that end, differentiate Eq. (17)
to obtain an expression for RIOW J0X 2 which is then substi-
tuted into Eq. (15a). Next, evaluate the resultat X = +1/2 and
impose the BCs ®x|x-.1/> = 0 to obtain the new BCs

U, =

(20)

=0.

[1 ou o’U @

Fax T+ g

X=+1/2

By inspection, the particular solution of Eq. (19) is
—ﬁP(Z)X 2. For the homogeneous problem, the character-

istic polynomial is (1.7 + 1) #* — Ar?> = 0, the roots of which

are r = {O, +/A/ (AT + 1) }, where r = 0 is a double root.
Thus, the general solution of Eq. (19) is
P( )y
UX,Z) = X*+C(Z)exp|X 1771
+ Cy(Z) ex A +C3(2) + C4(2)X, (22)
2 p 17 +1 3 4 )
JAM-19-1506

where C .3.4(Z) are arbitrary functions of integration.

The X — —X symmetry of the boundary-value problem
(BVP) specified by Eq. (19) and its BCs requires that C; (Z) =
C»(Z) and C4(Z) = 0. Thus, the general solution (22) can be
rewritten as

B 1 P(Z)
U(X,Z) —2C1(Z) cosh | X W) 3(Z) —7
(23)
The BCs in Eq. (21) require that
P(Z
€(2) = @ 4)

42\JA(A7 + 1) sinh (%, lmﬂ) .

Then, the BCs U|x-+1/2 = 0 require that

P(Z)

C3(2) = 1

1 1 A
4 \/mcmh(z 19+1) '
(25)
Thus, the complete solution for the cross-sectional deforma-
tion profile of the pre-stressed plate is

U(X,Z):M (1 XZ)

21 | \4

1 [ 2
cosh(i m) cosh(X /19+1)

- . (26)

VAT + 1)sinh(%,/L;—H)

As a consistency check, we also note that, in the limit of negli-
gible thickness (.7 — 0), Eq. (26) reduces to the deformation
profile of a pre-stressed thin membrane [16, Eq. (8)] (see also
[11, Eq. (10)]), which is derived independently in Supplemen-
tal Material Appendix C.

On the other hand, in the limit 4 — 0, Eq. (26) reduces to
the solution for thick plate without pre-tension, i.e., the solu-
tion for Regime 1 from [34], derived independently in Supple-
mental Material Appendix B.1. In Regime 3a, 1 = O(1/6?),
i.e., 4 > 1, and a straightforward Taylor series expansion of
Eq. (26) for 4 — oo gives

U(X,Z) =

P2)| (1
21 (Z_X2)

lcosh(%) —cosh(%) vo (i) o7
1 VT (=) el

The leading-order term in this equation is also derived inde-
pendently in the Supplemental Material Appendix B.2.
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For future reference, Eq. (26) can be put back into its di-
mensional form:

2
6

cosh (%\/ﬁ) —cosh (%\/ﬁ)

- . (28)

VAT + 1)sinh(§,/L;—H)

Then, by x — —x symmetry, the maximum deformation over
the cross-section is its value at x = 0:

u(x,z) =

umax(z) = u(O, Z)

cosh (%\/ /1,;+1) -1

- . (29

VA7 +1) sinh (%, /M%H)

_wip(d) |1
T 2T |4

3 Fluid Mechanics

The slenderness of the channel allows us to invoke the Iubrica-
tion approximation [39], according to which the dimensionless
velocity field (see [21] for details) is

d
VA(X,Y,Z) = % (—é) [—ZLhO +BU(X,Z) —Y

X 30)

t
Y+ —+1
2ho

for no-slip boundary conditions at the rigid bottom Y =
—1/(2hg)—1 and at the deformed top Y = —1/(2h¢)+BU (X, Z)
walls. The pressure P varies only in the flow-wise +Z-
direction (meaning, dP/dZ < 0), thus a complete (not par-
tial) derivative is featured in Eq. (30); however, due to FSI,
dP/dZ # const. as it would be in pipe flow [39]. Observe
also that in FOSDT, the vertical displacement U does not de-
pend on Y (see Eq. (Alc) in the Supplemental Material), thus
it is the same at Y = —¢/(2hg) (the fluid—solid interface) and at
Y =0 (the plate’s mid-plane).

In Eq. (30), Vz(X,Y,Z) = v (x,y,2)/V; is the dimension-
less velocity in the streamwise direction (recall Fig. 1), while
U(X,Z) = uy(x,z)/U. is the dimensionless deformation of
the top wall, as per Eq. (4). Here, on using Eq. (20), we have
defined

U wP,

pi= ho  Dpho

as a dimensionless group, which we term the FSI parameter.

This parameter quantifies the compliance of the plate com-

pared to the characteristic magnitude of the applied hydrody-

namic pressure load. Then, the height of the deformed fluid
domain is

(€19

h(x,z)  ho+uy(x,z2)

H(X,Z) =
( ) ho ho

=1+pU(X,Z). (32)
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The dimensionless flow rate is evaluated as the area integral
of the streamwise velocity from Eq. (30), then written solely
in terms of U(X, Z) and P(Z) via Egs. (32) and (26):

+1/2 —%—HH(X,Z)
1= / Vz(X,Y,Z)dY dX (33a)

“1/2 J5f-1
1dp 12 3

=——— H(X,Z)"dX 33b
24z )\ (X,2) (33b)
1dp /2

=——— [1+3BU(X)P(2Z) +3B°U(X)*P(Z)?
12dZ J 1)

+BU(X)*P(2)*]dX, (33¢)

where we have introduced the dimensionless deformation-to-
pressure ratio

Ux,z) 1

=537 " m

1 2

-—-X
()
cosh (%Jﬁ) — cosh (X ﬁ)

- . (34

VAT + 1)sinh(%,/ﬁ)

Y

The left-hand side of Eqs. (33) is unity because we have em-
ployed a flow-rate-based velocity scale V, = g/(how) as
in prior work [21, 27], yielding a dimensionless flow rate
Q = g/q = 1 under steady flow with imposed inlet ¢ = const.

Performing the integration in Eq. (33c¢) reduces it to a first-
order nonlinear ODE in P(Z):

-l2= j—; [1+3p0P(Z) + 367 LP(2)* + B LP(Z)]

(35)
where we have defined

+1/2 )
I :=/ U(X)' dX.
-1/2

(36)

Note that {; };=1 2,3 are known functions of A and .7 (but not
X or Z), even if obtaining them analytically might be chal-
lenging. Now, the ODE (35) is solved subject to the boundary
condition that P(1) = O (outlet gauge pressure) to obtain an
implicit dimensionless relation for P(Z):

121-2)=P(Z) |1 + %ﬂLP(Z) +BALP(2)?
B BP2Y | G

Finally, the steady flow rate—pressure relation can be put in
dimensional form by taking $. = C,ué’/h(z) = q,ué’/(whg)
[21] to be the viscous flow pressure scale for an imposed flow
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rate:
whip(z) 3( wt
— 0 — —_—
1= Dut—o| "2 (Dbho)flp(z)
W4 2 2 1 W4 3 3
+(Dbh0) Lp(z) +Z(Dbh0) Lp(z)’|, (38)

where u is the (constant) dynamic viscosity of the Newtonian
fluid.

4 Results

The previous sections were devoted to the derivation of the
theory of steady-state fluid—structure interaction (FSI) in a mi-
crochannel between the viscous fluid flow within and a pre-
stressed elastic top wall clamped on all edges. In this sec-
tion, we compare the latter theoretical results to direct numer-
ical simulations (DNS) of FSI performed using the commer-
cial software suite by ANSYS [40]. The simulations are two-
way coupled to ensure full fidelity. Many of the details of
such simulations have been presented in previous publications
[21, 27, 34, 41]. Nevertheless, to ensure that this work is self-
contained, a short summary is provided next.

4.1 Computational Approach

ANSYS employs a segregated solution procedure to perform
FSI simulations, wherein the mechanical deformation field is
solved in the ‘Static Structural’ module, using the finite ele-
ment method (FEM), while the fluid flow field is solved sepa-
rately in the ‘Fluent’ module, using the finite volume method
(FVM).

In the Static Structural module, we have switched on the
option of ‘large deformations.” Therefore:

e The difference between deformed and undeformed coor-
dinates is maintained.

e The logarithmic (Henky) strain and the true (Cauchy)
stress are employed as the strain and stress measures, re-
spectively, instead of engineering strain and engineering
stress, which would have been employed in a small-strain
analysis.

e The stiffness matrix in the FEM formulation is a function
of the displacements and results in a nonlinear govern-
ing equation for each node, which is solved by iterative
methods.

Importantly, the assumptions of the plate theory, from which
the mathematical model in Sec. 2 was derived, are not im-
posed on the numerical solution. Similarly, Fluent solves the
steady 3D incompressible Navier—Stokes equation on a de-
forming domain without any a priori approximations. Pre-
viously, we carried out mesh refinement studies [34], and we
explored choices of algorithms for mesh smoothing [27], in
similar FSI problems. We carry over the lessons learned to the
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ho w 14 t 0 €
0.155 1.7 15,5 0.605 0.09 0.01

t/w
0.36

Table 1: Dimensions and relevant geometric parameters
for DNS of FSI in ANSYS. All lengths are given in mm.

present study to obtain the right blend of numerical accuracy
and computational effort.

The distinguishing feature of the FSI simulations carried out
in this work is the inclusion of pre-stress in the elastic wall.
To this end, we employed two Static Structural modules, in-
stead of one. In the first Static Structural module, forces were
imposed on the edges of the structure to induce pre-stress in
the elastic wall. The resulting pre-stress distribution was then
written to a file. This file containing the information about
pre-stress at every node was then read into the second Static
Structural module using the ‘inistate’ command.

The geometric details of the model are given in Table 1.
The channel has a linearly elastic top wall characterized by
a Young’s modulus £ = 1.6 MPa and a Poisson ratio v =
0.4999, similar to PDMS [34]. Three values of the uniform
pre-tension of the elastic top wall were considered: 7' = 13.62,
27.24 and 68.11 N-mm, which correspond to A = Twz/Db =
1,2 and 5, respectively. The remaining three walls of the chan-
nel are rigid. The fluid inside the channel was taken to be water
with a constant density p = 997.3 kg/m? and dynamic viscos-
ity u = 9.14 x 10~* Pa-s. The dimensions of the channel were
chosen so that the assumptions of a long and slender geometry,
as stated in Eq. (5), are satisfied, and thus the simulations may
be compared to the theory.

4.2 Cross-Sectional Deformation Profile

A major result of the proposed theory is the self-similar
form of the dimensionless cross-sectional deformation pro-
files scaled by the hydrodynamic pressure, i.e., the ratio
U(X,Z)/P(Z) from Eq. (26) is independent of the flow-wise
coordinate Z. This result connects the local deformation with
the local pressure, forming the theoretical foundation for the
hydrostatic bulge test. To verify this result of the theory, in
Fig. 2 we plot the results from ANSYS FSI simulations for
U(X,Z)/P(Z) as a function of X alongside the prediction
from from Eq. (26). We observe that the simulations (repre-
sented by symbols and colors, corresponding to the different
flow rates g and evaluated at different flow-wise locations z)
collapse neatly onto a single curve, which closely matches the
theoretical profile (solid curve). In practice, validation of this
prediction cannot be carried out in a noninvasive manner due
to the need to measure the deformation at several flow-wise
locations.

Next, we carried out the simulations for fixed ¢ but dif-
ferent values of the pre-tension 7. In Fig. 3, the profile
U(X,Z)/P(Z) from ANSYS simulation is compared to the
theoretical profile from Eq. (26), for different values of the
bending-to-tension ratio 4. We observe good match between
the theoretical prediction and the results of simulation, but
it worsens as A increases. A possible explanation may be
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Figure 2: Self-similar collapse of the scaled dimensionless
deformation of the channel’s elastic plate top wall, across
the width of the channel, for different flow rates ¢ and axial
locations z; 1 = 2. The solid curve represents the theo-
retical prediction from Eq. (26), the symbols correspond to
the results of DNS of FSI in ANSYS. Colors correspond to
flow rates: red is ¢ = 10 mL/min, yellow is ¢ = 20 mL/min,
gray is ¢ = 30 mL/min, black is ¢ = 40 mL/min, green is
g =50 mL/min, and orange is ¢ = 60 mL/min. Symbols cor-
respond to different axial locations: Oisat z =4 mm, O is
at z =8 mm, and 2 is at z = 12 mm. Note that many symbols
overlap due to the high quality of the collapse.

that significant stretching occurs in the structure at high A,
which invalidates the small strain assumption employed in the
FOSDT of plates. Also, the agreement is better at the center
of the cross-section, compared to the sides, which can be at-
tributed to the use of clamped boundary conditions in the the-
ory, while a 3D zero-displacement boundary condition for the
nodes along the x = +w/2 planes is imposed in simulations.
Others have used the so-called “elastically clamped” boundary
conditions [10, 11] to improve the agreement near the edges.
However, the elastically clamped boundary conditions involve
a free parameter, whose value must be determined from ad-
ditional numerical simulation of the particular plate geometry
[42]. Therefore, the use of elastically clamped boundary con-
ditions pose their own set of challenges, while yielding at a
best a modest improvement in the already quite good match
between the theoretical and simulated deformation profiles.

4.3 Flow Rate—Pressure Drop Relationship

Next, we shift our focus to the flow rate—pressure drop rela-
tionship obtained in closed-form from the theory as Eq. (38).
This result involves variables that need to be measured only at
the inlet and/or the outlet of the microchannel; these measure-
ments can be done noninvasively. Therefore, there is no need
to measure quantities inside the system (channel) to obtain an
estimate of the material properties from Eq. (38). The latter
idea underpins the proposed hydrodynamic bulge test, which
renders the system a “black box™ for experimental materials
characterization, unlike the hydrostatic bulge test, which re-
quires measuring umax(z) at some axial position z and invert-
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Figure 3: Self-similar scaled dimensionless deformation
of the elastic plate top wall of the channel, for different
bending-to-tension ratios 4, at an inlet flow rate of ¢ = 30
mL/min. The curves represents the theoretical prediction
from Eq. (26), while the symbols correspond to the results
of DNS of FSI in ANSYS.

ing Eq. (29) to determine E (via Dy, in A).

To illustrate our FSI theory, in Fig. 4, we plot the full pres-
sure drop Ap = p(0) — p(€) = p(0), as calculated from
Eq. (38), as a function of the volumetric flow rate g, for differ-
ent tension-to-bending ratios 4. Additionally, the correspond-
ing results from our ANSYS FSI simulations are shown as
symbols. Clearly, the theory agrees with the simulations for
the range of ¢ and A considered. An increase in A causes the
pressure drop to increase, because of the decrease in deforma-
tion as pre-tension “stiffens” the plate. The match worsens at
larger g and A due to “stronger” FSI. For each A, the maximum
error between theory and simulation occurs at the maximum
flow rate ¢ = 60 mL/min; still, this maximum relative error is
just = 2.53% for A = 5.

4.4 Characterization of Material Properties and Range
of Validity of the Theory

The goal of this work is to introduce a theory of hydrody-
namic bulge testing, wherein the material properties of a finite-
thickness elastic membrane (plate) are characterized using a
pressure drop measurement and the relationship in Eq. (38),
without measuring the membrane’s transverse deformation. To
achieve this goal, the measured pressure drop, the imposed
flow rate, and the known geometric dimensions are substituted
into Eq. (38), which is then solved using the bisection method
[43, Ch. 5] in a Python script using SciPy [44], to obtain the
Young’s modulus E given the Poisson ratio v.

To demonstrate how a hydrodynamic bulge test might work,
we carried out FSI simulations for different values of the elas-
tic modulus E of the top wall. The simulations were carried
out for flow rates of ¢ = 60 mL/min, 80 mL/min, and 100
mL/min for A = 1, 2, and 5. The resulting pressure drop from
the simulation was used to predict the value of E by inverting
Eq. (38). The results of this analysis are shown in Fig. 5.

Clearly, there is acceptable match between the actual (here,
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Figure 4: Comparison of flow rate—pressure drop rela-
tionship from numerical simulation (markers) and the the-
oretical dependence found from inverting Eq. (38) (solid
curves), for different values of the tension-to-bending ra-
tio A to highlight the effect of pre-tension in the plate.

simulation) values and the estimated (here, theoretical) values
of E, for the chosen range that is typical of PDMS. The quality
of this match is gauged by the closeness of the symbols to the
line with slope 1 passing through the origin. The maximum
error is about 43% for the case of ¢ = 60 mL/min and £ = 2.4
MPa. We note that the match is better for stiffer walls (larger
values of E) at higher flow rates, and for softer walls (smaller
values of E) at lower flow rates.

This observation can be explained by considering the regime
of validity of our theory, which is given in mathematical terms
as:

{t<w~U} <, (39)

where

whP,. 3 qutw? _ 12qul(1 - v w3

U. = = =
" D»  Dyh} EBh}

(40)

Here, the inequality # < w means that we have accounted for
moderate (rather than vanishing, # < w) plate thickness. The
scaling U, ~ w means that we have accounted for moderate
rotations in the equilibrium equations, by inclusion of N and,
thus, the plate’s bending response is coupled with its stretch-
ing response. The inequality of w < £ is necessary to ensure
that the lubrication approximation is valid (for the fluid me-
chanics problem), so that cross-section deformation profiles
are decoupled from each other in the flow-wise direction (for
the structural mechanics problem). Therefore, if the character-
istic deformation U, is large compared to the dimensions of
the channels, i.e., U, > w, the structural mechanics problem
is no longer linear and our FSI theory breaks down. On the
other hand, if U, is extremely small, i.e., U, <« w, and the
FSI in the system is “weak,” the estimate of E deteriorates. In
the limiting case of a rigid channel, in which there is obviously
no FSI, it would not be possible to estimate E at all because
there is no deformation.

To quantify the above-identified requirement of “sufficient
FSI” via deformation that is still in the linearly elastic regime,

JAM-19-1506

o
19}
I
Ol
(€203

0.0 ! ! ! ! ! !
' 05 10 15 20 25 3.0
E (simulation) MPa

3.5

Figure 5: Estimation of the elastic modulus E from a hy-
drodynamic bulge test versus its “true” value (used in the
simulations). Colors correspond to different flow rates: or-
ange is ¢ = 60 mL/min, blue is ¢ = 80 mL/min, and red is
¢ = 100 mL/min. Symbols correspond to different values of
the tension-to-bending ratio 1: O is 1 =5, 0is 1 =2, and
s is 2 = 1. All other quantities are as given in Table 1. The
shaded area corresponds to an uncertainty of +15% in E.

we can employ Eq. (39) to restrict the range of U, /w values
for which the hydrodynamic bulge test is expected to be ac-
curate. Observing that 6 = U, /w, it is more convenient to
write this restriction as one on the FSI parameter 8 introduced
in Eq. (31). Based on applying the hydrodynamic bulge test
idea to simulation data from the present study, as well as previ-
ous simulations [34] and experiments [22] without pre-stress,
we suggest the order-of-magnitude guideline:

12qut(1 - 1/2)w3

1<B= Et3hg < 10, 41
where the upper range of values is suitable for non-pre-stressed
plates (4 = 0), while the lower range of values should be pre-
ferred in the case of a plate stiffened by pre-stress (1 = O(1)).
This guideline is an important result in practice. Since one can
control g, u, €, t, w and ho, then it always possible to set up
a sample, to be characterized by the proposed hydrodynamic
bulge test, such that the bulge test is accurate. However, since
Eq. (41) already contains E, it must be applied in a recursive
manner to design the hydrodynamic bulge test experiment, as
show in Fig. 6. Importantly, the iteration process only requires
updating the flow rate ¢ in the experiment (easily controlled
by a pump), thus it does not require modification of the mi-
crochannel geometry, once it is manufactured.

5 Error Propagation and Sensitivity Analysis

It is important to compare the hydrostatic and hydrodynamic
bulge tests with respect to error propagation via a sensitivity
analysis. Due to measurement errors [45], any experimental
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‘ Conduct experiment and measure Ap. ‘ Satisfy Eq. (41)?

‘ Calculate new Ecgtimate from Eq. (38) using measured Ap.

Stop. Eestimate Obtained.

Figure 6: Flow chart of how to iteratively apply the hy-
drodynamic bulge testing methodology to estimate the
Young’s modulus E of a plate, starting from a guess.

Yes

observation has an uncertainty associated with it. The uncer-
tainty in the independent (measured) variable propagates to an
uncertainty in the dependent (estimated) variable. In this sec-
tion, we discuss examples of how errors propagate in the hy-
drostatic and the hydrodynamic bulge testing theories. Specif-
ically, we simulate how uncertainty in the corresponding inde-
pendent variables (Ap in the hydrodynamic case and up,x in
the hydrostatic case) leads to an uncertainty in the dependent
variable, the Young’s modulus E, and compare the two cases
to each other.

In our theory from Sec. 3, the relationship between the de-
pendent variable and the independent variables is given by
Eqg. (38) in conjunction with Egs. (34) and (36). These set of
coupled equations is not amenable to a standard uncertainty
quantification by analytical means, such as a Taylor series-
based root-mean-squared error propagation [45, Sec. 4.7].
This situation is unlike the hydrostatic case in which E is de-
termined (via Dy in A) by measuring umax(z) at some axial
position z and inverting Eq. (29), which is amenable to an er-
ror propagation analysis. Hence, we take a statistical approach
and perform Monte Carlo simulations of error propagation.

The Monte Carlo simulation of error propagation is straight-
forward. The independent variables uy,x and Ap are replaced
by random variables, which are sampled from a normal distri-
bution. The normal distribution is, in turn, determined from
a nominal value, the given mean un,x or Ap in Table 2, and
the upper and lower limits on uncertainty +Y as a percentage,
from which the standard deviations ¢ of the distributions are

YMma\x
Umax,

= [— = [—YA” ]A_ (42)
Stmx = | 71(0.9) Sar = |\ F10.9) | 7P
The factor Y/F~'(0.9) in Eqs. (42), where F~1(0.9) is the in-
verse of the normal cumulative density function at the 90th
quantile, ensures that 90% of the area under probability den-
sity function is below the specified upper limit (+Y%) and
similarly 90% of the area under probability density function
is above the specified lower limit (—=Y%). A total of 1000
samples were taken of the input random variables, as a trade-
off between the computational effort expended and the desired
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Bulge Test Input Mean 6 Uncertainty Y
Hydrostatic Umax 28296 um  +£10%
Hydrodynamic  Ap 27.691 kPa  £1%

Table 2: Statistics of the input distribution for the Monte
Carlo simulation of error propagation under the hydro-
static and hydrodynamic bulge tests. The mean values of
the independent variables are the ones used in the ANSYS
simulation for ¢ = 80 mL/min, 1 =2 and E = 1.60 MPa.
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00— 24 28 30

Umax (UM)

Figure 7: Realizations of the noisy distributions of the total
pressure drop Ap (top) and the maximum deformation uyax
(bottom) as an input to the Monte Carlo simulation for er-
ror propagation under the hydrostatic and hydrodynamic
bulge test, respectively. Each shaded band has a width of
one standard deviation.

accuracy of probabilistic models. Example distributions of the
input variables are shown in Fig. 7.

The means match the deterministic values used in the AN-
SYS simulations corresponding to a flow rate ¢ = 80 mL/min,
a tension-to-bending ratio 4 = 2, and Young’s modulus £ =
1.6 MPa. The uncertainty in the pressure drop measurement
corresponds to that of a standard off-the-shelf pressure mea-
surement device like Omega PXM409-007BDWUI On the
other hand, the uncertainty in the deformation has been taken
to be an order of magnitude larger, at 10%, which is close to
the uncertainty in deformation measurements extracted from
the experimental data in [9, 46].

The mean and the standard deviation of the output samples
for E were computed for both models. The results are shown
in Fig. 8 and in Table 3. To gauge the sensitivity of the estimate
of E to the input distributions of umax and Ap, we employed
a statistical rank order correlation, specifically Kendall’s tau
rank correlation coefficient, available in Python’s SciPy mod-
ule [44]. The value of Kendall’s tau rank correlation lies be-
tween —1 and +1; a value of +1 denotes strong positive corre-
lation, a value of —1 denotes strong negative correlation, while
a value of 0 denotes no correlation at all. From Fig. 8 and Ta-
ble 3, we conclude that estimates of elastic modulus obtained
from the hydrostatic bulge test are more accurate compared
to those obtained from the hydrodynamic bulge test, though
the difference is not very large (= 2.5%). However, the noise
in the estimates E is much larger for the hydrostatic bulge
test than for the hydrodynamic bulge test, as evidenced by the
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Bulge Test E (MPa) ¢g (MPa) ¢g/E Kendall’'st
Hydrostatic 1.61 0.14 0.087  -0.99
Hydrodynamic  1.57 0.07 0.045 1.0

Table 3: Statistics for the estimate of the Young’s modulus
E obtained from the Monte Carlo simulation of the hydro-
static and hydrodynamic bulge tests; ¢ = 80 mL/min and
1 =2. E is the mean, and ¢f is the standard deviation.
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Figure 8: Distribution of the estimate of £ obtained from
the Monte Carlo simulation of the hydrodynamic (top) and
hydrostatic (bottom) bulge test. Each shaded band has a
width of one standard deviation.

larger standard deviation of the hydrostatic bulge test’s output
distribution. The higher noise in the estimated variable E is
attributed to the higher noise in the measured variable iy, as
the absolute value of the rank correlation coefficient (Kendall’s
7) is approximately the same for both models.

6 Conclusion

In this paper, we proposed a hydrodynamic bulge testing tech-
nique for soft materials characterization problems relevant to
design of microfluidic systems and devices. Specifically, we
derived a theory of the fluid—structure interaction (FSI) be-
tween a pre-stressed linearly elastic plate with finite thick-
ness and a viscous fluid flow underneath it. The flow rate—
pressure drop relationship for the case when the elastic plate
is clamped as the top wall of a rectangular microchannel con-
veying a “slow” viscous Newtonian fluid flow (low Reynolds
number), was obtained in the form of Eq. (38). Then, we
showed that this relationship can be inverted numerically to
characterize the material properties of the elastic plate, specif-
ically its Young’s modulus £, by only measuring the total pres-
sure drop across its length. We argued that, in microfluidics,
a measurement of the pressure drop is easier and/or more ac-
curate than a measurement of the membrane deflection due to
the (hydrodynamic) pressure of the flow underneath it.

We also carried out three-dimensional direct numerical sim-
ulations of fluid—structure interactions using the commercial
computational engineering platform by ANSYS. These simu-
lations did not require any of the assumptions used to derive
the mathematical model. The deformation profile and pressure
drop obtained from the simulations showed favorable agree-
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ment with the predictions of our model, thus validating it.

Overall, from the mechanics point of view, pre-stressing
the membrane makes it appear “stiffer,” thus its deformation
(induced by either hydrodynamic or hydrostatic pressure) is
smaller than a corresponding initially stress-free plate. To sus-
tain the same flow rate in a microchannel with an initially pre-
stressed top wall thus requires a larger pressure drop. These
conclusions were drawn from the general displacement pro-
file, Eq. (26), which we believe is a novel result because the ex-
pression accounts for the non-negligible thickness of the mem-
brane (z/w 4> 0), while the current literature on bulge testing
concerns thin-film membranes (t/w — 0) [16, Eq. (8)].

Next, the simulations were used as “ground truth” (in lieu
of experiments) to establish the predictive power of hydrody-
namic bulge tests. Specifically, a region in the parameter space
was identified and represented as Eq. (39). Through Fig. 5, this
parameter space region of validity was quantified Eq. (41) was
proposed as a guideline to the experimentalist for obtaining ac-
curate results from the hydrodynamic bulge test. Furthermore,
a sensitivity analysis, performed through Monte Carlo simu-
lation, showed that the hydrodynamic bulge test’s estimate is
only slightly less precise than a hydrostatic bulge test, while
allowing a greater degree of “control” over error propagation.

Due to the long and shallow channel geometries encoun-
tered in PDMS-based microfluidics, the strains encountered in
the elastic wall are small enough to justify the use of the lin-
ear theory of elasticity. For example, for ¢ = 50 mL/min at
A = 2, the maximum normal strain according to our ANSYS
simulation is 3%, which acceptable under the small-strain as-
sumption made in our theory. At larger strains, it is know that
PDMS may exhibit a hyperelastic response [47]. Thus, in fu-
ture work, it would be of interest to extend the proposed the-
ory to capture this nonlinear material behavior. The proposed
hydrodynamic bulge testing technique could also be extended
to handle liquid blister tests [48], which are used to measure
the strength of bonding (via the work of adhesion), if the fluid
layer is made much thinner than the solid film. Beyond bulge
tests, the FSI between a viscous fluid and a pre-stressed plate-
like elastic structure can be harnessed to create soft microflu-
idic actuators [18]. Similar multiphysics problems can also be
motivated by biomedical and physiological applications, such
as the reopening of strongly collapsed airways [17]. These
problems are unsteady [49], thus one must obtain dynamic
equations for the motion of the fluid front during expansion
(or collapse) [50, 51, 52, 53]. Therefore, the present analysis
could be extended/become the foundation of further research
on these problem as well.
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= viscosity of the fluid, Pa-s
Ap = pressure drop, Pa
Subscripts

Nomenclature

=
|

C; = constants of integration

D; = extensional rigidity of the plate, Pa-m x,y,z = flow or deformation direction, dimensional
D;, = bending rigidity of the plate, Pa-m? X,Y,Z = flow or deformation direction, dimensionless
E = Young’s modulus of the plate, Pa 0 = along the plate’s mid-plane
F~! = inverse of the cumulative distribution function ¢ = characteristic

Fx, Fz = characteristic scales of the rotations of the normal i = positive integer
G = shear modulus, Pa max = maximum
ho = height of the undeformed channel, m

dimensionless height of the deformed channel

= integral of ith power of the ratio of dimensionless
deformation to dimensionless pressure

= length of channel, m

= bending moment, N- m

= normal stress resultant, Pa-m

= coupling term between bending and stretching
in the equation of equilibrium, Pa

= pressure, Pa

= dimensionless pressure

= characteristic pressure scale, Pa

flow rate, mL/min

shear stress resultant, Pa-m

thickness of the plate, m

= pre-tension, Pa-m

= dimensionless thickness of the plate

deformation, m
dimensionless deformation
characteristic deformation scale, m

= ratio of dimensionless deformation

to dimensionless pressure

= fluid velocity, m/s

dimensionless fluid velocity
characteristic velocity scale, m/s

= width of channel, m
= rectangular coordinates, m
= dimensionless rectangular coordinates
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A Plate Theory Notation, Definitions, and

Derivations

A.1 Kinematics

In FOSDT, the assumption that the transverse normals are
straight and inextensible leads to the following displacement
field within the plate [38]:

ux(x,y,2) = uxo(x,2) + ypx(x,2), (Ala)
Uz (x,y,2) = uz0(x,2) +yg;(x,2), (Alb)
“y(x’ Z’y) = uy()(x,z). (AIC)

Here, uxo and u o are the in-plane displacements, i, is the
transverse displacement (henceforth denoted just as u, for
simplicity and without fear of confusion), and ¢, and ¢, are
the rotations of the normal to the plate about the x- and the z-
axis, respectively. Equations (A1) are written assuming y = 0
is the mid-plane (neutral surface) of the plate, as shown in
Fig. 1. In FOSDT, the nonlinear terms in the strain tensor,
which arise from von Karman strains, are neglected and the
strain tensor is written in the column vector form as:

Auxo

24
ox YPx
Yxx Ao ;x
oz 9092
Yzz OZ oz
I = dug |, oum | +y 0 (A2)
Vxz 0z Ox 9¢x + 9¢:
v Ouy 0z Ox
e o tox 0
Yzy duy 0
— \ &t
———
4 ) @
- 0 =

Y

Here, @ is the curvature strain tensor, which arises from bend-
ing, while y° represents the in-plane stretching and deforma-

tion due to transverse shear. It is a feature of FOSDT that the
transverse shear strains remain constant across the thickness,
while the in-plane strains vary linearly with y.

A.2 Equations of Static Equilibrium

As is standard in plate theory, we integrate the stresses across
the thickness and define the corresponding stress resultants as

Nix Oxx
N +1/2]| Ozz
Nyz | = / Oxz |dy, (A3)
Ox ~t2 Oxy
0. Ozy
and the bending moments as
My x +t/2 [Oxx
M | = / 07z |ydy. (A4)
M,, 12\,

Supplemental Material, JAM-19-1506

There are only two independent variables in the plate theory:
the in-plane coordinates x and z. Thus, here, Ny, and N,
are the normal stress resultants in these, x and z directions, re-
spectively. Likewise, O and Q. are the transverse shear stress
resultants acting on the planes which have their outward nor-
mals in the x and z directions, respectively. Meanwhile, N, is
the in-plane shear stress resultant. Similarly, M, and M, are
bending moments, while M, is the twisting moment. There
are no moments due to the transverse stresses oy, and oy
Additionally, the assumption of a plane-stress state means that
oyy = 0, and o, does not contribute to any stress resultants.

The equations of equilibrium, written in terms of the stress
resultants [38, Ch. 10], are

ONxx  ONx;
ax oz O (A5a)
ONyx; ONg,
—= =0, A5b
Ox * 0z ( )
00+ + 99 +N+p=0, (ASc)
Ox 0z
OMyx OM,,
=g =0, A5d
0x * 0z Qx=0 (ASd)
oM, OM,, 3
pp + oz 0,=0, (A5e)
where
0 Ouy Ouy 0 Ouy duy
(A6)

couples the displacement in the transverse direction (bend-
ing) to the in-plane displacements (stretching). This term ac-
counts for moderate rotations and originates from employing
von Karman strains in the derivation of the equations of equi-
librium [38].

Thus, we have neglected the nonlinear terms in the kine-
matics of the problem, but opted to retain these terms in the
equations of static equilibrium. Neglecting N in Eq. (AS5c),
would decouple the bending response from the stretching re-
sponse. In other words, the transverse deflection would not be
affected by stretching (pre-stress) at all, which is valid only
when the stretching is negligible. Retaining N in the equa-
tions of static equilibrium thus enlarges the scope of appli-
cation of the theory, and allows for the consideration of pre-
stressed (pre-stretched) plates. On the other hand, if we had
also incorporated the nonlinear (moderate rotation) terms in
the kinematics, and employed the von Kdrman strains, then we
would have obtained the nonlinear von Kiarmén plate theory
[28], which is difficult (if not impossible) to solve analytically
[28, 38]. In the von Kdrman plate theory, stretching and bend-
ing responses are tightly coupled, unlike a linear plate theory
in which N is dropped altogether from the analysis.

To summarize: in this paper, the coupling between stretch-
ing and bending is one-way; stretching influences bending but
the converse is not true. The influence of stretching in the
bending response is accounted for by incorporating N, given
by Eq. (A6), which appears in Eq. (A5c). On the other hand,
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however, Eqs. (A5a) and (A5b) that govern the in-plane equi-
librium (stretching) are decoupled from Eqgs. (A5c)-(ASe) and
do not contain any terms corresponding to the bending re-
sponse. The current theory may thus be regarded as “weakly
nonlinear” in a sense, providing a suitable trade-off between
the nonlinear von Karman plate theory (with stretching) and a
linear FOSDT theory (in which stretching decouples).

A.3 Constitutive Equations

For the condition of plane stress, the constitutive equations re-
duce (see [35, 38]) to

Oxx E Ly 0 Vxx
Ozz | = =) v 10 ]|y |, (A7)
Tz 0 0 52)/\y.

where v is the Poisson ratio and E is the Young’s modulus of
the linearly elastic material. Next, we substitute the expres-
sions for the strains in terms of displacements from Eq. (A2)
into Eq. (A7), the result of which, upon being employed in
Eq. (A3), yields:

N | 0 B
dIx
XX Et 4
Nig |= ==V 1 UK (A8)
Nxz ( _V) 0 0 I_TV (9ux(]+(9uz[)
oz ox

Note that due to the assumption about linear strains, the
in-plane stress resultants are only functions of the in-plane
strains, and they are independent of the transverse deflections
and rotations. Similarly, the bending moments from Eq. (A4)
are calculated to be

6¢X
Mxx El3 1 v 0 x
M., =G| 1 0 2|, (A9
My 0 0 5\ a0, o0

0z Ox
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where we observe that the bending moments are only a func-
tion of the rotations.

Next, the constitutive equations for the shear stresses are
modified as:

(A10a)
(A10b)

Oxy = KGyxy

Ozy = KGyyy,

where G = E/[2(1 + v)] is the shear modulus, and « is Tim-
oshenko’s “shear correction factor” [30], which is commonly
introduced to account for nonuniform distribution of the trans-
verse shear strain across the thickness [31, 32, 33]. Now, we
substitute the expressions for o, and o, from Egs. (A10)
into Eq. (A3) to relate the shear stress resultants to the defor-
mation and rotation of the normal:

+t/2 (9uy
Qx=K/ Gyxydy = kGt [—+¢x s (Alla)
—t/2 ox
+/2 (3uy
0, = Kf Gy.y dy = kGt [— +¢,]. (A11b)
—t/2 0z

Zhang [33] proved mathematically that the equations of lin-
ear elasticity and those of the RM plate theory, both in the
limit of /w — 0, agree only when « = 1. Therefore, as in
our previous works [27, 34], we take k = 1 when generating
our results below. However, we keep the variable k throughout
our equations for consistency with the applied mechanics lit-
erature. This completes the derivation of the stress resultants
in terms of the displacements under the FOSDT.
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B Deformation Profile in Other Regimes

B.1 Regime 1

In this regime, as 4 < 1, we simply take the formal limit
A — 0, and Eq. (15b) reduces to
1 (0dx 0*U
— |+ —|=- P(Z).
T ( 0X 8X2) DyU, 2)
Eliminating ®x between Eqgs. (A12) and (15a), we obtain a
single ODE in U:

wP,.

(A12)

U wie,
— = P(Z). Al3
X4 DpU, 2) ( )
Clearly, the appropriate choice for the deformation scale is
wiP,
= , Al4
U, Dy (Al4)
and, therefore, Eq. (A13) becomes:
0*U
— =P(2). Al5
i = P2 (A15)

Next, the BCs ®x|x-.+12 = 0 need to be converted to ap-
propriate BCs on U. To this end, differentiate Eq. (A12) with
respect to X to obtain an expression for 9°®, /9 X2, which
can be evaluated at X = +1/2. Then, substituting the latter,
along with imposing ®x |y-.1/2 = 0, into Eq. (15a) evaluated
at X = +1/2 yields:

oU 19U
— == =0.
0X T 3X3)Ixex1p
The solution of Eq. (Al5) subject to Eq. (A16) and
Ulx=+1/2 = 0 is easily found to be

_P(2) |4 Iy o, 1 1
UX,Z)= 2 [X (§+2)X +4(§+4)].
(A17)
This profile was already obtained in [34, Eq. (21)] in the ab-
sence of pre-tension.

(A16)

B.2 Regime 3a

For Regime 3a, 1 = O(1/6?), thus A > 1 for § < 1. Keeping
only the largest terms in Eq. (19) for 4 > 1, we obtain
U U 1

axt " axz ~asr A (A1S)
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Retaining the pressure on the right-hand side of the last equa-
tion can be justified by arguing that, in Regime 3a, we should
choose the scale deformation

h(z)szDC
C = )

Dy,

(A19)

so that the coefficient of P(Z) is now 1/(16%) = O(1).
The ODE (A18) is still subject to the boundary conditions

given in Eq. (16), which means that, as before, we need to
convert the BCs on ®x to appropriate BCs on U. To that end,
we first insert @x |x-.1/> = 0 in Eq. (15a) to obtain:

=0.

2
( 9"0x (A20)

ou
X2

- ax

X=+1/2

Next, we differentiate Eq. (15b), evaluate it at X = +1/2, and
insert the expression for 3°®y /0 X? from Eq. (A20) into it to
obtain:

6%\ U U
[(—) —+(AT + 1)52ﬁ]

7] ox =0.

X=x1/2

(A21)

Now, since A = 0(1/62), the above equation to the leading
orderin § < 1is

3
6—[§ =0. (A22)
0X X=+1/2

The solution of Eq. (A18) subject to Eq. (A22) and
Ulx=+1/2 = 0 s easily found to be

UX,Z) = P2) (% - Xz),

152 (A23)

where, due to the differing choice in U,., the last equation con-
tains a 6> not present in Eq. (27). Note that neglecting bending
rendered the deformation profile given in Eq. (A23) indepen-
dent of the thickness of the structure. Thus, Eq. (A23) is suit-
able for both thin and thick plates. Equation (A23) has been
used in the literature to characterize the material properties of
thin membranes undergoing strong compression (41 < 0) and
buckling (see Eq. (8) and Table I in [16]).
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C Thin-Plate Theory

For a Kirchhoff-Love [36, 37] or “classical” [38] (thin) plate
theory, ¢, and ¢, are not independent degrees of freedom;
instead, they are expressed in terms of the transverse displace-
ment (see, e.g., [35, Ch. 4]) as

Ouy B

Ouy
T o 2T 97

T
The constitutive equations for the in-plane stress resultants,
Nyyx, N;; and Ny, for the thin-plate theory are still given by
Eq. (A8). However, for the bending moments, when we sub-

stitute the equations for the rotations from Egs. (A24) into
Eq. (A9), we obtain:

(A24)

u
M 1y 0 Tt
XX —El‘3
My |=—— v 1 0 Puy | (A25)
12(1 -2 a2
sz 0 0 (1—V)/2 & u,
6z6}c

The equations for static equilibrium for a thin plate under-
going combined bending and stretching are the same as those
for thick plate. However, for the thin-plate theory, since the
transverse shear stains (and, thus, the transverse shear stress
resultants) are negligible, it is customary to eliminate QO and
Q. from Eqgs. (A5c), (A5d) and (ASe) to obtain:

My 0’M,, _9°M,,
0x? 072 0x0z

Equation (A26) along with Eqgs. (A5a) and (ASb) are the equa-
tions expressing the static equilibrium (see also [38, Ch. 3]).

Equations (la) and (1b) are still the equations governing
the in-plane displacements for the thin-plate case. To obtain
a PDE governing the transverse deflection of the thin plate, we
substitute the bending moments from Eq. (A25) into Eq. (A26)
to obtain:

+2 + N =0.

(A26)

0%u 9%u
6_2y + 2Nx S
X

Er
12(1 —v2)

62uy

27 - TNz 7>
0x0z 072

64uy 64uy 64uy
ox* oz 0x207%

NXX

) +p=0, (A27)

which is the “plate equation” in [28, Eq. (4.6.12)]. For a con-
stant pre-tension as in Eq. (2), Eq. (A27) becomes

T (S;Ltzy . 62uy) D, (64uy N 64uy
X

07> ox*+ 0t
which is the same as [28, Eq. (4.6.14)]
Using the dimensionless variables from Eq. (4), Eq. (A28)
can be rewritten as

A (54—62[] + 5252—62[])

0X? 072
o*U U o*U 4

Y N LD YT WPe stp .
ax+ = 9z4 0X207%) " U.Dy

(A29)
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To the leading order in €, Eq. (A29) is

U 94U wiP.

+ P=0.
0X?2 0X* U.Dy

(A30)

Choosing the scale of deformation U, as in Eq. (20) balances
all terms and reduces Eq. (A30) to:
o*U  9*U
— -—+P(2)=0.
ax> ox* 2)
Obviously, Eq. (A31) can also be obtained by taking .7 — 0
in Eq. (19), which was derived from FOSDT.
Solving Eq. (A31) subject to thin-plate clamped BCs, i.e.,
Ulx=x1/2 = (OU/0X)|x=x1/2 = 0, we obtain

(A31)

U(X,Z) =

0]

The deformation profile given by Eq. (A32) has been pre-
viously derived in the literature to describe the deformations
of a thin plate undergoing both bending and stretching [16,
Eq. (8)] (see also [11, Eq. (10)]), An example comparison be-
tween Eq. (A32) and Eq. (26) is shown in the figure below.
As should be expected, the thick-plate theory predicts a larger
deformation than the thin-plate theory, for the same pressure
load. This observation is attributed to the fact that a thick plate
can support deformation due to transverse shear, while a thin
plate cannot.

The limit as 4 — 0 is singular and must be taken carefully
(e.g., with MATHEMATICA) to yield

cosh (%\ﬁ) — cosh (Xﬁ)
Vi sinh (V1)

P(Z)
21

(A32)

2
P(Z) (1 5
UX,Z)=——|--X")] , A33
(X.2) === (3 (A33)
which is the tension-free thin-plate result from [21].
= A=1(Thick)
0.008- - A=1(Thin)
—— A =2 (Thick)
. — A=2(Thin)
N 0.006~ - = . == A=5(Thick)
’Q\; 0'/// \\\"—-/\=5(Th|n)
N L R N
50'004 /o \\;‘
> 74 - \‘\
0.002- 7 == i N N\
| 1 1
0.000" =57 —0.2 0.0 0.2 0.4
X
Figure 1: Ratio of the dimensionless deformation pro-

file U(X, Z) to the hydrodynamic pressure P(Z) across the
cross-section X € [-1/2,+1/2], for different values of the
tension-to-bending parameter 1, as predicted by the thick-
plate theory (FOSDT) from Eq. (26) (black curves) and the
thin-plate theory from Eq. (A32) (grey curves).
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