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Knapsack Voting for Participatory Budgeting
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We address the question of aggregating the preferences of voters in the context of participatory budgeting.

We scrutinize the voting method currently used in practice, underline its drawbacks, and introduce a novel

scheme tailored to this setting, which we call “Knapsack Voting.” We study its strategic properties—we show

that it is strategy-proof under a natural model of utility (a dis-utility given by the �1 distance between the

outcome and the true preference of the voter) and “partially” strategy-proof under general additive utilities.

We extend Knapsack Voting to more general settings with revenues, deficits, or surpluses and prove a similar

strategy-proofness result. To further demonstrate the applicability of our scheme, we discuss its implementa-

tion on the digital voting platform that we have deployed in partnership with the local government bodies in

many cities across the nation. From voting data thus collected, we present empirical evidence that Knapsack

Voting works well in practice.
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1 INTRODUCTION

Direct democracy has gained a lot of significance lately, with many novel attempts at engaging
citizens very directly in policy-making (Pateman 2012; Smith 2009). An exciting new development
in this space is participatory budgeting (Cabannes 2004), in which a local government body asks
residents to vote on project proposals to decide how they should allocate their budgetary spending.
The proposals could be, in a particular city/ward, for instance, resurfacing streets, adding street
lights, building playgrounds for children, or renovating recreational facilities like parks. Partici-
patory budgeting has had a long history in South America (Schneider and Goldfrank 2002), where
it was born out of a need to address inequalities through democratic reform. It is now gaining
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popularity in the US, with cities like San Francisco, Vallejo, Boston, Chicago, and New York adopt-
ing this paradigm (PBP 2016). This development necessitates a detailed look at the voting method
used in current ballots and motivates the following question: When there are projects with dif-
ferent costs, and a fixed budget, how can the varied preferences of voters be best aggregated? We
address this question by proposing Knapsack Voting and discuss its advantages over existing meth-
ods. We show that it has desirable strategic properties and provide empirical evidence that it works
well in practice. We have been successful in implementing Knapsack Voting as the official ballot
procedure in the Youth Lead the Change PB election in 2016 in Boston (https://youth.boston.gov/
youth-lead-the-change/). Independently of our work, other implementations of the same method
have been used in some elections in Europe (see Section 1.1.3 for a discussion)—adding to the rele-
vance of our work in studying the advantages of Knapsack Voting. Overall, this piece of work is a
step in the direction of addressing the need for mechanisms to facilitate complex decision-making
processes. In designing the Knapsack Voting method, we incorporate ideas from the classical Knap-
sack Problem to make the voter choose projects under the budget constraint. In doing so, we align
the constraints on the voters’ decisions, to those of the decision maker’s. We believe that this
approach of aligning incentives is useful more broadly in designing mechanisms for complex par-
ticipatory decision-making processes. Moreover, we want our schemes to be amenable to imple-
mentation as convenient digital interfaces to help individuals make informed budgeting decisions.

1.1 Participatory Budgeting in Practice

PB first began in Porto Alegre in Brazil in 1988 and since then has become increasingly popular
in Brazil.1 Over the past couple of decades, PB has spread to Europe and North America and more
recently taken root in Asia and Africa (Dias et al. 2014). As of 2015, there have been nearly 1,500
instances of PB around the world (Ganuza and Baiocchi 2012).

The first PB process in the United States was initiated in the 49th ward of Chicago in 2009. Since
then PB has spread to many other cities like Vallejo, New York, and Cambridge, to name a few.
These elections traditionally used only paper ballots and a voting method known as K-approval
that we will describe shortly.

1.1.1 Our Digital Voting Platform. To popularize digital voting, we built a digital voting plat-
form (https://pbstanford.org/) for the PB process of Chicago’s 49th ward in 2012. We have since
customized this tool to be easily adaptable to other elections. Many of the cities/municipalities
doing PB have taken to digital voting by adopting our platform, while some cities, like Long Beach
and Dieppe, have used our platform for their very first attempt at PB. In all, our platform has been
used in over 25 different elections in around a dozen cities/wards over the past few years. One
thing to note is that digital voting here means voting in person at a polling booth but via the dig-
ital platform. Most of these elections are required to have a paper ballot for those voters that opt
out of digital voting. Some elections, for example, PB Cambridge, implemented internet voting,
where voters can authenticate themselves and vote from anywhere, via a voting website designed
using our platform. These elections had accompanying paper ballots also.

1.1.2 K-approval Voting. The voting method currently used by most participatory budgeting
elections is K-approval voting. Our interface for this method is shown in Figure 1. This is similar
to the standard approval voting method but with a cap on the number of alternatives a voter can
choose.

1https://siteresources.worldbank.org/INTEMPOWERMENT/Resources/14657_Partic-Budg-Brazil-web.pdf.
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Fig. 1. Our interface for K-approval: Example from PB Cambridge 2015.

Table 1. An Example:

Three Projects and

Additive Utilities

Cost
Project A $300
Project B $200
Project C $100

Definition 1.1 (K-approval Voting).

—Each voter chooses (“approves”) at most K projects.
—The projects are ranked in descending order according to the total number of approving

voters.
—The outcome is decided by picking projects in this order until the budget is exhausted.

While this method is simple and has wide acceptance, it does not make the voters factor in the
costs of the projects into their votes. Consider the following example:

Example 1.2. Think of one voter (or a homogeneous pool of voters) doing 1-approval. Let us
say the budget is $300 and there are three projects on the ballot (see Table 1 above): Project A,
Project B, and Project C . Their costs are $300, $200, $100, respectively. Imagine that Project A is
the single most beneficial project among all, but Project B and ProjectC are together more valuable
in terms of benefit than just Project A.

It is natural to expect that the voter(s) will vote for ProjectAunder 1-approval. Although Projects
B and C are together feasible under the budget of $300, there is no way for the voter to express
these preferences. Although this is a very simple example that makes a strong assumption on the
voters’ response to the K-approval rule, it is an apt illustration of observed voting behavior (see
Section 4.0.1).

A point to note here is that even truthful reporting under K-approval voting (choosing projects
with highest utility) does not lead to good outcomes, as seen in Example 1.2 above. It is conceivable
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8:4 A. Goel et al.

that the outcome might be different if the voters vote strategically, taking aggregation with the
budget constraint into account. However, we would like a natural way for the voters to express
their preferences with respect to costs and benefits—one that works at least for a homogeneous
population under truthful reporting.

This leads us to the following questions:

—What is a good way of eliciting voter preferences?
—What utility models can we use to uncover some insights on the above problem?

We utilize ideas derived from ways of solving the Knapsack Problem: corresponding to our
Knapsack Voting and value-for-money schemes, which will be treated in detail in later sections of
this article Sections 2 and 3.2. The remainder of this section is organized as follows: We introduce
some modeling preliminaries in Section 1.2 and give a short overview of our work in the Section 1.3.
We discuss the implications and properties of our model in Section 1.4

1.1.3 Other Implementations Similar to Knapsack Voting. We mention here that independent of
our work on Knapsack Voting, other implementations of the same voting method have been in
use in some places in Europe—this adds to the relevance of our work in studying the advantages
of Knapsack Voting. The most prominent (with a total allocated budget, across many districts, of
roughly € 40 million) among these are the “shopping cart votes” use in the PB process in Madrid,2

Spain, where it has been in use since 2016. The origins of this method come from the “Open Active
Voting” method in the My Neighbourhoods Project in Reykjavik,3 Iceland, where it has been in use
since 2012. The same platform has been used in other places like Kòpavogur and Mosò in Iceland4

and a pilot implementation in Argyll and Bute,5 Scotland.

1.2 Modeling Assumptions: Voting and Utility Models

The participatory budgeting problem addresses the following scenario: The residents of a city, col-
lectively the set of votersV , vote on a set P of projects that they have identified to be worthwhile,
where project j ∈ P has a cost c j and there is a fixed total budget of B dollars.

1.2.1 Voting Models. We will mainly consider a fractional model of voting—each voter can al-
locate the budget B in any which way among the projects. Our results for this model also carry
over (approximately) to an integral setting. For ease of exposition, we defer a discussion of the
above to Section A.1 in the appendix.

Definition 1.3 (Fractional Vote). Each voterv chooses an allocation {wv
p }p∈P such that 0 ≤ wv

p ≤
cp for all p ∈ P and

∑
p∈P w

v
p = B.

In effect, we make the following assumption:

Assumption 1. Every project is allowed to be fractionally implemented, and the budget is com-

pletely used up.

Note: It may or may not be realistic to partially fund projects (e.g., renovate only one floor of a
library rather than the entire building), but partial funding and the requirement of spending all of
the budget are both common in practice.

2https://decide.madrid.es/presupuestos-participativos-resultados.
3https://citizens.is/portfolio_page/my-neighbourhood/.
4https://citizens.is/portfolio/.
5https://www.argyll-bute.gov.uk/abpb/; https://citizens.is/portfolio/.
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1.2.2 Utility Models. In what follows, we give concise definitions of the utility models we use
in this article. A full discussion of their properties is deferred to Section 1.4.

Let {wp }p∈P denote an outcome and {wv
p }p∈P denote voter v’s ideal allocation. We first define

the �1 costs model.

Definition 1.4 (�1 costs). The �1 cost of an outcome {wp }p∈P (where
∑

p∈P wp = B: Assumption 1)
for a voter v is given by

∑
p |wp −wv

p |.

We define another model called “Overlap utility.”

Definition 1.5 (Overlap Utility). The Overlap utility of an outcome {wp }p∈P (where
∑

p∈P wp =

B) for a voter v is given by
∑

p∈P min{wp ,w
v
p }.

The above model will be especially useful in our proofs in Section 2. The term corresponding to p
in the defintion above is equal to the “overlap” betweenwv

p andw∗p , and so we call this expression
the Overlap Utility. This means, in other words, that the utility from p for a voter v is equal to wv

p

whenwv
p ≥ w∗p , andw∗p otherwise. For example, ifwv

p = 5 andw∗p = 10, then the utility derived by
v is 5.

We also define an additive concave utility model, which is a generalization of the Overlap utility
model.

Definition 1.6 (Additive concave utility). In the fractional vote model, the additive concave utility

of an outcome {wp }p∈P (where
∑

p∈P wp = B) for a voter v is given by
∑

p∈P f
p

v (wp ), where each

f
p

v (.) is a non-decreasing concave function.

We use the definitions from above to summarize our results in the next section. A discussion of
the properties of the above utility models is deferred to Section 1.4.

1.3 Our Contributions

Our overall goal in this article will be to present voting mechanisms that are particularly suited
to the Participatory Budgeting problem, especially the Knapsack Voting scheme. These mecha-
nisms, by getting voters to either optimize over the total budget or compare projects based on
their value-for-money, enable the voter to inherently consider costs and benefits and, moreover,
are implementable using interactive digital tools. In building our case for Knapsack Voting, we aim
to establish its advantages as follows:

(1) Knapsack Voting, rather thanK-approval voting, is the correct application of the approval
voting principle to the participatory budgeting problem, and thereby avoids some issues
of strategic voting.

(2) It is easy to implement in a user-friendly way, and we have been able to deploy it in real
elections successfully.

(3) Empirically it agrees more with binary comparisons of value-for-money: a natural proxy
of voter preferences.

(4) It nudges voters to better consider cost-benefit tradeoffs by making them recognize the
budget constraint.

1.3.1 Knapsack Voting. Our primary scheme is called Knapsack Voting. The main idea behind
this scheme is that each voter has to adhere to the budget constraint, thus keeping costs in mind
while giving her vote—thus internalizing the global constraints, while giving their preferences
toward the outcome. Our interface for this method is shown in Figure 2 (integral) and Figure 4
(fractional).

ACM Transactions on Economics and Computation, Vol. 7, No. 2, Article 8. Publication date: July 2019.
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Fig. 2. Our interface for Knapsack Vote: Example from PB NYC District 5 2015.

We primarily look at the Knapsack Vote mechanism in the fractional setting. Most of our results
extend to the integral case in an approximate fashion; we defer a discussion of this setting to
Section A.1 in the appendix.

We now give an informal definition of Knapsack Voting (for a formal one see Definition 2.1).

Definition 1.7 (Knapsack Vote).

—Each voter v ∈ V votes for an allocation {wv
p }p∈P , where

∑
p∈P w

v
p = B.

—The outcome is chosen according to approval scores in a per-dollar sense, as in Figure 6
(Section 1.4).

As we can see, while the elicitation method is very different, the aggregation method here is similar
to K-approval in that it uses approval scores.

We analyze the strategic properties of Knapsack Voting assuming an �1 cost model, in which,
loosely speaking, the cost to a voter depends on how much the outcome differs from her preferred
allocation as determined by the �1 distance between the two (Definition 1.4). Under this model (and
also the related Overlap utility model, via the equivalence Lemma 2.6), we show that Knapsack
Voting is strategy proof and welfare maximizing (Theorems 2.3, 2.5).

Result 1. Under the �1 cost model (and also the Overlap utility model), Knapsack Voting is strategy

proof and welfare maximizing.

This result is analogous to the strategy-proofness results for Approval Voting under dichoto-
mous preferences (Brams and Fishburn 1978).

We also extend Knapsack Voting to more general settings with revenues, surpluses, or deficits
(as opposed to one with a fixed budget) where approval voting has no known analog and prove
similar results (Section 2.2, Theorem 2.9).

Also, under the more general case of additive concave utilities, we characterize a weaker yet
interesting notion of strategy-proofness of a voter’s best response, based on the concept of sincerity
(Niemi 1984): It is in a voter’s best interest to vote for projects that she favors among those that
are winning without her vote (Theorem 2.10).

ACM Transactions on Economics and Computation, Vol. 7, No. 2, Article 8. Publication date: July 2019.
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Fig. 3. Value-for-money comparison: Example from PB Cambridge 2015.

Result 2. Under additive concave utilities, a voter’s best response under Knapsack Voting is par-

tially strategy proof.

Together, these amount to substantial evidence that Knapsack Voting aligns the incentives of
the voters with that of the decision maker. Note that these two results do not hold for K-approval
voting.6

An interesting, and standard, way of understanding voting rules is viewing them as Maximum
Likelihood estimators (MLEs) (Conitzer and Sandholm 2012; Young 1988). Votes are assumed to be
drawn from a suitable noisy model parametrized by a “ground-truth” outcome, such that the voting
rule is the MLE of the “ground truth” given any realization of votes. For example, the Kemeny
Young rule is the MLE of rankings drawn from the Mallows model. The Mallows model defines a
probability distribution over all possible rankings, with the probability of each ranking depending
on how much it differs from a given ground-truth order. Since we are concerned with the problem
of determining an outcome that is a subset of projects that satisfies the budget constraint, we
will define a model that takes such a set as the ground truth, and defines a probability for all
valid sets, depending on how much they differ from the ground truth. By interpreting Knapsack
Voting (Section 2.4) as the MLE of this natural noise model, we reinforce the aggregation method
of Knapsack Voting.

1.3.2 Value-for-money Comparisons. In our second scheme, we elicit the voters’ preferences
based on their perceived value-for-money from projects. By “value-for-money,” we mean the utility
of a project normalized by its cost: If vi,p is the utility of voter i from project p, then its value-for-

money as perceived by i is
vi,p

cp
. See Figures 3 and 7 for voting interfaces based on this idea, where

voters compare pairs of projects, or rank their top projects, based on value-for-money.
In the previous section, we discussed how most elections use paper ballots for those voters that

opt out of the digital platform. Using the idea of value-for-money, we designed a paper ballot that
accompanies Knapsack Voting.

We will discuss this and other details about value-for-money in Section 3.2.

6The utility functions are defined with respect to the voter’s favorite budget allocation and the budget outcome chosen

and not what the voter expresses. Under such models, the results do not hold for K-approval, e.g., it is not strategy proof

under such utility models.

ACM Transactions on Economics and Computation, Vol. 7, No. 2, Article 8. Publication date: July 2019.
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Fig. 4. Experimental interface for fractional Knapsack.

1.3.3 Deployments and Data Analysis. Using our digital voting system that has gained wide-
spread acceptance in many cities/municipalities across the nation, we tested our methods across
various participatory budgeting elections. In most of these elections, K-approval was used as the
official ballot, and, in addition, we tested the Knapsack, the value-for-money comparisons (Fig-
ure 3), or both. We do value-for-money to estimate the aggregate pairwise preferences of voters.

We describe our experimental procedure in greater detail in Section 4. Based on the data from
our experiments, we make the following observations:

(1) Knapsack Voting leads to a more economical consideration of the projects as compared to
K-approval (Section 4.0.1),

(2) The time taken by a voter to do Knapsack Voting is similar to that for K-approval. Value-
for-money comparisons take much less time (Section 4.0.2).

(3) Knapsack Voting does better than K-approval in terms of agreement with pairwise com-
parisons (Section 4.1).

We present empirical evidence in support of these observations in Section 4.
The above observations suggest a significant qualitative difference between the outcomes of

Knapsack Voting and K-approval. In particular, Observation 3 above suggests that the outcome of
Knapsack Voting is more in alignment with the aggregate preferences of the voters than that of
K-approval.

Observation 1 just reinforces the fact that Knapsack Voting leads to a more economical con-
sideration of projects by the voters. It is natural to expect voters to pay more attention to costs
of projects under Knapsack Voting. And Observation 2 suggests that Knapsack Voting does not
involve a much larger cognitive load on the voters than K-approval.

However, we stop short of claiming that Knapsack Voting leads to outcomes that are more ben-
eficial to society as a whole. It could be worthwhile to think of ways to compare the outcomes in
terms of their long-term societal value.

1.4 A Discussion of Utility Models

As mentioned before, one of our goals will be to prove some good properties of Knapsack Voting,
in particular strategy proofness. To do so, we first need to make some modeling assumptions.7

There is a wide range of budget problems where the allocation per project is not a fixed cost but
can be variable, possibly up to a certain upper limit (see Figure 4 for an experimental interface).

7With no specific assumptions, strategy proof mechanisms are impossible, see Section 1.5.

ACM Transactions on Economics and Computation, Vol. 7, No. 2, Article 8. Publication date: July 2019.
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Fig. 5. Preferred allocations of

voters.

Fig. 6. Votes per dollar for each project.

This setting is also very relevant to PB.8 The fractional setting is also relevant outside of PB. For
example, the federal budget consists of a variable allocation of money to various sectors of the
economy at large such as education, healthcare, defense, and so on. To accommodate variable
allocation, and to avoid combinatorial difficulty, we consider a fully fractional version of Knapsack
Voting using a “per-dollar” approach.

Example 1.8. Given a budget of 10, and three voters, A,B,C , let us say that the preferred alloca-
tions of the voters for projects P1, P2, P3 of maximum costs (5, 5, 10) are (4, 5, 1), (3, 5, 2), (0, 0, 10),
respectively (Figure 5). We divide each project into as many dollars as its maximum cost, and given
that A allocates 4 to P1, we give one vote to each of the first four dollars of P1, and so on. Figure 5
shows how many votes each dollar of each project gets. If we select those dollars with the highest
number of votes, then we get the allocation (3, 5, 2). Notice that here we did not have to break ties
to get a feasible allocation.

As mentioned earlier, we study the above problem under different utility models. We now discuss
them below; these models were formally defined earlier in Section 1.2.

1.4.1 �1 Costs and Overlap Utility. In Section 2, we look at a model where the disutility of a
voter for a given allocation of the budget is given by how much her preferred allocation differs
from it in terms of the �1 distance between the two allocations. Minimizing �1 distances to reach a
compromise decision has some precedence in public policy literature (André et al. 2010). Assume
that the ideal preference of a voter v corresponds to allocating an (integral) amount wv

p to project
p ∈ P, such that

∑
p∈P w

v
p = B, where B is the total budget. Then we know from Definition 1.4

that the cost for a voter v for an outcome {wp }p∈P is given by
∑

p∈P |wv
p −wp |.

We must note here that applying the �1 cost model to the case where outcomes are allowed to
be of size smaller than B (i.e., violating Assumption 1, e.g., the purely integral setting) does not
lead to anything meaningful. Indeed doing so could violate the free disposal of utilities.9

Example 1.9. Consider a total budget of 2, with three projects a, b, and c . Take a voter that has a
preferred allocation of 1 to a. Then an allocation to b and c of 1 each has a cost of −3 for the voter,
whereas just an allocation of 1 to project b has a cost of −2.

As mentioned in Definition 1.5, we define another model called Overlap Utility, which we will
see is the analog of dichotomous preferences as applied to approval voting (Brams and Fishburn
1978): For a voter’s preferred allocation, we look at each dollar subproject (see Section 2 for a formal

8See https://pbstanford.org/boston16internal/knapsack for a PB election where most of the projects allowed for flexible

allocations.
9We thank one of the reviewers for pointing this out via the described example.
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definition of subprojects) in it and count it as 1 toward the utility if the same dollar subproject is
in the outcome allocation and 0 if not.

However, it is easy to see that the Overlap utility model satisfies10

(1) convexity of preferences, and
(2) free disposal of utilities.

To see why it satisfies free disposal, let us look at Example 1.9 again, where a voter has a preferred
allocation of 1 to a. An allocation to b and c of 1 has a utility of 0, since there is no overlap. If the
voter agreed completely with this allocation, then she would have a utility of 2. And the allocation
differs from her ideal point with respect to allocating 2 units of the budget, thereby giving a net
utility of 0. If we look at an allocation of 1 to just b, then the utility is still 0. If the voter agreed
completely with this allocation, then she would have a utility of 1. And the allocation differs from
her ideal point with respect to 1 unit of the budget, again giving her a net utility of 0.

In the fractional setting, the �1 model is equivalent to the Overlap utility. This equivalence (see
Lemma 2.6) is useful in the proof of Result 1.

1.4.2 Additive Concave Utilities. The most general model we consider is one where voters have
utilities that are additive over the projects in P. Moreover, the utility from each project is concave
in the amount of allocation given to that project. It is easy to see that this model (see Definition 1.6)
is a generalization of the Overlap utility model. The Overlap utility is obtained as a special case
as follows: Given a voter’s ideal allocation {wv

p }p∈P , f v
p (wp ) is defined to be min{wp ,w

v
p }. We use

this model in Section 2.3 to prove our partial strategy-proofness result (Result 2 in the previous
section).

1.5 Related Work

A wide variety of voting procedures, both ranked and non-ranked, have been studied in social
choice literature (Brams and Fishburn 2002). Plurality and Approval Voting among non-ranked
procedures, and Borda, Copeland, and Kemeny-Young (Levin and Nalebuff 1995) among the ranked
procedures, are perhaps the most well known. In approval voting, each voter can vote for, or “ap-
prove of,” any number of candidates on the ballot. Each candidate gets a vote from every voter that
voted for her, and the candidate with the most votes wins. Approval voting has been widely stud-
ied as an alternative to plurality voting, with some compelling advantages (Brams 1993). Various
modifications to approval voting, such as added constraints (Brams 1990), and cumulative voting
(Bhagat and Brickley 1984), which helps improve the representation of minorities or under-
represented groups in committees, have been examined. In this article, we devise the right adap-
tation of the approval paradigm to participatory budgeting elections.

Another parallel stream of literature in social choice theory has delved deeply into the question
of manipulability of voting rules. It has been shown that the only reasonable social choice func-
tions with single/multiple winners that are not susceptible to strategic manipulation by voters are
degenerate forms of dictatorships (Gibbard 1973; Satterthwaite 1975). Such impossibility results
(Duggan and Schwartz 2000) rule out the existence of strategy-proof mechanisms for our setting
in general.

However, strategy-proof schemes were shown to be possible in restricted domains like
single-peaked preferences (Moulin 1980; Barberà et al. 1993; Nehring and Puppe 2002). Inspired
by Black’s Median Voter Theorem (Black 1948), Moulin (1980) characterized Generalized Me-
dian Voter Schemes as the only strategy-proof rules under single-dimensional single-peaked

10Even in the approximately integral model mentioned in Appendix A.1.
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preferences. This was generalized to multiple dimensions for preferences on the Cartesian box
(Border and Jordan 1983; Barberà et al. 1993) and general subsets of the Cartesian box (Barberà
et al. 1997). The results of (Barberà et al. 1997) imply that, under single-peaked preferences, the
only voting rules that could be be both strategy-proof and non-dictatorial for our problem are
Generalized Median Voter Schemes (GMVS). Unfortunately, GMVSs do not respect the budget
constraint for three or more projects.

We propose an aggregation rule that finds the geometric median of the votes on the simplex that
satisfies the budget constraint and show that strategy-proofness holds under specific utility models
like the �1 cost model (Definition 1.4), an adaptation of dichotomous preferences to our setting.
It is also interesting to compare our setting with the axioms of Arrow’s Impossibility Theorem
(Arrow 2012), especially the Independence of Irrelevant Alternatives (IIA). With a weaker form
of IIA (Campbell and Kelly 2000), Knapsack Voting, akin to Approval Voting with dichotomous
preferences, satisfies all three of Arrow’s axioms. In recent work,11 Freeman et al. characterize a
broad class of strategy-proof “moving phantom” mechanisms under the �1 cost model (Freeman
et al. 2019). Interestingly, their social-welfare maximizing method (which is equivalent to Knapsack
Voting upto tie-breaking) is the unique Pareto-optimal mechanism in the above-mentioned class.

From the more recent literature in Computational Social Choice, our work is similar in spirit to
some recent work on identifying the tradeoffs between the utilities from various possible societal
activities (Conitzer et al. 2015). Our work also involves capturing tradeoffs, but only so far as
to obtain the best allocation of the budget, and we propose voting methods that use ideas from
the Knapsack Problem to do so. There has also been some work on selecting committees under
weight or cost constraints given complete rankings from voters (Klamler et al. 2012). However, our
work is different in that we do not get complete rankings from voters and design ways of eliciting
preferences of voters. Under the utilitarian distortion framework, there has been some recent work
on designing a mechanisms for PB (Benade et al. 2017; Dani 2017). However, the outcomes here
could be a factor

√
m logm off of the optimal and, in general, do not extend to the fractional case.

Another drawback of such mechanisms is that they are not transparent enough to be used in formal
ballots.

There has also been some work on developing visualization tools for voters to make sense of
different items in complex budget problems, e.g., the federal budget (Kim et al. 2016). In our set-
ting, the items on the ballot are simple and well defined, for instance, building a park or improving
streets, and can be described concisely on our digital voting platform for voters to make an in-
formed decision.

The problem of choosing the best subset of candidates given global preference information has
received some attention lately (Klamler et al. 2012; Lu and Boutilier 2011), and various methods
have been proposed. For the problem of selecting optimal sets of weighted candidates given a
sum weight constraint, there is some work on algorithms that, given the knowledge of a global
preference relation among the candidates, compute optimal sets for various objective functions
(Klamler et al. 2012). Another treatment of this problem involves a recommendation that pairs each
voter to one of these candidates, thereby assuming that each voter derives satisfaction from one of
the candidates in the chosen subset (Lu and Boutilier 2011). In our context, eliciting full rankings on
the candidates is not feasible and, moreover, we motivate our methods in terms of social welfare,
with each voter benefiting from all the chosen candidates. There is also some work (Fain et al.
2016) with an overlapping set of co-authors that studies the fairness properties of mechanisms for
participatory budgeting, largely using the notion of core.

11Which appeared while our manuscript was under review.
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2 KNAPSACK VOTING: IMPOSING BUDGET CONSTRAINTS

In this section, we show that Knapsack Voting is strategy proof (Theorem 2.3) and welfare maxi-
mizing (Theorem 2.5) under the �1 costs model. By Lemma 2.6, the same results hold for the Over-
lap utility model, too. We then extend Knapsack Voting to more complex settings with revenues,
deficits, or surpluses (Equation (1)) for which there is no known analog of Approval voting. We
prove that Knapsack Voting is strategy proof in this setting (Theorem 2.9). We also prove a partial
strategy-proofness result in the case of additive concave utilities (Theorem 2.10).

In what follows, we adopt the Fractional vote model, as in Definition 1.3. More formally, since
each project is fractionally implementable, we split each project p ∈ P into cp different “per-dollar

sub-projects” D
p
1 ,D

p
2 , . . . ,D

p
cp

, and collect all the sub-projects into a set P′. The problem then

reduces to choosing B of the C candidates in P′. Given a vote from a voter v using our Knapsack
interface (Figure 2), it is guaranteed to be consistent after the per-dollar conversion, i.e., a set Sv ⊂
P′ such that for all p ∈ P, if D

p
t ∈ Sv , then D

p

t ′ ∈ Si for all 1 ≤ t ′ < t .

For any j ∈ P′, define its score as score(j ) � |{v ∈ V : j ∈ Si }|. We will use a consistent deter-

ministic tie-breaking order: a strict ordering ≺ on P′ such that for all p ∈ P , 1 ≤ t ′ < t ≤ cp ⇐⇒
D

p

t ′ ≺ D
p
t (if j ≺ k , then j gets priority over k when score(j ) = score(k )).

Definition 2.1 (Knapsack Vote).

—Each voter v ∈ V submits a consistent subset Sv ⊆ P′, such that it satisfies a budget con-
straint |Sv | = B.

—The winning set is given by arg maxS : |S |=B

∑
j ∈S score(j ), using a consistent deterministic

tie-breaking order ≺.

Note that given consistent votes, and a consistent tie-breaking order, the Knapsack Vote gives a
“consistent” outcome.

We also redefine Overlap utility (Definition 1.5) in terms of the per-dollar notation above—this
will be of use shortly.

Overlap Utility. Let Sv ∈ P′ and S∗ ∈ P′ be the allocations in the per-dollar sense corresponding
to {wv

p }p∈P and {w∗p }p∈P . Restating Definition 1.5 in terms of subprojects:

Definition 2.2. The utility of the voterv is given by |Sv ∩ S∗ | or, equivalently,
∑

p∈P min{wv
p ,w

∗
p }.

In this quantity, the term corresponding to p is equal to the “overlap” between wv
p and w∗p , and so

we call this expression the Overlap Utility.

2.1 Strategy Proofness under the �1 Cost Model

Given the set of projects P, let us say that the true preference Sv of each voter v corresponds to
allocating an (integral) amount wv

p to project p ∈ P, such that
∑

p∈P wp = B. Any outcome that
deviates from this allocation would result in some dis-utility for the voter. Let {w∗p }p∈P denote
the final outcome. By Definition 1.4, the dis-utility that each voter gets is equal to the �1 distance
between {wv

p }p∈P and {w∗p }p∈P , i.e.,
∑

p∈P |wv
p −w∗p |.

In the above, the budget allocation to each project p is flexible and can take any integral value
in [0, cp], with the votes are restricted to the simplex determined by

∑
p∈P wp = B. The outcome

of Knapsack Voting can be defined as an �1-median restricted to the above-mentioned simplex
(follows from Lemma 2.6 and Theorem 2.5), i.e., an allocation that minimizes the sum of the �1
distances to the votes.12 Under the Overlap utility model, by defining the outcome as the geometric
�1 median, we get the following result:

12This works in continuous space too, with a suitably defined tie-breaking rule.
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Theorem 2.3. For Knapsack Voting, under the �1 cost model, voting for her preferred allocation Sv

is a weakly dominant strategy for voter v .

Proof. Let S−v and score−v (·) be the outcome determined by the votes of everyone except v
using the Knapsack Voting rule (Definition 2.1). As mentioned earlier in this section, for any i ∈ P′,
score−v (i ) = |{u ∈ V \ {v} : i ∈ Su }|, where Su denotes the vote of any voteru ∈ V \ {v} (since we
are looking for a dominant strategy for voter v , Su here can be any valid vote, not necessarily the
truthful report of voter u). Assume that Tv � Sv is a best response of i . Let the outcome after
incorporating Tv be score(·) and S .

Let j ∈ Tv \ Sv such that if j = D
p
t for some p ∈ P (recall the definition of per-dollar sub-projects

from earlier in this section), then D
p

t ′ � Tv for all t ′ > t . Choose some k ∈ Sv \Tv such that if

k = D
q
z for someq ∈ P, thenD

q

z′ ∈ Tv for all z ′ < z. Such ak exists becauseTv and Sv are consistent

and of the same size B. Let T ′v � Tv ∪ {k } \ {j}, and the outcome here be score′(·) and S ′. We will
show thatT ′v is also a best response forv . If S = S ′, then we have nothing to prove. In what follows,
we will assume S � S ′.

We have that score′(j ) = score(j ) − 1, score′(k ) = score(k ) + 1, and, for all l ∈ P′ \ {j,k },
score′(l ) = score(l ). Note that the only change here is that the score of j decreases, and the score
of k increases. As a result, for any given consistent tie-breaking order (as discussed at the head
of this section), S ′ \ S must be singleton. Further, we must have either j ∈ S \ S ′ or k ∈ S ′ \ S , i.e.,
any change in outcome must involve either j moving from within the winning set to without, or
k from without to within (or both).

If j ∈ S \ S ′, then it must be that S \ {j} ⊂ S ′, since for any l ∈ S \ {j}, score′(l ) ≥ score(l ). And
since S ′ \ S is a singleton set, say, it containsm ∈ P′ (possiblym = k), the change in utility of voter
v is 1(m ∈ Sv ) − 1(j ∈ Sv ) = 1(m ∈ Sv ) ≥ 0 (here 1(·) is the indicator function that takes the value
1 if the argument is true and 0 if not). In other words, the change in utility from removing j is 0
and that from adding any m in its place cannot be negative.

Similarly, if k ∈ S ′ \ S , then S \ S ′ = {m′} for some m′ ∈ P′. And the change in utility is 1(k ∈
Sv ) − 1(m′ ∈ Sv ) = 1 − 1(m′ ∈ Sv ) ≥ 0.

By repeating this process until we only have elements in Sv , we have not decreased the utility
of voterv . Therefore, the utility obtained by voting for Sv cannot be strictly dominated by that for
any Tv � Sv . �

By a simple modification, the above proof extends to the Overlap utility model as well.

Corollary 2.4. For Knapsack Voting, under the Overlap utility model, voting for her preferred

allocation Sv is a weakly dominant strategy for voter v .

Under truthful voting, the Knapsack Voting outcome maximizes the social welfare.

Theorem 2.5. The truthful dominant strategy equilibrium for Knapsack Voting is welfare maxi-

mizing under �1 costs.

Before proving the above theorem, we will show an equivalence between the �1 cost model and
the Overlap utility model.

2.1.1 Overlap Utility. Let Sv and S∗ be the allocations in the per-dollar sense corresponding to
{wv

p }p∈P and {w∗p }p∈P . In the budgeted case being treated in this section (cf. Section 2.2), the utility
given by the �1 model is equal to the Overlap utility. This equivalence is of independent interest
and is also useful in the proof of Theorem 2.3. We now prove this equivalence formally.

Lemma 2.6. |Sv ∩ S∗ | = B − 1
2

∑
p∈P |wv

p −w∗p |.
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Proof. As discussed above, we know that |Sv ∩ S∗ | =
∑

p∈P min{wv
p ,w

∗
p }. Partition P into two

sets PL and PH , where PL � {p ∈ P : wv
p > w∗p } is the set of projects for which the amount allo-

cated in the outcome is less than that in the voterv’s preferred allocation, andPH � {p ∈ P : wv
p ≤

w∗p } is the set of projects where the amount allocated in the outcome is at least as much as that
in the voter v’s preferred allocation. Then we have |Sv ∩ S∗ | =

∑
p∈PL

w∗p +
∑

p∈PH
wv

p . First we

note that
∑

p∈PL
w∗p +

∑
p∈PH

wv
p =
∑

p∈P w
∗
p −
∑

p∈PH
(w∗p −wv

p ) = B −∑p∈PH
(w∗p −wv

p ). Simi-

larly,
∑

p∈PL
w∗p +

∑
p∈PH

wv
p = −

∑
p∈PL

(wv
p −w∗p ) +

∑
p∈P w

v
p = −

∑
p∈PL

(wv
p −w∗p ) + B. There-

fore |Sv ∩ S∗ | = 1
2 (2B −∑p∈PL

(wv
p −w∗p ) −∑p∈PH

(w∗p −wv
p ) = B − 1

2

∑
p∈P |wv

p −w∗p |. �

Proof of Theorem 2.5. The Knapsack Voting rule outputs a set S∗ that maximizes
∑

j ∈S score(j )
among all consistent sets S that satisfy the budget constraint.

If voters vote truthfully, then
∑

j ∈S∗
score(j ) =

∑

j ∈S∗

∑

v ∈V
1(j ∈ Sv ) =

∑

v ∈V

∑

j ∈S∗
1(j ∈ Sv ) =

∑

v ∈V
|Sv ∩ S∗ |,

and by Lemma 2.6, the proof follows. �

In effect, by way of Lemma 2.6, the equivalence of �1 costs and Overlap utilities model, we have
established the following:

Corollary 2.7. Knapsack Voting is strategy-proof and welfare-maximizing under either �1 costs

or Overlap utilities.

We take a moment here to discuss Knapsack Voting in terms of the conditions in Arrow’s Theo-
rem. Choosing a set of projects that fit the budget can be thought of as a partial ordering ≺ between
those within, and those without. In our case, if the preferences of voters between two projects, say,
a and b, with respect to this partial ordering remains the same, then the final score of a and b re-
mains the same. If the outcome is a ≺ b, then changing the other preferences cannot result in b
being chosen over a, i.e., change from a ≺ b to b ≺ a. A similar property has been characterized as
a weaker form of the Independence of Irrelevant Alternatives in the context of Approval Voting
(Campbell and Kelly 2000).

We must also mention here that under the �1 cost model, Knapsack Voting is not group strategy

proof. For example, consider the following:

Example 2.8. There are five projects {a,b, c,d, e}, four voters {1, 2, 3, 4}, and a budget of $2. The
true preferences are as follows: Voters 1 and 2 allocate $2 to a, voter 3 allocates $1 to b and $1 to
c , and voter 4 allocates $1 to d and $1 to e . If they voted truthfully, then the outcome is $2 to a,
giving a utility of 0 to both voters 3 and 4. Assuming ties are broken in the order b,d, c, e,a. Then
if voters 3 and 4 both voted for $1 to b, and $1 to d , then the outcome changes to b and d , giving
both voters a utility of 1.

2.2 An Extension to Scenarios with Revenues, Deficits, or Surpluses

A similar result can be obtained in a case where there is no hard budget and there are both expendi-
ture terms and revenue terms by extending the framework of approval voting under dichotomous
preferences. Such considerations are common in real settings that are a little beyond PB, e.g., de-
signing mechanisms for determining the federal budget. There has been some work as a follow-up
to ours (Garg et al. 2017), with an overlapping set of co-authors, which uses models with revenue
and spending as categories for the design and testing of new adaptive voting mechanisms.

For our purposes, a voter proposes both how to generate revenue from among various avenues
in R and how to spend it on various projects in P. We will now discuss a case where the budget
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is balanced. Extensions to cases where there are multiple revenue items, or where the budget is
unbalanced, are easy to see.

As before, in the per-dollar sense, let P′ be the set of per-dollar sub-projects for expenditure,
and R′ be the set of per-dollar sub-projects for revenue. We use a similar �1 cost metric for the
project terms as for the budgeted case, with revenue included. Formally, we will assume that if
{x∗r }r ∈R is the outcome revenue level, and the voterv prefers {xv

r }r ∈R , then her dis-utility from the
revenue term will be

∑
r ∈R |x∗r − xv

r | and her total dis-utility will be
∑

p∈P |wv
p −w∗p | +

∑
r ∈R |x∗r −

xv
r |. Because we are considering balanced budgets, we will assume

∑
r ∈R x

v
r =
∑

p∈P w
v
p for all

voters v .
Let Rv ⊆ R′ and Sv ⊆ P′ denote the vote of voter v satisfying |Rv | = |Sv |. For j ∈ R′ we define

score(j ) � −|{v ∈ V : j � Rv }|. The Knapsack Vote outcome R∗ ⊆ R′ and S∗ ⊆ P′ is defined as
follows:

(R∗, S∗) = arg max
(R,S ): |S |= |R |

��
�

∑

i ∈S
score(i ) +

∑

j ∈R
score(j )��

�
(1)

In this setting, revenue corresponds to voters paying the government in fees/taxes, and hence we
make the score corresponding to revenue terms negative. We will need a consistent tie-breaking
rule here as well. But since the size of the outcome is not fixed, we can just break ties in favor of
the bigger (or smaller) sets. We state a similar result as in Theorem 2.3 for this case:

Theorem 2.9. With a balanced budget, Knapsack Voting is strategy-proof under the �1 cost model.

We defer the proof to the appendix (A.2), as it is similar to the proof of Theorem 2.3 and not crucial
to the exposition here.

We can also extend this to unbalanced settings by including the budget deficit (expenditure -
revenue) as part of the voters’ preferences. If Δv = |Sv | − |Rv | is the preferred deficit of voter v ,
and the deficit in the outcome is Δ∗, then the voter incurs an additional dis-utility of |Δ∗ − Δv |,
i.e., how much the deficit in the outcome differs from her preferred level. As such, it is equivalent
to adding an additional revenue term.

2.3 “Partial” Strategy-proofness Under Additive Concave Utilities

In the case with additive concave utilities, we illustrate a weaker, yet interesting, property that
we call “partial” strategy-proofness. Consider a focal voter i responding to the votes of all others.
Assume that she has full knowledge about the how the others voted in aggregate. If S−i denotes the
cumulative votes of all voters except i , then she knowsW−i ⊆ P′, the winning set as determined
by S−i . LetW (Si , S−i ) denote the set of winners if her vote Si is added. A best response for i is a
consistent set

S�i ∈ arg max
Si ⊆P′: |Si |=B

∑

j ∈W (Si ,S−i )

v ′i, j ,

where v ′i, j is the utility of voter i for sub-project j ∈ P. As mentioned in Definition 1.6, the utility

from per-dollar sub-projects is monotone non-increasing (as the utility from a project is concave

in the amount allocated), i.e., if x < y and a = D
p
x

13 and b = D
p
y for some p ∈ P, then v ′i,a ≥ v ′

i,b
.

With respect to voter i , we say a candidate k dominates j if and only if

k ∈ W−i and v ′i,k ≥ v ′i, j .

A consequence of the budget constraint is that it allows for partial strategy-proofness in the best
response of a focal voter responding to all other votes.

13D
p
x is the x th dollar subproject in project p .
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Theorem 2.10 (Partial Strategy-proofness). Under Knapsack Voting, there exists a best re-

sponse S�i such that if k dominates j, and j ∈ S�i , then k ∈ S�i .

The proof is not critical to the exposition here, and we defer it to the appendix.
We can think of W−i as representing the candidates that i thinks are popular. And projects

with a higher “value-for-money” are preferred from her perspective. The theorem states that a
simple way for a voter to act in her best interest is to vote for projects that to her are both popular

and favorite. This notion is similar in spirit to the ideal of sincerity in approval voting (Brams and
Fishburn 1978; Niemi 1984).

The reason partial strategy-proofness holds under Knapsack Voting is that the voters face the
same constraints as the outcome they are collectively deciding. It is interesting to note that this
property does not hold under K-approval voting, as there is a mismatch between the constraints
on the voters (choosing a fixed number of projects k) and those on the outcome (a fixed budget B).
We illustrate this with a small example.

Example 2.11. Consider five projects a,b, c,d, e of costs $200, $100, $100, $100, and $200 and
using the 2-approval rule. The budget is $400 and they poll 100, 50, 50, 50, 20 votes, respectively,
without counting in i’s vote. The tie is broken in the order e,d, c,b,a, and in this case d wins over
b, c . Let us say that i’s utilities for these are 500, 100, 150, 200, 500, respectively. Based on the above,
i’s best response is to not vote for a but for c,d .

2.4 Maximum Likelihood Interpretation

One way of looking at voting rules is as follows: There exists a “ground-truth” outcome, and each
voter has a noisy perception of it. And the the voting rule is the Maximum likelihood estimator of
the “ground truth” given any realization of votes. The Knapsack Voting rule can be interpreted in
this way since it belongs to a family of voting rules known as scoring rules (Conitzer and Sandholm
2012). Selecting subsets of winners based on the MLE approach has received some attention lately
(Procaccia et al. 2012) wherein voting rules to select subsets based on their performance on various
metrics with respect to noisy comparisons or rankings drawn from a Mallows model.

In this section, we will use the per-dollar approach and explicitly construct a natural noise model
for the votes for which it is the Maximum Likelihood estimator. The noise model we construct
is similar to the Mallows model but defines a distribution over subsets directly as opposed to
rankings.

Definition 2.12 (Noisy Knapsack Vote Model). There is a “ground-truth” set S� ∈ P′, which sat-
isfies |S� | = B. Each vote Si is drawn i.i.d. according to a distribution that is given by

Pr{Si |S�} ∝ exp( |S� ∩ Si |), if |Si | ≤ B

Pr{Si |S�} = 0, otherwise

The quantity |S� ∩ Si | is equal to the number of dollars in the allocation given by S� that agrees
to that given by voter i in her vote Si and by Lemma 2.6 is related to the Overlap/�1 utility we
discussed previously.

By taking the logarithm of the probabilities Pr(Si |S�), it is easy to see that the Maximum Likeli-
hood estimate of the “ground-truth” S� given all the votes is the set S ⊆ P′ satisfying |S | = B that
maximizes

1

|V |
∑

i ∈V
|S ∩ Si |. (2)

Theorem 2.13. The Knapsack rule returns the maximum likelihood estimate under the Noisy

Knapsack Vote Model.
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Proof. Let us rewrite the quantity in Equation (2) as∑

i ∈V
|S ∩ Si | =

∑

i ∈V

∑

j ∈S
1(j ∈ Si ) =

∑

j ∈S

∑

i ∈V
1(j ∈ Si ) =

∑

j ∈S
score(j ),

where 1(.) is a {0, 1} variable that takes on a value 1 when the statement in the argument is true
and 0 otherwise. This quantity is maximized by picking B candidates from P′ that have the highest
score (see Definition 2.1), which is essentially what the Knapsack rule chooses. �

3 VOTING BASED ON VALUE-FOR-MONEY

We have seen that Knapsack Voting has many advantages with respect to its strategic properties
and implementation in Participatory Budgeting elections. We now turn to another way of eliciting
voters’ preferences in this setting: value-for-money comparisons. Given a single agent’s Knapsack
Problem, one way of computing the optimal solution is to order the items according to their value-
to-size ratio and pick the higher-ranked ones until the knapsack capacity is used up. This order
can be ascertained by comparing pairs of projects according to their value-to-size ratio. Asking
voters to compare/rank projects based on their value-for-money is a natural analog (see Figure 3)
of this idea in a setting where multiple agents together have to decide an outcome.

Unlike Knapsack Voting, aggregation schemes based on value-for-money comparisons cannot
be guaranteed to have good strategic properties. Further, these schemes are not as transparent
as Knapsack Voting, since different information is elicited from each voter, and the aggregation
method is not as straightforward as that of Knapsack Voting. Value-for-money schemes also do
not extend naturally to settings with revenue, deficits, and surpluses.

Despite these difficulties, they are useful in practice, because they can be used to design paper
ballots with Knapsack Voting and also elicit the aggregate preferences of voters to make empirical
observations from data. We will discuss these presently.

In addition, value-for-money schemes have the following potential advantages:

—a smaller cognitive load on voters: especially with large ballots (see Section 4.0.2)
—aggregation in cases where the budget is not known or fixed a priori (perhaps using Kemeny-

Young like ranking rules)

We will delve into these in more detail in the next section.

3.1 Value-for-money Rankings and Paper Ballots

As mentioned before, some elections that employ digital voting also require a corresponding paper
ballot. This was the case in the Youth Lead The Change 2016 PB election held in Boston, a set of
projects was put to vote to youth between the ages 12 and 25. We implemented Knapsack Voting
as the official ballot process in this election. Since it is tedious to do Knapsack Voting on paper,
we designed a paper ballot that asked voters to rank their top four projects according to value-
for-money (Figure 7). From a total of around 4,000 voters, about 10% used the digital Knapsack
interface, and the rest used the paper ballot with ranking.

Here we ask each voter to rank the projects on the ballot taking both costs and benefits into
account.14 Voters take into account costs and benefits into account, and ranking reinforces this
consideration. Interpreting these votes as Knapsack Votes, we observe that the outcome from the
rankings was exactly the same as that of Knapsack Voting. This gives us a way of using rankings
to solve the budgeting problem in practice.

14There is an implicit assumption here that taking both costs and benefits into account is the same as considering value-

for-money.
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Fig. 7. Value-for-money ranking paper ballot for Knapsack Voting–PB Boston 2016.

Fig. 8. Cambridge 2014: Comparison table. Fig. 9. Vallejo 2015: Comparison table.

3.2 Value-for-money Comparisons

We can elicit fine-grained information about the preferences of voters between pairs of projects
by doing value-for-money comparisons between randomly chosen projects.

Definition 3.1 (Value-for-money comparison). For each pair of projects {j,k } from P shown to
her, voter i chooses a winner wi ({j,k }) = arg maxt ∈{j,k }

vi,t

ct
.

Doing these comparisons in practice, leads us to an interesting empirical observation of the
structure in the aggregate preferences of voters. We observe that compiling this data from our
experiments reveals a (nearly) transitive majority relation among the projects (Figure 8). By this
we mean that there exists a Condorcet winner, and upon removal of that candidate, there again
exists a Condorcet winner, and so on.

In Figures 8 and 9, we show the aggregate strength of each comparison across the two elections
Cambridge 2015 and Vallejo 2015. More details about the two elections are in the next section. The
number in the cell denotes the fraction of comparisons where the row project beats the column
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project. Green represents a fraction greater than 0.5, and red represents a fraction smaller than 0.5.
The darker the green (red), the closer it is to 1 (0).

Given this structure, there is a clear order among projects based on the aggregate strength of the
comparisons. In fact, any Condorcet rule leads to the same outcomes on such data. If this structure
does not hold, then the aggregation of these comparisons becomes more complicated.

3.2.1 Comparing Outcomes of Knapsack and K-approval. We will define a quantitative measure
for any outcome that represents the level of its agreement with the pairwise comparisons.To do
this, we generalize the Borda rule and define a Borda score for outcomes that are sets of projects.

In our experiments, we compare one project against another as shown in Figure 3, and to each
voter we present randomly chosen pairs so as to ascertain the aggregate preferences of voters.
Given the results of these comparisons, let n(j,k ) denote the number of voters that chose j over k .

We now build on the standard for a standard definition of Borda’s rule (Young 1974), and its
classical interpretation as an MLE (Young 1988). Generalizing the Borda score for a single winner,
we define

Definition 3.2 (Set-Borda score). For any set of projects S ⊆ P, the Set-Borda score of S is given
by 1

C (M−C )

∑
j ∈S
∑

k�S c jck (n(j,k ) − n(k, j )), where C =
∑

p∈S cp and M =
∑

p∈P cp .

We can interpret a pairwise value-for-money comparison between two projects j and k , as a
pairwise relation between a dollar sub-project of j and a dollar sub-project of k . The Set Borda
score of a set of S corresponds to the average number of such dollar versus dollar comparisons
that agree, minus those that disagree, with the partition induced by it. We can use this score, as a
measure of social welfare that embodies the essence of the Borda rule, to empirically compare the
outcome of Knapsack Voting with that of K-approval.

4 OUR DIGITAL PLATFORM AND RESULTS FROM OUR EXPERIMENTS

Our work with Participatory Budgeting began with a partnership with Chicago’s 49th Ward to
develop a digital voting system for their election. Since then we have have worked with almost a
dozen cities/districts over the past couple of years (see http://pbstanford.org), but we will primarily
look at data collected from the following elections:

—Boston 2016—Youth Lead the Change
—Boston 2015—Youth Lead the Change
—Cambridge 2015
—Cambridge 2014
—Vallejo 2015
—New York City District 5 2015 (NYC5)
—New York City District 8 2015 (NYC8)

The total number of voters in each of these elections were 4,176, 2,600, 3,273, 2,194, 1,834, 704, and
271, respectively.

In the Boston 2016 election, we implemented Knapsack Vote as the official ballot mechanism. In
the other elections, besides implementing an interactive interface for the official K-approval vote
(Figure 1), our goal has been to experiment with Knapsack Voting and value-for-money compar-
isons and use the data so collected to complement a theoretical understanding of these methods.
After the K-approval vote used for the formal election, we ask the voters to participate in our
experiments on either Knapsack Voting or value-for-money comparisons or both.

—In Cambridge 2015 and Boston 2015, we showed each voter either Knapsack and value-for-
money experiments with a 50% chance.

ACM Transactions on Economics and Computation, Vol. 7, No. 2, Article 8. Publication date: July 2019.

http://pbstanford.org


8:20 A. Goel et al.

Fig. 10. Cumulative fraction of total votes versus

cost of projects: Cambridge 2015.

Fig. 11. Cumulative fraction of total votes versus

cost of projects: NYC District 8.

Table 2. Average Cost of Winning Projects,

as a Fraction of the Budget

K-approval knapsack

NYC District 5 0.18 0.14
NYC District 8 0.20 0.12
Boston 2015 0.27 0.18

Cambridge 2015 0.15 0.10

—In NYC5 and NYC8, we did only the Knapsack Vote.
—In Cambridge 2014 and Vallejo 2015 we did only pairwise comparisons.

The Knapsack interface (Figure 2 in Section 1.3) has a live budget bar that shows how much of the
budget has used up with the current selection. For the value-for-money comparisons, we present
each voter with a fixed number of pairs of projects chosen uniformly at random without replace-
ment and ask them the following question (in the spirit of Definition 3.1): “Which of these projects
gives a higher benefit to the community per dollar spent?” (see Figure 3). We must mention that
only a subset of the entire set of voters actually chose to take part in our experiments, and we
report this percentage in Tables 5 and 4. This procedure was approved by Stanford University’s
Institutional Review Board.

4.0.1 Cost Consideration under Knapsack. Our data suggest that there is a bias toward projects
of larger costs in the K-approval method, as compared to the Knapsack method. We empirically
verify this effect in two ways. First, we present data from Cambridge and NYC District 8, where
a budget of $600,000 and 6-approval and $1,000,000 and 5-approval were used, respectively. In
Figures 10 and 11, we lay out the projects in descending order of cost and plot the cumulative frac-
tion of votes for projects above every cost threshold. We then compare K-approval and Knapsack
against the uniform distribution. We see that this function for K-approval dominates that for Knap-
sack, which means that costlier projects are over-represented, thereby supporting our hypothesis.
While this observation is not direct evidence that Knapsack Voting is better than K-approval, it
does suggest a significant qualitative difference between the outcomes of the two methods.

Second, we look at the average cost of the winning projects under each method. Table 2 shows
the average cost of the winning projects (normalized by the total budget) in each of those elections.
On average, across the three places, there is a reduction of about 30% in the average cost of the
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Table 3. Timing Data for K-approval

N = number of projects on ballot;

T = median completion time

City K N T
Boston 2015 4 10 61s

Cambridge 2015 6 23 213s

Table 4. Timing data for value-for-money

comparisons n = number of comparisons;

T = median completion time

City n T % of voters
Boston 2015 4 14s 10

Cambridge 2015 4 53s 40

Table 5. Timing Data for Knapsack Voting N = number

of projects; T = median completion time

City Budget N T % of voters
Boston 2015 $1,000,000 10 70s 7

Cambridge 2015 $600,000 23 115s 30
Boston 2016 $1,000,000 10 86s 100

winning projects. The above two observations clearly suggest that Knapsack Voting leads to voters’
being more frugal while choosing which projects to vote for.

4.0.2 Timing Data. The data from Tables 3 and 5 suggest that the Knapsack interface is not
much more time-consuming than the K-approval interface. Of course, since the Knapsack interface
follows the official K-approval interface, and so the voters were familiar with the projects when
they attempted the Knapsack Vote. Even if the time taken by Knapsack were the sum of times for
both in our experiments, we can see that it is very reasonable. This is borne out in the Boston 2016
election (see Table 5), where the number of projects was the same as in Boston 2015 and Knapsack
was presented first as the official ballot.

Here are some more interesting observations on the ease of each voting method based on
Tables 3, 4, and 5:

—we presented to each voter either Knapsack or value-for-money comparisons with a 50%
chance in both Boston 2015 and Cambridge 2015, and the percentage of voters that com-
pleted the comparisons was at least a third greater than that of Knapsack;

—in Boston 2015, the median time taken by the voters was 61s for K-approval vote (K = 4 of
10 projects on the ballot), 70s for Knapsack, and 14s for value-for-money comparisons of
four pairs. A similar trend is seen in the Cambridge experiment.

All this suggests that Knapsack Vote and K-approval have comparable times. The value-for-money

comparisons involve a smaller cognitive load than the other voting methods, especially with a
large number of projects as seen in Cambridge 2015.

4.1 Comparison of Knapsack and K-approval against Value-for-money Comparisons

Using the data from random pairwise comparisons in the value-for-money experiment, and
based on the Set Borda score (Definition 3.2), we calculate the average number of comparisons
that agree and disagree with the winning sets as determined by the K-approval and Knapsack
methods. If we picked a dollar allocated in the winning outcome, and a dollar not in it, both at
random, then the numbers in Table 6 are a measure of the average fraction of votes that agree
with the outcome minus those that disagree. We see that on this score, Knapsack does better than
the K-approval, thereby indicating a higher level of agreement with the voters’ preferences. We
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Table 6. Comparison of Knapsack and K-approval Based on Agreement with Pairwise

Comparisons: Knapsack Has a Greater Level of Agreement

K-approval Knapsack
Agreement Standard error Agreement Standard error

Boston 2015 0.20 0.047 0.26 0.045
Cambridge 2015 0.30 0.022 0.40 0.021

also note the standard error in the sample mean calculated above, assuming the sample mean
is normally distributed. We see that the difference between the sample means of Knapsack and
K-approval is greater than the standard error.

5 CONCLUSIONS AND ONGOING WORK

Knapsack Voting and value-for-money comparisons are intuitive ways of eliciting voters’ prefer-
ences for budgetary decisions. The Knapsack Vote admits interesting strategic properties: In par-
ticular, it is strategy-proof under a natural utility model that depends on the overlap (and equiva-
lently the �1 distance) between the outcome and the voters’ true preferred allocations. It can also
be extended to more complicated settings with revenues, deficits, and surpluses. However, Knap-
sack Voting is not very practical when there are a large number of projects. While value-for-money

comparisons have some drawbacks, they provide a way of eliciting the voters’ preferences with
a small cognitive load, especially in the case of large ballots. The fact that our schemes do better
on many different measures finds support in the data we collected from participatory budgeting
elections in various cities/municipalities. All our schemes are amenable to implementation using
interactive digital tools, thereby enhancing the ability of voters to make more informed decisions
in participatory budgeting. We have been able to make some initial progress along implementing
Knapsack Voting as the official ballot, and we hope that this article makes a strong case for its
wider adoption in practice.

APPENDIX

A.1 Extending Results (Approximately) to an Integral Model

The integral version of Knapsack Voting is defined as follows:

Definition A.1 (Integral Knapsack Vote).

(1) Each voter v ∈ V votes for a (integral) subset Sv ∈ P , such that it satisfies the budget con-
straint

∑
p∈Sv cp ≤ B.

(2) The projects are arranged in decreasing order of number of their approval scores, which
for any project p is given by #{v ∈ V : p ∈ Sv }.

(3) The projects are chosen in this order till there is not enough budget to include the next
project.

Our results, for example, Theorem 2.3, do not hold in the above integral model. The following
example (similar ones can be given for Theorems 2.5 and 2.10) shows us why:

Example A.2. We have a budget of 5 and three projects a, b, and c of cost 2, 2, and 3, respectively.
Let us say that ties are broken in favor of projects with larger cost whenever possible. For a voter
v , say that her favorite outcome is b and c . Without v’s vote being tallied, assume a and b are
winning—with scores 15, 11, and 10 for a, b, and c . Now if she votes for b and c , then the outcome
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is a and b. But if she switches to a and c , the outcome becomes a and c , leading to higher utility
(since she likes c more than b).

However, our results do hold in an approximately integral model, i.e., with some assumptions.

Definition A.3 (Approximately Integral Knapsack Vote).

(1) Each voter v ∈ V votes for a (integral) subset Sv ∈ P , such that it satisfies the budget con-
straint

∑
p∈Sv cp ≤ B.

(2) The projects are arranged in decreasing order of number of their approval scores, which
for any project p is given by #{v ∈ V : p ∈ Sv }.

(3) The projects are chosen in this order until there is not enough budget to include the next
project. And the next one in line is fractionally implemented.

In other words, although the votes are constrained to be integral, approximately integral out-

comes are allowed—the first project that gets the most votes and cannot be fully funded is allowed
to be fractionally implemented, so that the entire budget is used up. When a project j in Sv (voter
v’s favorite set) is funded fully, the utility derived is equal to cp . If it is fractionally funded, then
the utility is pro-rated appropriately. It may or may not be realistic to partially fund projects (e.g.,
renovate only one floor of a library rather than the entire building), but partial funding and the
requirement of spending all of the budget are both common in practice.

Note: As mentioned in Section 1.4, the �1 costs model does not make sense in a fully integral
model (on account of violating free disposal). However, with approximately integral outcomes,
both �1 costs and Overlap utilities satisfy free disposal.

For Lemma 2.6, it is easy to see that we have the following analog in the approximately integral
case.

Corollary A.4. |Sv ∩ S∗ | = B+ |Sv |
2 − 1

2

∑
p∈P |wv

p −w∗p |.

Using the above, and by a simple modification of the proofs of Theorems 2.3, 2.5, and 2.10, we
can see that they extend to the approximately integral model.

Observation 1. The results of Theorems 2.3, 2.5, and 2.10 hold under the approximately integral

model.

The above observation means that our results hold approximately in the strictly integral model
under Overlap utilities (see note above). First, let us consider Theorem 2.3. For example, let us
say we have a voter whose favorite (integral) set of projects is Sv . Then under the approximately
integral model, voting for Sv is a weakly dominant strategy for voter v . This implies that the
corresponding approximately integral outcome, composed of some integral set S∗ and a part of
project p∗, yields at least as much utility as any other approximately integral outcome that v can
obtain by voting some other integral set S ′v . Consequently, we have under the integral model that
the set S∗ yields at least as much utility as any other integral set (that v can obtain by changing
her vote) minus the value of the project p∗. A similar observation can be made for Theorems 2.5
and 2.10.

Observation 2. The results of Theorems 2.3, 2.5, and 2.10 hold approximately, up to the value of

one project, under the integral model.

We are drawing on ideas such as ϵ-strategyproofness (strategy-proof upto a utility value of ϵ),
and relaxations in combinatorial fair division such as envy-freeness to one good (Caragiannis et al.
2016; Budish 2011; Lipton et al. 2004).
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A.2 Proof of Theorem 2.9

Let R−v , S−v and score−v (.) be the outcome determined by the votes of everyone except v using
the Knapsack Voting rule (Equation (1)). Assume that Qv ⊆ R′ and Tv ⊆ P′ be a best response
for voter v such that Qv � Rv andTv � Sv . Let the outcome after incorporating Qv ,Tv be score(.)
and S .

We will discuss the case when |Qv | = |Tv | < |Sv | = |Rv |. The other case of |Qv | = |Tv | ≥ |Sv | =
|Rv | follows analogously (equality is similar to the proof of Theorem 2.3).

Choose some j ∈ Sv \Tv such that if k = D
p
t for some p ∈ P, then D

p

t ′ ∈ Tv for all t ′ < t . Such

a k exists because of consistency and the fact that |Tv | < |Sv |. LetT ′v � Tv ∪ {j}. Similarly, choose

the k ∈ Rv \Qv such that if k = D
q
z for some q ∈ R′, then D

q

z′ ∈ Tv for all z ′ < z and define Q ′v �
Qv ∪ {k }. Let the outcome here be score′(.) and R′, S ′. We will show that Q ′v ,T

′
v is also a best

response for v .
If R = R′ and S = S ′, then the utility is unchanged and we have nothing to prove.
We have that score′(j ) = score(j ) + 1, score′(k ) = score(k ) + 1, and for all l ∈ P′ ∪ R′ \ {j,k },

score′(l ) = score(l ). Note that the only change from score(.) to score′(.) is that the score of j and
k increases. So the outcomes must satisfy R′ ⊇ R and S ′ ⊇ S and |R′ | = |S ′ | ≤ |S | + 2 = |R | + 2. For
any given tie-breaking rule, if S ′ � S , then we must have j ∈ S ′ \ S , k ∈ R′ \ R, or both, i.e., any
change in outcome must involve either j or k moving from outside the winning set to within.

If j ∈ S ′ \ S , then there is a corresponding sub-project that is added to R to maintain the bud-
get balance, say,m ∈ R′ \ R. The change in utility of voter v is 1(j ∈ Sv ) − 1(m � Rv ) = 1 − 1(m �
Rv ) ≥ 0. In other words, the change in utility from adding j to S is 0, and any m to R to maintain
budget balance cannot be negative.

Similarly, if k ∈ R′ \ R, then there is a corresponding m′ ∈ S ′ \ S . And the change in utility is
−1(k � Rv ) + 1(m′ ∈ Sv ) = 0 + 1(m′ ∈ Sv ) ≥ 0.

By repeating this process, we reach a point at which we have a best response Qv ,Tv equal in
size to Rv , Sv , respectively. From here we do a procedure similar to the proof of Theorem 2.3 until
we only have elements in Sv . In this entire process, we do not decrease the utility.

To prove that the outcome is welfare maximizing, note that it is given by (R∗, S∗), where R∗ and
S∗ are both consistent and |R∗ | = |S∗ |, which maximizes the following:

∑

i ∈S
score(i ) +

∑

j ∈R
score(j ) =

∑

i ∈S

∑

v ∈V
1(i ∈ Sv ) −

∑

j ∈S

∑

v ∈V
1(j � Rv )

=
∑

v ∈V

∑

i ∈S
1(i ∈ Sv ) −

∑

v ∈V

∑

j ∈R
1(j � Rv ) =

∑

v ∈V
|Sv ∩ S | − |R \ Rv |,

and the last quantity in the above is the welfare according to the Overlap Utility Model.

A.3 Proof of Theorem 2.10

We will use the per-dollar approach (see definition in Section 2), i.e., each voter i ∈ V submits
a vote Si ⊆ P′ such that Si is consistent and |Si | = B. Let us first reinterpret the notation from
Section 2.3 per-dollar, and restate Theorem 2.10 in technical terms.

Consider a focal voter i responding to the votes of all others. Assume that she has full knowledge
about the how the others voted in aggregate. If S−i denotes the cumulative votes of all voters except
i , then she knowsW−i , the set of winners as determined by S−i . LetW (Si , S−i ) denote the set of
winners if her vote Si is added.

A best response for i is then defined as a vote S�i that satisfies

S�i = arg max
Si ∈A

∑

j ∈W (Si ,S−i )

v ′i, j , (3)
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where A � {S : S is consistent, |S | = B}, and v ′i, j is the utility of voter i from sub-project j ∈ P′.
With respect to voter i , we say a candidate q ∈ P′ dominates p ∈ P′ if and only if

—q ∈ W−i , and
—v ′i,q > v

′
i,p .

Denote collection of candidates that dominate p with respect to voter i as Λi,p , i.e., Λi,p � {j ∈
W−i : v ′i, j > v

′
i,p }.

Let us say that p ∈ S�i and Λi,p � S�i . We will first claim that Λi,p ⊆ W (S�i , S−i ).
Let j ∈ Λi,p . We have the following two possible cases:

(1) If j ∈ S�i : Since Λi,p ⊆W−i , then we have j ∈ S�i ∩W−i , and, consequently, j ∈
W (S�i , S−i ).

(2) Else, if j � S�i : Assume j �W (S�i , S−i ). Then S�i cannot be a best response, because by

switching her vote from S�i to
(
S�i \ {p}

)
∪ {j}, i can make j win instead of p, and this

strictly increases her total utility (since vi, j > vi,p ).

In either case, j ∈ W (S�i , S−i ).

Now, if S1 � S�i \ Λi,p , then |S1 | = B − |S�i ∩ Λi,p |. And since we have proved Λi,p ⊆
W (S�i , S−i ), it follows that |S1 ∩W (S�i , S−i ) | ≤ B − |Λi,p |. These two facts together imply the fol-
lowing:

|S1 \W (S�i , S−i ) | = |S1 | − |S1 ∩W (S�i , S−i ) |
≥
(
B − |S�i ∩ Λi,p

)
−
(
B − |Λi,p |

)

≥ |Λi,p | − |S�i ∩ Λi,p |
= |Λi,p \ S�i |.

Hence, there exists S2 ⊆ S1 \W (S�i , S−i ) such that |S2 | = |Λi,p \ S�i |.
Let S��i = (S�i \ S2) ∪ Λi,p . Clearly, |S��i | = B (since S2 ∩ Λi,p = ∅), and so it is a valid vote for

voter i .
Also W (S��i , S−i ) =W (S�i , S−i ), since we have replaced S2 ⊆ W (S�i , S−i )c with Λi,p \ S�i ⊆

W (S�i , S−i ). Because S�i is a best response, so is S��i .
Note that

S2 = S�i \ S��i ⊆ W (S�i , S−i )
c
. (4)

Now if there is a p ′ ∈ S��i such that Λi,p′ � S��i , we can do a similar replacement procedure to

define another best response S���i = (S��i \ S ′2) ∪ Λi,p′ , such that S ′2 ⊆ W (S��i , S−i )c (from Equa-
tion (4)). Since Λi,p ⊆ W (S��i , S−i ), this implies that S ′2 ∩ Λi,p = ∅ and so S���i includes both Λi,p

and Λi,p′ . By a series of replacements, we have the best response as required by the theorem. �
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