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ABSTRACT
Measuring the distances between vertices on graphs is one of the
most fundamental components in network analysis. Since finding
shortest paths requires traversing the graph, it is challenging to
obtain distance information on large graphs very quickly. In this
work, we present a preprocessing algorithm that is able to create
landmark based distance sketches efficiently, with strong theoret-
ical guarantees. When evaluated on a diverse set of social and
information networks, our algorithm significantly improves over
existing approaches by reducing the number of landmarks stored,
preprocessing time, or stretch of the estimated distances.

On Erdos-Renyi graphs and random power law graphs with
degree distribution exponent 2 < β < 3, our algorithm outputs
an exact distance data structure with space between Θ(n5/4) and
Θ(n3/2) depending on the value of β , where n is the number of
vertices. We complement the algorithm with tight lower bounds
for Erdos-Renyi graphs and the case when β is close to two.
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1 INTRODUCTION
Computing shortest path distances on large graphs is a fundamental
problem in computer science and has been the subject of much
study [27, 36, 37]. In many applications, it is important to compute
the shortest path distance between two given nodes, i.e. to answer
shortest path queries, in real time. Graph distances measure the
closeness or similarity of vertices and are often used as one of the
most basic metric in network analysis [29, 35, 39, 40]. In this paper,
we will focus on efficient and practical implementations of shortest
path queries in classes of graphs that are relevant to web search,
social networks, and collaboration networks etc. For such graphs,
one commonly used technique is that of landmark-based labelings:
every node is assigned a set of landmarks, and the distance between
two nodes in computed only via their common landmarks. If the set
of landmarks can be easily computed, and is small, then we obtain
both efficient pre-processing and small query time.
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Landmark based labelings (and their more general counterpart,
Distance Labelings), have been studied extensively [9, 36]. In partic-
ular, a sequence of results culminating in the work of Thorup and
Zwick [37] showed that labeling schemes can provide a multiplica-
tive 3-approximation to the shortest path distance between any
two nodes, while having an overhead of O (

√
n) storage per node

on average in the graph (we use the standard notation that a graph
has n nodes andm edges). In the worst case, there is no distance
labeling scheme that always uses sub-quadratic amount of space
and provides exact shortest paths. Even for graphs with maximum
degree 3, it is known that any distance labeling scheme requires
Ω(n3/2) total space [26]. In sharp contrast to these theoretical re-
sults, there is ample empirical evidence that very efficient distance
labeling schemes exist in real world graphs that can achieve much
better approximations. For example, Akiba et al. [3] and Delling
et al. [20] show that current algorithms can find landmark based
labelings that use only a few hundred landmarks per vertex to
obtain exact distance, in a wide collection of social, Web, and com-
puter networks with millions of vertices. In this paper, we make
substantial progress towards closing the gap between theoretical
and observed performance. We show that natural landmark based
labeling schemes can give exact shortest path distances with a small
number of landmarks for a popular model of (unweighted and undi-
rected) web and social graphs, namely the heavy-tailed random
graph model. We also formally show how further reduction in the
number of landmarks can be obtained if we are willing to tolerate an
additive error of one or two hops, in contrast to the multiplicative
3-approximation for general graphs. Finally, we present practical
versions of our algorithms that result in substantial performance
improvements on many real-world graphs.

In addition to being simple to implement, landmark based short-
est path algorithms also offer a qualitative benefit, in that they can
directly be used as the basis of a social search algorithm. In social
search [8], we assume there is a collection of keywords associated
with every node, and we need to answer queries of the following
form: given node v and keyword w , find the node that is closest
to v among all nodes that have the keyword w associated with
them. This requires an index size that is O (L) times the size of the
total social search corpus and a query time of O (L), where L is
the number of landmarks per node in the underlying landmark
based algorithm; the approximation guarantee for the social search
problem is the same as that of the landmark based algorithm. Thus,
our results lead to both provable and practical improvements to the
social search problem.

Existing models for social and information networks build on
random graphs with some specified degree distribution [15, 22, 38],
and there is considerable evidence that real-world graphs have
power-law degree distributions [16, 23]. We will use the Chung-Lu
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model [14], which assumes that the degree sequence of our graph is
given, and then draws a “uniform” sample from graphs that have the
same or very similar degree sequences. In particular, we will study
the following question: Given a random graph from the Chung-Lu
model with a power law degree distribution of exponent β , how much
storage does a landmark-based scheme require overall, in order to
answer distance queries with no distortion?

In the rest of the paper, we use the term “random power law
graph” to refer to a graph that is sampled from the Chung-Lu
model, where the weight (equivalently, the expected degree) of
each vertex is independently drawn from a power law distribution
with exponent β . We are interested in the regime when β > 2 —
this covers most of the empirical power law degree distributions
that people have observed on social and information networks [16].
Admittedly, real-world graphs have additional structure in addition
to having power-law degree distributions [34], and hence, we have
also validated the effectiveness of our algorithm on real graphs.

1.1 Our Results
Our first result corresponds to the “easy regime”, where the degree
distribution has finite variance (β > 3). We show that a simple pro-
cedure for generating landmarks guarantees exact shortest paths,
while only requiring each node to store Õ (

√
n) landmarks. The

same conclusion also applies to Erdős-Renyi graphsG (n, cn ) when
c > 1, or when c = 2 logn.

We then study the case where 2 < β < 3. This is the most
emblematic regime for power-law graphs, since the degree dis-
tribution has infinite variance but finite expectation. We present
an algorithm that generates at most Õ (n (β−2)/(β−1) ) landmarks per
node when β ≥ 2.5; and Õ (n (3−β )/(4−β ) ) landmarks per node when
2 < β < 2.5. We obtain additional improvements if we allow an
additive error of 1 or 2. See Figure 1 for an illustration of our results.
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Figure 1: The x-axis is the exponent of the power law degree
distribution and each value on the y-axis corresponds to a
storage of Õ(ny ). The lower bound is for exact distances.

While the dependence on β is complex, it is worth noting that
in the entire range that we study (β > 2), the number of landmarks
per node is at most Õ (

√
n) for exact shortest paths. This is in stark

contrast to known impossibility results for general graphs, where
no distance labeling with a multiplicative stretch less than 3 can use
sub-linear space per node [26]. The query time of our algorithms is
proportional to the number of landmarks per node, so we also get
speed improvements.

Our algorithm is based on the pruned labeling algorithm of Ak-
iba et al. [3], but differs in important ways. The pruned labeling

algorithm initially posits that every node is a landmark for every
other node, and then uses the BFS tree from each node to iteratively
prune away unnecessary landmarks. In our approach, we apply a
similar BFS with pruning procedure on a small subset ofH (i.e. high
degree vertices), but switch to lightweight local ball growing proce-
dures up to radius l for all other vertices. As we show, the original
pruned labeling algorithm requires storing Ω̃(n2) landmarks on
sparse Erdös-Rényi graphs. By growing local balls of size

√
n, our

algorithm recovers exact distances with at most Õ (n3/2) landmarks
instead, for Erdös-Rényi graphs and random power law graphs
with β > 3. Hence, our algorithm combines exploiting the existence
of high-degree “central landmarks” with finding landmarks that
are “locally important”. Furthermore for 2 < β < 3, by setting up
the number of global landmarks H and the radius l suitably, we
provably recover the upper bounds described in Figure 1. While
the algorithmic idea is quite simple, the analysis is intricate.

We complement our algorithmic results with tight lower bounds
for the regime when β > 3: the total length of any distance labeling
schemes that answer distance queries exactly in this regime is
almost surely Ω̃(n1.5). We also show that when 2 < β < 2.5, any
distance labeling scheme will generate labels of total size Ω̃(n3.5−β )
almost surely. In particular, our algorithm achieves the optimal
bound when β is close 2.

The parameter choice suggested by our theoretical analysis can
be quite expensive to implement (as can earlier landmark based
algorithms). We apply a simple but principled parameter tuning
procedure to our algorithm that substantially improves the prepro-
cessing time and generates a smaller set of landmarks at essentially
no loss of accuracy. We conduct experiments on several real world
graphs, both directed and undirected. First, compared to the pruned
labeling algorithm, we find that our algorithm reduces the number
of landmarks stored by 1.5-2.5x; the preprocessing time is reduced
significantly as well. Next, we compare our algorithm to a variant
of the distance oracle of Thorup and Zwick [37], which is believed
to be theoretically optimal for worst-case graphs, as well as the
distance sketch of Das Sarma et al [19] which has been found to
be both efficient and useful in prior work [8]. For each graph, our
algorithm substantially outperforms these two benchmarks. Details
are in Section 5. It is important to note that the three algorithms we
compare to also work much better on these real-world graphs than
their theoretical guarantee, and we spend considerable effort tun-
ing their parameters as well. Hence, the performance improvement
given by our algorithm is particularly noteworthy.

It is worth mentioning that our technical tools only rely on
bounding the growth rate of the breadth-first search. Hence we
expect that our results can be extended to the related configuration
model [22] as well. One limitation of our work is that the analysis
does not apply directly to preferential attachment graphs, which
correspond to another family of well known power law graphs. But
we believe that similar results can be obtained there by adapting
our analysis to that setting as well. This is left for future work.

Organizations: The rest of the paper is organized as follows. Sec-
tion 2 introduces the basics of random graphs, reviews the pruned
labeling algorithm and related work. Section 3 introduces our ap-
proach. We then present the analysis and experiments in Section 4
and Section 5. The lower bounds are presented in Section 6.
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2 PRELIMINARIES AND RELATEDWORK
2.1 Notations
LetG = (V ,E) be a directed graph withn = |V | vertices andm = |E |
edges. For a vertex x ∈ V , denote by dout (x ) the outdegree of x
and din (x ) the indegree of x . Let Nout (x ) denote the set of its out
neighbors. Let distG (x ,y) denote the distance of x and y in G, or
dist(x ,y) for simplicity. WhenG is undirected, then the outdegrees
and indegrees are equal. Hence we simply denote by dx the degree
of every vertex x ∈ V . For an integer l and x ∈ V , denote by
Γl (x ) = {y : dist(x ,y) = l } the set of vertices at distance l from x .
Denote by Nl (x ) the set of vertices at distance at most l from x .

We use notation a ≲ b to indicate that there exists an absolute
constant C > 0 such that a ≤ Cb. The notations Õ (·) and Ω̃(·) hide
poly-logarithmic factors.

2.2 Landmark based Labelings
In a landmark based labeling [21], each vertex x is assigned a set
of forward landmarks LF (x ) and backward landmarks LB (x ). Each
landmark set is a hash table, whose keys are vertices and values
are distances. For example, if y ∈ LF (x ), then the value associated
with y would be dist(x ,y), which is the “forward” distance from
x to y. Given the landmark sets LF (·) and LB (·), we estimate the
distances as follows:

min
z∈LF (x )∩LB (y )

dist(x , z) + dist(z,y),∀x ,y ∈ V . (1)

If no common vertex is found between LF (x ) and LB (y), then y is
not reachable from x . In the worst case, computing set intersection
takes Ω(min( |LF (x ) | , ��LB (y)��)) time.

Denote the output of equation (1) by d̂ . Clearly, we have d̂ ≥
dist(x ,y) when y is reachable from x . The additive stretch of d̂ is
given by d̂ − dist(x ,y), and the multiplicative stretch is given by
d̂/dist(x ,y). When there are no errors for any pairs of vertices, such
landmark sets are called 2-hop covers [17].

There is a more general family of data structures known as
labeling schemes [26], which associates a vector L : V → {0, 1}∗
for every vertex. When answering a query for a pair of vertices
x ,y ∈ V , only the two labels L (x ) and L (y) are required without
accessing the graph. The total length of L is given by ∑

x ∈V |L (x ) |.
It is clear from equation (1) that landmark sketches fall in the query
model of labeling schemes.

2.3 The Pruned Labeling Algorithm
We review the pruned labeling algorithm [3] for readers who are
not familiar. The algorithm starts with an ordering of the vertices,
{x1,x2, . . . ,xn }. First for x1, a breadth first search (BFS) is per-
formed over the entire graph. During the BFS, x1 is added to the
landmark set of every vertex.1 Next for x2, in addition to running
BFS, a pruning step is performed before adding x2 as a landmark.
For example, suppose that a path of length l is found from x2 to y.
If x1 lies on the shortest path fom x2 to y, then by checking their
landmark sets, we can find the common landmark x1 to certify that
dist(x2,y) = dist(x2,x1) + dist(x1,y) ≤ l . In this case, x2 is not

1For directed graphs, there will be a forward BFS which looks at x1’s outgoing edges
and its descendants, as well as a backward BFS which looks at x1’s incoming edges
and its predecessors.

added to y’s landmark set, and the neighbors of y are pruned away.
The above procedure is repeated on x3, x4, etc.

For completeness, we describe the pseudocode in Algorithm ??.
Note that the backward BFS procedure can be derived similarly. It
has been shown that the pruned labeling algorithm is guaranteed
to return exact distances [3].
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The above procedure is repeated on x3, x4, etc.
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wn that the pruned labeling algorithm is guaranteed

Algorithm 1 PrunedLabeling (Akiba et al. [3])
Input: A directed graph G = (V , E ); An ordering of V , {x1, x2, . . . , xn }.
1: Let O = ∅, and LF (x ) = LB (x ) = ∅, for all x ∈ V
2: for i = 1, . . . , n do
3: forwardBfs(xi )
4: backwardBfs(xi )
5: O = O ∪ {xi }
6: end for
7:
8: procedure forwardBfs(xi )
9: Let Q be a priority queue and S be a hash set
10: Set the priority of xi to be zero
11: while Q , ∅ do
12: Let l be the minimum priority of Q
13: Let u be the corresponding vertex
14: S = S ∪ {u }
15: Let d̃ = miny∈LF (xi )∩LB (u ) dist(xi , y ) + dist(y, u )
16: if l < d̃ then (otherwise u ’s neighbors are pruned)
17: LB (u ) = LB (u ) ∪ {xi → l }
18: for y ∈ Nout (u ) such that y < O do
19: Let q be the priority of y
20: if y < S and l + 1 < q then
21: Decrease y’s priority to l + 1
22: end if
23: end for
24: end if
25: end while
26: end procedure

2.4 Random Graphs
We review the basics of Erdös-Rényi random graphs. Let G =
G (n,p) be an undirected graph where every edge appears with
probability p. It is well known that when p ≥ 2(logn)/n,G has only
one connected component with high probability. Moreover, the
neighborhood growth rate (i.e. |Γi+1 (x ) | / |Γi (x ) |) is highly concen-
trated around its expectation, which is np. Formally, the following
facts are well-known.

Fact 1 (Bollobás [10]). Let G = (V ,E) be an undirected graph
where every edge is sampled with probability p = 2(logn)/n. Let
D = ⌈ logn

log(np ) ⌉. Then the following are true with high probability:

a) The diameter of G is at most D + 1;
b) For any x ,y ∈ V and l ≤ D, Pr(dist(x ,y) ≤ l ) ≤ (np )l+1

n (np−1) ;

c) For any x ∈ V and l < D, we have 1
2 ≤ |Γl (x ) |(np )l

≤ 2.

The Chung-Lu model: Let px > 0 denote a weight value for
every vertex x ∈ V . Given the weight vector p, the Chung-Lu
model generalizes Erdös-Rényi graphs such that each edge is chosen
independently with probability

Pr[x ∼ y] = min
{
px · py
vol(V )

, 1
}
,∀x ,y ∈ V

where vol(V ) =
∑
x ∈V px denote the volume of V .
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where vol(V ) =
∑
x ∈V px denote the volume of V .

Random power law graphs: Let f : [xmin,∞) → R denote the
probability density function of a power law distribution with ex-
ponent β > 1, i.e. f (x ) = Zx−β , where Z = (β − 1) · xβ−1min [16].
The expectation of f (·) exists when β > 2. The second moment is
finite when β > 3. When β < 3, the expectation is finite, but the
empirical second moment grows polynomially in the number of
samples with high probability. If β < 2, then even the expectation
becomes unbounded as n grows.

In a random power law graph, the weight of each vertex is drawn
independently from the power law distribution. Given the weight
vector p, a random graph is sampled according to the Chung-Lu
model. If the average degree ν > 1, then it is known that almost
surely the graph has a unique giant component [15].

2.5 Related Work
Landmark based labelings: There is a rich history of study on
how to preprocess a graph to answer shortest path queries [2, 4, 5,
11, 17, 37]. It is beyond our scope to give a comprehensive review of
the literature and we refer the reader to survey [36] for references.

In general, it is NP-hard to compute the optimal landmark based
labeling (or 2-hop cover). Based on an LP relaxation, a logn factor
approximation can be obtained via a greedy algorithm [18]. See
also the references [6, 7, 12, 21, 28] for a line of followup work. The
current state of the art is achieved based on the pruned labeling
algorithm [3, 20]. Apart from the basic version that we have already
presented, bit-parallel optimizations have been used to speed up
proprocessing [3]. Variants which can be executed when the graph
does not fit in memory have also been studied [30]. It is conceivable
that such techniques can be added on top of the algorithms that
we study as well. For the purpose of this work, we will focus on
the basic version of the pruned labeling algorithm. Compared to
classical approaches such as distance oracles, the novelty of the
pruned labeling algorithm is using the idea of pruning to reduce
redundancy in the BFS tree.
Network models: Earlier work on random graphs focus on mod-
eling the small world phenomenon [15], and show that the average
distance grows logarithmically in the number of vertices. Recent
work have enriched random graph models with more realistic fea-
tures, e.g. community structures [31], shrinking diameters in tem-
poral graphs [32].

Other existing mathematical models on special families of graphs
related to distance queries include road networks [1], planar graphs
and graphs with doubling dimension. However none of them can
capture the expansion properties that have been observed on sub-
networks of real-world social networks [34].

Previous work of Chen et al. [13] presented a 3-approximate
labeling scheme requiring storage Õ (n(β−2)/(2β−3) ) per vertex, on
random power law graphs with 2 < β < 3. Our (+2)-stretch result
improves upon this scheme in the amount of storage needed per ver-
tex for 2 < β < 2.5, with a much better stretch guarantee. Another
related line of work considers compact routing schemes on random
graphs. Enachescu et al. [24] presented a 2-approximate compact
routing scheme using spaceO (n1.75) on Erdös-Rényi random graphs,
and Gavoille et al. [25] obtained a 5-approximate compact routing
scheme on random power law graphs.

3 OUR APPROACH
In order to motivate the idea behind our approach, we begin with an
analysis of the pruned labeling algorithm on Erdös-Rényi random
graphs.While the structures of real world graphs are far from Erdös-
Rényi graphs, the intuition obtained from the analysis will be useful.
Below we describe a simple proposition which states that for sparse
Erdös-Rényi graphs, the pruned labeling algorithm outputs Ω̃(n2)
landmarks.

Proposition 2. LetG = (V ,E) be an undirected Erdös-Rényi graph
where every edge appears with probability p = 2(logn)/n. For any
ordering of the vertices V = {x1,x2, . . . ,xn }, with high probability
over the randomness of G, the total number of landmarks produced
by Algorithm ?? is at least Ω̃(n2).

Proof sketch. We first introduce a few notations. Let r = np
denote the growth rate of G. Let ε = 1/ logn. Consider a vertex xi
where 1 ≤ i ≤ εn. Denote by X−i = {x1, . . . ,xi−1}. Consider any
u ∈ V , if none of the shortest paths from xi to u intersect with X−i ,
then (xi ,u) is called a bad pair. Note that xi must be added to u’s
landmark set by Algorithm ??, because during the BFS from xi , all
estimates through X−i will be strictly larger than dist(xi ,u). Hence,
to lower bound the total landmark sizes, it suffices to count the
number of bad pairs. In the following, we show that in expectation
for every xi where 1 ≤ i ≤ εn, there are at least n/(logn)3 vertices
u such that (xi ,u) are bad. It follows that Algorithm ?? requires at
least εn2/(logn)3 ≥ Ω̃(n2) in expectation.

Let D = ⌊logr n − 2⌋. Consider ΓD (xi ), the set of vertices at
distance equal to D from xi . We count the number of bad vertices
in ΓD (xi ) at follows. For each 1 ≤ k ≤ D, consider the intersection
Γk (xi ) ∩ X−i and their subtree down to ΓD (xi ).

Starting from any y ∈ Γk (xi ) ∩ X−i , the subtree of y would
result in good vertices in ΓD (xi ), whose distance from xi can be
correctly estimated (c.f. line 15-16 in Algorithm ??). In expectation,
the size of the intersection is rkε , because the probability that any
two vertex has distance k on G is equal to rk/n, and there are at
most εn vertices in X−i . Next, each y results in rD−k vertices in
its (D − k )-th level neighborhood. Combined together, the total
number of good vertices which are covered by Γk (xi ) ∩ X−i is at
most rkε × rD−k = εrD . By summing over all k ≤ D, we obtain
that the total number of good vertices in ΓD (xi ) is at most DεrD .

On the other hand, the size of ΓD (xi ) is rD . Hence the total
number of bad vertices is at least (1 − Dε )rD ≥ n/ log3 n. To show
that the the proposition holds with high probability, it suffices
to apply concentration results on neighborhood growth in the
arguments above. We omit the details.

□

The interesting point from the above analysis is that Θ(n) land-
marks are added throughout the first εn vertices. The reason is that
there are no high degree vertices in Erdös-Rényi graphs, hence
the landmarks we have added in the beginning do not cover the
shortest paths for many vertex pairs later.Secondly, a large number
of distant vertices are added in the landmark sets, which do not lie
on the shortest paths of many pairs of vertices.

Motivated by the observation, we introduce our approach as
follows. We start with an ordering of the vertices. For the top H
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vertices in the ordering, we perform the same BFS procedure with
pruning. For the rest of the vertices, we simply grow a local ball up
to a desired radius. Concretely, only the vertices from the local ball
will be used as a landmark. Algorithm ?? describes our approach in
full.2 As a remark, when the input graphG is undirected, it suffices
to run one of the forward or backward BFS procedures, and for each
vertex, its forward and backward landmark sets can be combined
to a single landmark set.
Algorithm 2 ApproximatePruning
Input: A directed graph G = (V , E); An ordering of V {x1, x2, . . . , xn };

The number of global landmarks H ; The set of radiuses {li }ni=H+1.
1: Let O = ∅, and LF (x ) = LB (x ) = ∅, for any x ∈ V .
2: for i = 1, . . . , H do
3: forwardBfs(xi )
4: backwardBfs(xi )
5: O = O ∪ {xi }
6: end for
7: for i = H + 1, . . . , n do
8: localForwardBfs(xi , li )
9: localBackwardBfs(xi , li )
10: end for
11: procedure localForwardBfs(xi , li )
12: for y such that dist(xi , y) ≤ li − 1 do
13: LF (xi ) = LF (xi ) ∪ (y → dist(xi , y))
14: end for
15: for y such that dist(xi , y) = li and ∃z s.t. dist(x, z) = li −

1, (z, y) ∈ E, dout (z) ≤ dout (y) do
16: LF (xi ) = LF (xi ) ∪ (y → dist(xi , y))
17: end for
18: end procedure

vertices in the ordering, we perform the same BFS procedure with
pruning. For the rest of the vertices, we simply grow a local ball up
to a desired radius. Concretely, only the vertices from the local ball
will be used as a landmark. Algorithm 2 describes our approach in
full.2 As a remark, when the input graphG is undirected, it suffices
to run one of the forward or backward BFS procedures, and for each
vertex, its forward and backward landmark sets can be combined
to a single landmark set.

Recall that the backward and forward BFS procedures do a
breadth first search with a pruning step before enqueing a ver-
tex (c.f. Algorithm 1). For each xi with i > H , the parameter li
controls the depth of the local ball we grow from xi . Furthermore,
at the bottom layer, we only add vertices whose outdegree is higher
than any of its predecessor to xi ’s landmark set. The intuition is
that vertices with higher outdegrees are more likely to be used as
landmarks.

We begin by analyzing Algorithm 2 for Erdös-Rényi graphs, as a
comparison to Proposition 2. The following proposition shows that
without using global landmarks, local balls of suitable radius suffice
to cover all the desired distances. The proof is by observing that for
each vertex, if we add the closest

√
n vertices to the landmark set of

every vertex, then the landmark sets of every pair of vertices will
intersect with high probability, i.e. we have obtained a 2-hop cover.

Proposition 3. Let G = (V ,E) be an undirected random graph
where each edge is sampled with probabilityp = 2(logn)/n. By setting
H = 0 and li = l = ⌈

logn
2 lognp ⌉ + 1 for all 1 ≤ i ≤ n, we have that

Algorithm 2 outputs a 2-hop cover with at most Õ(n3/2) landmarks
with high probability.

Proof. Denote by L(x) the landmark set obtained by Algorithm
2, for every x ∈ V . We will show that with high probability:

2Here we have omitted the details of the local backward BFS procedure, which can be
derived similar to the local forward BFS procedure.

a) For all xi ,x j ∈ V , L(xi ) ∩ L(x j ) , ∅. This implies that L(·) is
a 2-hop cover.

b) The size of L(xi ) is less than Õ(
√
n), for all xi ∈ V .

Claim a) follows because the diameter of G is at most 2l − 1 with
high probability by Fact 1. Note that L(xi ) contains Nl−1(xi ), the
set of vertices with distance at most l − 1. If dist(xi ,x j ) ≤ (l − 1) +
(l − 1), Nl−1(xi ) and Nl−1(x j ) already intersect. Otherwise, since
the diameter is at most 2l − 1, these two neighborhoods must be
connected by an edge e . Suppose between e’s two endpoints, the
one with a lower degree is on xi ’s side, then the local BFS from
xi must add the other endpoint to L(xi ), and vice versa. Therefore,
L(xi ) must intersect with L(x j ).

Claim b) is because L(xi ) is a subset of Nl (xi ). By Fact 1, the size
of Nl (xi ) is at most 4(np)l ≲ Õ(

√
n). Hence, the proof is complete.

□

4 RANDOM POWER LAW GRAPHS
In this section we analyze our algorithm on random power law
graphs. We begin with the simple case of β > 3, which generalizes
the result on Erdös-Rényi graphs. Because the technical intuition
is the same with Proposition 3, we describe the result below and
omit the proof.

Proposition 4. Let G = (V ,E) be a random power law graph
with average degree ν > 1 and power law exponent β > 3. For each
xi ∈ V , let li be the smallest integer such that the number of edges
between Nli (xi ) and V \Nli (xi ) is at least δ

√
n, where δ = 5

√
ν logn.

By setting H = 0 and {li }
n
i=1, Algorithm 2 outputs a 2-hop cover

with high probability. Moreover, each vertex uses at mostO(
√
n log2 n)

landmarks.

Remark: The high level intuition behind our algorithmic result is
that as long as the breadth-first search process of the graph grows
neither too fast nor too slow, but rather at a proper rate, then an
efficient distance labeling scheme can be obtained. Proposition
4 can be easily extended to configuration models with bounded
degree variance. It would be interesting to see if our results extend
to preferential attachment graphs and Kronecker graphs.

The case of 2 < β < 3: Next we describe the more interesting case
with power law exponent 2 < β < 3. Here the graph contains a large
number of high degree vertices. By utilizing the high degree vertices,
we show how to obtain exact distance landmark schemes, (+1)-
stretch schemes and (+2)-stretch schemes. The number of landmarks
used varies depending on the value of β . We now state our main
result as follows.

Theorem 5. Let G = (V ,E) be a random power law graph with
average degree ν > 1 and exponent 2 < β < 3. Let

K =

{√
n, for 2.5 ≤ β ≤ 3

n
1

(4−β )(β−1) , for 2 < β < 2.5.

Let H be the number of vertices whose degree is at least K in G. Let
π = {xi }

n
i=1 be any ordering of vertices V by their degrees in a non-

increasing order. For each vertex xi ∈ V , let li be the smallest integer
such that the number of edges between Nli−1(xi ) and V \Nli−1(xi ) is
at least δn(β−2)/(β−1), where δ = 4ν · log2 n.

Recall that the backward and forward BFS procedures do a
breadth first search with a pruning step before enqueing a ver-
tex (c.f. Algorithm ??). For each xi with i > H , the parameter li
controls the depth of the local ball we grow from xi . Furthermore,
at the bottom layer, we only add vertices whose outdegree is higher
than any of its predecessor to xi ’s landmark set. The intuition is
that vertices with higher outdegrees are more likely to be used as
landmarks.

We begin by analyzing Algorithm ?? for Erdös-Rényi graphs, as a
comparison to Proposition 2. The following proposition shows that
without using global landmarks, local balls of suitable radius suffice
to cover all the desired distances. The proof is by observing that for
each vertex, if we add the closest

√
n vertices to the landmark set of

every vertex, then the landmark sets of every pair of vertices will
intersect with high probability, i.e. we have obtained a 2-hop cover.

Proposition 3. Let G = (V ,E) be an undirected random graph
where each edge is sampled with probability p = 2(logn)/n. By
setting H = 0 and li = l = ⌈ logn

2 lognp ⌉ + 1 for all 1 ≤ i ≤ n, we

have that Algorithm ?? outputs a 2-hop cover with at most Õ (n3/2)
landmarks with high probability.

Proof. Denote by L(x ) the landmark set obtained by Algorithm
??, for every x ∈ V . We will show that with high probability:

a) For all xi ,x j ∈ V , L(xi ) ∩ L(x j ) , ∅. This implies that L(·)
is a 2-hop cover.

2Here we have omitted the details of the local backward BFS procedure, which can be
derived similar to the local forward BFS procedure.

b) The size of L(xi ) is less than Õ (
√
n), for all xi ∈ V .

Claim a) follows because the diameter of G is at most 2l − 1 with
high probability by Fact 1. Note that L(xi ) contains Nl−1 (xi ), the
set of vertices with distance at most l − 1. If dist(xi ,x j ) ≤ (l − 1) +
(l − 1), Nl−1 (xi ) and Nl−1 (x j ) already intersect. Otherwise, since
the diameter is at most 2l − 1, these two neighborhoods must be
connected by an edge e . Suppose between e’s two endpoints, the
one with a lower degree is on xi ’s side, then the local BFS from xi
must add the other endpoint to L(xi ), and vice versa. Therefore,
L(xi ) must intersect with L(x j ).

Claim b) is because L(xi ) is a subset of Nl (xi ). By Fact 1, the size
of Nl (xi ) is at most 4(np)l ≲ Õ (

√
n). Hence, the proof is complete.

□

4 RANDOM POWER LAW GRAPHS
In this section we analyze our algorithm on random power law
graphs. We begin with the simple case of β > 3, which generalizes
the result on Erdös-Rényi graphs. Because the technical intuition
is the same with Proposition 3, we describe the result below and
omit the proof.

Proposition 4. Let G = (V ,E) be a random power law graph
with average degree ν > 1 and power law exponent β > 3. For each
xi ∈ V , let li be the smallest integer such that the number of edges
between Nli (xi ) andV \Nli (xi ) is at least δ

√
n, where δ = 5

√
ν logn.

By setting H = 0 and {li }ni=1, Algorithm ?? outputs a 2-hop cover
with high probability. Moreover, each vertex uses at mostO (

√
n log2 n)

landmarks.

Remark: The high level intuition behind our algorithmic result is
that as long as the breadth-first search process of the graph grows
neither too fast nor too slow, but rather at a proper rate, then an
efficient distance labeling scheme can be obtained. Proposition
4 can be easily extended to configuration models with bounded
degree variance. It would be interesting to see if our results extend
to preferential attachment graphs and Kronecker graphs.

The case of 2 < β < 3: Next we describe the more interesting case
with power law exponent 2 < β < 3. Here the graph contains a large
number of high degree vertices. By utilizing the high degree vertices,
we show how to obtain exact distance landmark schemes, (+1)-
stretch schemes and (+2)-stretch schemes. The number of landmarks
used varies depending on the value of β . We now state our main
result as follows.

Theorem 5. Let G = (V ,E) be a random power law graph with
average degree ν > 1 and exponent 2 < β < 3. Let

K =

√
n, for 2.5 ≤ β ≤ 3

n
1

(4−β ) (β−1) , for 2 < β < 2.5.

Let H be the number of vertices whose degree is at least K in G. Let
π = {xi }ni=1 be any ordering of vertices V by their degrees in a non-
increasing order. For each vertex xi ∈ V , let li be the smallest integer
such that the number of edges between Nli−1 (xi ) andV \Nli−1 (xi ) is
at least δn(β−2)/(β−1) , where δ = 4ν · log2 n.

With ordering π , parameters H and {li }ni=H+1, Algorithm ?? out-
puts a 2-hop cover with high probability. Moreover, the maximum
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number of landmarks used by any vertex is at most

O

(
max

(
n
β−2
β−1 ,n

3−β
4−β

)
log3 n

)
.

The above theorem says that in Algorithm ??, first we use vertices
whose degrees are at leastK as global landmarks. Then for the other
vertices xi , we grow a local ball of radius li , whose size is (right)
above n(β−2)/(β−1) . The two steps together lead to a 2-hop cover.
We now build up the intuition for the proof.

Building up a+1-stretch scheme: First, it is not hard to show that
G contains a heavy vertex whose degree is n1/(β−1) , by analyzing
the power law distribution. Note that K ≤ n1/(β−1) , hence we
have added all such high degree vertices as global landmarks. This
part, together with the local balls, already gives us a (+1)-stretch
landmark scheme.

To see why, consider two vertices xi ,x j . If their local balls (of size
n(β−2)/(β−1) ) already intersect, then we can already compute their
distances correctly from their landmark sets. Otherwise, since the
bottom layers of xi and x j already have weight/degree n(β−2)/(β−1) ,
they are at most two hops apart, by connecting to the heavy vertex
with degree n1/(β−1) . Recall that the heavy vertex is added to the
landmark sets of every vertex. Hence, the estimated distance is
at most off by one. As a remark, to get the (+1)-stretch landmark
scheme, the number of landmarks needed per vertex is on the order
of n(β−2)/(β−1) . This is because we only need to use vertices whose
degrees are at least n1/(β−1) as global landmarks (there are only
logn of them), as opposed to H in Theorem 5.

Fixing the +1-stretch: To obtain exact distances, for each vertex
on the boundary of radius li − 1, we add all of its neighbors with
a higher degree to the landmark set (c.f. line 15-17 in Algorithm
??). Whenever there is an edge connecting the two boundaries, the
side with a lower degree will add the other endpoint as a landmark,
which resolves the (+1)-stretch issue. For the size of landmark sets,
it turns out that fixing the (+1)-stretch for the case 2 < β < 2.5 sig-
nificantly increases the number of landmarks needed. Specifically,
the costs are n(5−β )/(4−β ) landmarks per node.

Intuition for the +2-stretch scheme: As an additional remark,
one can also obtain a (+2)-stretch landmark sketch by setting li
in Algorithm ?? in a way such that every vertex stores the closest
Θ̃(n(β/2)−1) vertices in its landmark set. This modification leads to a
(+2)-stretch scheme, because for two vertices x ,y, once the bottom
layers of x ,y have size at least Θ̃(n(β/2)−1), they are at most three
hops away from each other. The reason is that with high probability,
the bottom layer will connect to a vertex with weight Ω(

√
n) in the

next layer (which will all be connected), as it is not hard to verify
that the volume of all vertices with weight

√
n is Ω(n(4−β )/2). By a

similar proof to Theorem 5, the maximum number of landmarks
used per vertex is at most Õ (n(β−2)/2).

We refer the reader to the full version for details of the full proof.
The technical components involve carefully controlling the growth
of the neighborhood sets by using concentration inequalities.

5 EXPERIMENTS
In this section, we substantiate our results with experiments on a
diverse collection of network datasets. A summary of the findings
are as follows. We first compare Algorithm ?? with the pruned
labeling algorithm [3]. Recall that our approach differs from the
pruned labeling algorithm by only performing a thorough BFS
for a small set of vertices, while running a lightweight local ball
growing procedure for most vertices. We found that this simple
modification leads to 1.5-2.5x reduction in number of landmarks
stored. The preprocessing time is reduced by 2-15x as well. While
our algorithm does not always output the exact distance like the
pruned labeling algorithm, we observe that the stretch is at most
1%, relative to the average distance.

Next we compare our approach to two approximate distance
sketches with strong theoretical guarantees, Das Sarma et al. sketch
[8, 19] and a variant of Thorup-Zwick’s 3-approximate distance or-
acle [37], which uses high degree vertices as global landmarks [13].
We observe that our approach incurs lower stretch and requires
less space compared to Das Sarma et al. sketch. The accuracy of
Thorup-Zwick sketch is comparable to ours, but we require much
fewer landmarks.

5.1 Experimental Setup
To ensure the robustness of our results, we measure performances
on a diverse collection of directed and undirected graphs, with the
datasets coming from different domains, as described by Table 1.
Stanford, Google and BerkStan are all Web graphs in which edges
are directed. DBLP (collaboration network) and Youtube (friendship
network) are both undirected graphs where there is one connected
component for the whole graph. Twitter is a directed social network
graph with about 84% vertices inside the largest strongly connected
component. All the datasets are downloaded from the Stanford
Large Network Dataset Collection [33].

Table 1: Datasets used in experiments.

graph # nodes # edges category type
DBLP 317K 1.0M Collaboration Undirected
Twitter 81K 1.8M Social Directed
Stanford 282K 2.3M Web Directed
Youtube 1.1M 3.0M Social Undirected
Google 876K 5.1M Web Directed
BerkStan 685K 7.6M Web Directed

Implementation details: We implemented all four algorithms in
Scala, based on a publicly available graph library.3 The experiments
are conducted on a 2.30GHz 64-core Intel(R) Xeon(R) CPU E5-2698
v3 processor, 40MB cache, 756 GB of RAM. Each experiment is run
on a single core and loads the graph into memory before beginning
any timings. The RAM used by the experiment is largely dominated
by the storage needed for the landmark sets.
Parameters: In the comparison between the pruned labeling algo-
rithm and our approach, we order the vertices in decreasing order
by the indegree plus outdegree of each vertex.4 Recall that there are
3https://github.com/teapot-co/tempest
4There are more sophisticated techniques such as ordering vertices using their be-
tweenness centrality scores [20]. It is conceivable that our algorithm can be combined
with such techniques.
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Figure 2: Comparing the efficiency of our approach to the pruned labeling algorithm.

Table 2: Measuring the accuracy of our approach.

Stanford BerkStan Google Twitter Youtube DBLP
Relative Average Stretch 0.37% 0.20% 0.51% 0.29% 0.33% 1.1%
Maximum Relative Stretch 21/10 10/7 8/5 4/3 4/3 7/5
Average Additive Stretch 0.046 0.030 0.060 0.014 0.018 0.075
Maximum Additive Stretch 11 3 3 1 2 2
Average Distance 12.3 14.6 11.7 4.9 5.3 6.8

two input parameters used in our approach, the number of global
landmarks H and the radiuses of local balls {li }ni=H+1. To tune H ,
we start with 100, then keep doubling H to be 200, 400, etc. The
radiuses {li }i≥H are set to be 2 for all graphs.5

Benchmarks: For the Thorup-Zwick sketch, in the first step, H =√
n vertices are sampled uniformly at random as global landmarks.

In the second step, every other vertex grows a local ball as its land-
mark set until it hits any of the

√
n vertices. All vertices within

the ball are used as landmarks. This method uses O (n3/2) land-
marks and achieves 3-stretch in worst case. In the follow up work
of Chen et al. [13], the authors show a variant which uses high de-
gree vertices as global landmarks and observe better performance.
We implement Chen et al.’s variant in our experiment, and use
the H vertices with the highest indegree plus outdegree as global
landmarks. In the experiment, we start with H equal to

√
n. Then

we report results for
√
n multiplied by {2, 1/2, 1/4, 1/8}.

For the Das Sarma et al. sketch, first, logn sets Si of different sizes
are sampled uniformly from the set of vertices V , for 0 ≤ i < logn,
where the size of Si is 2i . Then a breadth first search is performed
from Si , so that every vertex x < Si finds its closest vertex inside Si
in graph distance. This closest vertex is then used as a landmark
for x . The number of landmarks used in Dar Sarma’s sketch is
n logn, and the worst case multiplicative stretch is logn. If more
accurate estimation is desired, one can repeat the same procedure
multiple times and union the landmark sets together. We begin
with 5 repetitions, then keep doubling it to be 10, 20 etc.

Our approach differs from the above two methods by using the
idea of pruning while running BFS. This dramatically enhances
performance in practice, as we shall see in our experiments.

Metrics: We measure the stretch of the estimated distances, and
compute aggregated statistics over a large number of queries. For

5It follows from our theoretical analysis that the radiuses should be less than half of
the average distance. As a rule of thumb, setting the radius as 2 works based on our
experiments.

a query (x ,y), if y is reachable from x , but the algorithm reports
no common landmark between the landmark sets of x and y, then
we count such a mistake as a “False disconnect error.” On the other
hand, if y is not reachable from x , then it is not hard to see that our
algorithm always reports correctly thaty is not reachable from x . In
the experiments, we compute dist(x ,y) using Dijkstra’s algorithm.

To measure space usage, we report the number of landmarks per
node used in each algorithm as a proxy. Since the landmark sets
are stored in Int to Float hash maps, the actual space usage would
be eight bytes times the landmark sizes in runtime, with a constant
factor overhead.

For the query time, recall that for each pair of vertices (x ,y),
we estimate their distance by looking at the intersection of LF (x )
and LB (y) and compute the minimum interconnecting distance (c.f.
equation 1). To find the minimum, we iterate through the smaller
landmark set. Hence the running time is min( |LF (x ) | , ��LB (y)��) mul-
tiplied by the time for a hash map lookup, which is a small fixed
value in runtime. A special case is when y ∈ LF (x ) or x ∈ LB (y),
where only one hash map lookup is needed. We will report the
number of hash map lookups as a proxy for the query time.6

5.2 Comparisons to Exact Methods
We report the results comparing our approach to the pruned label-
ing algorithm. The pruned labeling algorithm is exact. To measure
the accuracy of our approach, we randomly sample 2000 pairs of
source and destination vertices. The number of global landmarks is
set to be 400 for the Stanford dataset, 1600 for the DBLP dataset,
and 800 for the rest of the datasets.

Figure 2 shows the preprocessing time, the number of landmarks
and average query time used by both algorithms. We see that our
approach reduces the number of landmarks used by 1.5-2.5x, except

6It is conceivable that more sophisticated techniques may be devised to speedup set
intersection. We leave the question for future work.
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Figure 3: Comparing the efficiency of our approach to two well known distance sketches with strong theoretical guarantees.

Table 3: Measuring the stretch for all three methods.

Stanford BerkStan Google Twitter Youtube DBLP
DS et al. sketch 20.9% 17.2% 21.1% 11.1% 13.1% 5.4%
TZ sketch 0.30% 0.21% 0.36% 1.65% 0.03% 2.15%
Our approach 0.16% 0.20% 0.22% 0.29% 0.04% 1.1%

Table 4: Varying H in TZ sketch.

Youtube
√
n/2

√
n/4

√
n/8 Ours

Stretch 0.04% 0.11% 0.07% 0.04%
# Landmarks 731 648 811 137
Preprocessing 37m 31m 35m 50m

on the Twitter dataset.7 Our approach performs favorably in terms
of preprocessing time and query time as well.

The accuracy of our computed estimate is shown in Table 2. We
have also measured the median additive stretch, which turns out
to be zero in all the experiments. To get a more concrete sense of
the accuracy measures, consider the Google dataset as an example.
Since the average additive stretch is 0.06 and there are 2000 pairs
of vertices, the total additive stretch is at most 120 summing over
all 2000 pairs! Specifically, there can be at most 120 queries with
non-zero additive stretch and for all the other queries, our approach
returns the exact answer. Meanwhile, among all the datasets, we
observed only one “False disconnect error” in total. It appeared in
the Stanford Web graph experiment, where the true distance is 80.

5.3 Comparisons to Approximate Methods
Next we compare our approach to Das Sarma et al.’s sketch (or DS
et al. sketch in short) and the variant of Thorup and Zwick’s sketch
(or TZ sketch in short). Similar to the previous experiment, we
sample 2000 source and destination vertices uniformly at random
to measure the accuracy.

We start by setting the number of global landmarks to
√
n in

Thorup-Zwick sketch. To allow for a fair comparison, we tune
our approach so that the relative average stretch is comparable or
lower. Specifically, the Stanford, BerkStan and Twitter datasets use

7By setting the radiuses {li } to be 1, we incur 0.72% relative additive stretch by using
173 landmarks per node, which improves over the pruned labeling algorithm by 1.5x.

H = 800, the Google and DBLP datasets use H = 1600 and the
Youtube dataset uses H = 3200.

Figure 3 shows the number of landmarks needed in each al-
gorithm as well as the amount of preprocessing time consumed.
Overall, our approach uses much fewer landmarks than the other
two algorithms. In terms of preprocessing time, our approach is
comparable or faster on all datasets, except on the DBLP network.
We suspect that this may be because the degree distribution of the
DBLP network is flatter than the others. Hence performing the
pruning procedures on a small subset of high degree vertices are
less effective in such a scenario.

We next report the relative average stretch for all three methods.
As can be seen in Table 3, our approach is comparable to or slightly
better than Thorup and Zwick’s sketch, but much more accurate
than Das Sarma et al’s sketch. Note that the latter performed signif-
icantly worse than the other two approaches. We suspect that this
may be because the sketch does not utilize the high degree vertices
efficiently. Lastly, our approach performs favorably in the query
time comparison as well. Note that the query time of Das Sarma et
al.’s sketch are not reported because of the worse accuracy.

Effect of parameter choice: Note that in the above experiment,
for Thorup and Zwick’s sketch, we have set the number of global
landmarks H to be

√
n. In the next experiment, we vary the value

of H to
√
n multiplied by {2, 1/2, 1/4, 1/8}.

First, we report a detailed comparison on the Google dataset in
Figure 4. Note that when H = 2

√
n, the Thorup and Zwick’s sketch

requires over 2000 landmarks per node which is significantly larger
than the other values. Hence, we dropped the data point from the
plot. For our approach, we double H from 100 up to 1600. Overall,
we can see that our approach requires fewer landmarks across
different stretch levels.

Next, we report brief results on the Youtube dataset in Table 4
since the results are similar. The conclusions obtained from other
datasets are qualitatively similar, and hence omitted.
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Figure 4: Varying H in TZ sketch and our approach, on the Google dataset.
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Figure 5: Tradeoff on the Stanford dataset.

5.4 More Experimental Observations
By varying the number of global landmarks used Algorithm ??, it is
possible to obtain a smooth tradeoff between stretch and number of
landmarks used. As an example, we present the tradeoff curve for
the Stanford Web dataset in Figure 5. Here we vary the number of
global landmarks used from 100 to 1000. As one would expect, the
relative average stretch decreases while the number of landmarks
stored increases.

6 FUNDAMENTAL LIMITS OF LANDMARK
SKETCHES

This section complements our algorithm with lower bounds. We
begin by showing a matching lower bound for Erdös-Rényi graphs,
saying that any 2-hop cover needs to store at least Ω̃(n3/2) land-
marks. The results imply that the parameter dependence on n of
our algorithm is tight for Erdös-Rényi graphs and random power
law graphs with power law exponent β > 3. It is worth mentioning
that the results not only apply to landmark sketches, but also work
for the family of labeling schemes. Recall that labeling schemes
associate a labeling vector for each vertex. To answer a query for a
pair of vertices (x ,y), only the labeling vectors of x ,y are accessed.
We first state the lower bound for Erdös-Rényi graphs.

Theorem 6. Let G = (V ,E) be an Erdös-Rényi graph where every
edge is sampled with probability p = 2 logn/n. With high probability
over the randomness of G, any labelings which can recover all pairs
distances exactly have total length at least Ω(n3/2/ log4 n).

In particular, any 2-hop cover needs to store at leastΩ(n3/2/ log4 n)
many landmarks with high probability.

For a quick overview, we divide V into
√
n sets of size

√
n each.

Wewill show that the total labeling length for each set of
√
n vertices

has to be at least Ω̃(n). By union bound over all the
√
n sets, we

obtain the desired conclusion. We now go into the proof details.

Proof. Denote by r = np. Let d = ⌊ logn
2 log(np ) ⌋ − c , where c is a

fixed constant (e.g. c = 2 suffices). Divide V into groups of size
√
n.

Clearly, there are
√
n disjoint groups – let S be one of them. Denote

by c1 a fixed constant which will be defined later. We argue that

Pr[The total label length of S ≤ c1 · r1−2cn] ≲ r1−2c . (2)

Hence by Markov’s inequality, with high probability except for
(logn)r1−2c

√
n groups, all the other groups will have label length

at least c1 ·r1−2cn ≳ Ω̃(n), because r ≤ 2 logn. Hence we obtain the

desired conclusion. For the rest of the proof, we focus on proving
equation (2) for the group S .

Let {x1,x2, . . . ,x |S | } be an arbitrary ordering of S . We grow the
neighborhood of each vertex in S one by one, up to level d . Denote
by G1 = (V1,E1), where V1 = V and E1 = E. For any i ≥ 1, if
xi ∈ Vi , then we define defineT (xi ) to be the set of of vertices inVi
whose distance is at most d from xi . Define L(xi ) ⊆ T (xi ) to be the
set of vertices in Gi whose distance is equal to d from xi . On the
other hand if xi < Vi , then T (xi ) and L(xi ) are both empty. More
formally,

T (xi ) :=

{y : distGi (xi ,y) ≤ d }, if xi ∈ Vi
∅, otherwise.

L(xi ) := {y ∈ T (xi ) : distGi (xi ,y) = d }

We then define Fi = ∪ij=1T (x j ). Denote byGi+1 to be the induced
subgraph of Gi on the remaining vertices Vi+1 = V \Fi . We show
that with high probability, a constant fraction of vertices xi ∈ S

satisfy that |L(xi ) | ≥ Ω((np)d ). □

Lemma 7 (Martingale ineqality). In the setting of Theorem
6, with high probability, at least |S | /2 vertices xi ∈ S satisfy that
|L(xi ) | ≥ rd/6.

Proof. For any 1 ≤ i ≤ |S |, consider

Xi :=

1 if xi < Vi , or |Fi−1 | > |S | · rd logn, or |L(xi ) | ≥ rd/6
0 otherwise.

We claim that Pr[Xi = 1 | X1, . . . ,Xi−1] with high probability. It
suffices to consider the case xi ∈ Vi and |Fi−1 | ≤ |S | rd logn. It is
not hard to verify that |Fi−1 | ≤ n/ logn by our setting of d . Hence
the size of Vi is at least n(1 − 1/ logn). Note that the subgraph Gi
is still an Erdös-Rényi random graph, and the number of vertices is
at least n(1 − 1/ logn). By Fact 1c), the size of L(xi ) is at least

1
2r

d (1 − log−1 n)d ≥ rd/6,

since d ≤ logn.
Thus by Azuma-Hoeffding inequality, ∑ |S |i=1 Xi ≥ 0.99 |S | with

high probability. We will show below that the contributions to∑ |S |
i=1 Xi from xi < Vi and |Fi−1 | > |S | rd logn is less than 0.02 |S |.

Hence by taking union bound, we obtain the desired conclusion.
First, we show that the number of xi such that xi < Vi are at

most 0.01|S | with high probability. Note that xi < Vi implies that
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there exists some vertex x j with j < i such that dist(xi ,x j ) ≤ d . On
the other hand, by Fact 1,

Pr[dist(x ,y) ≤ d] ≤ 3rd
n
,∀x ,y ∈ S .

Hence, it is not hard to verify that the expected number of vertex
pairs in S whose distance is at most d , isO ( |S |2 r2d/n) ≲ |S | / logn,
by the setting of d . By Markov’s inequality, with probability 1 −
1/ logn only 0.01 |S | vertex pairs have distance at mostd in S . Hence
there exists at most 0.01 |S | i’s such that xi < Vi .

Secondly for all 1 ≤ i ≤ |S |, the set of vertices Ti is a subset of
Nd (xi ), the set of vertices within distance d to xi onG . By Fact 1c),
the size of Nd (xi ) is at most 2rd . Hence we have |Fi | ≤ 2 |S | rd for
all 1 ≤ i ≤ |S | with high probability. This proves the Lemma. □

Now we are ready to finish the proof. Given the labels of S , we
can recover all pairwise distances in S . Let distS : S ×S → N denote
the distance function restricted to S . Consider the following:

a) ∃ |S |2 /9 pairs (xi ,x j ) such that distS (xi ,x j ) ≤ 2d + 1. We
know by Fact 1 that Pr[dist(xi ,x j ) ≤ 2d + 1] ≤ 2r2d+1/n, for
any xi ,x j ∈ S . Hence the expected number of pairs with dis-
tance at most 2d + 1 in S , is at most 2 |S |2 · r2d+1/n ≲ r1−2cn.
By Markov’s inequality, the probability that a random graph
induces any such distance function is r1−2cn/( |S |2 /8) ≲
r1−2c .

b) The number of pairs such that distS (xi ,x j ) ≤ 2d + 1 is at
most |S |2 /8 in S . Let A denote{

(x ,y) ∈ S × S | dist(x ,y) > 2d + 1, and |L(x ) | , ��L(y)�� ≥ rd/6
}
.

By Lemma 7 and our assumption for case b), the size of A is
at least

( |S |/2
2

)
− |S |2 /8 ≥ |S |2 /9. For any (x ,y) ∈ A, L(x )

and L(y) are clearly disjoint. Note that the event whether
there exists an edge between L(x ) and L(y) is independent,
conditional on revealing the subgraph for all x ∈ S up to
distance d . Hence

Pr [distS (x ,y) > 2d + 1, ∀(x ,y) ∈ A]
≤

∏

(x,y )∈A
Pr [there is no edge between L(x ) and L(y)]

≤
∏

(x,y )∈A
(1 − p) |L(x ) |×|L(y ) |

≤ exp
(
−p × |A| × r2d/72

)
(because |L(x ) | , ��L(y)�� ≥ rd/6)

≤ exp(−c1r1−2cn). (because |A| ≥ n/9)

where c1 = 72 × 9 in the last line. Denote by κ = c1 · r1−2cn.
Note that the number of labelings of length (or number of
bits) less than κ is at most 2κ . For each labeling, the prob-
ability that it correctly gives all pairs distances is at most
exp(−κ) by our argument above. Therefore by union bound,
the probability that the total labeling length of |S | is at most
κ is at most 2κ · exp(κ) ≤ r1−2c for large enough n.

To recap, by combining case a) and b), we have shown that equation
(2) is true. Hence the proof is complete.
Extensions to β > 3: It is worth mentioning that the lower bound
on Erdös-Rényi graphs can be extended to random power law
graphs with β > 3. The proof structure is similar because the

degree distribution has finite variance, hence the number of high
degree vertices is small. The difference corresponds to technical
modifications which deal with the neighborhood growth of random
graphs with constant average degree. We state the result below and
leave the proof to the full version.

Theorem 8. Let G = (V ,E) a random power law graph with
average degree ν > 1 and exponent β > 3. With high probability
over the randomness of G, any labelings which can recover all pairs
distances exactly have total length at least Ω̃(n3/2).

In particular, any 2-hop cover needs to store at least Ω̃(n3/2) many
landmarks with high probability.

Lower bounds for β close to 2: Next we show that the parameter
dependence of our algorithm is tight when β is close to 2. Specif-
ically, any 2-hop cover needs to store at least Ω(n3/2−ε ) many
landmarks when β = 2+ ε . Hence it is not possible to improve over
our algorithm when β is close to 2. Furthermore, the lower bound
holds for the general family of labeling schemes as well.

Theorem 9. Let G = (V ,E) a random power law graph with
average degree ν > 1 and exponent β = 2 + ε for ε < 1/2. With high
probability over the randomness ofG , any labelings which can recover
all pairs distances exactly have total length at least Ω(n3/2−ε ).

In particular, any 2-hop cover needs to store at least Ω(n3/2−ε )
many landmarks with high probability.

The proof is conceptually similar to Theorem 6, so we sketch
the outline and leave the proof to the full version.

Let Shigh be the set of vertices whose degrees are on the order of√
n. Let Slow be a set of

√
n vertices, where each vertex has weight

between ν and 2ν . Such a set is guaranteed to exist because there
are Θ(n) of them.

We first reveal all edges of G other than the ones between Shigh.
We show that at this stage, most vertices in Slow are more than 3
hops away from each other. If for some pair (x ,y) in Slow whose
distance is larger than three, and both x andy connect to exactly one
(but different) vertex in Shigh, then knowing whether dist(x ,y) = 3
will reveal whether their neighbors in Shigh are connected by an
edge.

Based on the observation, we show that the total labeling length
of Slow is at least Ω̃(n3−β ). This is because the random bit between
a vertex pair in Shigh has entropy Ω(n2−β ). Since there are Θ(n)
pairs of vertices in Shigh, the entropy of the labelings of Slow must
be Ω(n3−β ) (hence, its size must also be at least Ω(n3−β )). Similar
to Theorem 6, this argument is applied to

√
n disjoint sets of “Slow”,

summing up to an overall lower bound of Ω(n7/2−β ) = Ω(n3/2−ε ).

7 CONCLUSIONS AND FUTUREWORK
In this work, we presented a pruning based landmark labeling
algorithm. The algorithm is evaluated on a diverse collection of
networks. It demonstrates improved performances compared to
the baseline approaches. We also analyzed the algorithm on ran-
dom power law graphs and Erdös-Rényi graphs. We showed upper
and lower bounds on the number of landmarks used for Erdös-
Rényi graphs and random power law graphs.

There are several possible directions for future work. One direc-
tion is to close the gap in our upper and lower bounds for random
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power law graphs. We believe that any improved understanding
can potentially lead to better algorithms for real world power law
graphs as well. Another direction is to evaluate our approach on
transportation networks, which correspond to another important
domain in practice.
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