
Instrument Designs for Validating Cross-Language
Behavioral Differences

Nischal Shrestha
NC State University
Raleigh, NC, USA
nshrest@ncsu.edu

Chris Parnin
NC State University
Raleigh, NC, USA
cjparnin@ncsu.edu

Abstract—Programmers are expected to use multiple program-
ming languages frequently. Studies have found that programmers
try to reuse existing knowledge from their previous languages.
However, this strategy can result in misconceptions from previous
languages. Current learning resources that support the strategy
are limited because there is no systematic way to produce or
validate the material.

We designed three instruments that can help identify and
validate meaningful behavior differences between two languages
to pinpoint potential misconceptions. To validate the instruments,
we examined how Python programmers predict behavior in a
less familiar language like R, and whether they expect various
R semantics. We found that the instruments are effective in
validating differences between Python and R which were linked
to misconceptions. We discuss design trade-offs between the three
instruments and provide guidelines for researchers and educators
in systematically validating programming misconceptions when
switching to a new language.

I. INTRODUCTION

Modern programmers typically work on systems built with a
cocktail of multiple programming languages [1]. A recent sur-
vey found that professional software developers have a mean
of seven different programming languages inside their indus-
trial software projects [2] and open-source software projects
frequently have between 2–5 programming languages [3], [4].
Programmers are also expected to continue learning multiple
programming languages on a daily basis. To learn a new
programming language, studies have shown that programmers
attempt to use a cross-language learning strategy by reusing
knowledge from the previous language [5], [6], [7]. This
can be a useful bootstrapping strategy but it can result in
misconceptions being carried to the new language [6] or a
negative transfer [8] of knowledge.

Learning resources like “X for Y Programmers” books, mi-
gration cheat sheets and online guides support cross-language
learning. For example, consider Tidynomicon [9], a guide for
learning R from the perspective of Python. The lessons for
the guide were designed using a method called “backward
design” [10] where the designer brainstorms topics and poten-
tial misconceptions they would like to cover. Brainstorming
is a useful exercise for identifying misconceptions, but the
resulting material may not cover the relevant misconceptions
Python programmers actually hold. Programmers need training

df[df$A > 0,]

df:

A B C

0 NA 1 3

1 2 7 5

2 NA 1 9

Operation:

Output:

df.loc[df.A > 0,]

A B C

0 NA 1 3

1 2 7 5

2 NA 1 9

A B C

NA NA NA NA

1 2 7 5

NA.1 NA NA NA

A B C

1 2 7 5

Fig. 1. Subsetting using logical indexing in R can result in unexpected rows
when NAs (missing values) are present.

that can prevent negative transfer, but there are no systematic
ways to produce or assess this material.

To illustrate, imagine we wanted to add another example to
Tidynomicon—how could we decide which misconception to
warn Python programmers about? For example, an expression
like df[[‘A’]] references column A from dataframe df in
both Python and R, a positive transfer. However, the return
type of this expression is a vector instead of a dataframe in R,
a negative transfer. This might surprise some programmers,
but it is a minor mismatch of data type. Now consider the
expression shown in Fig. 1, which returns rows for a dataframe
where the column A value is positive. If the dataframe has
rows where a column A is missing (NA), R will keep those
rows while also converting the entire row to NA. This can
be quite unexpected behavior for a Python programmer who
is accustomed to rows with NA being gracefully handled. In
both examples, the behavior of the expressions differ across
languages, but perhaps some differences are more meaningful
than others? While the topic of subsetting with [is covered
in Tidynomicon, the unexpected behavior when using logical
indexing is not mentioned. The second expression seems a
more worthy addition as it is much more surprising for a
Python programmer: “what on earth is happening?” (P10)978-1-7281-0810-0/19/$31.00 ©2019 IEEE

In this paper, we present instruments that identify and
validate meaningful behavior differences between program-
ming languages, which can be linked to misconceptions or
negative transfer between languages. The instruments evaluate
when programmers make incorrect predictions about a target
language or have unexpected reactions to the behavior of a
code snippet. We explore three different instruments designs:

• Multiple Choice: Use misconceptions as the distractors
• Simple Yes/No: Confirm a misconception by asking if

some code behavior is true
• Surprise: Ask if programmers expect code behavior
We conducted a small study with the three instruments and

found some promising results that show that they are effective
in capturing Python misconceptions when examining R code
snippets. Based on the preliminary results, we identified design
trade-offs between them and suggest future guidelines for re-
searchers and educators on how to design effective instruments
to systematically validate cross-language misconceptions.

II. METHODOLOGY

A. Language Choice
We decided to ask questions about a subset of R from the

perspective of Python for the following reasons: 1) Python’s
popularity is rapidly growing [11] and most programmers are
familiar with it compared to R. 2) In the data science context,
the code snippets for the two languages are terse yet incorpo-
rate numerous important concepts like indexing and filtering
data. 3) Visualizing behavioral differences between Python
and R code behavior is simple as the operations typically
produce a dataframe output. In our instruments, we used output
differences between Python and R code in addition to the
syntactical differences to reduce “hidden state” [12] and ensure
“perceptible information” [13]. Dataframes also provide a
way to reduce an information barrier [14] as programmers
can immediately check their prediction or expectation of R
semantics. Although we picked Python and R for our study,
it should be noted that the instruments we present can be
reformulated for other language pairs such as static versus
dynamic [15].

B. Population
We recruited 32 participants from a graduate Computer Sci-

ence course at our University, sampling for participants with
experience in Python, but less experience in R. Participants
reported their experience with Python with a median of 4, on a
5-point Likert scale ranging from “Unfamiliar” to “Familiar”,
a median of 3 with the Pandas library, and a median of 3
with R. The participants took our first survey which involved
the Multiple Choice and Simple Yes/No instruments. Then,
to conduct a pilot study with the Surprise instrument, we
recruited 13 Computer Science graduate students who met
the same criteria and did not take the first survey. These
participants reported their experience with Python with a
median of 5, a median of 4 with Pandas and a median of
3 with R. The surveys are available online1.

1https://github.com/alt-code/Research/tree/master/Misconceptions

A B foobar

1 3 b

df[1:2, 1:3]

B

What does the R code output?

DC

A B foobar

0 0.0 7 a

1 NaN 3 b

2 9.0 2 c

Given the following dataframe df:

Stem / Prompt

A B foobar

0 0.0 7 a

1 NaN 3 b

A B

0 0.0 7

A B

0 0.0 7

1 NaN 3

2 9.0 2

M1 M2

M3

Input Dataframe

C

Briefly explain your answer: Optional Free Response

Target

Fig. 2. A Multiple Choice question with one correct (C) and three incorrect
(M1-M3) answers which are possible misconceptions from Python. There is
an optional free response to provide explanations for the selected answer.

C. Multiple Choice and Simple Yes/No Survey

For our first survey, we wanted to test the designs of
the Multiple Choice and the Simple Yes/No instruments. We
created 10 total questions, 5 Multiple Choice and 5 Simple
Yes/No. We interleaved the two formats on a single survey
to prevent a potential tendency for the test-taker to answer
all questions in the same manner. We reveal answers after
programmers complete the survey which can help them un-
derstand or gain awareness of these differences.

1) Multiple Choice Design: Consider the example Multiple
Choice question shown in Fig. 2. The use of [to index or
subset rows of a dataframe is common to both Python and
R, a positive transfer. However, R uses 1-indexing and the
end index is inclusive when using start:end to define a
range, a negative transfer. Given these differences, a number
of misconceptions might occur: 1) R uses 0-indexing 2) The
end index is exclusive for the : operator 3) The left side of the
comma is column selection and the right side is row selection.
However, it is not clear which of these misconceptions are the
most problematic.

For the stem or question prompt, we present the input
dataframe and ask the programmer to predict the R code
output. There is one correct choice (C) with 3 distractors (M1-
M3) representing misconceptions. Prior work has used concept
inventory questions to reveal misconceptions for introductory
programming [16]; we were interested in using a similar
format to identify misconceptions when switching languages.

Do these both retrieve rows of df where column foobar is ‘a’?

df.query("foobar == 'a'") filter(df, foobar == 'a')

A B foobar

0 0.0 7 a

1 NaN 3 b

2 9.0 2 c

Given the following dataframe df:

Stem / Prompt

Input Dataframe

Yes

No

Briefly explain your answer: Optional Free Response

M

C

Source Target

Fig. 3. A Simple Yes/No question. The equivalent code snippet for Python
(Source) and R (Target) are shown. There is only one misconception M for
this format. There is an optional free response to provide explanations for the
selected answer.

Each distractor is the output that would be produced based on
the misconception. For example, choice A (M1) represents the
combination of the first and second misconception, that R is
0-indexed and the end index is exclusive for : operator. Choice
B (M2) represents the second misconception while choice
D (M3) represents the third misconception, flipping the row
and column selection. The frequency with which programmers
choose one of M1-M3 indicates which misconceptions are the
most problematic for the particular operation. We also allow
the option to provide an explanation behind the answer choice.

2) Simple Yes/No Design: The Simple Yes/No question is a
binary version of Multiple Choice, designed to target smaller
differences between Python and R. Consider the example
Simple Yes/No question shown in Fig. 3 where we ask
the programmer whether or not the code snippets that filter
the dataframe on column A is equivalent between the two
languages. Unlike the Multiple Choice, there are only two
choices: 1) “Yes” indicates the programmer is able to map
Python’s query function to R’s filter 2) “No” indicates
confusion between the two. There is also the option to explain
their answer choice which can provide insight into their
confusion regarding smaller differences.

D. Surprise Survey

For our second survey, we designed and validated a third
instrument called Surprise to assess whether or not a Python
programmer expected certain R behavior. Past research [17]
has shown that the level of surprise a person experiences is
related to the difficulty of trying to integrate new information
with the old. We wanted to investigate this notion of surprise
in the context of programming language differences. We
created 12 total Surprise questions and conducted a small
pilot study with 13 graduate students. Some of the questions
were reformatted from the first survey. We did this to examine
whether or not different instrument designs on the same

df:

A B C

0 NaN 1 3

1 2 7 5

2 NaN 1 9

Operation:

Output:

df[0:1] df[0:1]

A B C

0 NaN 1 3

A

NaN

2

NaN

Does the R output surprise you?

Yes

No

Briefly explain your answer: Optional Free Response

Source Target

Stem / Prompt

UE

E

A B C

NaN 1 3

2 7 5

NaN 1 9

Fig. 4. A Surprise question. The Python (Source) and R (Target) code snippets
and outputs are shown. There are two choices to indicate surprise: Expected
(E) and Unexpected (UE). There is an optional free response to provide
explanations for the selected answer.

behavioral differences between Python and R can change
the way programmers respond. Just like the previous two
instruments, we reveal answers after programmers complete
the survey.

Consider the Surprise question shown in Fig. 4. In this
question, we ask the programmer whether or not they are
surprised by the output of df[0:1] in R (Target), given the
equivalent code and output in Python (Source). Unlike the
previous two instruments, we present the correct dataframe
output for Python and R. Here, we might expect the R output
to be unexpected (UE) as there is no difference syntactically
yet both the rows and columns don’t match Python’s output
since R subsets columns by default. Additionally, there is an
optional open response to further understand programmers’
expectations. Unlike the other two instruments, we do not
reveal answers as the instrument is only designed to assess
their reaction.

III. PRELIMINARY RESULTS

A. Multiple Choice and Simple Yes/No Survey

1) Simple Yes/No Questions: For the Simple Yes/No ques-
tions we wanted to validate smaller differences between
equivalent Python and R snippets which we expected most
participants to guess correctly. An average score of x̄ = 78%
confirms the instrument was effective in validating small
differences. The most problematic question was Q8 (69%)
which asked about equivalent syntax to select columns in

Python and R: df[[‘A’, ‘B’]] and select(df, ‘A’, ‘B’).
In the open responses, P15 expressed “that R looks a bit
goofy” and another observed “in R, it’s not specified that ‘A’ is
column or not” (P19). We believe participants were confused
because the Python code uses a bracket notation whereas R
uses a function call.

2) Multiple Choice Questions: We expected most partici-
pants to perform worse on the Multiple Choice questions as
they were designed to validate the larger meaningful differ-
ences between Python and R. The average score (x̄ = 64%)
was lower compared to the Simple Yes/No questions, vali-
dating larger meaningful differences. The distractors for each
question also helped pinpoint the most problematic miscon-
ceptions. For example, most (61%) participants chose one of
two misconceptions when asked about the output of df[0:1]
on Q1: 1) The default subset operation selects rows 2) The
end index is exclusive when using : to define a range. These
two were more common than the third misconception, that
the default subset operation selects columns but start and end
are inclusive. The other most frequently missed question was
Q7 which was similar to the NA example in Section I, where
many (41%) participants chose the Python output.

B. Surprise Survey

We expected most participants to be less surprised on
questions presenting smaller differences between Python and
R compared to questions presenting larger differences. For
the 5 questions with smaller differences, most (78%) partic-
ipants were not surprised with the R code output. For the 5
questions on larger differences, most were surprised but less
than expected (62%). We did not expect the lack of surprise
(39%) on Q10 which compared df.drop([A], axis=1))
and select(df, -A), dropping a column in Python and R
respectively. We inspected the open responses for those who
weren’t surprised despite a large difference in syntax. P5
explained that the “- notation is often seen for negation, so
I guess this makes sense after seeing it” and P12 expressed
that “it’s interesting how -A will be understood as removing A
column in the df.” Based on these responses, we believe that
participants made sense of the code behavior by observing that
the output were the same.

IV. DISCUSSION

A. Question formats affect the way programmers respond

Based on the results, we found that presenting the same
code snippets in different formats can yield different results.
As mentioned in Section III-A1, the lowest scoring question
for the Simple Yes/No instrument was Q8 (69%) which
contradicts the low surprise (16%) when it was reformatted as
a Surprise question (Q1). We examined the open responses to
Q1 and discovered that participants rationalized their answer
choice when provided both Python and R code and output.
For example, P3 said, “Looks like the output is doing as
the code specified” and P6 expressed that the code snippets
“should work the same way (and it does)”. On the other hand,
most participants (78%) were able to correctly guess the R

output for df[1:2, 1:3] on Q5 in the Multiple Choice, but
only 53% of participants expected the output for the same
snippet in a Surprise (Q3) format. We examined the open
responses for those who were surprised and found them saying
“I would say the Python one surprised me more... Python is
the language I use the least of the two” (P4) and “Pandas
locators are magic and always surprise me when they work”
(P5). Presenting both the Python and R code and output can
sometimes lead to further confusion, even regarding the source
language. P4’s statement suggests that it’s also important to
consider which language is actively used by the programmer
if they are familiar with both, which can affect their response.

B. Instrument design trade-offs and guidelines
1) Multiple Choice and Simple Yes/No: The Multiple

Choice and Simple Yes/No instruments are effective in assess-
ing whether programmers can predict behavior in the target
language. The Multiple Choice is useful for testing larger
differences where multiple misconceptions are possible for
a given operation. Multiple iterations of testing might be
required to pinpoint common misconceptions and use them
as distractors on subsequent tests. To test smaller differences,
the Simple Yes/No is useful; however, a follow-up with some
participants revealed that the questions were perceived as
“trick questions”, which might not warrant honest answers.
The lowest scoring questions for both instruments indicate
the most problematic behavioral differences between the two
languages.

2) Surprise: The Surprise instrument is effective in mea-
suring programmer’s surprise regarding code behavior in the
target language without the pressure of answering correctly.
However, as discussed in Section IV-A, it might not provide
the most meaningful responses due to potential interference
between the languages [18]. The most problematic differences
can be identified by examining questions which have the
highest percentage of surprise.

C. Automatic identification of cross-language differences
The behavioral differences between Python and R were

hand-picked which is a time-consuming process. We have
started investigating ways to automatically detect inconsisten-
cies between the languages. Using a Kaggle competition [19]
as the corpus, we found discrepancies in behavior between
Python and R code by finding differences and partial matches
of dataframes, given various inputs. We think this technique is
promising for efficiently identifying discrepancies which can
be validated using one of our instruments.

V. CONCLUSION

In this paper, we presented three instruments that can
help identify and validate meaningful behavior differences
between two languages to pinpoint potential misconceptions.
We conducted a small study and found promising results in
validating differences between Python and R, which were
linked to misconceptions. We discussed some design trade-
offs for each instrument and suggest guidelines for future
researchers and computer science educators.

ACKNOWLEDGEMENTS

This material is based in part upon work supported by the
National Science Foundation under Grant No. 1755762.

REFERENCES

[1] H.-C. Fjeldberg, “Polyglot programming,” Ph.D. dissertation, Mas-
ter thesis, Norwegian University of Science and Technology, Trond-
heim/Norway, 2008.

[2] P. Mayer, M. Kirsch, and M. A. Le, “On multi-language software
development, cross-language links and accompanying tools: a survey
of professional software developers,” Journal of Software Engineering
Research and Development, vol. 5, no. 1, p. 1, Apr 2017. [Online].
Available: https://doi.org/10.1186/s40411-017-0035-z

[3] F. Tomassetti and M. Torchiano, “An empirical assessment of polyglot-
ism in github,” in Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering, ser. EASE ’14.
New York, NY, USA: ACM, 2014, pp. 17:1–17:4. [Online]. Available:
http://doi.acm.org/10.1145/2601248.2601269

[4] P. Mayer and A. Bauer, “An empirical analysis of the utilization
of multiple programming languages in open source projects,” in
Proceedings of the 19th International Conference on Evaluation
and Assessment in Software Engineering, ser. EASE ’15. New
York, NY, USA: ACM, 2015, pp. 4:1–4:10. [Online]. Available:
http://doi.acm.org/10.1145/2745802.2745805

[5] Q. Wu and J. R. Anderson, “Problem-solving transfer among program-
ming languages,” Carnegie Mellon University, Tech. Rep., 1990.

[6] J. Scholtz and S. Wiedenbeck, “Learning second and subsequent pro-
gramming languages: A problem of transfer,” International Journal of
Human–Computer Interaction, vol. 2, no. 1, pp. 51–72, 1990.

[7] N. Shrestha, T. Barik, and C. Parnin, “It’s Like Python But: Towards
Supporting Transfer of Programming Language Knowledge,” in 2018
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Oct. 2018, pp. 177–185.

[8] D. N. Perkins, G. Salomon, and P. Press, “Transfer of learning,” in
International Encyclopedia of Education. Pergamon Press, 1992.

[9] G. Wilson. (2018) The Tidynomicon: A Brief Introduction to R for
Python Programmers. [Online]. Available: https://gvwilson.github.io/
tidynomicon/

[10] G. Wilson. (2018) A Lesson Design Process. [Online]. Available:
http://teachtogether.tech/#s:process

[11] P. Guo, “Python is now the most popular introductory teaching language
at top us universities,” BLOG@ CACM, July, vol. 47, 2014.

[12] B. Victor. (2012) Learnable programming. [Online]. Available:
http://worrydream.com/LearnableProgramming/

[13] M. F. Story, J. L. Mueller, and R. L. Mace, “The universal design file:
Designing for people of all ages and abilities,” 1998.

[14] Andrew J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers
in end-user programming systems,” in 2004 IEEE Symposium on Visual
Languages and Human-Centric Computing, Sep. 2004, pp. 199–206.

[15] A. Pang, C. Anslow, and J. Noble, “What programming languages do
developers use? a theory of static vs dynamic language choice,” in 2018
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Oct. 2018, pp. 239–247.

[16] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L. Herman,
“Identifying student misconceptions of programming,” in Computer
Science Education (SIGCSE), 2010, pp. 107–111.

[17] R. Maguire, P. Maguire, and M. T. Keane, “Making sense of surprise:
An investigation of the factors influencing surprise judgments.” Journal
of Experimental Psychology: Learning, Memory, and Cognition, vol. 37,
no. 1, p. 176, 2011.

[18] R. E. Slavin and N. Davis, “Educational psychology: Theory and
practice,” 2006.

[19] “Titanic: Machine Learning from Disaster,” https://www.kaggle.com/c/
titanic.

