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Abstract

Understanding the optimization objectives that shape shoot architectures remains a critical

problem in plant biology. Here, we performed 3D scanning of 152 Arabidopsis shoot archi-

tectures, including wildtype and 10 mutant strains, and we uncovered a design principle that

describes how architectures make trade-offs between competing objectives. First, we used

graph-theoretic analysis to show that Arabidopsis shoot architectures strike a Pareto optimal

that can be captured as maximizing performance in transporting nutrients and minimizing

costs in building the architecture. Second, we identify small sets of genes that can be

mutated to shift the weight prioritizing one objective over the other. Third, we show that this

prioritization weight feature is significantly less variable across replicates of the same geno-

type compared to other common plant traits (e.g., number of rosette leaves, total volume

occupied). This suggests that this feature is a robust descriptor of a genotype, and that local

variability in structure may be compensated for globally in a homeostatic manner. Overall,

our work provides a framework to understand optimization trade-offs made by shoot archi-

tectures and provides evidence that these trade-offs can be modified genetically, which may

aid plant breeding and selection efforts.

Author summary

In both engineered and biological systems, there is often no single structure that performs

optimally on all tasks. For example, a transport system that can very quickly shuttle people

to and from work will often not be very cheap to build, and vice-versa. Thus, trade-offs

are born, and it is natural to ask how well evolution has resolved trade-offs between com-

peting tasks. Here, we use 3D laser scanning and network analysis to show that Arabidop-
sis plant architectures make Pareto optimal trade-offs, which means that improving upon

one task requires a sacrifice in the other task. In other words, an architecture that per-

forms better on both tasks cannot be built. We also identify a small set of genes that can

change how the architecture prioritizes one task versus the other, which may allow for bet-

ter crop design in the future. Finally, we show that two replicate architectures that look
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visually diverse (e.g., variation in size, number of leaves, number of branches, etc.) often

prioritize each task similarly. This suggests that despite local variability in the architecture,

there may be a homeostatic drive to maintain globally balanced trade-offs.

Introduction

An essential challenge of plant science is to uncover quantitative principles that describe the

shape of plant architectures, defined here as the three-dimensional aerial arrangement of

branches, leaves, and flowers [1, 2]. Prior work has discovered several descriptors of plant

form [3], including phyllotaxis [4, 5], fractal and self-similar branching [6–9], and allometric

scaling of various plant traits, such as height, stem diameter, and leaf biomass [10–13].

Recently, we uncovered a principle describing how architectures trade-off between the amount

of resources required to build an architecture versus how efficiently nutrients can be trans-

ported using that architecture [14].

A related challenge is to uncover the molecular mechanisms (genes) driving these forms

and optimizations. There have been many instances where genes controlling architecture

shape have been manipulated to increase yield, including in cereals [15], rice [16], sorghum

[17], and maize [18–20]. More recently, genome-wide association studies (GWAS) have

helped link genetic variants to complex traits in a variety of species [17, 18, 21], and Arabidop-
sis thaliana continues to be an important model for performing screening assays. The broad

goal of these studies is to understand the genotype to phenotype map well enough that a spe-

cific trait can be bred in a species of interest.

Here, we attempt to bridge these two ends—finding optimization principles and their

genetic basis—by studying a trade-off made by Arabidopsis shoot architectures. The architec-

ture of a plant is used to acquire resources from the environment and to distribute nutrients

amongst different organs [22, 23]. We view the architecture as a geometric graph (often called

a “skeleton”), where nodes correspond to the 3D locations of the base of the plant, branch

points, or leaves; and edges correspond to branches (stem, axillary inflorescences, petioles)

connecting nodes. Using this representation, we study how the architecture balances between

a performance-cost trade-off [14]. Optimizing performance here means minimizing the dis-

tance to transport nutrients (e.g., sugar, water, carbohydrates) from the leaves to the root sys-

tem, and vice-versa, along the architecture. Reducing cost means minimizing the amount of

resources required to build and maintain the architecture. These two objectives are in conflict

with each other—an architecture with efficient nutrient transport may require significant

resources to build, and vice-versa. In this work, we study how Arabidopsis plant architectures

resolve this tension.

Overall, we offer the following contributions. First, we performed high-resolution 3D laser

scanning of 152 Arabidopsis shoot architectures, including wildtype (Col-0) and 10 mutant

strains, each with a small number of gene mutations. We demonstrate that all 152 architectures

make Pareto optimal trade-offs between our measures of performance and cost. An architec-

ture is Pareto optimal if it is impossible to find an alternative architecture that improves upon

both objectives at once (i.e., improving one objective requires sacrifice in the other objective).

We also show that achieving Pareto optimality is unlikely to occur by chance—suggesting that

random evolutionary pressures would not likely generate Pareto optimal structures—but that

there are nonetheless some natural instances where this principle is violated. Second, we iden-

tify mutants that have architectures where the weight prioritizing one objective over the other

is significantly shifted compared to that of the wildtype architecture. This suggests that the
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corresponding genes exhibit some control over architectural form and may be helpful to breed

or design plant structures optimized for different functions. Third, we show that this prioriti-

zation weight feature is highly consistent across replicates of the same genotype despite signifi-

cant visual diversity. This suggests that within a genotype, local changes in plant structure are

compensated for globally in a perhaps homeostatic manner to keep trade-offs consistent. We

show that this weight feature may be a more reliable indicator of a genotype compared to

other common plant phenotyping traits.

The trade-off studied here is only one of many possible trade-offs made by shoot architec-

tures, and does not include other important plant functions, such as light capture or root-

shoot allocation trade-offs. Nonetheless, the fact that plants robustly lie along a Pareto front

defined by this trade-off raises new questions about the molecular and physiological bases of

these trade-offs and how they may also encapsulate other biological functions.

Results

High-resolution 3D scanning of Arabidopsis shoot architectures

Here, we describe the experiments performed to capture and digitize 152 Arabidopsis shoot

architectures. We scanned both wildtype strains and a set of 10 mutant strains, each with a few

genes modified (Table 1, Methods). For the mutants, we focused on genes whose activity can

affect branching and flowering of shoot architectures in Arabidopsis [24–27]. For example, the

strigolactone genes (max4 [28] and d14 [29–31]) can modify axillary bud outgrowth. While

these mutants are certainly not exhaustive, they are diverse, well-studied, and provide a rea-

sonable benchmark to test the generality of an architecture design principle.

For each mutant, we performed 3D laser scanning of the shoot architecture (Fig 1A,

Methods). We scanned at least five replicates of each strain (Table 1). Scans were performed

after emergence of the inflorescence (Methods).

From each scan, we manually traced the skeleton architecture for the plant, including the

curvature of branches. This tracing generated a graph G = (V, E), where the vertices V = (v0,

v1, . . ., vn) represent the 3D locations of the base of the plant (v0) and the n terminal points (v1,

v2, . . ., vn) correspond to the locations of all leaves, including rosettes leaves and cauline leaves

(leaves on the inflorescence stem), flowers, or siliques (Fig 1A and 1B). Additional branch

points may also be present in the skeleton, though these points are not provided as part of the

Table 1. Dataset statistics. The first column shows the name of the genotype and the number of replicates scanned in parenthesis. The number of rosettes refers to the

number of rosette leaves. Volume is measured as the convex hull of the cloud points. Errors indicate standard deviation across replicates.

Genotype Refs. Pareto trade-off Epsilon (�) Alpha (α) Total length (mm) Travel dist. (mm) # of rosettes Volume (cm3)

Col-0 (6) — 1.374 ± 0.05 1.020 ± 0.01 0.143 ± 0.04 584.20 ± 203.17 2652.18 ± 1199.28 15.50 ± 2.43 16218.20 ± 10542.63

brc1,2 (10) [58, 59] 1.640 ± 0.13 1.023 ± 0.01 0.093 ± 0.02 715.03 ± 247.40 2529.58 ± 938.34 20.90 ± 3.62 10699.93 ± 7183.65

bes1 (5) [60] 1.476 ± 0.11 1.015 ± 0.01 0.138 ± 0.04 450.10 ± 38.40 2021.45 ± 298.95 13.40 ± 2.06 4649.74 ± 1620.87

cry1 (9) [61] 1.328 ± 0.08 1.015 ± 0.01 0.153 ± 0.05 502.94 ± 97.36 2160.00 ± 552.46 15.22 ± 1.75 11018.63 ± 4744.52

cry1,2 (8) [62] 2.250 ± 0.25 1.020 ± 0.01 0.045 ± 0.02 1857.37 ± 455.44 6192.03 ± 2171.58 51.00 ± 6.40 42514.46 ± 19917.37

cry2 (9) [62, 63] 1.845 ± 0.18 1.033 ± 0.02 0.070 ± 0.03 1634.31 ± 958.74 6774.20 ± 5096.34 38.22 ± 11.29 62662.07 ± 57339.15

d14 (8) [29, 57, 64] 1.721 ± 0.10 1.017 ± 0.01 0.095 ± 0.03 724.46 ± 305.90 3200.36 ± 1802.02 19.63 ± 2.23 6245.72 ± 3782.02

d14pin3,4,7 (5) — 1.381 ± 0.12 1.018 ± 0.01 0.170 ± 0.02 392.94 ± 134.30 1788.00 ± 989.57 15.20 ± 1.94 3496.69 ± 1786.43

max4 (11) [55, 65] 1.709 ± 0.12 1.014 ± 0.01 0.096 ± 0.02 627.75 ± 254.99 2736.45 ± 1749.55 21.09 ± 2.91 5140.44 ± 3096.55

phyA (8) [55, 66] 1.590 ± 0.11 1.021 ± 0.02 0.113 ± 0.05 789.60 ± 314.37 3542.85 ± 2374.67 25.38 ± 2.23 17810.91 ± 14208.55

pin3,4,7 (8) [50, 67] 1.234 ± 0.10 1.056 ± 0.02 0.224 ± 0.06 400.75 ± 74.03 1938.01 ± 645.63 15.25 ± 1.79 6075.83 ± 2359.54

https://doi.org/10.1371/journal.pcbi.1007325.t001
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input, V. The set of edges E correspond to the branches (stem, axillary inflorescences, petioles)

connecting two nodes. Each edge has a length equal to the Euclidean distance between the two

nodes it connects. Branches are considered in 1-D (length only). All edges are treated as undi-

rected, as nutrients can flow in either direction.

Fig 1. Graph-theoretic analysis of plant architectures. A) A 3D scan of a wildtype Columbia (Col-0) architecture with 219,792

cloud points. The (x, y, z) coordinates of the base of the plant and a few sample terminal points (rosette leaves, cauline leaves,

siliques, flowers) are shown. B) Example input points from the 3D scan shown in panel A. The points shown represent the locations

of the base of the stem (black point) and all terminal points (green points). C) The Satellite tree, which optimally minimizes travel

distance. D) The Steiner tree, which optimally minimizes total length. E) The actual plant skeleton architecture connecting the input

points through additional branch points. F–H) Example trees derived using the greedy algorithm for different values of the trade-off

parameter, α. I–J) The Stable tree, and an example of a PrefAttach tree. The total length and travel distance of each architecture is

shown in the title of each panel. For ease of visualization, panels B–J show 2-dimensional projections of the 3-dimensional trees. All

graph-theoretic analysis is performed in 3-dimensions.

https://doi.org/10.1371/journal.pcbi.1007325.g001
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A computational framework for analyzing architecture trade-offs

Here, we describe a graph-theoretic method to test how well architectures balance between

competing optimization objectives using the theory of Pareto optimality [32]. We previously

described this framework [14] and elaborate it here briefly.

We study a performance-cost trade-off to measure how efficiently a plant’s architecture is

used to distribute nutrients amongst organs [22, 23]. Performance (called travel distance) mea-

sures the distance that nutrients must travel from each terminal point (rosette leaf, cauline leaf,

flower, or silique) to reach the base of the plant, or vice-versa, along the architecture. Biologi-

cally, this is related to measures of metabolic energy and hydraulic resistance required to trans-

port sugars, nutrients, and water between the leaves and the root system [23, 33–37]; travel

distance is also related to time delays in wound signaling responses, which can affect healing

rates [38]. Cost (called total length) measures the total length or biomass of the skeleton. Bio-

logically, this is related to the amount of resources (e.g., carbon) needed to build the architec-

ture [39]; minimizing length can also aid in posture control by minimizing the amount of

weight that needs to be supported [40, 41]. Thus, these two graph-theoretic measures relate to

currencies known to affect biological function. However, by no means do they encapsulate all

functions of plant architectures, nor do they directly capture all features of the plant phenotype

space because, for example, the full range of travel paths to each terminal are not available due

to the modular, meristem-driven nature of plant development. Instead, we accept that plants

have evolved some mechanisms to determine how many leaves to generate and where each

leaf should be placed. Given this, we study how optimal is the branching structure that is used

to connect the given set of leaf points.

Mathematically, these two measures can be defined as:

TravelðGÞ ¼
Xn

i¼1

distEðv0; viÞ ð1Þ

LengthðGÞ ¼
X

j

jEjj ð2Þ

The function distE(v0, vi) computes the graph distance between the base of the plant (v0)

and the ith terminal point; i.e., the sum of the edge lengths along the path from v0 to vi. The

length |Ej| of edge j equals the Euclidean distance between the two endpoints of the edge.

What architectures minimize these two objectives individually? The architecture that mini-

mizes travel distance alone is called the Satellite tree (Fig 1C). This tree contains a straight edge

from the base of the plant to each terminal point. The architecture that minimizes cost alone is

called the Steiner tree (Fig 1D). A Steiner tree is a tree that connects all the input points using

the smallest total branch length. This tree can include branch points that are not provided as

input (V) that can help reduce the length of the connecting architecture. In Arabidopsis, the

rosette structure is Satellite-like, whereas the inflorescence typically is not.

These two architectures are in conflict with each other: the Satellite tree minimizes nutrient

transport distances but has a large total length, whereas the Steiner tree minimizes total length

but can have a large transport distance for some terminals.

Trade-offs and Pareto optimality. How well are trade-offs made between two competing

objectives? Intuitively, an architecture makes a Pareto optimal trade-off between two objectives

if improving along one objective necessitates a loss in the other objective [42]. Otherwise, both

objectives can be improved at once, which means that the architecture “could have done bet-

ter”. Prior work has made arguments suggesting that, given enough selection pressure and

genetic diversity, evolution may push biological systems to be Pareto optimal [32], where the

[EXSCINDED]Network trade-offs and homeostasis in Arabidopsis shoot architectures
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weight prioritizing each objective may depend on what provides a greater fitness advantage for

a particular genotype in a particular environment [14].

To formalize this, we introduce a simple way to combine both objectives (travel distance

and total length) that weighs the contribution of each objective individually. The goal is to find

a graph G� that minimizes the joint objective:

G� ¼ argmin
G

aðTravelðGÞÞ þ ð1 �aÞðLengthðGÞÞ

¼ argmin
G

a
Xn

i¼1

distEðv0; viÞ

 !

þ ð1 �aÞ
X

j

jEjj

 !
ð3Þ

Here, the parameter α 2 [0, 1] controls how much weight is placed on each objective. If α =

1, the optimal architecture is the Satellite tree; if α = 0, the optimal architecture is the Steiner

tree.

To generate an architecture (tree) that nearly minimizes Eq (3) for any value of α 2 [0, 1],

we use a simple greedy algorithm [14]. Briefly, the algorithm initializes the tree with just the

root vertex (v0) in the tree, and the rest of the vertices (v1, v2, . . ., vn) outside the tree. In each

step of the algorithm, an edge is added that connects a vertex outside the tree to a vertex inside

the tree that minimizes Eq (3). Along each edge added, k Steiner vertices (i.e., branch points)

are added equidistant from each other; these vertices can be used as branch points to connect

unconnected vertices in subsequent steps. In experiments here, we set k = 10. The algorithm

terminates after n steps, when each vertex is added to the tree. While this method is clearly

not optimal—minimizing Eq (3) is NP-hard—Conn et al. [14] provide evidence that this

greedy algorithm generates very close to optimal trees and that it outperforms prior heuristics

for this problem. Example architectures generated using different values of α are shown in

Fig 1F–1H.

By applying this algorithm to each value of α 2 [0, 1], we can generate what is referred to as

the Pareto front; i.e., the set of architectures for which improving along one objective requires

a loss in the other objective. An example Pareto front is shown as the black curve in Fig 2A. If

an architecture lies on the Pareto front, it means that there is no way to reconfigure the edges

such that both objectives improve together. Evolutionarily, the idea is that architectures that

do not lie on the Pareto front will be eliminated from the population over time.

Each plant scan has its own set of input points (V) specific to that scan. Thus, each plant

scan has its own Pareto front, consisting of the trees generated for each value of α using V as

input.

Analysis pipeline. From each individual plant scan, we extracted the 3D coordinates of

the base of the plant (v0) and all the terminal points (v1, v2, . . ., vn). These n + 1 points were

used as input to generate the Pareto front using the algorithm described above. The algorithm

was run for 101 values of α 2 [0, 1] in steps of 0.01. For each tree, we computed its total length

and travel distance to generate a smooth Pareto front curve (e.g., Fig 2A). The Pareto front rep-

resents a set of trees, each of which approximately minimizes Eq (3) for a different value of α.

To compare these trees with the plant, we traced the skeleton of the plant’s architecture that

connects the same n + 1 points through any potential branch points, and then computed the

plant’s total length and travel distance. The trees generated are all 3-dimensional but are dis-

played here in 2-dimensions for ease of visualization.

Computing the distance to the Pareto front. To determine how far away the plant archi-

tecture lay from the Pareto front, we first computed the total length and travel distance of each

of the 101 Pareto optimal trees. Each of these trees has an (x, y) location on the Pareto front,

[EXSCINDED]Network trade-offs and homeostasis in Arabidopsis shoot architectures
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where x is its total length and y is its travel distance. Thus, the Pareto front can be defined by a

set of points, {(x1, y1), (x2, y2), . . ., (x101, y101)}. We similarly computed the total length and

travel distance (x0, y0) of the actual plant architecture. Our goal was to determine how far away

the point (x0, y0) was from the set of Pareto optimal points. We did this by scaling the Pareto

front until it intersected with (x0, y0). That is, we multiplied each (xi, yi) point by a small scaling

factor, � > 1, until some point on the Pareto front intersected with (x0, y0). If the intersection

occurred, for example, when � = 2.0, then we say that the plant lies at a distance � = 2 to the

Pareto front, meaning that its total length and travel distance is collectively twice as bad as it

could have been theoretically. The optimal value of � is 1, meaning that the plant lies exactly on

the Pareto front.

Comparing to baseline architectures. To assess whether the plant architecture lies signif-

icantly closer to the Pareto front than expected, we compared to three baseline architectures.

The idea is to test how likely it is that trees generated according to other optimization criteria

or models would be Pareto optimal.

The first baseline, called Stable, builds a structurally stable tree with even weight dispersion

by computing the centroid of the n terminal points, adding a “stem” from v0 to the centroid,

and then direct edges from the centroid to each of the terminal points (Fig 1I). The second,

called PrefAttach, uses the Barabasi-Albert model [43] to generate a tree using a “rich-get-

richer” mechanism with many potential hubs, which are commonly observed in efficient

transport networks (Fig 1J). This algorithm starts with two random nodes connected by an

edge. Then, in each iteration of the algorithm, it connects a new node to an existing node

with probability proportional to the degree of the existing node. Parameters of the model were

n = |V|, m = 1. The third baseline, called Random, creates a random spanning tree using Wil-

son’s loop-erased random walk algorithm [44]. All methods use the same points (v0, v1, . . ., vn)

as input. For each baseline, we computed its travel distance and total length, and then the dis-

tance to the Pareto front using the method described above. For PrefAttach and Random, we

average the distance over 1000 trees.

Fig 2. Arabidopsis shoot architectures are Pareto optimal. A) An example of the Pareto front (black curve) for an individual plant

scan. The end-points of the Pareto front represent the individual optimals (Steiner and Satellite) of the two objectives. The red ‘X’

denotes the location of the plant. The green triangle shows the location of the Stable tree. The yellow circles show the locations of the

Barabasi-Albert trees generated using the preferential attachment model. The blue diamonds show the locations of the Random tree.

For the latter two methods, we generated 1000 trees; most of which lay outside the plotting area, implying that these architectures lie

far away from the Pareto front. Overall, the plant architecture lies much closer to the Pareto front than other architectures. B)

Summary of the entire dataset. The x-axis shows the list of all genotypes (Col-0 wildtype and 10 mutants). The y-axis shows the

distance from the plant to the Pareto front; lower implies closer to the Pareto front, and thus, more optimal. Error bars indicate

standard deviations over replicates. We compare the plant architecture versus Stable, PrefAttach, and Random architectures—each

generating trees on the same set of input points. In all cases, the plant architecture lies significantly closer to the Pareto front than

other architectures (P< 0.001).

https://doi.org/10.1371/journal.pcbi.1007325.g002
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Arabidopsis shoot architectures are Pareto optimal

Strikingly, all 152 Arabidopsis shoot architectures lay very close to the Pareto front, and much

closer than the three baselines. For example, Fig 2A shows the analysis of an individual plant

scan of a d14 mutant that lies at a distance of � = 1.016 to the Pareto front. On the other hand,

the three other baselines lie much further away from the front: Stable (� = 1.906), PrefAttach

(� = 4.027), and Random (� = 6.037).

This observation—that plant architectures lie closer to the Pareto front than baselines—

was consistent across all other mutant strains and for the wildtype strain (Fig 2B). Over all

152 architectures, the average distance to the Pareto front for the plant architectures was

1.020±0.016 compared to 1.742±0.139 for Stable, 3.990±0.555 for PrefAttach, and 6.089±1.087

for Random. Using a binomial distribution, where a success was equivalent to the baseline

architecture having a smaller � value than the plant, these differences are all significant

(P< 0.001).

Critically, generating a Pareto optimal architecture is not trivial nor “inevitable”. Indeed,

there are nn−2 possible spanning trees that can be formed given n vertices as input. For even

small values of, say n = 20, that means there are 2018 = 2.62 × 1023 possible trees in phenotype

space. The vast majority of these trees lie far from the Pareto front, as indicated by the Random

baseline above. We also scanned two additional genotypes (phot1-5phot2-1 and phyB-9) whose

inflorescence often fell down because the plant was unable to support its own weight; interest-

ingly, these plants also lay off the Pareto front (S1 Fig). This is in part driven by the fact that

after falling down, the direction of light effectively changes and branches turn to a new direc-

tion. Thus, achieving Pareto optimality is not guaranteed for any branching structure, and it

may be violated in some instances where the environment changes.

Our problem formulation considered hydraulic transport between the root and the shoot,

but there are other forms of transport that may be important, such as sugar transport from

leaves to flowers. The graph-theoretic structure that optimizes for minimizing sugar transport

distances is a fully connected bi-partite graph from each leaf to each flower. This optimal, like

the Satellite, would be costly to build. We compared the sugar transport distance and the con-

struction cost of the bipartite graph versus that of the Arabidopsis architecture. We found

that, over all mutants, the plant’s sugar transport distance was on average only 35% worse

than optimal, but it was 5341% lower in cost. This observation does not strictly imply Pareto

optimality between sugar transport performance and cost, but it does suggest that plants

achieve a large “bang for the buck”; i.e., only losing 35% in performance but reducing cost by

5341%.

Overall, these results suggest that achieving well-balanced trade-offs may be an important

growth principle for Arabidopsis shoot architectures. Further, these results suggest that the two

objectives proposed here (travel distance, total length) may capture, or be correlated with,

broad selective pressures that constrain architecture design.

Identifying genes that can shift the trade-off balance

The analysis above showed that Arabidopsis architectures are nearly Pareto optimal, but where

on the Pareto front do the architectures lie? This location may indicate niche specialization

that varies based on the growth condition [14] or genetic background. This location also

encodes a global feature of the architecture, indicating how this plant prioritizes each objective.

Here, we explore how genetic modifications in our 10 mutants affect the weight prioritizing

one objective versus the other. Overall, we find that mutations in even a single gene are suffi-

cient to shift the architecture along the Pareto front one way or the other compared to the

wildtype architecture.
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To identify this prioritization weight, we introduce the Pareto trade-off feature for an archi-

tecture, GPlant:

Trade‐offðGPlantÞ ¼
LengthðGPlantÞ = LengthðGSteinerÞ

TravelðGPlantÞ = TravelðGSatelliteÞ
ð4Þ

The numerator quantifies the excess length of the plant compared to the optimal minimum

length of the Steiner tree. Similarly, the denominator quantifies the excess travel distance of

the plant compared to the optimal minimum travel distance of the Satellite tree. A high value

of this feature (i.e., a large numerator and small denominator) indicates that the plant priori-

tizes minimizing travel distance; a low trade-off value indicates the plant prioritizes minimiz-

ing total length. An alternative way to calculate the prioritization weight is to compute the

value of α on the Pareto front that lies closest to the plant, though we found this feature was

not as discriminative as the Pareto trade-off feature (Table 1, S2 Fig).

We found that some mutants have significantly different trade-off values compared to the

Columbia wildtype architecture (Fig 3A and 3B, Table 1). The trade-off ratio for the Col-0

wildtype was 1.374 ± 0.51. Mutants that shifted the architecture to the right of the curve

(higher trade-off value) included brc1,2, d14, cry2, cry1,2, max4, and phyA (all P< 0.005, Kol-

mogorov-Smirnov test with Bonferroni correction using a threshold of 0.05). There was also

one mutant that shifted the architecture left along the curve (pin3,4,7; P< 0.005).

Importantly, these results are not entirely driven by changes in the number of rosette leaves.

We re-computed the Pareto trade-off feature for each mutant after excluding the rosette,

focusing only on the inflorescence (S3 Fig). The max4 and d14 mutants still significantly

shifted the architecture to the right, and the pin3,4,7 mutant still significantly shifts the archi-

tecture left, along the Pareto front. Some mutants no longer show a significant difference from

wildtype; e.g., the cry mutants, which are hallmarked by an increase in the number of rosette

leaves at flowering [45]. Indeed, we found on average 38.22±11.29 rosette leaves for the cry2
mutant, compared to 15.50±2.43 for the Col-0 wildtype (Table 1).

Overall, these results suggest that the modification of just a few genes (1–4) is sufficient to

modify how architectures prioritize a global trade-off.

The Pareto trade-off feature can be a robust descriptor of a genotype

Plant architectures can look highly diverse, even replicates with the same genetic background,

grown in the same soil, in the same environment, and scanned at the same time [46]. Such

visual diversity can be due to inherent stochasticity, noise, or other small changes in the local

growth environment. This diversity can be problematic when trying to map a genotype-to-

phenotype relationship because differences caused by genetic variables may be difficult to

tease apart from those caused by other growth factors. Here, we asked whether the Pareto

trade-off feature, which is a global feature of the architecture, is less variable across replicates

of the same genotype compared to other common plant traits.

We quantified the variability of a feature using the coefficient of variation (CoV), which

equals the standard deviation of the feature divided by its mean (over replicates). The CoV is a

dimensionless parameter; lower CoVs are preferred and correspond to less variability in the

feature.

We found that the Pareto trade-off feature had a lower coefficient of variation compared to

five other traits: the total length, the travel distance, the number of rosette leaves, the number

of branch points, and the convex hull volume occupied by the plant (Fig 3C). For example, for

the Columbia wildtype architecture, the coefficients of variation were 0.037 (Pareto trade-off),

0.157 (number of rosette leaves), 0.348 (total length), 0.452 (travel distance), 0.467 (number of
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Fig 3. The Pareto trade-off feature better explains architecture diversity. A) The y-axis shows the genotype. The x-

axis shows the standard deviation of the Pareto trade-off ratio for each genotype across at least five replicates per

genotype. Each vertical dark yellow bar represents the trade-off of a single replicate. The red ‘X’ represents the mean

over replicates. Black lines represent standard deviations. The mutants significantly different from wildtype are

indicated by stars on the labels, with 2–3 stars, indicating a significance value of P< 0.01 and P< 0.001 respectively.
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branch points), and 0.650 (convex hull volume). Similar trends were observed for each individ-

ual mutant (Fig 3C). The fact that total length and travel distance by themselves have such

high CoV further highlights that what is consistent across these architectures is not these indi-

vidual objectives, but rather their trade-offs.

We next tested how well the Pareto trade-off feature accounted for variation in the architec-

ture of the same plant as it grew over time. In this case, the other features (such as the number

of branch points) are expected to be variable because the plant is growing. The idea here is to

test whether, as the shoot develops more biomass, does it still maintain a similar global trade-

off ratio?

To test this, we first scanned 8 individual Columbia wildtype plants over 3–5 time-points

each, after the inflorescence emerged (Methods). For each scan, we computed the six features

described above, and then we computed the coefficients of variation of these features over the

3–5 time points. As expected, the non-Pareto features demonstrate high variability as the plant

grows; however, the Pareto trade-off feature was still highly consistent over time (Fig 4A and

4C). The coefficient of variation over time was 0.035 for Pareto trade-off versus 0.565 for the

number of branches, 0.242 for total length, 0.485 for travel distance, and 0.551 for convex hull

volume. We also repeated this time-series scanning experiment for 7 individual cry1 mutant

plants and found similar trends (Fig 4B).

The consistency of the Pareto trade-off feature, both across replicates and through portions

of development between inflorescence emergence and the floral transition, suggest that

despite growth-related changes, the trade-off between performance and cost remains relatively

steady. In other words, local changes in the architecture, such as emergence and elongation of

branches and the formation of new leaves, are compensated by a global change, in perhaps a

homeostatic sense. This homeostasis is well-captured by the Pareto trade-off feature, and thus

could help classify genotypes even if they look visually dissimilar.

Discussion

We extended our description of plant architecture optimization as a network design problem

[14] to the model species Arabidopsis. We tested if architectures of this species are also con-

strained to the set of design solutions that form the Pareto front. The Pareto front is a diverse

landscape [47] of optimal solutions where selection pressure acts on two conflicting criteria; in

our case, travel distance for nutrient transport and total length for construction costs. The

Pareto front defines a set of possible architectures for which improving upon one function

requires a sacrifice in the other, where the exact balance between these two functions can vary

based on the environment or genotype.

We used graph-theoretic analysis to show that Arabidopsis shoot architectures fall along the

Pareto front and that this is highly unlikely to occur by chance. By comparing the trade-offs

employed by wildtype versus mutant Arabidopsis, we showed that the modification of a small

number of genes (1–4) is sufficient to significantly shift how an architecture prioritizes one

function versus the other. For example, for the cry1,2, cry2, brc1,2, d14, phyA, and max4
mutants, the architecture is shifted to favor transport efficiency over total length; whereas for

the pin3,4,7 mutant, the opposite occurred. These genes may serve as candidates to breed

B) Examples architectures for the Col-0, max4, brc1,2, and cry1,2 mutants. C) The x-axis shows different mutants, and

the y-axis shows the coefficient of variation. The Pareto trade-off feature has a consistently lower coefficient of

variation compared to the other five plant features, indicating that it more robustly clusters a genotype compared to

other traits.

https://doi.org/10.1371/journal.pcbi.1007325.g003
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specific features of interest in plants optimized for challenging environments. Our framework

can also be used to screen for other genes that trigger branching related changes, coupled with

high-throughput phenotyping techniques [48, 49].

We also showed that the Pareto trade-off feature was much less variable across replicates—

i.e., the Pareto trade-off feature more tightly clustered architectures of the same genotype com-

pared to other common plant traits—and it remained consistent through some portions of

development of the same plant. This stability would not hold true through all of development;

e.g., nearly all Arabidopsis begin as pure Satellites prior to the emergence of the inflorescence.

However, we did observe stability of this feature through later shoot development (i.e., after

the inflorescence emerged), suggesting that as leaves and branches emerged, maintaining a

globally stable trade-off may be a growth constraint on the architecture as a whole. Overall,

these results suggests that local stochasticity in common traits (e.g., the number of leaves or

branches) may be compensated globally such that the trade-off between performance and cost

is relatively stable. This highlights an example of the broader biological principle of “global sta-

bility despite local variability”.

Biologically, how do we interpret our finding that Arabidopsis shoot architectures are

Pareto optimal? The two functions we studied (transport efficiency and construction costs)

correlate with factors known to affect plant performance, and they represent common network

Fig 4. The Pareto trade-off is consistent through plant development. A) The x-axis shows the eight Columbia wildtype replicates.

The y-axis shows the coefficient of variation across the time points for each replicate. B) Identical to panel A but using the cry1
mutant. Throughout plant development, the Pareto trade-off remains much more consistent compared to other common traits. C)

Four examples of time-series scans of Col-0_H.

https://doi.org/10.1371/journal.pcbi.1007325.g004
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design criteria used to evaluate other biological engineered branching structures [14]. How-

ever, these functions alone are likely insufficient to stratify the full diversity of shoot structures.

For example, two plants with the exact same set of input points that are connected using differ-

ent branch angles or branch curvature would generate the same Pareto front according to our

model. However, branch angles can vary between mutants—e.g., the pin3,4,7 mutant has

wider branch angles and the d14 mutant has shallower branch angles than the wild type [29,

50]—and such changes in branch angles can affect other architecture functions, such as light

capture [51, 52]. Further, without including some pre-defined points to connect, then ideal

plants that minimize total length and travel distance would be very small plants with leaves

very close to the ground, which is clearly not realistic. Similarly, we couched transport effi-

ciency in terms of the hydraulic conductance from the root to the shoot and vice-versa, but

other forms of transport may also be important, such as sugar transport from leaves to flowers.

More generally, two different (non-isomorphic) graphs can have the same travel distance and

construction costs [53], suggesting that their differences may be related to other dimensions of

optimization not considered here. While our simple one-parameter model captures significant

variation observed across the 152 architectures studied here, additional optimization functions

are possible to include within our framework by parameterizing them within Eq (3) and deriv-

ing a graph-theoretic algorithm to find Pareto optimal topologies for the corresponding higher

order objective. We emphasize that our goal here was not to develop a sophisticated and

highly-parameterized model of 3D shoot architectures that captures all of these features and

functions. However, the fact that plants were Pareto optimal within this relatively simple

abstraction suggests that the two functions we did study may be correlated with the ones we

did not.

There are four directions for future work that can build off the framework developed here.

First, the observation that Arabidopsis shoot architectures remain Pareto optimal over some

periods of development raises an interesting computational problem that plants appear to

solve: given an architecture at time t, how do you grow or extend the architecture to connect

new terminal points such that the architecture remains Pareto optimal at time t + 1, without

pruning or eliminating existing parts of the architecture? This problem is reminiscent of a clas-

sic computer science problem, called the online Steiner tree problem [54], but with an addi-

tional objective (travel distance). Relatedly, we assumed that the 3D locations of the leaves

were provided as input, and we studied how branches connected these leaves. It would also be

interesting to determine if the 3D location of the next leaf can be predicted [5] given that the

architecture, after connecting the leaf, should be Pareto optimal. To address this problem,

other functions would need to be taken into account, such as the ability for the leaf to intercept

light. Second, we studied genetic variants with changes to a small number of genes; a more

comprehensive effort could study hundreds of natural Arabidopsis variants [55] with more

elaborate genetic changes. Such analyses could then use genome-wide association methods

using the Pareto trade-off as a target feature to link genotype to phenotype to environment.

Relatedly, we focused on Arabidopsis here because of the vast mutant library available; future

studies could study similar trade-offs in other species to test the generality of our observations.

Third, our graph-theoretic analysis only considered lengths (skeletons), ignoring the radii of

branching elements. While skeleton-based analyses are common, including radii as weighted

edges in our framework may further stratify architectures, for example, in instances of hypo-

cotyl thickening [56]. Fourth, none of the mutants we studied pushed the architecture far off

the Pareto front, unless the architecture fell down. This suggests that the regulatory networks

responsible for Pareto optimal pattern formation may be governed by a larger set of interacting

genes, which remain elusive.
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Methods

Plant growth experiments

Experiments were performed using 10 mutants, each within the Columbia wildtype back-

ground (Table 1). S1 Table shows the full mutant name with alleles specified. All mutants are

published, with the exception of d14pin3,4,7. This mutant was created by crossing d14-1 [57]

with the pin3-3pin4-3pin7En triple mutants [50]. Plants displaying combined phenotypes of

d14 and pin3,4,7 were selected in the F2. Homozygous quadruple mutants were verified in F3

plants, using previously published genotyping strategies [50, 57].

Seeds were stratified in 1 ml of 0.1% agar and stored at 4C in the dark for 48 hours prior to

planting. Seeds were transferred to 12-celled planting trays using a pipette into SunGro Propo-

gation mix soil. The soil was moistened with water containing 0.12–0.24 oz/gallon fertilizer

(Plantex, Canada), 0.12–0.24 oz/gallon fungicide (Heritage, England) and sprinkled with Mar-

athon and Bugs Be Gone to prevent infestation from small insects. Seeds were placed under a

light source with lid on the tray, which was removed post germination. Upon germination, 6

cells of the tray were removed in staggered fashion to eliminate crowding affects. Soil was

watered as needed. Temperature of growth rooms were held at 20C with long day cycles: 16h

day and 8h night. Each shelf held two trays and contained 4 bulbs, 3 white light and 1

fluorescent.

Due to differing developmental trajectories, it was difficult to select a fixed day post-germi-

nation to compare or ‘align’ the scan of each strain. Instead, we scanned the plant after the

inflorescence emerged, and (with the exception of the plants shown in S1 Fig) while the shoot

was still sustaining an upright posture. While some variation in features could be introduced

based on the timing of the scan, we justified this approach by scanning wildtype Col-0 and

cry1 mutants roughly every day after the inflorescence emerged; using these time-series scans,

we found that the trade-offs achieved are relatively consistent as the architecture grows during

this period (Fig 4).

For the time-series scanning experiments, the Columbia wildtype architectures were grown

and scanned in two separate experiments, the first with replicates A–C, and the second with

replicates D–H. Five scans were performed per replicate, from days 32–36 post-germination

for A–C, and from days 35–39 post-germination for D–H. For cry1, the 7 replicates were all

grown and scanned over time in one experiment, from days 29–36 post-germination (exclud-

ing day 34).

3D scanning and skeletonization of shoot architectures

A high resolution blue-laser scanner (Edge Scan Arm HD, Faro Inc.) was used to non-

invasively generate a 3D point cloud representation of the plant surface architecture. The

scanner resolution is on the micrometer scale with errors in ±25um. The average number

of cloud points per mutant was 292,247 with a minimum of 64,918 and maximum of

1,144,740 points. Full technical details of the scanner and scanning procedure were previ-

ously described [9, 14].

To generate the skeleton, we used Polyworks to select points at the base of the plant, the

base of each leaf (cauline leaves, rosette leaves, siliques, and flowers), and each branch point

along the stem. Additionally, points were picked along the curvature of the stem to capture

tortuosity if applicable. Tracing through these points generated a skeleton representation of

the plant architecture, where each point was represented as a node, and nodes were connected

by edges. Each skeleton is a tree, meaning that is has no cycles and there is exactly one path

between any two nodes.
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Supporting information

S1 Table. Mapping from short mutant names used in this paper to mutants with full allele

names.

(TIFF)

S1 Fig. Plants that lie off the Pareto front. Three examples of architectures that fell down and

that lay away from the Pareto front. A–B) Two examples of a phot1,2 mutant. C) Example of a

phyB mutant. The scaled distances to the Pareto front for these three plants are: 1.209, 1.165,

and 1.109, respectively. These are significantly further away from the Pareto front compared to

the results in the main text (1.020 ± 0.016, averaged over all 152 scans).

(TIFF)

S2 Fig. Variation in other plant features. In each panel, the y-axis shows the genotype, and

the x-axis shows the standard deviation in a feature for each genotype across replicates. Each

dark yellow bar represents the feature value of a single replicate. The red ‘X’ represents the

mean over replicates. Black lines represent standard deviations. The mutants significantly dif-

ferent than wildtype (Col-0) are indicated by stars on the labels, with 2–3 stars, indicating a sig-

nificance value of P< 0.01 and P< 0.001 respectively. The features are: A) α value. B) The

number of branch points. C) The convex hull volume of the cloud points. D) The number of

rosette leaves. E) The total length of the architecture. F) The travel distance of the architecture.

Overall, we find larger variation in these features (compared to the Pareto trade-off feature),

and we find fewer genotypes that show a significant difference from wild-type.

(TIFF)

S3 Fig. Pareto optimality analysis excluding the rosette. A) The y-axis shows the genotype.

The x-axis shows the standard deviation in the Pareto trade-off ratio for each genotype. Each

dark yellow bar represents the trade-off of a single replicate. The red ‘X’ represents the mean

over replicates. Black lines represent standard deviations. The significant mutants are indi-

cated by stars on the labels, with 2–3 stars, indicating a significance value of P< 0.01 and

P< 0.001 respectively. B) The x-axis shows different mutants, and the y-axis shows the coeffi-

cient of variation for five plant features (excluding the rosette leaves). The Pareto trade-off fea-

ture still achieves a low coefficient of variation, indicating that variability (not driven by the

number of rosette leaves) is also better captured by the Pareto trade-off feature.

(TIFF)
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