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Abstract

Understanding the optimization objectives that shape shoot architectures remains a critical
problem in plant biology. Here, we performed 3D scanning of 152 Arabidopsis shoot archi-
tectures, including wildtype and 10 mutant strains, and we uncovered a design principle that
describes how architectures make trade-offs between competing objectives. First, we used
graph-theoretic analysis to show that Arabidopsis shoot architectures strike a Pareto optimal
that can be captured as maximizing performance in transporting nutrients and minimizing
costs in building the architecture. Second, we identify small sets of genes that can be
mutated to shift the weight prioritizing one objective over the other. Third, we show that this
prioritization weight feature is significantly less variable across replicates of the same geno-
type compared to other common plant traits (e.g., number of rosette leaves, total volume
occupied). This suggests that this feature is a robust descriptor of a genotype, and that local
variability in structure may be compensated for globally in a homeostatic manner. Overall,
our work provides a framework to understand optimization trade-offs made by shoot archi-
tectures and provides evidence that these trade-offs can be modified genetically, which may
aid plant breeding and selection efforts.

Author summary

In both engineered and biological systems, there is often no single structure that performs
optimally on all tasks. For example, a transport system that can very quickly shuttle people
to and from work will often not be very cheap to build, and vice-versa. Thus, trade-offs
are born, and it is natural to ask how well evolution has resolved trade-offs between com-
peting tasks. Here, we use 3D laser scanning and network analysis to show that Arabidop-
sis plant architectures make Pareto optimal trade-offs, which means that improving upon
one task requires a sacrifice in the other task. In other words, an architecture that per-
forms better on both tasks cannot be built. We also identify a small set of genes that can
change how the architecture prioritizes one task versus the other, which may allow for bet-
ter crop design in the future. Finally, we show that two replicate architectures that look
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visually diverse (e.g., variation in size, number of leaves, number of branches, etc.) often
prioritize each task similarly. This suggests that despite local variability in the architecture,
there may be a homeostatic drive to maintain globally balanced trade-offs.

Introduction

An essential challenge of plant science is to uncover quantitative principles that describe the
shape of plant architectures, defined here as the three-dimensional aerial arrangement of
branches, leaves, and flowers [1, 2]. Prior work has discovered several descriptors of plant
form [3], including phyllotaxis [4, 5], fractal and self-similar branching [6-9], and allometric
scaling of various plant traits, such as height, stem diameter, and leaf biomass [10-13].
Recently, we uncovered a principle describing how architectures trade-off between the amount
of resources required to build an architecture versus how efficiently nutrients can be trans-
ported using that architecture [14].

A related challenge is to uncover the molecular mechanisms (genes) driving these forms
and optimizations. There have been many instances where genes controlling architecture
shape have been manipulated to increase yield, including in cereals [15], rice [16], sorghum
[17], and maize [18-20]. More recently, genome-wide association studies (GWAS) have
helped link genetic variants to complex traits in a variety of species [17, 18, 21], and Arabidop-
sis thaliana continues to be an important model for performing screening assays. The broad
goal of these studies is to understand the genotype to phenotype map well enough that a spe-
cific trait can be bred in a species of interest.

Here, we attempt to bridge these two ends—finding optimization principles and their
genetic basis—by studying a trade-off made by Arabidopsis shoot architectures. The architec-
ture of a plant is used to acquire resources from the environment and to distribute nutrients
amongst different organs [22, 23]. We view the architecture as a geometric graph (often called
a “skeleton”), where nodes correspond to the 3D locations of the base of the plant, branch
points, or leaves; and edges correspond to branches (stem, axillary inflorescences, petioles)
connecting nodes. Using this representation, we study how the architecture balances between
a performance-cost trade-oft [14]. Optimizing performance here means minimizing the dis-
tance to transport nutrients (e.g., sugar, water, carbohydrates) from the leaves to the root sys-
tem, and vice-versa, along the architecture. Reducing cost means minimizing the amount of
resources required to build and maintain the architecture. These two objectives are in conflict
with each other—an architecture with efficient nutrient transport may require significant
resources to build, and vice-versa. In this work, we study how Arabidopsis plant architectures
resolve this tension.

Opverall, we offer the following contributions. First, we performed high-resolution 3D laser
scanning of 152 Arabidopsis shoot architectures, including wildtype (Col-0) and 10 mutant
strains, each with a small number of gene mutations. We demonstrate that all 152 architectures
make Pareto optimal trade-offs between our measures of performance and cost. An architec-
ture is Pareto optimal if it is impossible to find an alternative architecture that improves upon
both objectives at once (i.e., improving one objective requires sacrifice in the other objective).
We also show that achieving Pareto optimality is unlikely to occur by chance—suggesting that
random evolutionary pressures would not likely generate Pareto optimal structures—but that
there are nonetheless some natural instances where this principle is violated. Second, we iden-
tify mutants that have architectures where the weight prioritizing one objective over the other
is significantly shifted compared to that of the wildtype architecture. This suggests that the
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corresponding genes exhibit some control over architectural form and may be helpful to breed
or design plant structures optimized for different functions. Third, we show that this prioriti-
zation weight feature is highly consistent across replicates of the same genotype despite signifi-
cant visual diversity. This suggests that within a genotype, local changes in plant structure are
compensated for globally in a perhaps homeostatic manner to keep trade-offs consistent. We
show that this weight feature may be a more reliable indicator of a genotype compared to
other common plant phenotyping traits.

The trade-off studied here is only one of many possible trade-offs made by shoot architec-
tures, and does not include other important plant functions, such as light capture or root-
shoot allocation trade-offs. Nonetheless, the fact that plants robustly lie along a Pareto front
defined by this trade-off raises new questions about the molecular and physiological bases of
these trade-offs and how they may also encapsulate other biological functions.

Resulits
High-resolution 3D scanning of Arabidopsis shoot architectures

Here, we describe the experiments performed to capture and digitize 152 Arabidopsis shoot
architectures. We scanned both wildtype strains and a set of 10 mutant strains, each with a few
genes modified (Table 1, Methods). For the mutants, we focused on genes whose activity can
affect branching and flowering of shoot architectures in Arabidopsis [24-27]. For example, the
strigolactone genes (max4 [28] and d14 [29-31]) can modify axillary bud outgrowth. While
these mutants are certainly not exhaustive, they are diverse, well-studied, and provide a rea-
sonable benchmark to test the generality of an architecture design principle.

For each mutant, we performed 3D laser scanning of the shoot architecture (Fig 1A,
Methods). We scanned at least five replicates of each strain (Table 1). Scans were performed
after emergence of the inflorescence (Methods).

From each scan, we manually traced the skeleton architecture for the plant, including the
curvature of branches. This tracing generated a graph G = (V, E), where the vertices V = (v,,

.» V) represent the 3D locations of the base of the plant (v,) and the #n terminal points (v1,
.» V) correspond to the locations of all leaves, including rosettes leaves and cauline leaves

2
Vo, .
(leaves on the inflorescence stem), flowers, or siliques (Fig 1A and 1B). Additional branch

points may also be present in the skeleton, though these points are not provided as part of the

Table 1. Dataset statistics. The first column shows the name of the genotype and the number of replicates scanned in parenthesis. The number of rosettes refers to the
number of rosette leaves. Volume is measured as the convex hull of the cloud points. Errors indicate standard deviation across replicates.

Genotype Refs. Pareto trade-off
Col-0 (6) — 1.374 + 0.05
brel,2 (10) [58,59] | 1.640 £0.13
besl (5) [60] 1.476 +0.11
cryl (9) [61] 1.328 + 0.08
cryl,2 (8) [62] 2.250 +0.25
cry2 (9) [62,63] | 1.845+0.18
d14(8) [29,57, 64] | 1.721 +£0.10
d14pin3,4,7 (5) — 1.381 £ 0.12
maxd (11) [55,65] | 1.709 +0.12
phyA (8) [55,66] | 1.590 % 0.11
pin3,4,7 (8) [50,67] |1.234+0.10

https://doi.org/10.1371/journal.pchi.1007325.t001

Epsilon () Alpha (@) Total length (mm) |Travel dist. (mm) |# of rosettes | Volume (cm®)

1.020 £0.01 | 0.143 £0.04 | 584.20 £ 203.17 2652.18 £1199.28 | 15.50 £2.43 16218.20 £ 10542.63
1.023 £0.01 | 0.093 £0.02 | 715.03 + 247.40 2529.58 + 938.34 20.90 £ 3.62 10699.93 + 7183.65
1.015+0.01 | 0.138 £0.04 | 450.10 + 38.40 2021.45 + 298.95 13.40 + 2.06 4649.74 + 1620.87
1.015+0.01 | 0.153 £0.05 | 502.94 + 97.36 2160.00 + 552.46 1522+ 1.75 11018.63 + 4744.52
1.020 £ 0.01 | 0.045+0.02 | 1857.37 +£455.44 6192.03 +2171.58 | 51.00 £ 6.40 42514.46 £ 19917.37
1.033+£0.02 | 0.070 £ 0.03 | 1634.31 £ 958.74 6774.20 £ 5096.34 | 38.22 £11.29 | 62662.07 + 57339.15
1.017£0.01 | 0.095+0.03 | 724.46 + 305.90 3200.36 + 1802.02 19.63 £ 2.23 6245.72 + 3782.02
1.018 £0.01 | 0.170 £0.02 | 392.94 + 134.30 1788.00 £ 989.57 1520 + 1.94 3496.69 + 1786.43
1.014 £ 0.01 | 0.096 £0.02 | 627.75 + 254.99 2736.45 + 1749.55 21.09 £2091 5140.44 + 3096.55
1.021 £0.02 | 0.113+£0.05 | 789.60 + 314.37 3542.85 £ 2374.67 | 25.38 £2.23 17810.91 + 14208.55
1.056 £ 0.02 | 0.224 £0.06 | 400.75 + 74.03 1938.01 £+ 645.63 15.25+ 1.79 6075.83 £ 2359.54
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Fig 1. Graph-theoretic analysis of plant architectures. A) A 3D scan of a wildtype Columbia (Col-0) architecture with 219,792
cloud points. The (x, y, z) coordinates of the base of the plant and a few sample terminal points (rosette leaves, cauline leaves,
siliques, flowers) are shown. B) Example input points from the 3D scan shown in panel A. The points shown represent the locations
of the base of the stem (black point) and all terminal points (green points). C) The Satellite tree, which optimally minimizes travel
distance. D) The Steiner tree, which optimally minimizes total length. E) The actual plant skeleton architecture connecting the input
points through additional branch points. F-H) Example trees derived using the greedy algorithm for different values of the trade-off
parameter, o. I-]) The Stable tree, and an example of a PrefAttach tree. The total length and travel distance of each architecture is
shown in the title of each panel. For ease of visualization, panels B-] show 2-dimensional projections of the 3-dimensional trees. All
graph-theoretic analysis is performed in 3-dimensions.

https://doi.org/10.1371/journal.pcbi.1007325.g001

input, V. The set of edges E correspond to the branches (stem, axillary inflorescences, petioles)
connecting two nodes. Each edge has a length equal to the Euclidean distance between the two
nodes it connects. Branches are considered in 1-D (length only). All edges are treated as undi-
rected, as nutrients can flow in either direction.
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A computational framework for analyzing architecture trade-offs

Here, we describe a graph-theoretic method to test how well architectures balance between
competing optimization objectives using the theory of Pareto optimality [32]. We previously
described this framework [14] and elaborate it here briefly.

We study a performance-cost trade-off to measure how efficiently a plant’s architecture is
used to distribute nutrients amongst organs [22, 23]. Performance (called travel distance) mea-
sures the distance that nutrients must travel from each terminal point (rosette leaf, cauline leaf,
flower, or silique) to reach the base of the plant, or vice-versa, along the architecture. Biologi-
cally, this is related to measures of metabolic energy and hydraulic resistance required to trans-
port sugars, nutrients, and water between the leaves and the root system [23, 33-37]; travel
distance is also related to time delays in wound signaling responses, which can affect healing
rates [38]. Cost (called total length) measures the total length or biomass of the skeleton. Bio-
logically, this is related to the amount of resources (e.g., carbon) needed to build the architec-
ture [39]; minimizing length can also aid in posture control by minimizing the amount of
weight that needs to be supported [40, 41]. Thus, these two graph-theoretic measures relate to
currencies known to affect biological function. However, by no means do they encapsulate all
functions of plant architectures, nor do they directly capture all features of the plant phenotype
space because, for example, the full range of travel paths to each terminal are not available due
to the modular, meristem-driven nature of plant development. Instead, we accept that plants
have evolved some mechanisms to determine how many leaves to generate and where each
leaf should be placed. Given this, we study how optimal is the branching structure that is used
to connect the given set of leaf points.

Mathematically, these two measures can be defined as:

Travel(G) = ZdistE(VmVi) (1)
i=1

Length(G) = Z 1A (2)

J

The function distg(vy, v;) computes the graph distance between the base of the plant (v,)
and the i™ terminal point; i.e., the sum of the edge lengths along the path from v, to v;. The
length |E|| of edge j equals the Euclidean distance between the two endpoints of the edge.

What architectures minimize these two objectives individually? The architecture that mini-
mizes travel distance alone is called the Satellite tree (Fig 1C). This tree contains a straight edge
from the base of the plant to each terminal point. The architecture that minimizes cost alone is
called the Steiner tree (Fig 1D). A Steiner tree is a tree that connects all the input points using
the smallest total branch length. This tree can include branch points that are not provided as
input (V) that can help reduce the length of the connecting architecture. In Arabidopsis, the
rosette structure is Satellite-like, whereas the inflorescence typically is not.

These two architectures are in conflict with each other: the Satellite tree minimizes nutrient
transport distances but has a large total length, whereas the Steiner tree minimizes total length
but can have a large transport distance for some terminals.

Trade-offs and Pareto optimality. How well are trade-offs made between two competing
objectives? Intuitively, an architecture makes a Pareto optimal trade-off between two objectives
if improving along one objective necessitates a loss in the other objective [42]. Otherwise, both
objectives can be improved at once, which means that the architecture “could have done bet-
ter”. Prior work has made arguments suggesting that, given enough selection pressure and
genetic diversity, evolution may push biological systems to be Pareto optimal [32], where the
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weight prioritizing each objective may depend on what provides a greater fitness advantage for
a particular genotype in a particular environment [14].

To formalize this, we introduce a simple way to combine both objectives (travel distance
and total length) that weighs the contribution of each objective individually. The goal is to find
a graph G* that minimizes the joint objective:

G* = argmin o(Travel(G)) + (1 — o)(Length(G))

G

’ (3)
= argénin o <§:distE(v07 v,.)) +(1—0) <Z|EJ>

i=1

Here, the parameter a € [0, 1] controls how much weight is placed on each objective. If & =
1, the optimal architecture is the Satellite tree; if o = 0, the optimal architecture is the Steiner
tree.

To generate an architecture (tree) that nearly minimizes Eq (3) for any value of & € [0, 1],
we use a simple greedy algorithm [14]. Briefly, the algorithm initializes the tree with just the
root vertex (v,) in the tree, and the rest of the vertices (vy, v,, . . ., v,,) outside the tree. In each
step of the algorithm, an edge is added that connects a vertex outside the tree to a vertex inside
the tree that minimizes Eq (3). Along each edge added, k Steiner vertices (i.e., branch points)
are added equidistant from each other; these vertices can be used as branch points to connect
unconnected vertices in subsequent steps. In experiments here, we set k = 10. The algorithm
terminates after n steps, when each vertex is added to the tree. While this method is clearly
not optimal—minimizing Eq (3) is NP-hard—Conn et al. [14] provide evidence that this
greedy algorithm generates very close to optimal trees and that it outperforms prior heuristics
for this problem. Example architectures generated using different values of @ are shown in
Fig 1F-1H.

By applying this algorithm to each value of & € [0, 1], we can generate what is referred to as
the Pareto front i.e., the set of architectures for which improving along one objective requires
a loss in the other objective. An example Pareto front is shown as the black curve in Fig 2A. If
an architecture lies on the Pareto front, it means that there is no way to reconfigure the edges
such that both objectives improve together. Evolutionarily, the idea is that architectures that
do not lie on the Pareto front will be eliminated from the population over time.

Each plant scan has its own set of input points (V) specific to that scan. Thus, each plant
scan has its own Pareto front, consisting of the trees generated for each value of o using V as
input.

Analysis pipeline. From each individual plant scan, we extracted the 3D coordinates of
the base of the plant (v,) and all the terminal points (vy, v, .. ., v,,). These n + 1 points were
used as input to generate the Pareto front using the algorithm described above. The algorithm
was run for 101 values of & € [0, 1] in steps of 0.01. For each tree, we computed its total length
and travel distance to generate a smooth Pareto front curve (e.g., Fig 2A). The Pareto front rep-
resents a set of trees, each of which approximately minimizes Eq (3) for a different value of a.
To compare these trees with the plant, we traced the skeleton of the plant’s architecture that
connects the same 7 + 1 points through any potential branch points, and then computed the
plant’s total length and travel distance. The trees generated are all 3-dimensional but are dis-
played here in 2-dimensions for ease of visualization.

Computing the distance to the Pareto front. To determine how far away the plant archi-
tecture lay from the Pareto front, we first computed the total length and travel distance of each
of the 101 Pareto optimal trees. Each of these trees has an (x, y) location on the Pareto front,
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generating trees on the same set of input points. In all cases, the plant architecture lies significantly closer to the Pareto front than
other architectures (P < 0.001).

https://doi.org/10.1371/journal.pchi.1007325.9002

where x is its total length and y is its travel distance. Thus, the Pareto front can be defined by a
set of points, {(x}, ¥1), (%2, ¥2)s - - .» (X101> ¥101)}. We similarly computed the total length and
travel distance (, ') of the actual plant architecture. Our goal was to determine how far away
the point (x, ) was from the set of Pareto optimal points. We did this by scaling the Pareto
front until it intersected with (x, y). That is, we multiplied each (x;, y;) point by a small scaling
factor, € > 1, until some point on the Pareto front intersected with (x’, y'). If the intersection
occurred, for example, when € = 2.0, then we say that the plant lies at a distance € = 2 to the
Pareto front, meaning that its total length and travel distance is collectively twice as bad as it
could have been theoretically. The optimal value of € is 1, meaning that the plant lies exactly on
the Pareto front.

Comparing to baseline architectures. To assess whether the plant architecture lies signif-
icantly closer to the Pareto front than expected, we compared to three baseline architectures.
The idea is to test how likely it is that trees generated according to other optimization criteria
or models would be Pareto optimal.

The first baseline, called Stable, builds a structurally stable tree with even weight dispersion
by computing the centroid of the n terminal points, adding a “stem” from v, to the centroid,
and then direct edges from the centroid to each of the terminal points (Fig 1I). The second,
called PrefAttach, uses the Barabasi-Albert model [43] to generate a tree using a “rich-get-
richer” mechanism with many potential hubs, which are commonly observed in efficient
transport networks (Fig 1]). This algorithm starts with two random nodes connected by an
edge. Then, in each iteration of the algorithm, it connects a new node to an existing node
with probability proportional to the degree of the existing node. Parameters of the model were
n = |V|, m = 1. The third baseline, called Random, creates a random spanning tree using Wil-
son’s loop-erased random walk algorithm [44]. All methods use the same points (vg, vy, . . ., )
as input. For each baseline, we computed its travel distance and total length, and then the dis-
tance to the Pareto front using the method described above. For PrefAttach and Random, we
average the distance over 1000 trees.
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Arabidopsis shoot architectures are Pareto optimal

Strikingly, all 152 Arabidopsis shoot architectures lay very close to the Pareto front, and much
closer than the three baselines. For example, Fig 2A shows the analysis of an individual plant
scan of a d14 mutant that lies at a distance of € = 1.016 to the Pareto front. On the other hand,
the three other baselines lie much further away from the front: Stable (¢ = 1.906), PrefAttach
(€ =4.027), and Random (e = 6.037).

This observation—that plant architectures lie closer to the Pareto front than baselines—
was consistent across all other mutant strains and for the wildtype strain (Fig 2B). Over all
152 architectures, the average distance to the Pareto front for the plant architectures was
1.020+0.016 compared to 1.742+0.139 for Stable, 3.990+0.555 for PrefAttach, and 6.089+1.087
for Random. Using a binomial distribution, where a success was equivalent to the baseline
architecture having a smaller € value than the plant, these differences are all significant
(P <0.001).

Critically, generating a Pareto optimal architecture is not trivial nor “inevitable”. Indeed,
there are n"~* possible spanning trees that can be formed given # vertices as input. For even
small values of, say n = 20, that means there are 20'® = 2.62 x 10> possible trees in phenotype
space. The vast majority of these trees lie far from the Pareto front, as indicated by the Random
baseline above. We also scanned two additional genotypes (phot1-5phot2-1 and phyB-9) whose
inflorescence often fell down because the plant was unable to support its own weight; interest-
ingly, these plants also lay off the Pareto front (S1 Fig). This is in part driven by the fact that
after falling down, the direction of light effectively changes and branches turn to a new direc-
tion. Thus, achieving Pareto optimality is not guaranteed for any branching structure, and it
may be violated in some instances where the environment changes.

Our problem formulation considered hydraulic transport between the root and the shoot,
but there are other forms of transport that may be important, such as sugar transport from
leaves to flowers. The graph-theoretic structure that optimizes for minimizing sugar transport
distances is a fully connected bi-partite graph from each leaf to each flower. This optimal, like
the Satellite, would be costly to build. We compared the sugar transport distance and the con-
struction cost of the bipartite graph versus that of the Arabidopsis architecture. We found
that, over all mutants, the plant’s sugar transport distance was on average only 35% worse
than optimal, but it was 5341% lower in cost. This observation does not strictly imply Pareto
optimality between sugar transport performance and cost, but it does suggest that plants
achieve a large “bang for the buck™; i.e., only losing 35% in performance but reducing cost by
5341%.

Opverall, these results suggest that achieving well-balanced trade-offs may be an important
growth principle for Arabidopsis shoot architectures. Further, these results suggest that the two
objectives proposed here (travel distance, total length) may capture, or be correlated with,
broad selective pressures that constrain architecture design.

Identifying genes that can shift the trade-off balance

The analysis above showed that Arabidopsis architectures are nearly Pareto optimal, but where
on the Pareto front do the architectures lie? This location may indicate niche specialization
that varies based on the growth condition [14] or genetic background. This location also
encodes a global feature of the architecture, indicating how this plant prioritizes each objective.
Here, we explore how genetic modifications in our 10 mutants affect the weight prioritizing
one objective versus the other. Overall, we find that mutations in even a single gene are suffi-
cient to shift the architecture along the Pareto front one way or the other compared to the
wildtype architecture.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007325 September 11,2019 8/19


https://doi.org/10.1371/journal.pcbi.1007325

.@' PLOS COMPUTATIONAL
Z) : BIOLOGY [EXSCINDED]Network trade-offs and homeostasis in Arabidopsis shoot architectures

To identify this prioritization weight, we introduce the Pareto trade-off feature for an archi-
tecture, Gpant:

Length(Gy,,) / Length(Gg,iner)
T - ff — ant teiner
rade ? ( GPlam ) Travel ( GPlant ) / TraVEI ( GSatellite )

(4)

The numerator quantifies the excess length of the plant compared to the optimal minimum
length of the Steiner tree. Similarly, the denominator quantifies the excess travel distance of
the plant compared to the optimal minimum travel distance of the Satellite tree. A high value
of this feature (i.e., a large numerator and small denominator) indicates that the plant priori-
tizes minimizing travel distance; a low trade-off value indicates the plant prioritizes minimiz-
ing total length. An alternative way to calculate the prioritization weight is to compute the
value of  on the Pareto front that lies closest to the plant, though we found this feature was
not as discriminative as the Pareto trade-off feature (Table 1, S2 Fig).

We found that some mutants have significantly different trade-off values compared to the
Columbia wildtype architecture (Fig 3A and 3B, Table 1). The trade-off ratio for the Col-0
wildtype was 1.374 + 0.51. Mutants that shifted the architecture to the right of the curve
(higher trade-off value) included brcl,2, d14, cry2, cryl1,2, max4, and phyA (all P < 0.005, Kol-
mogorov-Smirnov test with Bonferroni correction using a threshold of 0.05). There was also
one mutant that shifted the architecture left along the curve (pin3,4,7; P < 0.005).

Importantly, these results are not entirely driven by changes in the number of rosette leaves.
We re-computed the Pareto trade-off feature for each mutant after excluding the rosette,
focusing only on the inflorescence (S3 Fig). The max4 and d14 mutants still significantly
shifted the architecture to the right, and the pin3,4,7 mutant still significantly shifts the archi-
tecture left, along the Pareto front. Some mutants no longer show a significant difference from
wildtype; e.g., the cry mutants, which are hallmarked by an increase in the number of rosette
leaves at flowering [45]. Indeed, we found on average 38.22+11.29 rosette leaves for the cry2
mutant, compared to 15.50+2.43 for the Col-0 wildtype (Table 1).

Opverall, these results suggest that the modification of just a few genes (1-4) is sufficient to
modify how architectures prioritize a global trade-off.

The Pareto trade-off feature can be a robust descriptor of a genotype

Plant architectures can look highly diverse, even replicates with the same genetic background,
grown in the same soil, in the same environment, and scanned at the same time [46]. Such
visual diversity can be due to inherent stochasticity, noise, or other small changes in the local
growth environment. This diversity can be problematic when trying to map a genotype-to-
phenotype relationship because differences caused by genetic variables may be difficult to
tease apart from those caused by other growth factors. Here, we asked whether the Pareto
trade-off feature, which is a global feature of the architecture, is less variable across replicates
of the same genotype compared to other common plant traits.

We quantified the variability of a feature using the coefficient of variation (CoV), which
equals the standard deviation of the feature divided by its mean (over replicates). The CoV is a
dimensionless parameter; lower CoV's are preferred and correspond to less variability in the
feature.

We found that the Pareto trade-off feature had a lower coefficient of variation compared to
five other traits: the total length, the travel distance, the number of rosette leaves, the number
of branch points, and the convex hull volume occupied by the plant (Fig 3C). For example, for
the Columbia wildtype architecture, the coefficients of variation were 0.037 (Pareto trade-off),
0.157 (number of rosette leaves), 0.348 (total length), 0.452 (travel distance), 0.467 (number of
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B) Examples architectures for the Col-0, max4, brcl,2, and cryl,2 mutants. C) The x-axis shows different mutants, and
the y-axis shows the coefficient of variation. The Pareto trade-off feature has a consistently lower coefficient of
variation compared to the other five plant features, indicating that it more robustly clusters a genotype compared to
other traits.

https://doi.org/10.1371/journal.pchi.1007325.9003

branch points), and 0.650 (convex hull volume). Similar trends were observed for each individ-
ual mutant (Fig 3C). The fact that total length and travel distance by themselves have such
high CoV further highlights that what is consistent across these architectures is not these indi-
vidual objectives, but rather their trade-offs.

We next tested how well the Pareto trade-off feature accounted for variation in the architec-
ture of the same plant as it grew over time. In this case, the other features (such as the number
of branch points) are expected to be variable because the plant is growing. The idea here is to
test whether, as the shoot develops more biomass, does it still maintain a similar global trade-
off ratio?

To test this, we first scanned 8 individual Columbia wildtype plants over 3-5 time-points
each, after the inflorescence emerged (Methods). For each scan, we computed the six features
described above, and then we computed the coefficients of variation of these features over the
3-5 time points. As expected, the non-Pareto features demonstrate high variability as the plant
grows; however, the Pareto trade-off feature was still highly consistent over time (Fig 4A and
4C). The coefficient of variation over time was 0.035 for Pareto trade-off versus 0.565 for the
number of branches, 0.242 for total length, 0.485 for travel distance, and 0.551 for convex hull
volume. We also repeated this time-series scanning experiment for 7 individual ¢ryl mutant
plants and found similar trends (Fig 4B).

The consistency of the Pareto trade-off feature, both across replicates and through portions
of development between inflorescence emergence and the floral transition, suggest that
despite growth-related changes, the trade-off between performance and cost remains relatively
steady. In other words, local changes in the architecture, such as emergence and elongation of
branches and the formation of new leaves, are compensated by a global change, in perhaps a
homeostatic sense. This homeostasis is well-captured by the Pareto trade-off feature, and thus
could help classify genotypes even if they look visually dissimilar.

Discussion

We extended our description of plant architecture optimization as a network design problem
[14] to the model species Arabidopsis. We tested if architectures of this species are also con-
strained to the set of design solutions that form the Pareto front. The Pareto front is a diverse
landscape [47] of optimal solutions where selection pressure acts on two conflicting criteria; in
our case, travel distance for nutrient transport and total length for construction costs. The
Pareto front defines a set of possible architectures for which improving upon one function
requires a sacrifice in the other, where the exact balance between these two functions can vary
based on the environment or genotype.

We used graph-theoretic analysis to show that Arabidopsis shoot architectures fall along the
Pareto front and that this is highly unlikely to occur by chance. By comparing the trade-offs
employed by wildtype versus mutant Arabidopsis, we showed that the modification of a small
number of genes (1-4) is sufficient to significantly shift how an architecture prioritizes one
function versus the other. For example, for the cryl,2, cry2, brcl,2, d14, phyA, and max4
mutants, the architecture is shifted to favor transport efficiency over total length; whereas for
the pin3,4,7 mutant, the opposite occurred. These genes may serve as candidates to breed
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Fig 4. The Pareto trade-off is consistent through plant development. A) The x-axis shows the eight Columbia wildtype replicates.
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Four examples of time-series scans of Col-0_H.
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specific features of interest in plants optimized for challenging environments. Our framework
can also be used to screen for other genes that trigger branching related changes, coupled with
high-throughput phenotyping techniques [48, 49].

We also showed that the Pareto trade-off feature was much less variable across replicates—
i.e., the Pareto trade-off feature more tightly clustered architectures of the same genotype com-
pared to other common plant traits—and it remained consistent through some portions of
development of the same plant. This stability would not hold true through all of development;
e.g., nearly all Arabidopsis begin as pure Satellites prior to the emergence of the inflorescence.
However, we did observe stability of this feature through later shoot development (i.e., after
the inflorescence emerged), suggesting that as leaves and branches emerged, maintaining a
globally stable trade-off may be a growth constraint on the architecture as a whole. Overall,
these results suggests that local stochasticity in common traits (e.g., the number of leaves or
branches) may be compensated globally such that the trade-off between performance and cost
is relatively stable. This highlights an example of the broader biological principle of “global sta-
bility despite local variability”.

Biologically, how do we interpret our finding that Arabidopsis shoot architectures are
Pareto optimal? The two functions we studied (transport efficiency and construction costs)
correlate with factors known to affect plant performance, and they represent common network
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design criteria used to evaluate other biological engineered branching structures [14]. How-
ever, these functions alone are likely insufficient to stratify the full diversity of shoot structures.
For example, two plants with the exact same set of input points that are connected using differ-
ent branch angles or branch curvature would generate the same Pareto front according to our
model. However, branch angles can vary between mutants—e.g., the pin3,4,7 mutant has
wider branch angles and the d14 mutant has shallower branch angles than the wild type [29,
50]—and such changes in branch angles can affect other architecture functions, such as light
capture [51, 52]. Further, without including some pre-defined points to connect, then ideal
plants that minimize total length and travel distance would be very small plants with leaves
very close to the ground, which is clearly not realistic. Similarly, we couched transport effi-
ciency in terms of the hydraulic conductance from the root to the shoot and vice-versa, but
other forms of transport may also be important, such as sugar transport from leaves to flowers.
More generally, two different (non-isomorphic) graphs can have the same travel distance and
construction costs [53], suggesting that their differences may be related to other dimensions of
optimization not considered here. While our simple one-parameter model captures significant
variation observed across the 152 architectures studied here, additional optimization functions
are possible to include within our framework by parameterizing them within Eq (3) and deriv-
ing a graph-theoretic algorithm to find Pareto optimal topologies for the corresponding higher
order objective. We emphasize that our goal here was not to develop a sophisticated and
highly-parameterized model of 3D shoot architectures that captures all of these features and
functions. However, the fact that plants were Pareto optimal within this relatively simple
abstraction suggests that the two functions we did study may be correlated with the ones we
did not.

There are four directions for future work that can build off the framework developed here.
First, the observation that Arabidopsis shoot architectures remain Pareto optimal over some
periods of development raises an interesting computational problem that plants appear to
solve: given an architecture at time ¢, how do you grow or extend the architecture to connect
new terminal points such that the architecture remains Pareto optimal at time ¢ + 1, without
pruning or eliminating existing parts of the architecture? This problem is reminiscent of a clas-
sic computer science problem, called the online Steiner tree problem [54], but with an addi-
tional objective (travel distance). Relatedly, we assumed that the 3D locations of the leaves
were provided as input, and we studied how branches connected these leaves. It would also be
interesting to determine if the 3D location of the next leaf can be predicted [5] given that the
architecture, after connecting the leaf, should be Pareto optimal. To address this problem,
other functions would need to be taken into account, such as the ability for the leaf to intercept
light. Second, we studied genetic variants with changes to a small number of genes; a more
comprehensive effort could study hundreds of natural Arabidopsis variants [55] with more
elaborate genetic changes. Such analyses could then use genome-wide association methods
using the Pareto trade-off as a target feature to link genotype to phenotype to environment.
Relatedly, we focused on Arabidopsis here because of the vast mutant library available; future
studies could study similar trade-offs in other species to test the generality of our observations.
Third, our graph-theoretic analysis only considered lengths (skeletons), ignoring the radii of
branching elements. While skeleton-based analyses are common, including radii as weighted
edges in our framework may further stratify architectures, for example, in instances of hypo-
cotyl thickening [56]. Fourth, none of the mutants we studied pushed the architecture far off
the Pareto front, unless the architecture fell down. This suggests that the regulatory networks
responsible for Pareto optimal pattern formation may be governed by a larger set of interacting
genes, which remain elusive.
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Methods
Plant growth experiments

Experiments were performed using 10 mutants, each within the Columbia wildtype back-
ground (Table 1). S1 Table shows the full mutant name with alleles specified. All mutants are
published, with the exception of d14pin3,4,7. This mutant was created by crossing d14-1 [57]
with the pin3-3pin4-3pin7En triple mutants [50]. Plants displaying combined phenotypes of
dl14 and pin3,4,7 were selected in the F2. Homozygous quadruple mutants were verified in F3
plants, using previously published genotyping strategies [50, 57].

Seeds were stratified in 1 ml of 0.1% agar and stored at 4C in the dark for 48 hours prior to
planting. Seeds were transferred to 12-celled planting trays using a pipette into SunGro Propo-
gation mix soil. The soil was moistened with water containing 0.12-0.24 oz/gallon fertilizer
(Plantex, Canada), 0.12-0.24 oz/gallon fungicide (Heritage, England) and sprinkled with Mar-
athon and Bugs Be Gone to prevent infestation from small insects. Seeds were placed under a
light source with lid on the tray, which was removed post germination. Upon germination, 6
cells of the tray were removed in staggered fashion to eliminate crowding affects. Soil was
watered as needed. Temperature of growth rooms were held at 20C with long day cycles: 16h
day and 8h night. Each shelf held two trays and contained 4 bulbs, 3 white light and 1
fluorescent.

Due to differing developmental trajectories, it was difficult to select a fixed day post-germi-
nation to compare or ‘align’ the scan of each strain. Instead, we scanned the plant after the
inflorescence emerged, and (with the exception of the plants shown in S1 Fig) while the shoot
was still sustaining an upright posture. While some variation in features could be introduced
based on the timing of the scan, we justified this approach by scanning wildtype Col-0 and
cryl mutants roughly every day after the inflorescence emerged; using these time-series scans,
we found that the trade-offs achieved are relatively consistent as the architecture grows during
this period (Fig 4).

For the time-series scanning experiments, the Columbia wildtype architectures were grown
and scanned in two separate experiments, the first with replicates A-C, and the second with
replicates D-H. Five scans were performed per replicate, from days 32-36 post-germination
for A-C, and from days 35-39 post-germination for D-H. For cryI, the 7 replicates were all
grown and scanned over time in one experiment, from days 29-36 post-germination (exclud-
ing day 34).

3D scanning and skeletonization of shoot architectures

A high resolution blue-laser scanner (Edge Scan Arm HD, Faro Inc.) was used to non-
invasively generate a 3D point cloud representation of the plant surface architecture. The
scanner resolution is on the micrometer scale with errors in +25um. The average number
of cloud points per mutant was 292,247 with a minimum of 64,918 and maximum of
1,144,740 points. Full technical details of the scanner and scanning procedure were previ-
ously described [9, 14].

To generate the skeleton, we used Polyworks to select points at the base of the plant, the
base of each leaf (cauline leaves, rosette leaves, siliques, and flowers), and each branch point
along the stem. Additionally, points were picked along the curvature of the stem to capture
tortuosity if applicable. Tracing through these points generated a skeleton representation of
the plant architecture, where each point was represented as a node, and nodes were connected
by edges. Each skeleton is a tree, meaning that is has no cycles and there is exactly one path
between any two nodes.
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Supporting information

S1 Table. Mapping from short mutant names used in this paper to mutants with full allele

names.
(TIFF)

S1 Fig. Plants that lie off the Pareto front. Three examples of architectures that fell down and
that lay away from the Pareto front. A-B) Two examples of a phot1,2 mutant. C) Example of a
phyB mutant. The scaled distances to the Pareto front for these three plants are: 1.209, 1.165,
and 1.109, respectively. These are significantly further away from the Pareto front compared to
the results in the main text (1.020 + 0.016, averaged over all 152 scans).

(TIFF)

S2 Fig. Variation in other plant features. In each panel, the y-axis shows the genotype, and
the x-axis shows the standard deviation in a feature for each genotype across replicates. Each
dark yellow bar represents the feature value of a single replicate. The red ‘X’ represents the
mean over replicates. Black lines represent standard deviations. The mutants significantly dif-
ferent than wildtype (Col-0) are indicated by stars on the labels, with 2-3 stars, indicating a sig-
nificance value of P < 0.01 and P < 0.001 respectively. The features are: A) a value. B) The
number of branch points. C) The convex hull volume of the cloud points. D) The number of
rosette leaves. E) The total length of the architecture. F) The travel distance of the architecture.
Opverall, we find larger variation in these features (compared to the Pareto trade-off feature),
and we find fewer genotypes that show a significant difference from wild-type.

(TIFF)

S3 Fig. Pareto optimality analysis excluding the rosette. A) The y-axis shows the genotype.
The x-axis shows the standard deviation in the Pareto trade-off ratio for each genotype. Each
dark yellow bar represents the trade-off of a single replicate. The red X’ represents the mean
over replicates. Black lines represent standard deviations. The significant mutants are indi-
cated by stars on the labels, with 2-3 stars, indicating a significance value of P < 0.01 and

P < 0.001 respectively. B) The x-axis shows different mutants, and the y-axis shows the coeffi-
cient of variation for five plant features (excluding the rosette leaves). The Pareto trade-off fea-
ture still achieves a low coefficient of variation, indicating that variability (not driven by the
number of rosette leaves) is also better captured by the Pareto trade-off feature.

(TIFF)
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