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ABSTRACT

Classical molecular dynamics simulates the time evolution of molecular systems
through the phase space spanned by the positions and velocities of the constituent
atoms. Molecular-level thermodynamic, kinetic, and structural data extracted from
the resulting trajectories provide valuable information for the understanding, engi-
neering, and design of biological and molecular materials. The cost of simulating
many-body atomic systems makes simulations of large molecules prohibitively ex-
pensive, and the high-dimensionality of the resulting trajectories presents a chal-
lenge for analysis. Driven by advances in algorithms, hardware, and data availabil-
ity, there has been a flare of interest in recent years in the applications of machine
learning — especially deep learning — to molecular simulation. These techniques have
demonstrated great power and flexibility in both extracting mechanistic understand-
ing of the important nonlinear collective variables (CVs) governing the dynamics
of a molecular system, and in furnishing good low-dimensional system representa-
tions with which to perform enhanced sampling or develop long-timescale dynamical
models. It is the purpose of this article to introduce the key machine learning ap-
proaches, describe how they are married with statistical mechanical theory into
domain-specific tools, and detail applications of these approaches in understanding
and accelerating biomolecular simulation.
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1. Introduction

Classical molecular dynamics (MD) simulation is a workhorse tool for the study of
molecular and atomic systems to understand and predict their behavior by integrating
Newton’s equations of motion at the molecular scale [1, 2]. The essence of the tech-
nique is to simulate the dynamical evolution of a molecular system through its phase
space spanned by the atomic positions and velocities under a Hamiltonian defining
the many-body interaction potential. Analysis of the resulting simulation trajectories
provides a means to estimate the structural, thermodynamic, and dynamical proper-
ties of the system. Performing a molecular dynamics requires three chief ingredients:
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an initial system configuration, an interaction potential, and a means to integrate the
classical equations of motion. This approach was anticipated in 1812 by Pierre Simon
de Laplace’s Gedankenexperiment that posited ‘an intelligence which could compre-
hend all the forces by which nature is animated and the respective positions of the
beings which compose it, if moreover this intelligence were vast enough to submit these
data to analysis ... to it nothing would be uncertain, and the future as the past would
be present to its eyes’ [3]. Alder and Wainwright were the first to realize Laplace’s
‘clockwork universe’ in 1957 through their pioneering molecular dynamics simulations
employing state-of-the-art computers and simulation algorithms to approximate the
role of the ‘all-seeing intelligence’ [4, 5]. Modern advances in computational hardware
and software and force fields constructed from quantum mechanical calculations and
precise experimental measurements have enabled simulations of systems of billions
[6, 7] and even trillions [8] of atoms. However, validated force fields for arbitrary ma-
terials and conditions are still lacking, and the inherently serial nature of numerical
integration and the requirement for short time steps on the order of femtoseconds to
preserve numerical stability have largely limited simulations of non-trivial systems to
millisecond time scales [9-11]. Karplus and Petsko elegantly articulated these defi-
ciencies in their 1990 article with their assertion holding equally true today [12]: ‘T'wo
limitations in existing simulations are the approximations in the potential energy func-
tions and the lengths of the simulations. The first introduces systematic errors and
the second statistical errors.” The continued success of MD is critically contingent on
progress on both of these fronts and each is an important and active area of research
in the field. The present review considers recent advances enabled by machine learning
in general, and deep learning in particular, in engaging the second of these challenges.

The statistical errors in structural, thermodynamic, and kinetic properties is fun-
damentally a sampling problem. Simulation trajectories furnished by standard MD
do not offer sufficiently comprehensive sampling of the states or events of interest to
provide robust estimations of the properties of interest [11, 12]. Proper sampling of
the relevant states and transition rates is critical for the success of biomolecular sim-
ulations in applications including identification of the native and metastable states of
a protein, resolution of protein binding pockets and association free energy of ligands
and drugs, prediction of the permeability of membrane modulating peptides, under-
standing of the mechanisms of protein allostery, prediction of the stable structures
and aggregation pathways of self-assembling peptides, and modeling of the activation
pathways and kinetics of membrane proteins. Enhanced sampling techniques presently
engage this challenge with approaches that fall largely into one of four classes [13—-20].
(I) Path sampling techniques that efficiently sample reactive pathways between two
pre-defined states. (II) Tempering or generalized ensemble approaches that modify the
system Hamiltonian to lower barrier heights and improve sampling of configurational
space. (III) Decomposition techniques that break the (configurational) phase space of
the system into a number of disjoint metastable states and construct a kinetic model
for the dynamical transitions between these states. (IV) Collective variable (CV) bias-
ing techniques that accelerate sampling and barrier hopping along pre-specified order
parameters.

The first class of approaches — path sampling — focuses on sampling the intercon-
version pathways between two defined states of interest, making it less well suited to
the global exploration of a previously uncharted configurational space. Recent work
by Bolhuis and co-workers combining path reweighting with transition path sampling
has, however, demonstrated a means to estimate the underlying free energy surface in
the vicinity of the barrier and terminal states [21].



The second class of approaches — tempering — is well suited to systems for which
there is very little prior knowledge as to what collective variables are most important in
governing the system dynamics, but suffer from the drawback that much computational
effort is expended sampling modified Hamiltonians that are generally not of direct
interest but serve only to support improved sampling [13].

The third class of approaches — discrete kinetic models — requires the definition of
a partitioning of phase space into a set of disjoint metastable states and therefore
requires sampling of these thermally-relevant configurations [22]. As such, methods
from the second or fourth classes of techniques are profitably employed to efficiently
sample the configurational space rather than relying upon the exploration provided
by unbiased simulations.

The fourth class of approaches — collective variable biasing — appears to suffer
from the deficiency that they presuppose the availability of ‘good’ CVs along which
to drive sampling. We define ‘good’ in the sense that driving sampling along these
CVs leads to lower variance estimators of the structural, thermodynamic, or kinetic
properties of interest [23-26]. As such, these CVs should typically be coincident with or
closely related to the important dynamical motions of the system and drive sampling
over free energy barriers connecting thermally relevant states that would be rarely
be surmounted in unbiased simulations. For all but the simplest systems it is not
possible to intuit good CVs [27, 28], and accelerating bad CVs that are irrelevant to the
important molecular motions can lead to poorer sampling than standard unbiased MD.
For this reason, the development of techniques to determine good CVs for enhanced
sampling is of ‘paramount concern in the continued evolution of such methods’ [13]. In
2018 we published a review of nonlinear machine learning approaches for data-driven
CV discovery [16]. It is the purpose of the present review to provide an update to this
fast moving field and illuminate some recent advances in employing tools from machine
learning — deep learning in particular — for CV discovery and enhanced sampling. We
also direct the interested reader to a number of other recent reviews of machine learning
in molecular simulation [29], soft materials engineering [30, 31], materials science [32],
collective variable identification [33], and enhanced sampling [13].

The structure of this review is as follows. In Section 2, we present a brief sur-
vey of some of the most prevalent and powerful machine learning techniques that
have found broad adoption within the molecular simulation community. Building upon
these fundamentals, in Section 3 we detail recent advances in CV discovery and en-
hanced sampling enabled by these machine learning tools. We focus our discussion
upon biomolecular simulations, and in particular protein folding, where many of these
developments and successes have been demonstrated. We will largely focus on all-atom
simulations where the sampling problem is most severe, but all techniques discussed
may be equally well applied to coarse-grained calculations. Finally, in Section 4 we
present our outlook upon emerging challenges and opportunities for the field.

2. Survey of popular machine learning techniques for CV discovery

The data-driven CVs sought for enhanced sampling are those which provide improved
statistical estimates of the properties of interest. Typically, these CVs are correlated
with the highest-variance or slowest-evolving collective degrees of freedom, and there-
fore can also provide molecular-level insight and understanding of system properties
and behavior. In principle, enhanced sampling could be conducted in all possible com-
binations of CVs and those which provide the statistically optimal estimates of the



property we seek to estimate declared the ‘best’. Of course the enormous computa-
tional cost associated with a blind search in the combinatorial space of all possible
CVs entirely defeats the purpose of enhanced sampling to provide efficient and accel-
erated property estimation. Accordingly, a constructive criterion by which to define
and determine a ‘good’ CV is required [34-36]. Putative CVs can be considered order
parameters spanning a reduced-dimensional subspace of the molecular configurational
space. The quality of the subspace defined by these CVs is frequently scored according
to one of two common metrics: high-variance CVs parameterize a subspace that max-
imally preserves the configurational variance contained within a molecular simulation
trajectory [37-39], whereas slow CVs (i.e., highly autocorrelated CVs) span a subspace
that maximally preserves the kinetic content.

High-variance CV discovery is more straightforward and amenable to a wide array
of established machine learning and dimensionality reduction techniques. Data-driven
discovery of these CVs take simulation trajectories as their input, and it is typically
possible to apply these techniques to non-time ordered data and data generated by
biased sampling where the thermodynamic bias can be exactly canceled by thermo-
dynamic reweighting [40]. Conceptually, these techniques can be thought of as iden-
tifying and parameterizing a low-dimensional subspace within the high-dimensional
configurational phase space to which the simulation data are approximately restrained
[41, 42]. We note here the apparent ‘chicken and egg’ problem wherein CV discovery
requires simulation trajectories that provide good sampling of the thermally relevant
phase space, whereas the generation of such trajectories requires enhanced sampling
in good CVs [33]. The solution, of course, is to iterate between rounds of CV discov-
ery and enhanced sampling until convergence of the CVs and phase space exploration
(33, 37, 43, 44].

The application of machine learning for high-variance CV discovery was pioneered
through the use of linear dimensionality reduction tools such as principal component
analysis (PCA) and multidimensional scaling (MDS) [45, 46]. However, the inher-
ent linearity of these approaches limited the capabilities in identifying the impor-
tant nonlinear CVs characteristic of complex molecular systems. In more recent years,
nonlinear dimensionality reduction and manifold learning techniques have been em-
ployed, including locally linear embedding (LLE) [47, 48], Isomap [49-52], local tan-
gent space alignment [53], Hessian eigenmaps [54], Laplacian eigenmaps [55], diffusion
maps (DMAPS) [41, 44, 56-58], sketch maps [38, 59, 60] and t-distributed Stochas-
tic Neighbor Embedding (t-SNE) [61]. These more powerful techniques have largely
superseded linear approaches but do tend to suffer from the absence of an explicit
functional mapping of atomic coordinates to the CVs, which can present challenges in
interpretability and implementing biased sampling [37, 43, 44, 62, 63]. Deep learning
techniques based on artificial neural networks have recently emerged as a means to
discover high-variance nonlinear CVs that are equipped with explicit and differentiable
functional mappings to the atomic coordinates [37, 64].

Slow CV discovery tends to be more challenging and approachable with a narrower
class of machine learning tools. These approaches are also more restrictive in that they
typically require (long) time-ordered trajectories that have been propagated under the
unbiased system Hamiltonian. Depending on the particular dynamical propagator that
is implemented, approaches do exist to relax the requirement for unbiased trajecto-
ries by performing dynamical reweighting of biased simulation trajectories [65-70].
Conceptually, these approaches seek linear or nonlinear functions of the configura-
tional coordinates that are maximally autocorrelated and therefore parameterize the
slowest-evolving molecular motions. In general, these approaches owe their mathemat-



ical foundations to the properties of the transfer operator (a.k.a. Perron-Frobenius
operator or propagator) or its adjoint the Koopman operator [71-83] and associated
variational principles such as the variational approach to conformational dynamics
(VAC) [84, 85] or variational approach to Markov processes (VAMP) [80]. Classical
techniques for slow CV discovery include time-lagged independent component anal-
ysis (TICA) [86, 87] kernel TICA (kTICA) [88, 89], dynamical mode decomposition
(DMD) [74, 90-96], extended dynamical mode decomposition (EDMD) [78, 97, 98],
canonical correlation analysis (CCA) [80, 99], Markov state models (MSMs) [19, 20],
or Ulam’s method [71, 100-103]. More recent approaches based on deep learning in-
clude deep CCA [104], variational approach to Markov processes networks (VAMPnets)
[81, 105], state-free reversible VAMPnets (SRVs) [106, 107], time-lagged autoencoders
(TAEs) [108, 109], and variational dynamics encoders (VDEs) [109-111].

In the remainder of this section we survey four of the most popular machine learning
techniques — ANNs, DMAPS, MSMs, and TICA — that serve as the foundations for
many recent methodological developments in high-variance and slow CV discovery and
enhanced sampling that we discuss in Section 3.

2.1. Artificial neural networks (ANNs)

Artificial neural networks (ANNs) are collections of activation functions, or neurons,
which are composited together into layers in order to approximate a given function
of interest [112]. Their utility and power can be largely attributed to the universal
approximation theorem, [113, 114], which states that, under mild assumptions, there
exists a finite-size neural network that is capable of approximating any continuous
function to arbitrary precision. In a fully-connected ANN, the neurons in each layer
take as their inputs the outputs from the previous layer, apply a nonlinear activation
function, and pass on their outputs to the next layer. A schematic diagram of a three-
layer feed-forward fully-connected neural network in Fig. 1. Mathematically, the output
yf from neuron ¢ of fully connected layer k is given by,
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where w’-“i and b; define the layer weights and biases, respectively. The activation func-
tion f (xs is an arbitrary nonlinear function but is often taken to be tanh (x) or some
form of rectified linear unit (ReLU) and is applied element-wise to the input. ANNs
are typically trained by minimizing an objective function (also called loss function)
using some variant of stochastic gradient descent through a process known as back-
propagation [115-117].

Many of the advances in deep learning have been driven by novel network topologies,
activation functions, and loss functions adapted to particular tasks. For example, con-
volutional neural networks capture spatial invariance of local features, a useful feature
for image analysis [118-120]. Autoassociative neural networks perform non-linear di-
mensionality reduction [121]. Generative models, such as variational autoencoders [122]
and generative adversarial networks (GANs), [123] are capable of synthesizing new,
unobserved examples that resemble existing training data. In applications to molecu-
lar systems, ANNs have been used to build biasing potentials for enhanced sampling
[124-128], fit ab initio potential energy surfaces [129, 130], and determine quantum
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Figure 1. Schematic diagram of a three-layer fully-connected feed-forward neural network. The output of
neuron ¢ from layer k is denoted yf and the bias node for layer k denoted bF. The arrows connecting pairs
of neurons are the trainable weights w;;. The output of each layer is computed from a weighted sum of
outputs of the previous layer passed through a nonlinear activation function (Eq. 1). (Image constructed using
code downloaded from http://www.texample.net/tikz/examples/neural-network with the permission of the
author Kjell Magne Fauske.)

mechanical forces in MD simulations [131], perform coarse graining [132], and gener-
ate realistic molecular configurations [133-135]. To highlight a few specific examples,
PotentialNet is a novel neural network architecture which uses graph convolutions to
encode molecular structures, accommodating permutation invariance and molecular
symmetries [136]. SchNet is a variant of a deep tensor neural network that eliminates
rotational, translational, and permutational atomic symmetries by construction and
has been used to fit molecular potential energy landscapes and molecular force fields
[137]. PointNet [138] is a network designed to ingest and process point cloud data for
object classification and part segmentation that eliminates permutational invariances
by max pooling, and which recently found applications in local molecular structure
analysis and crystal structure classification [139]. CGnets learn free energy functions
and force fields for coarse-grained molecular representations by fitting against all-atom
force data [132]. Boltzmann Generators (BG) employ a synthesis of deep learning,
normalizing flows, and statistical mechanics to train an invertible network capable of
efficiently sampling molecular configurations from the equilibrium distribution [133].
As we will see below, many cutting-edge ML approaches rely upon some form of ANN,
and, with increasing frequency, deep neural networks (DNN) comprising many hidden
layers.

We note that Boltzmann Generators [133] represent a particularly promising and
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powerful enhanced sampling technique for molecular systems, and although they do
not inherently rely upon the discovery or definition of CVs for their operation we
identify strong synergies between these techniques. First, training of BGs generally
requires a number of examples of molecular structures from metastable states of the
system and CV enhanced sampling techniques may be used to efficiently furnish these
training examples starting from nothing more than a single structure and a molecular
force field. Second, since BGs can efficiently sample and estimate free energy differ-
ences between distantly separated states of the molecular system they may be used to
efficiently generate physically realistic transition pathways between metastable states
identified by CV enhanced sampling. Third, one mode of BG deployment augments the
network loss function with a “reaction-coordinate loss” to promote sampling along a
particular direction in phase space. CV discovery techniques can identify good reaction
coordinates linking important metastable states of the system. Fourth, CV discovery
and enhanced sampling may be conducted within the BG latent space to augment
the power of BGs to explore previously unsampled regions of configurational space
through the invertible transformation to molecular coordinates.

2.2. Diffusion maps (DMAPS)

Diffusion maps are a dimensionality reduction technique originally proposed by Coif-
man and Lafon that performs nonlinear dimensionality reduction by harmonic analy-
sis of a discrete diffusion process (random walk) constructed over a high-dimensional
dataset [57, 140]. The first application of DMAPS to molecular simulations demon-
strated its capacity to extract dynamically-relevant collective molecular motions [41],
and it has since seen widespread adoption as a method for the analysis of molecular tra-
jectories [28, 58, 141] and as a component of adaptive biasing methods [43, 44, 56, 63].
Mathematically, DMAPS construct a random walk over the space of molecular config-
urations recorded over the course of a molecular simulation, which, in the continuum
limit, can be shown to correspond to a Fokker-Plank (FP) diffusion process in the pres-
ence of potential wells [142]. The leading eigenvectors of the Markov matrix describing
the dynamics of the discrete random walk approximate the leading eigenfunctions of
the associated backward FP operator describing the most slowly relaxing modes of
the diffusion process [140]. The algorithm proceeds by constructing a kernel matrix K
defined as,

Cia} o)

Ki]’ = exp <— 2
where ¢ and j index over molecular configurations, d(i,j) is a user-defined distance
metric such as the translationally and rotationally aligned root mean squared devia-
tion (RMSD) between atomic coordinates, and € is the user-defined kernel bandwidth
which represents the characteristic step size of the random walk over the data [42].
After row-normalizing the kernel matrix to conserve hopping probabilities, a spectral
decomposition gives eigenvector/eigenvalue pairs that are truncated at a gap in the
eigenvalue spectrum. The resultant top k eigenvectors define the CVs spanning the
low-dimensional embedding and which parameterize the intrinsic manifold upon which
the diffusion process is effectively restrained. The naive implementation of DMAPS
scales quadratically in the number of data points, and so variants with reducted mem-
ory and computational costs have been developed, including landmark diffusion maps



(L-DMAPS) [143] and pivot diffusion maps (P-DMAPS) [144].

Although a powerful nonlinear dimensionality reduction technique, DMAPS possess
at least two limitations in its applications to molecular systems. The first is the as-
sumption of diffusive dynamics over the high-dimensional data, which may or may not
be a good approximation of the true molecular dynamics. The second is the absence of
an explicit mapping from the atomic coordinates to the low-dimensional CVs. As a re-
sult, out of sample extension to new data points outside of the training set require the
use of approximate interpolation techniques such as the Nystrom extension, Laplacian
pyramids, or kriging [145-147]. Further, although the existence of an explicit function
mapping is no guarantee of interpretability (consider ANNSs), its absence can frustrate
interpretability of the CVs. A degree of interpretability can be recovered by corre-
lating the DMAPS CVs with candidate physical variables [41, 56], perhaps within an
automated search procedure [27, 148, 149], by projecting representative molecular con-
figurations over the low-dimensional embedding, or by visualizing the collective modes
in the high-dimensional space [150, 151]. The absence of an explicit mapping also
precludes the calculation of exact derivates of this expression, which renders diffusion
maps incompatible with enhanced sampling methods such as umbrella sampling [152]
or metadynamics [23] that require the gradients of the collective variables with respect
to the atomic coordinates.

2.3. Markov state models (MSMs)

Markov state models (MSMs) are a powerful framework to gain insight from molecular
simulation trajectories, and guide efficient simulations [20, 153]. MSMs are widely used
for studying many biomolecular processes including protein folding, protein associa-
tion, ligand binding, and forging connections with experiment [154, 155]. Constructing
MSMs typically follows the following steps [22]: feature extraction from the molecular
simulation trajectory, feature transformation, engineering, and elimination of symme-
tries (e.g., translation, rotation, permutation), projection of engineered features into
a low-dimensional subspace, clustering low-dimensional projections of configurations
into microstates, construction of a microstate transition matrix, coarse-graining into
macrostates, validation and analysis of the microstate and macrostate kinetic models
for thermodynamic and dynamic properties. A schematic illustration of this pipeline
is presented in Fig. 2.

There are many important aspects in each of these steps, a detailed discussion of
which can be found in Refs. [20, 22, 153, 156]. Here we observe a few key points. The
chief advantage of MSMs in furnishing long-time kinetic models, is that the simulation
data required for their construction need only have reached local equilibrium, in the
sense that the transition probabilities between neighboring microstates are memory-
less, allowing the MSM to be constructed exclusively from conditional probabilities
that the system appears in state j at time (¢t + 7) given that system appears in state
i at time t [155-158]. This is an extremely valuable property since it alleviates the
need for globally equilibrated simulation trajectories that can be exceedingly expen-
sive to generate. As such, MSMs can be constructed from multiple relatively short
trajectories that can be performed in parallel and initialized adaptively to provide
good sampling of all relevant transitions [156, 158]. We also observe that many steps
in the MSM construction pipeline profitably employ other machine learning methods.
In particular, TICA, SRVs, and VDEs are frequently used in the featurization and
dimensionality reduction steps [87, 107, 110] (see Sections 2.4 and 3.7), spectral clus-
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Figure 2. Schematic diagram of the Markov state model (MSM) construction and analysis pipeline. (a)
Many short molecular dynamics trajectories are collected. (b) The snapshots constituting each trajectory are
featurized, projected into a low-dimensional space, and clustered into microstates. Each frame in each trajectory
is assigned to a microstate. For illustrative purposes, four microstates are considered and colored green, blue,
purple, and pink. (¢) Counting the number of transitions between microstates furnishes the transition counts
matrix. (d) Assuming the system is at equilibrium and therefore follows detailed balance, the count matrix
is symmetrized and normalized to generate the reversible transition matrix defining the conditional transition
probabilities between microstates. (e) The equilibrium distribution over microstates is furnished by the leading
eigenvector of the transition probability matrix, here illustrated in a pie chart. States with greater populations
are more thermodynamically stable. (f) The higher eigenvectors correspond to a hierarchy of increasingly fast
dynamical relaxations over the microstates. The first of these possess a negative entry corresponding to the
green state and positive entries for the other states, therefore characterizing the net transport of probability
distribution out of the green microstate and into the blue, purple, and pink. If desired, the microstates can
be further coarse grained into macrostates, typically by clustering of the microstate transition matrix. Image
reprinted with permission from Ref. [20]. Copyright (2018) American Chemical Society.

tering is employed to lump microstates into macrostates [159], maximum likelihood
estimation used to enforce reversibility [156], and active learning used to adaptively
direct sampling of undersampled microstate transitions [153]. VAMPnets and Deep
Generative Markov State Models are two recently-proposed approaches that employ
deep learning to replace some or all of the MSM parameterization pipeline for the
construction of discrete kinetic models. We discuss these approaches in Section 3.8.

2.4. Time-lagged independent component analysis (TICA)

Time-lagged independent component analysis (TICA) (also known as second order
ICA or time-structure based ICA, and equivalent to CCA employing time-lagged data
for reversible processes [104, 105, 108]) is a linear dimensionality reduction method
that takes as input a featurization of a molecular simulation trajectory and identifies
maximally autocorrelated linear projections along which the dynamical evolution of
the system relaxes most slowly [71, 84-87, 160-164]. This stands in contrast to PCA,
which identifies linear projections along which the configurational variance in the sim-
ulation trajectory is maximal [45, 46, 165]. The leading TICA components can be
interpreted, within the linear approximation, as the leading ‘slow modes’ whereas the
PCA components are the leading ‘high variance modes’. It can be shown that given
a (possibly nonlinear) mean-zeroed featurization &(x) = {£x(x)} of the snapshots of
a molecular simulation trajectory x with frames recorded at a time interval 7, the
expansion coefficients u defining the hierarchy of TICA modes defined by the linear
projections v;(x) = > uix&k(x) follow from the solution of the following generalized



eigenvalue problem [30, 84-86],
C,U = CyUA, (3)

where A is a diagonal matrix of ordered eigenvalues {\;} that rank order the cor-
responding eigenvectors according to an implied time scale t; = —7/In \;, Cy is the
covariance matrix with elements C% = E[§(t)&;(t)], Cr is the time-lagged covariance
matrix with elements C7; = E[¢;(¢)&;(¢ + 7)], and the colummns of U corresponding to
the {u;} hold the expansion coefficients.

The identification of slow modes is particularly important when we are interested
in understanding or accelerating kinetic process in molecular systems, for example in
protein folding [10] or ligand binding [166]. TICA is commonly used within the MSM
pipeline to define slow low-dimensional projections of simulation trajectory data for
microstate clustering (Section 2.3). It is known that MSM models built on top of TICA
components are generally much better performing than those built upon structural
metrics (e.g. root-mean-square deviation of atomic positions) [87]. TICA coordinates
have also been used as collective variables in which to conduct enhanced sampling
using metadynamics [167, 168].

3. Machine learning-enabled advances in collective variable discovery and
enhanced sampling

We now proceed to detail a selection of recent advances in collective variable (CV) dis-
covery and enhanced sampling in biomolecular simulations that have been enabled by
modern machine learning techniques. The selected applications are mainly taken from
the field of biomolecular simulation and largely build upon the foundations established
in Section 2.

3.1. D:iffusion maps-based enhanced sampling

A number of enhanced sampling techniques have emerged that rely on DMAPS to learn
a low dimensional intrinsic manifold characterizing the slowest motions of a macro-
molecular system, then use various schemes to expand the boundaries of the manifold
into unexplored regions. One such method is known as diffusion-map-directed molec-
ular dynamics (DM-d-MD). In DM-d-MD, an initial short simulation is carried out,
after which the locally-scaled variant of diffusion maps is used to construct the intrinsic
manifold [58]. The configuration with the largest value of the first diffusion coordinate
is chosen as the new frontier, and a new short simulation is started from that state. This
process is repeated until no new regions are discovered. Selection bias towards frontier
points perturbs sampling away from the unbiased Boltzmann distribution. In order to
reconstruct accurate free energies and sample densities, additional rounds of umbrella
sampling are performed at the frontier points and reweighting is employed to recover
equilibrium statistics. An extended version of DM-d-MD was subsequently proposed
to eliminate the need for the additional umbrella sampling and improve the selection
of frontier points [44]. In this extended version, swarms of simulations are initialized,
terminated, and restarted over the course of the landscape exploration process to
maintain an approximately uniform distribution in the first two DMAPS coordinates.
By updating the statistical weights of the trajectories within this kill/spawn process
the necessary reweighting factors are available to correct for the bias introduced in
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the selection of simulation starting points and recover estimates of the unbiased free
energy landscape. An application of extended DM-d-MD to alanine-12 demonstrated
impressive speedups in exploring the thermally accessible phase space compared to
unbiased calculations [44]. The heart of the DM-d-MD method is to accelerate sam-
pling by the smart initialization of unbiased simulations at the frontier of the explored
phase space rather than through the imposition of artificial bias. On the one hand, this
is advantageous in that all simulation trajectories evolve under the unbiased system
Hamiltonian and therefore obey the true dynamics of the system, but on the other
hand the absence of artificial bias means that simulations are reliant on favorable ini-
tialization and thermal fluctuations to drive barrier crossing, so trajectories can be
prone to tumble down steep free energy gradients and limit the efficiency of barrier
crossing.

A second approach termed intrinsic map dynamics (iMapD) is due to Chiavazzo et
al. [63]. Similar to DM-d-MD, short simulations are conducted and embedded using
DMAPS. The boundary of this ‘intrinsic map’ is detected and extended outwards by a
certain amount using local PCA. This step is critical to iMapD, as it involves the pro-
jection of points on the intrinsic manifold into unexplored regions, effectively allowing
the system to tunnel through free energy barriers. Since the projected points may lie
off-manifold, a lifting step is performed where the new configurations are restrained
and the remaining degrees of freedom are relaxed. Once lifting is complete, new rounds
of unbiased simulation are initialized from the projected boundary points and the pro-
cedure repeated until convergence. An illustration of the operation of iMapD is pre-
sented in Fig. 3. An application of iMapD to computationally challenging simulations
of the dissociation of the Mga2 dimer demonstrated its capacity to efficiently drive
dissociation in just three iterations of the technique where millisecond-long unbiased
simulations fail to do so [63]. Whereas DM-d-MD initialized new simulations at the
frontier of the currently sampled phase space, iMapD performs a local extrapolation
to seed new points beyond the current frontier, offering improved sampling efficiency
and the possibility to tunnel through free energy barriers. The optimal size of the
outward step can, however, be difficult to determine and, like DM-d-MD, the absence
of artificial bias can impair barrier crossing efficiency.

The application of artificial biasing potentials in the collective variables identified
by DMAPS is made challenging by the absence of an explicit and differentiable map-
ping between the atomic coordinates and the DMAPS CVs. The out-of-sample exten-
sion techniques discussed in Section 2.2 furnish approximate projections for new data
and enable energy biases to be applied in Monte-Carlo simulations as perturbations
to the unbiased Hamiltonian conditioned on the current value of the DMAPS CVs
[169-171]. The approximations introduced by these extrapolations, however, typically
render them too numerically unstable for reliable derivative calculation and the im-
plementation of force biases in molecular dynamics simulation. One solution to this
problem is offered by the diffusion nets (DNETS) approach of Mishne et al., who
train an ANN encoder to learn a functional map from the atomic coordinates to the
low-dimensional DMAPS embeddings [172]. By construction, this map is both explicit
and differentiable, opening the door to its use within off-the-shelf molecular dynam-
ics enhanced sampling techniques such as umbrella sampling or metadynamics. The
authors also train a ANN decoder to reconstruct molecular configurations from the
DMAPS manifold, which may also be useful in ‘hallucinating’ new molecular configu-
rations outside the currently explored phase space that may then be lifted and used
to initialize new simulations in the mold of iMapD.
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Figure 3. Schematic illustration of iMapD. The curved teal sheet is a cartoon representation of a low-
dimensional manifold residing within the high-dimensional coordinate space of the molecular system (black
background) and to which the system dynamics are effectively restrained. This manifold supports the low-
dimensional molecular free energy surface of system (red contours denote potential wells). The dimensionality
of the manifold, good collective variables with which to parameterize it, and topography of the free energy
surface are a priori unknown. iMapD commences by running short unbiased simulations to perform local
exploration of the underlying manifold and which define an initial cloud of points C(1). Boundary points
are identified, here BPl(1> and BPQ(I)7 and local PCA applied to define a locally-linear approximation to the
manifold geometry that is locally valid in the vicinity of each point. An outward step is then taken within
these linear subspaces, here from BP1<1) to expand the exploration frontier. The projected point may lie off the
manifold due to the linear approximation inherent in the outward projection and so a short ‘lifting’ operation
is employed to relax it back to the manifold. This point then seeds a new unbiased simulation that generates a
new cloud of points C? and the process is repeated until the manifold is fully explored. In this manner iMapD
explores the manifold by ‘walking on clouds’. Image adapted with permission from Ref. [63].

3.2. Smooth and nonlinear data-driven CVs (SandCV)

In a similar spirit to the DNETS approach of Mishne et al. (Section 3.1), Hashemian
et al. developed an approach termed smooth and nonlinear data-driven collective vari-
ables (SandCV) to estimate explicit and differentiable expressions for CVs discovered
by nonlinear dimensionality reduction and then apply bias in these CVs to perform
enhanced sampling [39]. In principle, SandCV is compatible with any nonlinear dimen-
sionality technique and enhanced sampling protocol, but it was originally developed to
operate with Isomap [50] and adaptive biasing force (ABF') [173]. The heart of SandCV
is estimation of the explicit and differentiable function C : r € RP — ¢ = C(r) € R?
that projects a D-dimensional all-atom Cartesian configuration r into a point £ in the
d-dimensional Isomap manifold, and d << D. The mapping C(r) can be conceived of
as the composition of three functional maps,

C(r)=M"1oPoAlr), (4)

as illustrated in Fig. 4. A(r) performs alignment of the atomic configuration to (some
subset of) the atoms x of a reference structure, P(x) performs a projection of the
aligned configuration to the nearest neighbor point within the previously constructed
Isomap manifold, and M ~!(x) performs projection of this point into the manifold and
is itself the inverse of a function M (&) that is a mapping from the points in the man-

12



ifold back to the aligned molecular configurations achieved through a basis function
expansion in a small number of landmark points. Enhanced sampling is effected by ap-
plying biasing forces over the manifold F(&) and propagating these to forces on atoms
F(r) through the Jacobian of the mapping function DC(r). SandCV is demonstrated in
applications to alanine dipeptide in vacuum and explicit water. In an instance of trans-
fer learning, it is shown that data-driven CVs computed for a simpler system (alanine
dipeptide in vacuum) can be applied to a more complex system (alanine dipeptide in
water). In a followup publication, the authors propose an extension to SandCV that
builds an atlas of locally-valid CVs that are subsequently stitched together, which can
be valuable in parameterizing complex free energy topologies where different regions
of conformational space may require different CVs for their parameterization [174].

biasing collective force

Figure 4. Schematic illustration of SandCV. Molecular configurations r are aligned to a reference configu-
ration A(r) then projected onto the Isomap manifold using a nearest neighbor projection and a basis function
expansion in a number of landmark points M1 0P (x). Enhanced sampling using adaptive biasing force (ABF)
is effected by propagating biasing forces over the manifold F (&) into forces on atoms F(r) through the Jacobian
of the explicit and differentiable composite mapping function C(r) = M~ o P o A(r). Image reprinted from
Ref. [39], with the permission of AIP Publishing.

SandCV relies on the availability of representative configurations covering the re-
gion of configurational phase space of interest since the projection of points onto
the manifold is through projection onto nearest neighbors. When no such data are
available, SandCV uses initial high-temperature simulations to provide seed configu-
rations for the manifold learning. The subsequent enhanced sampling is then able to
interpolatively bridge the gaps between the sparse initial landscape, but it remains
undemonstrated as to whether the algorithm can extrapolatively drive sampling into
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new regions of configuration space.

3.3. Molecular enhanced sampling with autoencoders (MESA)

DNETS (Section 3.1) and SandCV (Section 3.2) furnish explicit and differentiable
approximations linking the atomic coordinates to the low-dimensional CVs furnished
by nonlinear dimensionality reduction, which can subsequently be used to conduct
enhanced sampling. Chen et al. proposed an alternative nonlinear dimensionality ap-
proach based on deep learning that learns nonlinear CV that possess explicit and
differentiable mappings by construction [37, 64]. In doing so, the functional esti-
mation step is eliminated and enhanced sampling may be conducted directly in
the learned CVs without approximation error. This approach, termed molecular en-
hanced sampling with autoencoders (MESA), employs an deep neural network (DNN)
with an autoencoding architecture or ‘autoencoder’ (AE) comprising an encoder
Oproj : 2 € H — § € L that maps molecular configurations z in a high-dimensional co-
ordinate space H to a nonlinear projection £ in a low-dimensional latent space £, and
a decoder Oy : € € L — z € H that approximates the reverse mapping (Fig. 5). The
network is trained to reconstruct its own inputs (i.e., autoencode) such that z ~ z and
therefore discover a low-dimensional latent space & defined by the ANN activations
in a bottleneck layer that preserves the salient information necessary to perform an
approximate reconstruction. The appropriate dimensionality of the latent space, and
therefore number of nonlinear CVs required for reconstruction, can be tuned on-the-fly.
Since the encoding & = Oy,j(z) is furnished by a ANN it is explicit and differentiable
by construction and can be used to propagate biasing forces in the CVs F(&) to forces
on atoms F(z).

Oproj: H 2L Ope: LoOH

encoder decoder

reconstructed
atomic coordinates

atomic coordinates

‘ t‘lx A\.?‘ X ‘

Z= (erec o @proj)z
input  hidden bottleneck hidden output

Figure 5. Molecular enhanced sampling with autoencoders (MESA). An autoencoding neural network (au-
toencoder) is trained to reconstruct molecular configurations via a low-dimensional latent space where the CVs
are defined by neuron activations within the bottleneck layer. The encoder ©y.,; performs the low-dimensional
projection from molecular coordinates z in the high dimensional atomic coordinate space H into the low-
dimensional latent space £ and the decoder ©rec performs the approximate reconstruction back to z. The
encoder furnishes, by construction, an exact, explicit, and differentiable mapping from the atomic coordinates
to CVs that can be modularly incorporated into any off-the-shelf CV biasing enhanced sampling technique.

To encourage complete sampling of phase space and improvement of the data-driven
CVs, rounds of CV discovery and enhanced sampling are interleaved in an iterative
framework comprising successive: (i) learning CVs from simulation trajectories (either
the initial unbiased trajectory or biased trajectories obtained from previous iterations
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of CV biasing) and (ii) applying CV biasing with the learned CV to push the frontier
outwards and drive exploration of new regions of phase space using umbrella sampling
(but arbitrary CV biasing approaches may be employed). The process is terminated
when CVs stabilize between successive rounds and the volume of phase space explores
converges. Applications to alanine dipeptide and Trp-cage demonstrate the capacity of
the technique to discover, sample, and determine free energy surfaces in nonlinear CVs
starting from no prior knowledge of the system [37]. The iterative expansion of the
frontier and refinement of CVs as a function of location in phase space is analogous
to that in iMapD and DM-d-MD but the application of accelerating biasing forces
greatly enhances barrier crossing. The use of the explicit and differentiable mapping
to perform enhanced sampling is similar to SandCV but the mathematical framework
enabled by ANNs is much simpler and the functional mapping is exact by construc-
tion. The use of biasing forces does, of course, corrupt the true dynamics of the system
and so dynamical observables (e.g., Markov state models) cannot be straightforwardly
extracted from the simulation data. A followup paper shows that tailoring the autoen-
coder architecture and error functions can help discover better CVs, improve sampling
efficiency, and favor the discovery of more stable and interpretable CVs [64].

3.4. Reweighted autoencoded variational Bayes for enhanced sampling
(RAVE)

Akin to MESA (Section 3.3), reweighted autoencoded variational Bayes for enhanced
sampling (RAVE) due to Ribeiro et al. uses DNNs to learn nonlinear CVs for enhanced
sampling [175]. It differs from MESA in that it makes use of variational autoencoders
(VAEs) [122], seeks a 1D latent space encoding only the leading CV, and conducts
sampling not directly in the discovered CV but in a proxy physical variable (or linear
combinations thereof) that maximally resembles that of the CV. The use of VAEs
compared to AEs conveys advantages in producing better regularized and continuous
latent space embeddings. Identification of a physical variable x in which to perform
sampling is very attractive from an interpretability standpoint, but means sampling
is necessarily performed in a proxy for the data-driven CV. The quality of the proxy
variable in approximating the discovered CV is contingent on the space of candidate
physical variables considered. The probability distribution in the optimal physical
variable P(x) is then turned into a biasing potential Vijas(x) = kpTln P(x) from
which, by virtue of the physical nature of x for which an explicit relation to the
atomic coordinates is known, is straightforwardly converted into biasing forces. An
iterative procedure very similar to MESA is then applied to drive system exploration
by interleaving rounds of biased simulation and CV learning.

The restriction to single CVs is limiting, but the framework can, in principle, be
extended to multidimensional CVs. One way to do so may be to employ 5-VAEs to
encourage independence of the various CVs [176, 177], but an alternative approach
is adopted in an extension of the framework known as Multi-RAVE in which a set
of locally valid one-dimensional CVs are constructed and the piecewise sum of these
position-dependent components is a single-nonlinear CVs spanning relevant configu-
rational space [178]. Numerical experiments with the disassociation of benzene from
LI99A lysozome predict unbinding free energies in good agreement with experiment.
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3.5. Reinforcement learning based adaptive sampling (REAP)

The CVs parameterizing configurational space may vary substantially as a function
of location over that space. For example those CVs appropriate to parameterize and
enhance configurational sampling in the vicinity of the native fold of a protein may
differ significantly from those appropriate for the unfolded ensemble, and protein ac-
tivation frequently involves two (or more) distinct molecular events parameterized by
different CVs that occur in series and result in characteristic ‘L-shaped’ landscapes. By
maintaining a sufficiently large ensemble of CVs, one may determine on-the-fly which
subset of CVs constitute the active space for enhanced sampling at any given location
in phase space. This is the approach taken by reinforcement learning based adaptive
sampling (REAP) introduced by Shamsi et al., which employs reinforcement learning
(RL) to determine the relative importance of different candidate CVs as a system ex-
plores phase space [36]. REAP proceeds by running an initial round of short molecular
simulations. The resulting configurations are then clustered, the least-populated clus-
ters identified, and a reward function measuring the normalized absolute distance from
the ensemble mean evaluated for each candidate CV for each cluster. An optimization
problem is solved to maximize the overall reward function as a weighted sum of the
candidate CVs, and the clusters that offer the highest rewards selected as those from
which to harvest configurations to seed a new round of simulations. This process is
repeated until sufficient sampling of the phase space is achieved. The key feature of
any RL approach is the reward function, which in the case of REAP is designed to
maximize discovery of new conformational states. Like RAVE, the success of REAP is
contingent on the quality and size of the space of candidate CVs. RL remains one of
the less explored areas of ML in applications to molecular simulation, and it remains
to be seen what advantages it brings to adaptive sampling relative to the unsupervised
approaches discussed in Sections 3.1-3.4.

3.6. Determining collective variables through supervised learning

Supervised learning is also relatively under-explored in molecular CV discovery rela-
tive to unsupervised techniques since the output variables (a.k.a. dependent variables,
labels) for which we wish to construct a model in terms of our input variables (a.k.a.
independent variables, descriptors, features) are often not obvious or available. Sultan
and Pande recently proposed that the (pre-defined) metastable states of a molecu-
lar system may be adopted as output variables and supervised learning deployed to
construct a pairwise or one-vs-all decision function to discriminate between the states
and serve as a CV for enhanced sampling [179]. Such a situation may arise in protein
activation where crystal structures for the active and inactive states are available but
the activation pathway and mechanism is unknown. The supervised learning task is
cast as a classification problem taking as input the atomic coordinates of the molecule
in the various states and output as the labels of the states, and which is solved by
support vector machines (SVM), logistic regression, and ANNs. The resulting decision
function — distance to separating hyperplane for SVM, probability or odds ratio for
logistic regression, unnormalized network output for ANN — provides an explicit and
differentiable CV that is deployed in metadynamics simulations to drive sampling be-
tween states. The approach is demonstrated in applications to alanine dipeptide and
chignolin, where it is shown to effectively drive reactive transitions [179]. Success of the
approach is predicated on prior knowledge of the relevant states, and, like path sam-
pling, the decision function CVs are inherently interpolative and so can have difficulty
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driving sampling into unexplored regions of phase space.

Mendels et al. independently developed harmonic linear discriminant analysis
(HLDA) and multi class HLDA (MC-HLDA) as a supervised learning approach based
on a generalization of Fisher’s linear discriminant [180, 181]. The method takes as
input the means and covariance matrices within a predefined set of descriptors for K
metastable states as measured by short molecular simulations. An optimization prob-
lem is formulated to find the (K — 1) linear projections within the descriptor space
that maximize the ratio between the between-state and within-state scatter matrices,
which corresponds to maximization of a Fisher ratio and can be solved via a gener-
alized eigenvalue problem. The linear projections within the descriptor space furnish
CVs in which to perform metadynamics enhanced sampling. An application to chig-
nolin demonstrates that the method successfully generates reactive pathways between
the folded and unfolded states, although the efficiency of the approach can be sensitive
to the user-defined selection of descriptors [182]. Again, this approach requires prior
knowledge of the relevant metastable states, and is not designed to drive sampling into
new configurational states.

3.7. Transfer operator theory and variational approaches to
conformational dynamics

The CV discovery approaches discussed thus far have largely sought to discover high-
variance CVs within the configurational phase space using some form of unsupervised,
supervised, or reinforcement learning. We now proceed to discuss some recent devel-
opments in the data-driven discovery of slow (i.e., maximally autocorrelated) CVs
that can often be more mechanistically meaningful and provide superior coordinates
for the direct acceleration of the slowest dynamical processes. The theoretical founda-
tions for the determination of these CVs is founded in spectral analysis of the transfer
operator that propagates probability distributions over molecular microstates through
time [84, 85, 88, 106, 162, 163]. In an important theoretical development, Noé and
Nuske showed that the spectral analysis of the operator can be performed in a data-
driven fashion within the variational approach to conformational dynamics (VAC) in
the case of equilibrium systems [84, 85] or variational approach to Markov processes
(VAMP) in the case of non-reversible and non-stationary dynamics [80, 81]. These
frameworks possess a pleasing parallel with the variational approach to approximate
electronic wavefunctions within a given basis set through solution of the quantum me-
chanical Roothan-Hall equations [183, 184]. Full details of the VAC and VAMP can
be found in Refs. [80, 81, 84, 85, 88, 106, 185]. Here we briefly survey a number of
recently developed machine learning approaches for slow CV discovery that seek to
perform data-driven diagonalization of the transfer operator.

As discussed in Section 2.4, TICA adopts as a basis set a featurization &(x) of
the atomic coordinates x (in the original TICA formulation £(x) = x) and solves
a generalized eigenvalue problem (Eqn. 3) to define maximally autocorrelated linear
projections within this basis. Kernel TICA (kTICA) is a generalization of the TICA
algorithm described in Section 2.4 that employs the kernel trick to apply the TICA
machinery within a nonlinear transformation of the feature space [88]. The nonlin-
earity of the kernel function provides kTICA with greater expressive power, and the
capacity to learn nonlinear slow modes from time-series data with higher fidelity than
TICA [88]. As is typical of kernel-based methods, kTICA is computationally expensive
and sensitive to kernel selection and hyperparameter choice [88, 89, 106, 110].

17



Time-lagged autoencoders (TAE) approximate slow CVs by performing nonlinear
time-lagged regression using deep learning. Applied in the context of molecular simu-
lation by Wehmeyer and Noé, TAEs employ an autoencoder architecture in which the
encoder maps a configuration z; at time ¢ to a latent encoding e, and the decoder maps
e; to a time-lagged output z;1, = D(e;) that minimizes the time-lagged reconstruction

loss to the true time-lagged configuration £ = [E [HD(et) — z%i“fHQ] [108] (Fig. 6). The

underlying principle of operation is that minimization of this time-lagged reconstruc-
tion loss promotes the discovery of slow CVs as the latent space variables e; [109]. The
technique is demonstrated in applications to alanine dipeptide and villin protein, and
is shown to perform favorably against TICA, particularly when suboptimal molecular
featurizations are employed.

input output

embedding
2y encoder . decoder ||Zt+r

neural network:

Figure 6. Block diagram of a time-lagged autoencoder (TAE). The encoder projects a molecular configuration
z; at time ¢ into a low-dimensional latent embedding e: from which a time-lagged molecular configuration
Zi4+ at time (¢ + 7) is subsequently reconstructed. For 7 = 0 the TAE reduces to a standard AE and the CV
discovery process is equivalent to MESA (Section 3.3). Image reprinted from Ref. [108], with the permission of
AIP Publishing.

Variational dynamics encoders (VDEs) are a deep learning approach for slow CV
discovery first introduced by Hernandez et al. [110]. VDEs employ a similar DNN
autoencoding architecture as TAEs, but differ in their use of a VAE, as opposed to a
standard AE, and a mixed loss function,

£ = (B[ID(er) = zerlP] + Lics) = (1= N A(ey), (5)

where E [HD(et) - zt+TH2} is the time-lagged reconstruction loss, A(e;) is the auto-

correlation of the learned 1D latent space CV e;, Lir is a regularization term that
measures the similarity of the distribution of e; in the latent space to a Gaussian
distribution, and 0 < A < 1 is a linear mixing parameter [109]. In an application to
the folding of villin protein, VDEs were shown to outperform TICA in the discovery
of CVs capable of resolving metastable states and that the VDE latent coordinates
produced superior MSMs with slower implied timescales[110)].

TAEs and VDEs possess two key limitations. First, they are restricted to the dis-
covery of 1D latent spaces and cannot be applied to learn multiple hierarchical slow
modes due to the absence of orthogonality constraints in latent space [109]. Second,
the incorporation of the time-lagged reconstruction loss within the loss function com-
promises the ability of the networks to discover the highly autocorrelated (i.e., slow)
modes at the expense of high-variance modes [109]. In general, TAEs and VDEs dis-
cover mixtures of maximum variance modes and slow modes. [109]

State-free reversible VAMPnets (SRVs) solve both of the deficiencies of TAEs and
VDEs for equilibrium systems by employing a variational minimization of a loss func-
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tion that maximizes the VAMP-2 (or more generally VAMP-r) score measuring the cu-
mulative kinetic variance explained within the subspace of data-driven slow CVs [106].
The VAMP-2 score can be interpreted as the squared sum of the exponentials of the
implied timescales of the slow CVs discovered by SRVs, and is guaranteed by the VAC
to reach a maximum when the approximated slow CVs are coincident with the true
slow CVs of the transfer operator [20, 81, 162]. SRVs can be conceived of as an appli-
cation of TICA in which DNNs are employed to learn optimal nonlinear featurizations
of the atomic coordinates as a learned basis set that is subsequently passed to the
generalized eigenvalue problem (Eqn. 3) [106]. The idea of learning an optimal basis
to pass to a linear variational approach was first proposed by Andrew et al. in the
context of deep CCA [104] and first applied to molecular simulations in Mardt et al.’s
VAMPnets [81].

SRVs employ a twin-lobe neural network that transform pairs of time-lagged molec-
ular configurations {x(¢),x(¢t + 7)} into a space of d learned nonlinear basis functions
{¢(x(t)),{(x(t + 7))} (Fig. 7). These basis functions are passed to the linear VAC
where solution of the generalized eigenvalue problem furnishes approximations to the
transfer operator eigenfunctions as orthogonal linear projections within this basis.
The key to the entire approach is the definition of the negative VAMP-r score as
a loss function under which the twin-lobed ANN is iteratively trained to learn the
nonlinear basis within which linear approximations of the d leading transfer operator
eigenfunctions ¥ = {11,12,...,14} are computed. Once trained, the ANN and gen-
eralized eigenvalue problem define an explicit and differentiable mapping between the
atomic coordinates and slow CVs that can be straightforwardly deployed in CV bias-
ing enhanced sampling routines [106]. SRVs have been demonstrated in applications
to alanine dipeptide, WW domain, and Trp-cage, and proven to be a simple, efficient,
and robust means for slow CV determination that possesses strong theoretical guaran-
tees [106, 107]. Moreover, SRVs have been shown to present an excellent and modular
replacement for TICA within MSM construction pipelines. The nonlinear SRV latent
space presents a kinetically superior latent space for microstate clustering than the
linear embeddings furnished by TICA, with the resulting MSMs exhibiting faster im-
plied timescale convergence and higher kinetic resolution than current state-of-the art
approaches [107]. Replacement of the VAC within the SRV with the more general
VAMP principle serves to extend the approach to non-stationary and non-reversible
processes resulting in the more general state-free non-reversible VAMPnets (SNRV).

3.8. Deep learning based MSMs

Noé and co-workers recently proposed two variants of MSMs based on deep learning;:
VAMPnets [81] and deep generative MSMs (DeepGenMSM) [135]. SRVs (Section 3.7,
Fig. 7) were inspired by VAMPnets and both approaches share a similar twin-lobe net-
work architecture to apply deep CCA [81, 104, 106]. They differ in two main respects.
First, whereas SRVs pass these basis functions to a VAC analysis that is appropriate for
approximating the transfer operator eigenfunctions for equilibrium data, VAMPnets
pass them to a more general VAMP analysis to approximate the transfer operator sin-
gular functions for non-stationary and non-reversible data [81, 105]. Second, whereas
it is the goal of SRVs to furnish approximations to the leading modes of the transfer
operator, it is the goal of VAMPnets to offer an end-to-end replacement for the en-
tire MSM pipeline of featurization, dimensionality reduction, clustering, and kinetic
model construction [81]. Integration of these steps within a single framework can be
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Figure 7. State-free reversible VAMPnets. Pairs of time-lagged molecular configurations {x(t),x(t + 7)}
are featurized and transformed by a twin-lobe ANN into a space of nonlinear basis functions {¢(x(t)), ¢(x(t +
7))}. These basis functions are employed within a linear VAC to furnish approximations 1,~b to the leading
eigenfunctions of the transfer operator. The twin-lobed ANN is trained to maximize a VAMP-r score measuring
the cumulative kinetic variance explained and which reaches a maximum when the eigenfunction approximations
are coincident with the true eigenfunctions of the transfer operator.

advantageous in helping to avoid the extensive parameter tuning that can plague the
various steps in MSM model construction (Section 2.3). VAMPnets achieve this goal
by employing softmax activations in the terminal layer of the twin ANN lobes that
map a time-lagged pair of molecular configurations {x;,x:1-} to fuzzy state assign-
ments (xo(xt), X1 (Xt+r)), where x and x; are k-dimensional vectors defined over the
k softmax output nodes of the two ANN lobes, and which assign a probability that
the molecular configuration should be assigned to one of k metastable macrostates.
The instantaneous and time-lagged covariance matrices Cog = E[x(x¢)Xo(x:)?] and
Co1 = Elx(x¢)x1 (X¢1+)T] are then computed and used to estimate the MSM transi-
tion matrix between states K = C, 001 [81]. VAMPnets are illustrated in an applica-
tion to NTL9 where they dlscovers a 5-state model with kinetic properties on par with
a 40-state conventional MSM, thereby illustrating the value of the approach in fur-
nishing more parsimonious, efficient, and interpretable models without compromising
kinetic accuracy [81].

DeepGenMSMs are a deep learning approach to not only learn a MSM defined by
a discrete transition matrix between metastable states, but also a means to generate
realistic molecular trajectories including previously unseen configurations not included
in the training data [105, 135]. DeepGenMSMs are based on the following representa-
tion of the transition density between a configuration (x; = x) at time ¢ and (X, = z)
at time (¢ + 1),

]P)(Xt+7' = Z|Xt = X) = X( ZX’L C.h Z; T (6)

where x(x) = [x1(x),..., Xm(x)] is a normalized vector representing the probabil-
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ity that configuration x exists within each of the ¢ = 1...m metastable macrostates,
a(z;7) = [q1(z;7),...,qm(z;7)] is the vector of ‘landing densities” where ¢;(z;7) =
P(x;4r = z|x; € state i) defines the probability that a system in macrostate i at time
t lands in molecular configuration z at time (¢+7). The membership probabilities x (x)
and landing densities q(z; 7) are learned by training a two-lobe ANN architecture sim-
ilar to VAMPnets to maximize the likelihood of time-lagged pairs (x;, x¢+-) observed
in simulation trajectories (Fig. 8). The MSM transition matrix K between the m
metastable states is furnished by the ‘rewiring trick’ wherein K = E [q(x; 7)x(x)7].
In order to generate molecular configurations outside of the training data, it is ad-
ditionally necessary to train a generator to sample from the density specified by the
learned landing densities q(z;7),

Gi,e;7) =y ~ qi(y;7), (7)

where 7 indexes over the states and € is i.i.d. random noise sampled from a Gaus-
sian distribution that powers the generator. Applications of DeepGenMSM to alanine
dipeptide demonstrate its ability to accurately estimate the long-time kinetics and
stationary distributions and also generate molecularly realistic structures including in
regions of phase space where no training data was supplied [135].

Deep Generative MSM Rewiring Trick
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Figure 8. Deep Generative MSM (DeepGenMSM) and the ‘rewiring trick’. (left) The encoder x(x) within
the twin-lobe ANN is trained to learn mappings of molecular configurations x to probabilistic memberships y of
one of m macrostates. The generator is trained against the learned ‘landing probabilities’ ¢;(z; 7) that a system
prepared in macrostate ¢ will transition to molecular configuration z after a time 7. (right) The rewiring trick
reconnects the generator and encoder to furnish a valid estimate K for the MSM transition matrix between the
embedding into the m discrete states learned by the encoder. Image adapted from Ref. [135], with permission
from the author Prof. Frank Noé (Freie Universitét Berlin).

3.9. Software

We list in Table 1 software packages and libraries implementing some of the CV dis-
covery and enhanced sampling methods discussed in this review.
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Method Software Packages
Keras (keras.io)
ANNs TensorFlow (www.tensorflow.org)
PyTorch (pytorch.org)
DMAPS . gii?hub . c.:om/hsidky/dmz.aps .
github.com/DiffusionMapsAcademics/pyDiffMap
PyEmma (www.emma-project.org/latest/)
MSM, TICA MSMBuilder (msmbuilder.org/)
MESA github.com/weiHelloWorld/accelerated_sampling_with_autoencoder
TAE, VAMPnets github.com/markovmodel/deeptime
VDE github.com/msmbuilder/vde
SRV github.com/hsidky/srv
DeepGenMSM github.com/markovmodel/deep_gen_msm
. SSAGES (github.com/MICCoM/SSAGES-public
Enhancsed. Sampling égLUMED (www.plumed.org) d )
urtes Colvars (colvars.github.io)

Table 1. Software packages and libraries available for some of the collective variable discovery and enhanced
sampling techniques discussed in this review.

4. Conclusion and Outlook

It has been the goal of this review to offer a survey of some of the most exciting recent
developments and applications of machine learning to collective variable discovery and
enhanced sampling in biomolecular simulation. We sought to expose the essence of
each method, its advantages and drawbacks, the systems in which it has been applied
and demonstrated, and the availability of software implementations. We close with a
retrospective assessment of the key milestones in the field and our outlook on emerging
challenges and opportunities.

The origins of machine learning for CV discovery can be traced back to pioneering
applications of linear dimensionality reduction techniques in the early 1990s. The first
major development arrived in the early 2000s with the debut of powerful nonlinear
dimensionality reduction tools. The mid-2000s witnessed the emergence of MSMs in
the field. The late 2000s and early 2010s saw the introduction of techniques focused
on the discovery of slow as opposed to high-variance CVs. Advances in the past sev-
eral years have been propelled in large part by deep learning methodologies coming to
the fore. ANNs themselves are, of course, not a new idea, with roots dating back to
Rosenblatt’s perceptron in 1958 [186], but the availability of fast simulation codes (e.g.,
Gromacs, HOOMD, LAMMPS, NAMD, OpenMM), cheap storage, inexpensive high-
performance GPU hardware, and user-friendly neural network libraries (e.g., PyTorch,
TensorFlow, Keras) created ideal conditions for this flare of creative new applications
and has supercharged the field. There has been a tandem development of enhanced
sampling techniques for accelerated sampling of configurational space. Umbrella sam-
pling is one of the earliest techniques that is still in use today [152] and which is
itself based on ideas some 10 years prior by McDonald and Singer [187]. There has
been an enormous proliferation of techniques since that time, based on a variety of
approaches to enhance sampling [188]. Metadynamics [23], itself based on ideas from
local elevation [189] and conformational flooding [190], has emerged as one of the most
popular, flexible, and robust enhanced sampling techniques [191]. Enhanced sampling
approaches have also benefited from the proliferation of deep learning technologies,
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and there are now a number of examples of ANN-based approaches to build biasing
potentials for enhanced sampling [124-128].

Looking forward, we see a number of new frontiers and important challenges for
machine learning-enabled CV discovery and enhanced sampling. First, with relatively
few exceptions, many of the new tools are developed and tested for relatively small
systems, and tend not to be tested in applications to larger systems. Of course it
is vital to validate new tools in testbed problems where the ground truth is known
a priori, but demonstrating the efficacy of these approaches in applications to large
biomolecules of technological, biological, or biomedical import is crucial in proving
their potential in the context of impactful and challenging problems.

Second, applications of these approaches tend to focus on single protein molecules
(e.g., peptide folding, membrane protein activation). There are very good reasons for
this privileging of protein folding from historical — the protein folding problem is a
long-standing and alluring challenge [192, 193] — biological — there are unquestion-
ably critical problems in protein folding of great biological, biotechnological, and and
therapeutic value [194, 195] — and practical — the best validated computational force
fields and experimental crystal structures are available for proteins — perspectives, but
there are also compelling and important problems in related areas such as peptide
assembly, peptoid engineering, and nucleic acid folding. It is important to develop
methods in the context of diverse applications since it is not always the case that
methods developed for proteins may be directly transferable and must be adapted
to the specific vicissitudes of each system. For example, peptoid amide bonds occupy
both cis and trans configurations (in contrast to those of peptides that are almost
exclusively trans) but the transitions between them is a notoriously high-free energy
barrier rare event [196]. To paraphrase the Persian poet Ibn Yamin (1286-1367), these
slow CVs are ‘known unknowns’ and CV discovery and acceleration must explicitly
account for these effects to achieve good sampling and enable CV discovery to identify
the ‘unknown unknowns’.

Third, recent years have witnessed the convergence of CV discovery and enhanced
sampling into integrated frameworks that are not beholden to the initial choice of
CVs, but perform iterative CV refinement in tandem with accelerated phase space
exploration either through judicious initialization of unbiased simulations [44, 58, 63]
or the direct application of artificial bias [37, 64]. These approaches have only been
demonstrated for high-variance CVs, and it remains to demonstrate these iterative
strategies for slow CVs. In the case of the unbiased sampling, the challenge is to
recover estimates of CVs for the equilibrium system from many short non-equilibrium
runs, which may be possible using Koopman reweighting [79]. In the case of biased
sampling, the challenge is to estimate unbiased CVs from biased trajectories, which
may be possible using Girsanov reweighting [65, 66]. It may also be beneficial to
‘deflate’ out undesired slow modes [197].

Fourth, the field can benefit from two current waves in machine learning that have
come to be referred to as eXplainable Artificial Intellicence (XAI) and Physics-aware
Artificial Intelligence (PAI) [198, 199]. The degree of interpretability that we require
of our CVs is largely a matter of context and taste: interpretability may not be a
primary concern if our CVs are simply viewed as a means to enhance sampling, but it
may be extremely desirable if we wish to understand mechanisms or learn transferable
CVs appropriate for larger classes of systems. One way to achieve interpretability is to
use simple (usually linear) models that are interpretable by construction (e.g., linear
regression, linear SVMs), but frequently we wish to exploit the power and flexibility
of modern tools (e.g., ANNs) without sacrificing interpretability. Very recently devel-
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oped XAI tools such as layer-wise relevance propagation offer a means to achieve this
goal and simultaneously detect and avoid so-called ‘clever Hans’ solutions that for-
mulate a seemingly correct answer but for the wrong reasons [200, 201]. PAT seeks to
incorporate physical constraints and knowledge into the CV discovery process, and is
an extremely attractive for many reasons: the machine learning algorithms are given
a ‘warm start’ by build upon prior understanding and knowledge of the system, the
algorithms can function more robustly and work with noisier and smaller quantities
of data since the model space is physically constrained, discovered CVs may be made
more transferable to related systems, and the CV predictions can be guaranteed to
satisfy particular physical constraints. PAI has proven somewhat difficult to realize
in a generalizable way, but there have been recent successes in particular applica-
tions [202]. The rigorous enforcement of particular constraints and symmetries can be
attractive in guaranteeing that the discovered CVs are consistent with the invariances,
equivariances, and symmetries of the physical system (e.g., translational invariance,
permutational invariance, rotational equivariance, energy conservation) [203, 204].

Fifth, in a similar vein to PAI it can be valuable to incorporate experimental con-
straints within the CV discovery process. One may wish to promote CVs consistent
with some physical prior knowledge (e.g., burial of hydrophobic residues, known ter-
tiary contact pairs) or ensemble averages over the sampled phase space should be
consistent with measured experimental observables. Unlike hard physical constraints
that should be rigorously obeyed, it is likely that these experimental constaints may
be incorporated in a softer manner through, for example, regularizing Bayesian pri-
ors [205].

Sixth, the implementation and dissemination of open-source software and libraries
implementing the CV discovery and sampling methods is critical in lowering the bar-
rier to adoption by new users, guaranteeing reproducibility, promoting transparency,
enabling community development and collaboration, and offering valuable pedagog-
ical materials for new entrants into the field. The rising popularity of user-friendly
Jupyter notebooks (https://jupyter.org/) and repository hosting sites such as
GitHub (https://github.com) and Bitbucket (https://bitbucket.org/) has made
code sharing simpler and easier than ever, and there are encouraging trends that doing
so is becoming a cultural norm within the field.

In closing, we see many exciting and innovative challenges and opportunities on the
horizon for this fast moving field, and we look forward to the exciting new developments
that are sure to emerge in the coming years.
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