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Abstract—Multipurpose devices, capable of dynamically oper-
ating under various sensing modes, have emerged as a key
element of the Internet of Things (IeT) ecosystem. In this
paper, the holistic orchestration of an energy-efficient opera-
tional framework of such interconnected devices is investigated.
A reinforcement learning technique is utilized enabling each
IoT node, by acting as a learning automaton, to select a sens-
ing operation mode in accordance with the IoT infrastructure’s
provider interests. Subsequently, a coalition formation among
the nodes is realized, relying on their socio-physical relations,
namely nodes’ spatial proximity, energy availability, and mode
correlations. The aforementioned operation is supported by a
non-orthogonal multiple access wireless powered communication
environment, where the nodes are able of harvesting energy from
the base station. The energy efficiency of the overall system, is
further improved by a utility-based optimal uplink transmis-
sion power control mechanism. The corresponding optimization
problem is treated in a distributed manner as a non-cooperative
game-theoretic problem, and the existence of a unique Nash
equilibrium is shown, while the adoption of convex-based pric-
ing in the utility leads to a more socially desirable Equilibrium
point. The performance of the proposed approach is evaluated
through modeling and simulation under several scenarios, and
its superiority is demonstrated.

Index Terms—Internet of Things, multipurpose devices, socio-
physical ties, energy-efficiency, reinforcement learning.

I. INTRODUCTION

HE INCORPORATION of Internet of Things (IoT) archi-

tectures into emerging smart ecosystems allows for a
variety of innovative context-aware applications that rely
on high-volumes of real-time sensed data. Until recently,
the design of related systems was focusing on a single-
use approach where a wireless sensor network (WSN) was
deployed by a single owner, measuring a specific quantity, and
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supporting a single application [1]. However, the new model
and scale of modern smart infrastructures where multiple
applications operate simultaneously, requesting diverse data,
makes this monolithic sensing application approach inefficient
in terms of resource use [2]. Thus, under the new real-
ity of continuously interconnected and sensor-packed devices
that IoT introduces, both academia [3], [4] and industry [5]
are turning to a new class of multipurpose devices. These
sensing installations can operate under the supervision of
an infrastructure owner who can after-profit distribute the
sensed data to multiple interested users and IoT application
frameworks.

Such a consideration is driven and further motivated by the
emerging trend that “one size fits all” and allows software
defined decision making approaches to govern and properly
define the dynamic operation of multipurpose devices. This
approach allows not only significant cost savings in terms
of infrastructure installation and operation especially for IoT-
enabled large scale deployments, but it further facilitates the
support of a more dynamic, diverse, effective and cost-efficient
operation paradigm for high-level applications with time and
space varying requirements. Though the benefits obtained by
adopting an operation model based on statistical and adap-
tive multiplexing at various levels, are multifaceted and follow
naturally and inherently [6]-[8], there are several technical
challenges that need to be addressed in order to allow its full
realization and exploitation.

Specifically, the envisioned energy-efficient sensing in IoT,
which is still considered as a research challenge [9], [10], can
emerge as the outcome of adopting autonomous IoT devices
with self-configuration characteristics. Investigated approaches
include intelligent device-to-device (D2D) communications
depending on context-awareness or intelligent routing [9},
ecosystems of “Self-Organizing Things” [11], where loT
sensors are able to adopt self-optimization and self-healing
mechanisms to save power by optimizing sleep mode periods,
or holistic IoT architectures that utilize sleep interval control
and adaptive wake-up signals for sensors towards energy effi-
ciency in IoT middleware and hardware elements [10]. These
self-organizing operations such as optimal sleep mode schedul-
ing can significantly extend the battery life of IoT multi-sensor
nodes (that sent data both periodically and in a trigger-based
fashion), and are applicable in cases where the limited num-
ber of an IoT nodes’ peripheral communication interfaces [12]
allows for a single measurement extraction per transmission
interval [10], [11].
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A. Related Work

In literature there are some preliminary research works
that extend the notion of WSNs towards multipurpose ones.
Chi et al. [3] introduce a reconfigurable smart sensor interface
for industrial WSN in the IoT environment, where a com-
plex programmable logic device is adopted in order to control
the collection of different types of sensor data. A correspond-
ing application of this approach is presented in [5] within the
industrial IoT era. Steffan et al. [6] study a multi-application
focused WSN architecture where a group of nodes (scopes) is
specified supporting dynamic scope memberships and intro-
ducing a routing level able to maintain routing trees among
members. That way the nodes form an ad-hoc multi-hop WSN
resilient to link losses, and are able to collect data by assign-
ing node subsets to specific applications. Sarakis ef al. [8]
introduce the concept of virtual sensor networking, which
decouples the physical sensor deployment from the appli-
cations that run on top of it, thus providing the enhanced
flexibility to the infrastructure owner to provide new services
beyond to the scope of the original deployment. A detailed
survey analysis is presented in [7] regarding the virtual
sensor networking and the multi-sensing capabilities of the
devices.

In addition to the multipurpose and multi-sensing capa-
bilities of the devices, the energy efficient operation of the
latter within the heterogeneous IoT arena arises as a major
research challenge [13]. Recent research approaches aim to
extend the energy availability of IoT environments through a
variety of approaches that include the use of Wireless Powered
Communication (WPC) techniques [14], social-aware cluster-
ing [15], and optimal resource allocation strategies for the
battery-constrained IoT devices [16]. Zewde and Gursoy [17]
investigate the performance of a non-orthogonal multiple
access (NOMA)-based wireless network that utilizes WPC
for the devices following a harvest-then-transmit protocol.
The focus is on maximizing the system’s energy effi-
ciency through resource allocation strategies developed for
the case of asynchronous and half-duplex transmissions.
Tsiropoulou et al. [18] propose a low-complexity coalition for-
mation mechanism among the IoT connected devices based on
the Chinese Restaurant Process (CRP), while the devices har-
vest energy from the RF signals using the WPC technique.
In [19] a framework for data dissemination using D2D com-
munications is presented, considering a social-based model
that captures and exploits users’ social relationships within
the community to improve dissemination efficiency. Similarly,
the work in [20] focuses on a NarrowBand-IoT (NB-loT)
OFDMA-based environment and presents a social-aware D2D-
enabled relay selection mechanism formulated as a double
auction problem for data uploading towards a base station.
In [15], the problem of interest, energy and physical-aware
coalition formation and resource management in smart IoT
applications is studied towards improving devices’ energy effi-
cient communication. Finally, in [21], a data-centric clustering
is introduced in a resource-constrained IoT environment by
prioritizing the quality of overall data over the performance
of individual devices.

B. Contributions and Outline

The key contributions of our research work that differentiate
it from the rest of the literature body [22], are summarized as
follows:

a) A novel paradigm for dynamic and distributed selection
of sensing modes in multipurpose IoT devices is introduced.
With this feature, the nodes of our setting are able to support
various IoT applications that come with specific require-
ments/parameters set by the infrastructure owner, including
sensing accuracy, achievable profit, sensing cost, etc. The
dynamic selection functionality is addressed via an adaptive
reinforcement learning mechanism.

b) A WPC model is adopted in order to enable the energy
efficient operation of the proposed framework. The devices
transmit their information during a Wireless Information
Transmission (WIT) phase, and the central evolved NodeBase
Station (eNB) charges the multipurpose IoT nodes during a
Wireless Energy Transfer (WET) phase. The WPC phases
occur within the same timeslot where the devices operate in a
transmit-harvest-store fashion.

¢) A novel coalition formation methodology is proposed,
that considers not only the physical parameters, such as the
communication/channel conditions between devices and their
residual energy availability, but also social related parame-
ters such as possible sensing measurement correlation between
devices or their desire for collaboration (e.g., being part of the
same IoT application). Our solution operates in a distributed
manner towards addressing challenges related to scalability in
a dense IoT environment, practical sensing devices’ longevity,
along with the support of multiple 10T applications that require
the collection of diverse or fully/partially correlated data.

d) A distributed resource management mechanism is
proposed to optimize the IoT multipurpose devices’ energy
consumption during the WIT phase. The optimal transmis-
sion power vector of the IoT nodes is shown to constitute
a unique Nash equilibrium point, and is obtained through
a non-cooperative game-theoretic mechanism, that solves the
distributed maximization problem of each node’s utility func-
tion, properly formulated to capture the node’s Quality of
Service (QoS) prerequisites. To further improve the efficiency
of the achieved Nash equilibrium we also consider a convex
pricing policy of the devices’ uplink transmission power, and
utilize an iterative and distributed algorithm to determine the
corresponding unique Nash equilibrium.

e) Detailed numerical and comparative results demonstrate
that the proposed holistic framework concludes to a promising
solution for realizing an energy-efficient IoT environment of
multipurpose devices with dynamic behavior, that conforms
with the needs and requirements of both the emerging IoT
applications and the sensing infrastructure owner.

The rest of the paper is organized as follows. In Section I,
the overall system model is described, while in Section III, our
proposed reinforcement learning-based mode selection proce-
dure is presented. Section IV introduces the socio-physical
ties among the devices and describes the coalition formation
process. The energy-efficient uplink transmission power allo-
cation problem is formulated and solved in Section V. Finally,
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a detailed numerical evaluation of our approach via modeling
and simulation is presented in Section VI, while Section VII
concludes the paper.

II. SYSTEM MODEL

An loT-inspired sensing infrastructure is considered and
modeled as a non-orthogonal multiple access (NOMA) wire-
less network consisting of an evolved NodeBase Station
(eNB) and serving |M| multipurpose IoT devices, where
M = {1,...,m,...,|M|} denotes their corresponding set.
We assume that the devices are identical regarding their char-
acteristics with each one being able to interchange between
|7] different sensing modes, e.g., temperature, air quality,
building occupancy [23], etc. The set of modes is denoted
as J = {1,...,4,...,|J|}. For the different sensing modes
the infrastructure provider defines a specific revenue vector
rev = [revy,...,Tevj,...,Tey J|] that stems from the data
exploitation and a cost vector ¢ = [ey,...,¢j,. .., g J|] that
derives from the devices’ operation. The system topology
under consideration is shown in Fig. 1, while system’s oper-
ation is depicted in Fig. 2. For each timeslot ¢, the devices
select their mode of operation = {p1,. .., tim; - .- Bypr)hs
um € {1,...,]J|} following an adaptive reinforcement learn-
ing process (Section III). The mode selection process takes into
account the provider’s revenue/cost relation for each mode,
along with socio-physical parameters of the IoT setting itself.

We define two possible communication types: (a) M2M
- direct machine to machine communication, (b) M2eNB
- where devices communicate directly with the eNB. The
devices are able to form |A| coalitions among each other, with
the corresponding set denoted as A = {1,...,aq,...,]4]}
Each coalition a selects a coalition head chg device, which is
in charge of collecting the measurements from the members
and forward them to the eNB. The proposed coalition for-
mation considers the energy availability of the devices, their
current operating mode, and their given channel quality. The
channel gain between two devices is denoted as G, v, Where
m, m' € M while Gp,;m expresses the channel gain between
the device m and the eNB.

The last components of the proposed system and model
is the resource allocation and wireless energy harvesting
frameworks. Regarding the WPC model [24], we adopt a
transmit-harvest-store mechanism assuming that each multi-
purpose IoT device is equipped with a built-in rechargeable
battery. Each timeslot r is divided into two phases, where

[ Yopology Mode Correlations
Gpaxin;  Communleation
i

"L_WET Phase -u>

Fig. 2. Proposed framework model - Single timeslot.

initially each node transmits information for time 71 (Wireless
Information Transmission - WIT phase). Following that, the
eNB broadcasts RF-signals in the downlink and each IoT
device harvests energy for time 7 (Wireless Energy Transfer
- WET phase), with { = 7 4+ 79. In order to calculate the
optimal uplink transmission power (denoted as P;;) of each
device, we solve an optimization problem aiming to maximize
each device’s utility-based perceived satisfaction and meet its
Quality of Service (QoS) prerequisites, as detailed later in
Section V. The aforementioned described overall procedure
is repeated for every timeslot ¢ (Fig. 2).

A. Wireless Channel Model

For our system’s operation, we consider a NOMA wireless
setting and define the channel gain between a transmitting IoT
device m and a receiver m’ as:

K
Gyt = 25—
m,m’

6]

where K represents the shadow effect modeled as a log nor-
mal random variable with zero mean and variance of o2.
Due to NOMA’s Successive Interference Cancellation (SIC)
technique, at the receiver the messages originated from bet-
ter channels are decoded first [25]. Assuming that, without
loss of generality, the channel gains observed by IoT node
m (receiver) are sorted as G;M|,m <. f2Gpm <. <
G1,m. the SIC mechanism first decodes the messages received
from the best channel, i.e., Gy . Thus, the transmissions of
IoT devices with higher channel gain experience interference
from the majority of coexisting nodes, while the transmis-
sions of IoT devices with lower channel gain receive less
interference by treating the already decoded signals as noise.
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Thus, the interference sensed by the mt device is defined as:
|M]

> GumP.

m'>m+1

In(Pom) = et + I @

where Iy denotes the thermal noise modeled as Additive
White Gaussian Noise (AWGN) power, and P_, is the uplink
transmission power vector of the rest IoT devices excluding
device m. Finally, the m™ node’s (m € M) signal-to-
interference-plus-noise-ratio (SINR) towards a receiver k is
given by:

’Ym(Pm,P——m) = ’Ci@’]‘k"]‘)’m 3)

k

with I being the receiver’s sensed interference (Eq. (2)) and
Py, the device’s uplink transmission power.

III. SoCIO-PHYSICAL MODE SELECTION

During each timeslot ¢, the multipurpose devices initially
select their operation mode py,,Vm € M. Each IoT node,
acting as a learning automaton, senses the environment and
makes the sensing mode selection by relying on its own action
history and acquired knowledge from previous timeslots. This
is achieved through a two stage reinforcement learning-based
process as follows.

A. Reward Probability Formulation
Durm% the first stage our system constructs a reward proba-

bility 7 associated with the choice of mode j for the current
tlmeslot formulated as follows:
;“[t]
1 MY L Tevs
Ty ;J| j Pl
E i M[i——l] L Vmipm=j
U ] M
5> phY
me==]
C))
where M (=1 the number of devices operating at mode
J during the previous timeslot [r—1] with E] 1 M; = M|,

> e m=j P{t Uy is the partial power sum of all the devices
operatmg at mode j during the previous timeslot [t—1], and
t-1]

Z is the overall devices’ power consumption
durmg the previous timeslot [#—1]. Evidently, the reward prob-
ability #t reflects the “competitiveness” of each mode j as
formed not only by the provider’s indications (revenue/cost per
mode), but also by the state of the setting during the previous
timeslot, e.g., power consumption and devices’ distribution per
mode.

B. Reinforcement Learning-Based Mode Selection

Given the reward probability r{ I we define for each IoT-

device/learning automaton m,m 6 M, an action probability
t

vector PrLl] = {Prm 1rees Prfnlj, P 7[n|J } where Pry[n]]

denotes the probabllxty of device m selecting the mode ]/ dur-

ing the current timeslot. The action probabilities Pr}fl ; are

updated following the learning automata model [26] as fol-
lows. For a device operating in mode p,, = j the probability
of continning on the same mode j is given by:

Pt =Pl Ny A0 (1P ) )

while the probability of changing to a new mode j' # pn,
(§' € J,j" # §) is given by:

prl = Pl p 1l ©)

m,j’

For both equations parameter b, b € [0,1] expresses the
procedure’s learning speed and controls the convergence of
the process. The action probabilities for a single device even-
tually converge to a specific sensing mode for each IoT
device. The final mode distribution after convergence consti-
tutes a cost-efficient state for the infrastructure provider that
simultaneously prevents mode extinction, and considers the
battery-life of the IoT devices mode-wise. This phenomenon
is further studied numerically in detail in Section VI.

IV. ADAPTIVE COALITION FORMATION

Towards improving the energy efficiency of the M2M
communication, the multipurpose devices create coalitions
a, a € A among themselves based on socio-physical crite-
ria, i.e., spatial ties, mode correlations (mode ties), and their
energy availability [15], as described below.

1) Spatial Ties: In an attempt to establish energy efficient
communication among the devices, their physical location
combined with the existing channel conditions among them
are considered. To that end, we utilize a symmetric matrix
Q= {qmﬂn'}l M|x|M| indicating the physical proximity and
the channel quality between two devices m, m’ € M defined
—3> dmm’ € [0,1] and g, denot-

88 Gy’ = e
R Yimn, m' eM .
ing the relation between device m and the eNB. A lower value

of ¢y, denotes more distant nodes, while higher values of
gm,m’ correspond to nodes that are closer to each other. A
threshold value ¢, is considered prohibiting link creation
among distant devices m, m’ € M, if Imm' < Qthr-

2) Energy Availability: The energy availability is consid-
ered to select the coalition head ch, for every coalition a.
The coalition heads are in charge of collecting, processing
and transferring a great amount of data compared to the
coalition members, thus, they spend an increased amount
of power. Therefore, we need to interchange the coalition
heads to generate fairness among the multipurpose devices. We
denote the energy availability of each device as E,,m € M.
In addition, we define an energy availability indicator as
EApm = Ex&fﬁm—,? where EA,;, € [0,1] expresses the

vm'eM
relative energy budget of each multipurpose device.

3) Mode Ties: This relation among IoT-devices is of high
practical importance since they may either operate as part
of the same IoT application or their sensing modes present
practical correlations (e.g., temperature/humidity, space occu-
pancy/motion detection etc.). In order to describe these rela-
tions between devices we define a symmetric matrix [ =
{im,m'}j M|x|m| Where each element 4, ,,,» denotes the mode
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Algorithm 1: Based

Coalitions
Input: EAvsim)s Qumr|x|m)y Dimix|m
Output: Set of coalitions A= {1,...,a,...,]A}}
Initialization : Entire device set as initial coalition M’ = M
while |M’| > 1 do
(a) Coalition head selection for current coalition a
IFm = EAm % iy ity ey Ym,m/ € M/
meM/’
chg = argmaz{IFm}
’

Formation of Socio-Physical

meEM
(b) Infer coalition members
for each m in M’ — {chg} do
if im,chu 2 Uhr
and ¢, cho 2 Qihr
and ¢, ch, 2 @m,eNB
m € coalition a
M!' = M — {m}
end if
end for
(c) Append created coalition a to coalition set A
end while

then

correlation among the devices m and m/. At this point we
further consider two possible cases regarding the values of 1
matrix. The first case assumes zero correlation among different
modes, therefore two devices will either have correlation equal
to one (same operation mode), or zero (different operation
mode), i.e., z';g’m, € {0,1}. The second case assumes non-

zero correlations among different device modes and therefore
ifb,m, € [0,1] with the correlation between common-mode
devices being again one. For both cases the elements residing
at the main diagonal i, m denote the device m-eNB correla-
tion, and will be set equal to one since all the devices have
the same interest to communicate with the eNB.

The mode correlation table I is updated for every times-
lot (Fig. 2) following the device mode selection changes.
Different mode correlations (if exist) are given as input from
the infrastructure provider who has the supervision of the
sensing data types and their usage. Finally, we define a thresh-
old iy, € [0,1] that is used to prevent coalition creation
among the devices that exhibit poor mode correlations, i.e.,

t,m/ < iy FOT the zero correlations case, we have iy, = 1.

A. Coalition Formation Algorithm

Given a subset of multipurpose devices M ! C M that form a
coalition a, we define for each device m € M’ an Importance
Factor IF,, such that:

IFp=EAm > immGmms Ymm €M (D)
meM’

IF;;, considers device’s physical proximity with the rest
devices (¢, my) along with their mode correlation 4y, p
weighted by the device’s energy efficiency. Following the IFy,
formulation, the coalition head ch, of a is the one with the
highest Importance Factor.

Regarding the number of transmissions that each ch, per-
forms to transmit the coalition members’ data to the eNB,
we initially consider it equal to the number of unique modes
operating within the coalition. As an enhanced and more
representative metric of the aggregation efficiency achieved
via the coalition creation, applicable in the case of non-zero

correlations among different modes, we further define a Mode-
based Aggregation Efficiency (MAE) factor as:

MAE = |M'| = " ip e, ®)
meM’

where [MAE] denotes the number of chy-to-eNB transmis-
sions. We will refer to this as MAE approach as opposed to
the aforementioned operation. Algorithm 1 describes in detail
the coalition formation process that takes place per timeslot
(Fig. 2).

V. DEVICES RESOURCE ALLOCATION

Given the coalition formation, the following devices’
resource allocation framework calculates the optimal transmis-
sion power P, of each IoT device in a distributed manner.
Due to hardware specifications and physical operation limita-
tions we assume that the feasible powers are upper and lower
bounded, i.e., Pﬁm < Py, < POE,

Aiming at supporting all the diverse IoT devices’ QoS pre-
requisites, we adopt the concept of the utility function that
represents the device’s degree of satisfaction in relation to
the expected tradeoff between the achieved bandwidth effi-
ciency and the corresponding energy consumption during a
given timeslot. Thus, each IoT device is assumed to adopt a
differentiable and continuous utility function U, with respect
to its transmission power P, formulated as follows [27]:

W - fm{vm)
Pp,

where fr, (vm) expresses an efficiency function that represents
the successful transmission probability between a transmit-
ter m and corresponding receiver, and W denotes the system’s
bandwidth.

The efficiency function fp,(ym) is assumed to be continu-
ous, twice differentiable, and increasing with respect to s,
(Eq. (3)), having a sigmoidal-like shape, such that after a

target . . [
Ym point, fm(ym) is concave, and below it is convex.
Without loss of generality, as widely used in [27] and [28],
we also adopt:

Um(Pm) - ©

fnlym) = (1~ e=m)” 10

where A, Z are real valued positive parameters that control the
slope of the sigmoidal function [27]. Moreover, by control-
ling parameters A and Z, f, becomes flexible enough towards
capturing user QoS prerequisites for diverse conditions, use
cases, and application-related demands within the considered
multipurpose IoT environment.

A. Power Control Game

In our framework, each node aims at maximizing its utility
as defined in Eq. (9), through selecting an appropriate strategy
for the transmission power. Thus, for each IoT device we for-

mulate the following distributed utility maximization problem:
Ui (P, P—
P,r,?gil(m 'm{Pm m)

s.t. 0< Py, < pMaz (11)
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where A, = (O,P;%aw] is the strategy space of the multi-
purpose IoT device m, and P_y, is the transmission power
vector of the rest IoT nodes (i.e., excluding device m under
consideration).

The utility maximization problem is confronted as a non-
cooperative game G = [M,{An},{Un}] among the loT
nodes and its solution concludes to an equilibrium for the
IoT network, following each node’s m individual decision, and
given the respective decisions of the rest of the devices. A
Nash equilibrium point of the game G = [M,{An}, {Un}]
is a vector of nodes’ uplink transmission powers P* =
[Pi",...,P;*n,...,Pl"Ml}T € A, where the strategy set is
denoted as A = A1 X ... X Ap X ... XAIMI'

Definition 1: A power vector | =
[Pf,...,PL,..., P}*}Ml} T in the strategy set
A = A1 x ... x Ay X ... x A is a Nash equilib-
rium of the game G = [M,{An},{Un}] if the following
condition holds true:

Un (P:mp*—m) 2 Um(Pm’P*—m) a2

for every IoT node m, and V P}, € Ay,

Theorem 1: The non-cooperative power control game G =
M, {Am}, {Un}] has a unique Nash equilibrium point P* =
[Pf,.... P}, ... ,Pr}ul}T, where

_Am D M.
P:n(dm’m/) poad mln{ng—m?’:;, Pmaz
for all m, m € M, with v}, being the unique positive solution
of the equation:

‘aigéirﬁ’)’m - fm(')’m) =0

(13)

(14)

The proof of the above theorem is concluded following sim-
ilar steps as in the procedure described in [29]. The Nash
equilibrium point determined by Eq. (13) can be interpreted
as follows: given the strategies of the rest multipurpose IoT
nodes, no independent node has the incentive to chose a dif-
ferent strategy, as this would not improve its personal utility.
In addition, due to the fact that the Nash equilibrium point
exists, the stable outcome of the non-cooperative game G is
guaranteed.

B. Power Control Game With Convex Pricing

The distributed decisions taken by selfish players, as
described in the previous subsection, do not always drive
the system to efficient Nash equilibria. Thus, the applica-
tion of pricing mechanisms has often been proposed towards
obtaining a more socially desirable and improved equilib-
rium point, that achieves increased operational efficiency [30].
Related approaches introduce a usage-based pricing on each
player’s uplink transmission power with each device m aim-
ing to maximize an expression of the form Up(Pm,P—m) —
cm{(Pm), which we will term as net utility U2¢, with Uy,
being each device’s utility and ¢, (Py,) a usage-based pric-
ing policy related to the uplink transmission power. Several
pricing policies have been considered in the literature towards
moving the Nash equilibrium of the system towards a Pareto
optimal solution.

Definition 2: A device’s power vector P is Pareto optimal
if there is no power vector P such that Uy (P) > Uy, (P) for
some m € M and Upp(P) > Uy (P), Vm € M.

Variations of pricing mechanisms include linear pricing [30]
with respect to a device’s transmission power, or convex pric-
ing [31], [32]. The latter in contrast to the linear approach,
considers the fact that the burden of a single player towards
the rest of the players, varies for different transmission power
ranges. In this work, we adopt a convex pricing mechanism
where the infrastructure owner (and thus the eNB) determines
the pricing policy and each user’s price per resources’ usage.

Therefore, based on the above we consider a net utility
function of the following form:

U#I,Et(Pm> P_y)= P
m

—em(Pp),Yme M
(15)

where ¢, ¢ Ap — RY is a convex pricing function of
transmission power Py, for a multipurpose IoT device m.
Without loss of generality, we will adopt an exponential
pricing function, namely:

em(Pm) =c- (ep”‘ - 1) (16)

where ¢ € R is a constant positive pricing factor. Thus, for
each IoT device the formulated optimization problem can be
re-written under the pricing consideration, as follows:

U (Pm, Pom)
~ max {w_cm(pm)}

 Pm€Am P,
s.t. 0< Py < PM® vmeMm

maXx
Pp€An

amn

The resulting utility maximization problem is also confronted
as a non-cooperative game Gp = [M, {An,}, {UZ¢t}] among
IoT devices with the net utility function U2¢¢ expressing each
node’s diverse QoS prerequisites considering the social welfare
constrains.

Theorem 2: The non-cooperative game Gp =
M, {Am},{UR}], starting from any initial point, con-
verges to a unique Nash equilibrium that is given by

:ost € (0, Pcrz'tical] as:

P:ost,m = min{ min <argma:1:(U,’,‘ft(8k,m))> , P%”}

k,m (ST
Okm = {P{‘,m,A..,P}‘{’m}, fork=1,....K, Yme M
5.z, OUn (Pm)
aPm Pm:P:ost m
2 rrnet P
=0, .a.__g";—(mz <0 (18)
0 Pm P’":P:ost,m

The proof of Theorem 2 follows similar reasoning as in [32]
and is omitted for brevity.

In order to calculate the unique Nash equilibrium point
P . of the Gp game we utilize a two-part iterative and dis-
tributed power control algorithm. The first part is implemented
by the eNB that is responsible to collect the IoT device’s

experienced satisfaction and broadcast back the resulted price.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 16:34:53 UTC from |IEEE Xplore. Restrictions apply.



SIKERIDIS et al.: ENERGY-EFFICIENT ORCHESTRATION IN WIRELESS POWERED IoT INFRASTRUCTURES 323

Algorithm 2: NE for Gp Game - eNB’s Part

Output: Optimal pricing factor cpes, Final P, , . Ym € M
Initialization : (I) Set initial pricing factor ¢ = 0 and
announce it to IoT devices
an {P:,; (e =0), UL (c=0)} — Algorithm 3, Vm € M
while not ’canverged do

(a) Increase pricing factor ¢

t=c+ Ac

(b) Each device determines the equilibrium transmission

power and computes its net utility

(P}t m(8), UREt(8)} — Algorithm 3, Ym € M
(c) Check convergence criterion
if Vm € M: UREH(2) < UREL(c) then

Convergence criterion met, stop else ¢ = &

end if

end while

TABLE I
SIMULATION PARAMETER VALUES

” Parameter Description | Value ||
w System Bandwidth 10° Hz
Iy AWGN power at the receiver 1015

ishr Interest ties’ threshold 0.6
Gthr Physical proximity ties’ threshold 2.1073
b Learning parameter 0.7
pMax Maximum uplink transmission power | 10~ Watt
Pg,"g Maximum eNB charging power 0.5 Watt
t Timeslot duration 0.5 msec
T ‘WIT phase duration 0.25 msec
T WET phase duration 0.25 msec
n Energy efficiency conversion factor 0.6

Algorithm 3: NE for Gp Game - IoT Device’s Part

Input: Pricing factor c, %onvergence factor e (small value)

:ost,m’ U"?le

Initialization : i = 0, Each device m,m € M, transmits with

a randomly selected feasible power, i.e., P:ogzt_:l

while not converged do ’
@Seti=i+1
(b) Given the wireless setting the eNB unicasts each
device’s sensed interference Iy (P, ), before being used

by the IoT device to refine its power Py using (18)
(©) Chec}( convergence criterion

it 2,0~ P < e then
Convergence criterion met, stop
end if
end while

The second part is implemented by each node in a distributed
fashion, and determines the uplink transmission power fol-
lowing (18). These two algorithms (Algorithm 2, Algorithm 3)
constitute a low complexity distributed procedure for each IoT
device.

C. Wireless Energy Transfer

Given the derivation of the optimal uplink transmit power
for each IoT device during the WIT phase, we determine the
charging transmission power P.yp of the eNB during the
WET phase as follows:

- P } Ma:n}
_— P (19)
{Tz 1 Genpm |~ VB

For each IoT device m the harvested energy is given by:

P = Mmin{ mazx
eNB meM

EMT = 07y Popp Genp,m (20)

where GenB,m is obtained according to Eq. (1) and n € (0,1]
is the energy efficiency conversion factor that depends on
the receiver’s hardware specifications. We also assume that
each device has non-zero initial energy availability when the
framework’s operation initiates.

V1. PERFORMANCE EVALUATION

In this section, through modeling and simulation, a detailed
numerical evaluation of the proposed framework is con-
ducted, in terms of its operation and performance against
other approaches. For our evaluation, we considered a wireless

NOMA setting that consists of |M| = 50 multipurpose devices
randomly distributed in a square area of 100m x 100m, while
an eNB is located at its center. Each device is able to operate
at |J] = 5 different modes. The thermal background noise is
Iy = 5-10715, the system’s bandwidth W = 10° Hz, and

the path gain among devices is modeled as G, p,r = ETK_’
!

where K is the shadow effect modeled as a log normal ran-
dom variable with mean 0 and variance of 02 = 0.25 dB, and
dm, m denotes the devices” distance. The timeslot’s duration
is set to t = 0.5 msec, while it is equally split between the
WIT and WET phases. Unless otherwise explicitly stated, we
consider the parameter values shown in Table L. In a nutshell
our evaluation focuses on the following aspects: (a) proper-
ties and operation of the sensing mode selection mechanism,
(b) impact of socio-spatial coalition formation on the system’s
energy efficiency, (c) advantages of the dynamic sensing mode
selection process, (d) impact of application and incorporation
of pricing policies in the multipurpose nodes’ utilities, and
(e) the holistic applicability of the proposed framework under
different wireless multiple access techniques.

A. Sensing Mode Selection Mechanism Properties

We will first evaluate the sensing mode selection process
focusing on the parameters that control the reward probabilities
rj for each mode and the action probabilities Pr;. We will
consider two scenarios regarding the provider’s revenue vector
rev, i.e., scenario A: rev4 = [0.8 0.6 0.4 0.2 0.1] and scenario
B: rev? = [0.8 0.8 0.05 0.05 0.05], while for both of them we
utilize the same cost vector ¢ = ¢& =[0.1 0.1 0.1 0.1 0.1]
for the provider. Scenario A represents the case where each
mode of operation corresponds to different revenue/cost ratio,
with the highest ratio assigned to the first sensing mode and
the lowest ratio assigned to the last. Using this scenario we
first evaluate how parameter b (see Section III) impacts the
learning automata mechanism convergence speed towards a
unique sensing mode j with probability 1.

Fig. 3 presents the average number of timeslots required so
that all devices converge to a final sensing mode, for different
values of parameter b. Evidently, higher values of b result to
lower convergence time, observing a reduction of 91.35% for
b = 0.9, when compared to the case of b = (0.2. However, it
is generally accepted that small values b significantly decrease
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Fig. 4. Nodes’ distribution per mode (i.e., A, B, C, D, E) as time progresses.
(a) Scenario A. (b) Scenario B.

the probability of convergence to the wrong action (here sens-
ing mode selection) [26]. In our case, the reward probability
is designed to control the mode distribution among devices
towards achieving the provider’s revenue/cost requirements
and adapt to the IoT environment’s needs (prevent sensing
mode extinction, and prolong device energy availability). Thus,
the complexity of our reward probability does not allow the
definition of a convergence mode that is distinctively accu-
rate for each device m. Therefore, in order to evaluate how b
affects the mode distribution quality, we calculate the deviation
between the mode distribution achieved for the lower b value
tested (b = 0.2), and the distribution resulted from larger b val-
ues as shown by the dashed curve in Fig. 3. For this experiment
the network topology remained unchanged for all b values, we
utilized a NOMA setting, and the final results were averaged
over 500 independent runs. In the remaining of our experi-
mentation, for efficiency and without loss of generality, we
use a b = 0.7 value, which as shown in Fig. 3, presents a
good tradeoff between convergence speed and mode selection
quality.

We now focus on the ability of the mode selection learning
process to follow the 2" ratio that was set by the infrastructure
owner towards maximizing his profit. For the two aforemen-
tioned scenarios A and B, we averaged the modes distribution
per timeslot for 500 individual runs and topologies. As shown
in Fig. 4, both scenarios fulfill the *£* requirements. Moreover,
for scenario B where the two first modes exhibit a signifi-
cantly larger *2¥ ratio, we observe how the socio-spatial-driven
parameters of the reward probability reduce the domination
effect of these modes, thus preventing phenomena where
modes that present lower revenues are driven to starvation.

=300 T v T T T T y
£ —&-~ Cotrelated Modes

6 250 } |4 Uncorrelated Modes
R ¥ d Modes (MAE)

80 100 120 140 160
Network Size

0 20 4 60

Fig. 5. Average consumed energy vs network size for different modes’
correlation scenarios.

B. Impact of Socio-Spatial Coalition Formation

Next, we evaluate how the existence of measurement
correlation between devices of different sensing modes
(Section 1V), impacts the coalition formation quality and the
energy consumption of the multipurpose IoT setting consider-
ing the NOMA transmission policy (without pricing). The case
where there exist sensing mode correlations (e.g., temperature
mode and humidity mode) results to coalitions with devices of
various modes and therefore, the chg is burdened with more
transmissions (e.g., as many transmissions as the different
modes). On the contrary, when an uncorrelated mode policy is
considered (i, n,r € {0,1}) the resulted coalitions consist of
identical sensing mode devices that are in the vicinity of the
coalition head, who then performs a single transmission to the
eNB. However, in order to better and in a more realistic man-
ner reflect the benefit obtained due to the data aggregation,
we consider transmission implementation taking into account
the MAE factor (Section IV), where the number of chy’s
transmissions per mode drops significantly. Fig. 5 illustrates
the average energy consumption for the three modes’ corre-
Iation settings as network size increases. The results reveal
that the uncorrelated mode approach indeed results to lower
consumption than the correlated ones, since the latter are
associated with the higher number of ch, to eNB transmis-
sions. The highest energy consumption is observed when the
pure correlated mode approach is applied, while under the
MAE consideration a consumption in-between the above two
approaches is achieved, presenting the tradeoff between energy
consumption and the diversity provided by having more than
one modes within the same coalition.

By considering non-zero mode correlations for the devices,
we additionally discuss how different coalition formation
approaches impact the device’s average energy consumption.
For this purpose we compare four cases as follows:

(a) consider only spatial ties ¢ among devices creating coali-

tions exclusively between neighboring nodes (g-based).

(b) consider only sensing mode correlations to create coali-

tions (assuming zero correlations between devices of
different sensing modes) (i-based).

(c) apply the proposed socio-physical coalition formation

framework under zero correlations among different
modes (i-q based).
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(d) same as above under non-zero correlations among dif-
ferent modes and utilizing the MAE driven transmission
approach (i-q based MAE approach).

Fig. 6 shows the average energy consumption of the network
per timeslot for all the aforementioned alternatives. The
g-based method creates coalitions of devices only close to the
chq with members of various modes, increasing the burden
for the chq by requiring multiple transmissions towards the
eNB. On the other hand, the i-based method creates coalitions
relying merely on mode relations and thus ignores spatial dis-
tances and channel quality. As a result, the burden is shifted to
the member devices that utilize increased transmission power
to send their measurements to their ch, who then report them
to the eNB with a single transmission. Evidently, our approach
results to better energy consumption compared to the previous
two as it achieves a balance between exhausting (energy-
wise) either the coalition heads exclusively (g-based case),
or the individual members (i-based case). Finally, even lower
energy consumption is achieved when considering the MAE
factor, since in the latter case coalitions of various modes are
formed and at the same time the volume of the ch-to-eNB
transmissions are reduced.

C. Dynamic Versus Static Sensing Mode Assignment

In this subsection, we examine how the dynamic selection
of sensing modes in the multipurpose IoT setting benefits the
infrastructure provider in terms of his profit. We assume that
the provider has a revenue vector of rev’ = [0.90.80.70.60.5],
while his initial cost vector is ¢/ = [0.1 0.15 0.2 0.25 0.3].
Utilizing these values we calculate the provider’s total rev-
enue (Fig. 7b) and total cost (Fig. 7a) per timeslot considering
a static assignment of sensing modes uniformly distributed
among devices, and compare it against the proposed dynamic
mode assignment.
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Fig. 8. Provider’s average net profit for various revenue Ryey and cost R¢
increase rates.

In addition, we express each multipurpose device’s sensing
accuracy level using parameter al € [1, 10] (i.e., 10 setting lev-
els of accuracy, where we assume that a higher value of accu-
racy leads to higher cost). Considering the cost per mode j for

.t . .
al=11is c[. - cé-, the accuracy’s increase impacts the cost as

cj{-al] = c[.lf+Rc . ﬂlﬁl . cy[-l}, where R, denotes the increase rate
of cost. Ii)itially, we assume that increased accuracy explicitly
impacts the provider’s cost with rate R, = 1, while his rev-
enue remains the same, i.e., increase rate of revenue Ry = 0,
considering the dynamic and static mode assignment cases
(Fig. 8a). However, in a realistic scenario by increasing the
sensing accuracy the provider’s revenue should also increase

accordingly, i.e., rev][al] = revj[]“} + Rrey * % 'rev]m. Fig. 8b
depicts the provider’s net profit vs accuracy level for three
scenarios where (a) revenue and cost increase with the same
rate R = Rrey = 1, (b) revenue increases with higher rate
(Rrev = 2,R. = 1), and (c) cost increases with higher rate
(Brev =1, Re = 2).

D. Impact of Pricing Policies

In this subsection, we focus on the performance of the
two distinct WPC phases (i.e., WET and WIT phases) and
examine the advantages of adopting uplink transmission power
control mechanisms with pricing policies towards more effi-
cient and socially desirable equilibrium points. Specifically,
we have examined various wireless network topologies with
increasing number of devices across different pricing alterna-
tives focusing on the system’s behavior energy-wise. For our
comparison we considered the proposed basic NOMA imple-
mentation as described before where no pricing mechanism
is utilized, against: (a) the use of a linear pricing mechanism
in the uplink power control, as discussed in {27], and (b) the
use of the convex pricing policy in the uplink power con-
trol described in detail in Section V-B. Fig. 9-a shows the
energy consumption during the WIT phase as averaged from
500 consecutive timeslots for topologies ranging from 30 to
150 10T nodes. Evidently, the use of a pricing policy, either
linear or convex, leads to lower energy consumption during
the WIT phase, since by determining the appropriate choice
of pricing policy we manage to improve the system’s social
welfare towards a more efficient equilibrium for the players
with less introduced interference. The reduced performance
of the non-cooperative game with no pricing policy is due
to its simplified formulation, i.e., the device’s adopted utility
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function simply reflects the trade-off between the device’s suc-
cessful transmission probability and corresponding consumed
power. In contrast, the introduction of pricing policies creates
a non-cooperative game with a utility function that imposes
more restrictions with regard to the devices’ uplink transmis-
sion power levels. In addition, we observe that the proposed
convex pricing policy concludes to a more efficient equilib-
rium for the system, compared to the linear pricing alternative,
where the devices use lower uplink transmission powers
during WIT.

Examining the performance of the system during the WET
phase, we observe that the use of lower WIT phase transmis-
sion powers by the devices (e.g., when pricing mechanisms
are utilized) leads to lower levels of harvested energy. This is
shown in Fig. 9-b where the average harvested system energy
over 500 timeslots is shown for topologies ranging from 30 to
150 IoT multipurpose devices. The above result and observa-
tion stems from the fact that in our framework the WET phase
follows the WIT phase (instead of the opposite order which is
commonly encountered in literature). Thus, following Eq. (19)
and given the recorded power levels used by the IoT network
for the WIT phase, the eNb is able to adjust his charging trans-
mission power P.yp in an attempt to cover the power needs
of the devices, while creating in some cases an energy surplus
that will be stored. The average eNB consumed energy due
to the adjustable charging power is shown in Fig. 9-c for the
increasing number of devices. Evidently, the case of no pricing
for the uplink power control is a less energy efficient solu-
tion when device consumption is considered, while leads to
significantly higher values of P.yp for the eNB (and by exten-
sion significantly increases the infrastructure provider’s costs),
when compared to the cases where pricing policies alternatives
are assumed. Accordingly, the multipurpose devices operat-
ing under no pricing policies show an increased charging rate
as shown in Fig. 9-d, that presents the system’s total energy
availability as time evolves for the scenario of |M| = 50 IoT
devices.
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E. NOMA Versus OFDMA

Finally, in order to demonstrate the holistic applicability
of the proposed framework under different wireless multiple
access techniques, we have examined an alternative IoT set-
ting that utilizes the Orthogonal Frequency-Division Multiple
Access (OFDMA) technique instead. In the OFDMA setting
considered, we assume that multiple access is realized by
distributing 256 available single frequency channels to the
multipurpose IoT devices residing within the range of the
sensing infrastructure. In this case, each IoT node experi-
ences a different gain on each available channel. For a single
IoT device m that transmits to a receiver k using frequency
channel ¢, the channel gain is defined as: Gfrf,)k = %9'—1—1!“,
where K represents the shadow effect modeled as a 10g?1’(§r—
mal random variable with zero mean and variance of o2,
while H, is a random variable expressing frequency chan-
nel selective fading. Regarding the channel distribution in an
OFDMA environment, algorithms that yield optimal solutions
regarding resource allocation are known to be computation-
ally complex [33]. Thus, in order to retain the low complexity
nature of our approach, we utilize a greedy sub-optimal alloca-
tion method as discussed in [33] and [34], which in principle
attempts to allocate channels to users according to the highest
channel gain property. Each IoT node’s uplink transmission
power is calculated by solving a maximization problem of the
assigned utility function as found in Eq. (9).

Fig. 10 presents some indicative comparative numerical
results of the two implementations (NOMA without pricing
and OFDMA), in terms of WIT/WET phase energy charac-
teristics as network size increases. In Fig. 10-a the energy
consumption during the WIT phase, averaged over 500 con-
secutive timeslots, for topologies ranging from 30 to 150 IoT
nodes is demonstrated. When sparser topologies are considered
the OFDMA implementation leads to higher uplink transmis-
sion powers in comparison to NOMA. On the contrary, when

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on March 11,2020 at 16:34:53 UTC from IEEE Xplore. Restrictions apply.



SIKERIDIS et al.: ENERGY-EFFICIENT ORCHESTRATION IN WIRELESS POWERED IoT INFRASTRUCTURES 327

a larger number of IoT devices coexist in our setting (which
implements a combination of M2M and M2eNB communi-
cations), the small distances between the nodes due to the
restricted fixed examination area (small to reflect a practical
implementation for indoor spaces) lead to better communica-
tion channels, and thus to the more energy-efficient OFDMA
performance. However, this enhanced OFDMA performance
does not come at no cost, since channel distribution tech-
niques in such environments can be computationally heavy
which is a disadvantage in comparison to a NOMA imple-
mentation. Considering the system’s performance during the
WET phase, given the energy requirements for the uplink
transmissions, we observe higher average energy consump-
tion by the eNB for charging the IoT nodes under OFDMA,
when compared against the NOMA approach. This behaviour
is depicted in Fig. 10-c as the number of devices increases.
Consequently, higher energy harvesting levels for the devices
under OFDMA are observed in Fig. 10-b, where the average
system’s harvested energy as a function of network size is
presented.

VII. CONCLUSION

In this paper, we studied the orchestration of an energy-
efficient operational framework for a set of multipurpose IoT
devices capable of making autonomous decisions about their
operation in a distributed manner, relying on the awareness
of socio-spatial parameters of the surrounding IoT envi-
ronment. We introduced a reinforcement learning technique
towards enabling each IoT node to select a sensing operation
mode in accordance with the interests of the IoT infras-
tructure’s provider (e.g., supplying specific measurements to
an IoT application, or optimizing his revenue/cost relation).
In addition, a coalition formation mechanism of the IoT
devices is implemented relying on socio-physical relations
among devices, namely spatial distance, energy availability,
and sensing mode correlations.

Regarding the information wireless transmission model,
we considered a Wireless Powered Communication mecha-
nism where the IoT nodes initially transmit their information,
before harvesting energy from transmissions originated by
the available eNB. To further improve the overall system
energy efficiency, a utility based transmission power alloca-
tion approach was introduced, by formulating a power control
problem and treating it as a non-cooperative, distributed game
among the various IoT nodes. For this uplink power control
game we examine two alternatives: (a) a basic one where no
pricing for the IoT nodes’ utility was used and (b) an enhanced
approach adopting a utility with convex pricing, where a cost
related to the devices® uplink transmission power is used to
obtain a more socially desirable equilibrium point, that was
shown to achieve increased operational efficiency.

The operation and performance of our proposed framework
were extensively evaluated through modeling and simulation,
while the presented detailed numerical results demonstrate its
superior energy efficiency, achieved by introducing individ-
ual decision making, socio-spatial awareness, and distributed
power control in the examined multipurpose IoT setting.

Our current and future work contains the testing of the
proposed framework in a realistic testbed environment, while
the proposed framework will be extended in order to include
additional socio-physical parameters, e.g., trust level of the
devices, security/privacy preserving characteristics, or wireless
communication protocol.
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