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Control chart pattern recognition

Abnormal control chart patterns are naturally infrequent in an industrial setting. However, such patterns
may indicate manufacturing faults that, if not treated in a timely manner, can lead to significant internal
and external failure costs, ultimately threatening the product reputation. Therefore, the detection of ab-
normalities, which is sought in the well-known control chart pattern recognition (CCPR) problem, is of
utmost importance. Standard machine learning algorithms have been extensively applied to this problem.
However, they often produce biased classifiers unless the inherent data imbalancedness, which originates
from the scarcity of abnormal patterns, are carefully addressed. In this paper, we develop a cost-sensitive
classification scheme within a deep convolutional neural network (CSCNN) for the imbalanced CCPR prob-
lem. We further investigate the performance of our algorithm on both simulated and real-world datasets
to determine separable and non-separable common fault patterns in a manufacturing setting. As the con-
tribution of this work, we particularly demonstrate that the cost weighting strategy is both robust and
efficient for moderately- and severely-imbalanced cases. We further show that our method can either
be fine-tuned to specific faults or trained to detect multiple faults while remaining efficient for large
datasets. To the best of our knowledge, this is the first deep CSCNN designed for imbalanced CCPR prob-
lems, which presents great promise for other manufacturing applications in the presence of imbalanced

datasets.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical process control (SPC) is one of the most commonly-
used quality control methods in manufacturing settings, which
identifies unnatural patterns or faults in a manufacturing process.
Known as essential components of SPC, control charts can identify
whether a process is in-control or if it indicates abnormal behavior
originating from certain defects. The early detection of these mal-
functions provides valuable insights regarding preventive actions
and process improvement. Since their invention in 1920s, SPC tools
have proved to be extremely useful and are now an indispensable
module of quality control systems.

With the advent of smart manufacturing systems, quality con-
trol systems are now equipped with an extensive body of sensors
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and new communication systems that collect large-size datasets
about the manufacturing process status. This provides highly-
complicated control charts to SPC, which can be employed to re-
veal several hidden (perhaps abnormal) patterns. As a result, con-
trol chart pattern recognition (CCPR) problem has become ex-
tremely challenging and requires much faster and more intelli-
gent algorithms compared to data mining methods employed in
conventional SPC systems. In this regard, a rich body of various
machine learning algorithms have been developed to tackle this
problem; they are capable of processing large amount of data into
meaningful information that can reveal future malfunctions and
faults in the process. CCPR algorithms can substantially improve
the level of automation and facilitate monitoring of the product
quality. Ultimately, CCPR algorithms aim at minimizing the time
and cost to detect an out-of-control process with significantly high
degree of precision (Montgomery, 2009).

A taxonomy of the basic normal and abnormal patterns was
initially proposed by Western Electric Company (Company, 1958).
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These basic patterns are the (1) normal (N), (2) up-trend (UT), (3)
down-trend (DT), (4) up-shift (US), (5) down-shift (DS), (6) cyclic
(CYC), and (7) systematic (SYS) patterns. Fig. 1 shows examples of
these patterns. The mathematical formulation of these patterns is
described in Appendix A. It is worth mentioning that the presence
of abnormal patterns is not limited to manufacturing applications;
they can appear, for example, as misdiagnoses in healthcare or lags
in a supply chain.

The CCPR problem is formulated and tackled by a wide range of
machine learning algorithms for several years (Hachicha & Ghor-
bel, 2012; Veiga, Mendes, & Lourenco, 2016). A large spectrum
of the proposed algorithms are the supervised learning methods,
in which the labeled data is used for training and then an un-
known test data is assigned to its class using the trained classi-
fier. Some well-known proposed supervised CCPR methods include
artificial neural networks (ANN) (Al-Assaf, 2004; El-Midany, El-
Baz, & Abd-Elwahed, 2010), rule-based expert systems (Alexander
& Jagannathan, 1986; Bag, Gauri, & Chakraborty, 2012), decision
tree (Wang, Guo, Chiang, & Wong, 2008), support vector machines
(SVM) (Ranaee, Ebrahimzadeh, & Ghaderi, 2010), fuzzy systems
(Chang & Aw, 1996; Khormali & Addeh, 2016), and hybrid or com-
bined methods (Guh, 2005; Kao, Lee, & Lu, 2016). Although clas-
sical machine learning algorithms promise many advantages when
applied to the CCPR problem, the following three challenges have
been known to negatively affect the performance of such algo-
rithms: 1) the inherent imbalancedness of datasets fed into CCPR,
2) the large-scale datasets, and 3) the prevalence of noisy data,
which makes feature extraction extremely important. We further
review each of these challenges bellow.

Abnormal patterns and process shifts are inherently rare to
happen in industrial settings (Company, 1958). This results in an
uneven (skewed) distribution of the normal samples and the sam-
ples with potential malfunctions. Accordingly, the dataset is re-
ferred to as an imbalanced dataset. The first aforementioned chal-
lenge originates from the skewness of the distribution in data. In
particular, since traditional classifiers treat all data samples with
equal importance, the skewed distribution leads to the classifier
being biased toward the majority class, and thus, neglecting the
minority class samples oduring the learning process (Sun, Wong,
& Kamel, 2009). Despite the natural tendency for practical CCPR
problems to have data imbalance, there have been very few stud-
ies on this topic (Xanthopoulos & Razzaghi, 2014) The oversam-
pling or undersampling techniques are among the most common
preprocessing methods to avoid the problem of data set imbal-
ance (Estabrooks, Jo, & Japkowicz, 2004). These two methods cre-
ate a balanced classification problem through adding/removing
from the dataset (Chawla, Bowyer, Hall, & Kegelmeyer, 2002; Liu,
Wu, & Zhou, 2008). One major drawback with these techniques
is that they can produce biased classification results or overfit-
ting. In particular, removing data points in undersampling can lead
to loss of significant information (Batista, Prati, & Monard, 2004).
Our method, i.e., the cost-sensitive learning, solves a classification
problem by assigning different weights to each data sample. The
benefit of this class of methods is that it avoids creating biased
classification results and often outperforms re-sampling techniques
in practice (Japkowicz & Stephen, 2002). Since the potential costs
in undetected abnormal items are high, there is a need to focus
learning on the correct identification of minority classes in CCPR
data through cost-sensitive learning techniques.

The second challenge lies in the scale of the CCPR problem. The
advent of smart sensors provide ample datasets that offer higher
potential to detect the abnormal patterns; however, they require
more computational-intensive machine learning methods. Classi-
cal machine learning algorithms may not be scalable to such large
datasets. For example, despite the benefits of ANN and their ap-
plicability for CCPR, they can be impractical as the number of lay-

ers and size of data increases dramatically. When this happens, the
classical algorithm needs to be altered to tackle the classification of
large datasets.

As indicated in the third challenge, the raw data might be
noisy, and most standard machine learning methods are not tol-
erant of erroneous data (Panagopoulos, Xanthopoulos, Razzaghi, &
Seref, 2018). The majority of studies have used raw (unprocessed)
data as the input for training a classifier. Extracting features, which
are representative of the characteristics of specific patterns, from
raw data can eliminate the impact of noise, improve the classifica-
tion accuracy, and save computational time (Pham & Wani, 1997).
During recent years, a few studies (Al-Assaf, 2004; Gauri &
Chakraborty, 2009) have developed CCPR models based on ex-
tracted features from raw control chart data. They often use shape
features (Pham & Wani, 1997), statistical features (Hassan, Baksh,
Shaharoun, & Jamaluddin, 2003), and multi-resolution wavelet
analysis (Chen, Lu, & Lam, 2007). Pham and Wani (1997) built a
CCPR model based on a small set of geometric features including
slope, cyclic memberships, number of mean crossings, the average
slope of the line segments, slope shifts, number of least-square line
crossings, and three other measures related to the area. In another
study, Gauri and Chakraborty (2009) proposed the use of a classifi-
cation and regression tree (CART) algorithm for selecting the most
relevant features from a large number of features; then used the
selected features as an input vector for ANN and heuristic meth-
ods.

More importantly, most previous works have studied fea-
ture extraction and selection as a pre-processing process be-
fore learning the classifier, and research studies on implement-
ing feature learning and classification in one single frame-
work are still very limited. Recently, convolutional neural net-
works (CNNs) have been very successful in simultaneous fea-
ture learning and classification. The method was first developed
by LeCun et al. (1990) for image recognition. Later, it was fur-
ther developed for one-dimensional sequential data in natural lan-
guage processing application (LeCun, Bottou, Bengio, & Haffner,
1998a). However, the method has received significant interest in
very recent years and various CNN models have been developed
in many real-world problems such as natural language processing
(Collobert et al., 2011), image classification (Krizhevsky, Sutskever,
& Hinton, 2012), speech recognition (Abdel-Hamid, Mohamed,
Jiang, & Penn, 2012), fault detection (Wang, Yan, & Gao, 2017), dis-
ease diagnosis (Anthimopoulos, Christodoulidis, Ebner, Christe, &
Mougiakakou, 2016), and CCPR (Miao & Yang, 2019; Zan, Liu, Wang,
Wang, & Gao, 2019). The use of convolutional layers has the effect
of smoothing normal variation while attempting to find deeper fea-
tures and patterns within the data (Schmidhuber, 2015). Besides,
unlike ANNs, the absence of full connects between layers reduces
the computational costs of the CNN algorithms (Khan, Hayat, Ben-
namoun, Sohel, & Togneri, 2017). The most significant benefit of
CNN is to build a robust model with sparse interactions, local con-
nectivity of neurons, and reduced number of parameter sharing
(LeCun et al., 1990).

In this research work, we aim at addressing the aforemen-
tioned three challenges in a unified framework based on CNNs. Our
choice of CNNs is justified by the proven scalability of these meth-
ods for large datasets, while being able to recognize and extract
the most significant features. We further consider an alteration of
the standard CNN technique, which introduces different weights
for the minority and majority classes in order to address the im-
balancedness in the data. While most research works have been
conducted on cost-sensitive learning extension of CNN for imbal-
anced image classification problems (Drummond & Holte, 2006;
Khan et al.,, 2017; Zhou & Liu, 2006), the applicability of CNN in
highly-imbalanced environments with large time-series data has
not been comprehensively addressed. We are further motivated by
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the shortcomings of existing CNN-based techniques (Miao & Yang,
2019; Zan et al., 2019) in addressing the imbalanced class CCPR
problems and will present the comparative results.

Our contributions in this paper are as follows.

1. We propose a cost-sensitive CNN framework for the CCPR prob-
lem to simultaneously learn robust features and classification
parameters. We refer to this approach as a cost-sensitive CNN
(CSCNN). To the best of our knowledge, this is the first time
a deep CSCNN has been designed for the CCPR problem. We
carefully tune the architecture of our proposed CSCNN model
for various abnormal pattern recognition problems.

2. We compare CSCNN with the standard and existing CNN mod-
els, and explore the robustness of CSCNN for highly-imbalanced
problems. To meet this purpose, we test and compare CSCNN
with CNN models for various abnormal patterns in moderately-
and severely-imbalanced problems, and present the optimal pa-
rameters and model structure for each problem. We also test
the CSCNN and CNN models for a real-world problem from
a manufacturing industry. Since the abnormal patterns in the
real-world are often unknown, the analysis will illustrate the
robust nature of the proposed CSCNN to detect potential faults.

3. We extend CSCNN to multi-class classification problems with
imbalanced data. We show the power of our proposed CSCNN
in applications with multiple fault types.

This paper is organized as follows. Section 2 describes the stan-
dard CNN and our proposed CSCNN algorithm and the performance
evaluation measures. Section 3 presents the computational results.
Section 4 concludes the paper and provides future directions for
research.

2. Methodology
2.1. Preliminaries

The input data of an instance of CCPR problem is a time series.
In this regard, we define D = {(x;,;)}!_, as a dataset of n univari-
ate time series. Given an integer positive value T, we let x; ¢ RT
denote the i" sample and y; € {0, 1} denote the associated class
label. It is common to refer to parameter T as the window length
in the time series.

The goal of any supervised learning algorithm is to determine
the related parameters with the aim of minimizing the cost func-
tion that represents the prediction error. In CNN, which is an ex-
tension of a typical ANN, the algorithm seeks the optimal values
for the parameters (w, b), which define the separating hyperplane,
so that the error (cost) function

1< R
E(w, b):EZZ(.Yivyi(wvb))y (1)
i=1
is minimized: given sample x;, i€ {1,...,n}, y; is the target out-

put, ¥;(w, b) is the algorithm’s predicted output, and ¢(.) is the loss
function. The parameters w and b are the set of all weights and
bias values in the network, respectively. For the sake of brevity in
our notation, we represent y;(w, b) as y; in the rest of the paper.
Various forms of the loss function ¢(.) have been used in ANNS.
Mean Squared Error (MSE) and Cross-Entropy (CE) loss functions
are among the most commonly-used loss functions. While CE loss
function (also called the “softmax log loss” function) has proven
to be more reliable for classification tasks in image recognition
(Khan et al.,, 2017), the choice of MSE loss function is recom-
mended for time-series data inputs (Raj, Magg, & Wermter, 2016;
Zhao, Lu, Chen, Liu, & Wu, 2017). Since our algorithm receives
time-series data inputs, we choose to employ the MSE loss func-
tion, which specifies the squared variation between the actual out-

put and the predicted output of the algorithm, given by
1 < 12

E(a)’b):ﬂ;(yi_yi) : (2)

To tackle the class imbalance challenge in the CCPR prob-
lem, we adopt a cost-sensitive MSE error function for our CNN
algorithm. The algorithm, which is called a cost-sensitive CNN
(CSCNN), allows different costs of misclassification for each data
sample depending on its class label. Therefore, CSCNN tends to be-
come more flexible compared to the conventional CNN in the sense
that CSCNN differentiates the data samples based on their “impor-
tance” in training the classifier. Hence, the majority class will not
necessarily outweigh the minority class as it would naturally be
implied in the conventional CNN. Accordingly, we choose to work
with the following error cost function (Castro & de Padua Braga,
2009; Kukar & Kononenko, 1998)

n, n.
N2 N2
E(w,b)=C* Y (vi-9) +C > (vi-7)" (3)
{ilyi=1} {jly;=0}
where C+ = 71 and C~ = ;L are the weighted costs for minority

(positive) class and majority (negative) class, respectively, and n*
and n~ are the minority and majority class sizes, respectively.

It is worth mentioning that the optimal parameters (w*, b*) are
given by

(w*, b*) = argmin E(w, b), (4)
w,b

where E(w, b) is given by (3). Similar to ANNSs, the optimal parame-
ters (w*, b*) are calculated by applying the well-known chain-rule
of derivative of Eq. (3) with respect to the network weights and
bias values through the back-propagation pass. We discuss the de-
tails of this process in Section 2.2.2.

2.2. Convolutional neural network for CCPR

2.2.1. General architecture

ANNs are among the most widely-used machine learning al-
gorithms. They are constructed from a series of layered building
blocks called neurons. Mathematically, each neuron receives a se-
ries of inputs and applies an affine transformation (defined by a
set of to-be-trained weights and a bias value) followed by a spe-
cific nonlinear transformation (called the activation function and is
known a priori) to generate an output. In ANN, the neurons in each
layer are fully connected to the outputs of the previous layer. The
algorithm then employs the well-known back-propagation tech-
nique to compute the set of weights and bias values with the aim
of minimizing the prediction error (Rumelhart, Hinton, & Williams,
1988).

A CNN is a variant of the conventional ANN, with the capabil-
ity of extracting the most prominent features. This capability orig-
inates from the specific constraints imposed on neurons’ weights
and bias values in a subset of layers called convolutional layers as
well as the downsampling operations employed in another subset
of layers called pooling layers. As a result, one can observe three
distinct types of layers in CNN: convolutional layers, pooling lay-
ers, and fully-connected layers (i.e., conventional ANN layers). An
instance of CNN includes stacks of convolutional layer(s) followed
by a pooling layer, which ultimately provide a compact represen-
tation of input data (through the most significant features) to the
fully-connected layers.

The raw input data is first fed into a convolutional layer, which
produces local feature representation of the input data. Unlike
standard ANNSs, the convolutional layer is constructed from many
identical copies of the same neurons. Each collection of all iden-
tical neurons are also called filters (kernels). Furthermore, each
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neuron is connected to only a subset of inputs. Clearly, these re-
strictions in the construction of the convolutional layer result in
smaller number of parameters that need to be trained. It is worth
mentioning that each neuron in the convolutional layer is still
equipped with an activation function similar to ANN. Next, we
introduce the details of our proposed CSCNN with respect to its
structure. Inspired by the notations introduced by Zheng, Liu, Chen,
Ge, and Zhao (2014) and Zhao et al. (2019), we demonstrate the
structure and operation of convolutional layer as follows.

Any convolutional layer is recognized by a series of F filters (to
be learned in the training process), a bias value b (to be learned in
the training process) and an activation function g, which are all ex-
clusive to that layer. It is worth mentioning that although it makes
sense to introduce a separate index in order to indicate the layer,
we purposefully avoid using layer indices for the sake of easier no-
tations. Let z' € R"™P be the it" input to an arbitrary convolutional
layer and define each filter f=1,...,F as a matrix o/ € R™4 with
q < p. That is, the length of the input (to the convolutional layer) is
denoted by p and the filter length is denoted by q. Accordingly, the
output of this convolutional layer is an (F x (p — q+ 1))-matrix
with elements

r q
foly =g b+ Y3 ol 21 ): (%)

h=1 j=1

with f=1,...,Fand I =1,...,p—q+ 1. For the activation func-
tion, we employ the rectified linear unit (ReLU) function defined
as

RelU : g(§) = max(0, £), (6)

for all convolutional layers since it trains much faster than other
activation functions (Krizhevsky et al., 2012).

Observe that the output of performing one filter on a univariate
time series is also a univariate time series (with a smaller size).
However, applying F filters over a univariate time series will re-
sult in a multivariate time series that is constructed by stacking F
(possibly) different univariate time series. Hence, the first convolu-
tional layer receives a univariate time series and applies a series of
F filters of size 1 x q (because r =1 for the raw input data). The
result of this layer, however, is a F x (T — q + 1)-matrix (because
p =T for the raw input data). Subsequently, the following layers
apply filters that are no longer one-dimensional vectors. Clearly,
the “height” of each filter and the “height” of the input data to
each convolutional layer are equal. By applying different filters in
each convolutional layer, CSCNN is able to extract various discrim-
inative features that are helpful for the final classification task.

Remark 1. A more general form of Eq. (5) is obtained by replac-
ing z;'” Ljo1 With z;'u +j_s.» Where sc is known as the stride pa-
rameter. When s =1, a filter of size r x q is first applied to
time steps {1,...,q} on the input. Next, it is applied to time steps
{2,...,q+ 1}, and so on. For a general value of s, each filter still
starts from time steps {1,..., q}; however, it then applies to the
time steps {1 +5Sc,...,q+sc}. One can observe that larger values
of stride parameter creates smaller output sizes. In our paper, we
consider s = 1 for all convolution layers.

The output of a convolutional layer may enter another convolu-
tional layer or a pooling layer depending on the CNN architecture.
The pooling layers essentially aim at extracting higher-level fea-
tures through downsampling, which is achieved by performing a
pooling operation. In other words, pooling layers generate a time-
series output by aggregating the time-series input over a sliding
window. This aggregation function can be the “max” operation or
the “average” operation. In practice, max pooling has shown bet-

ter performance over average pooling for sparse feature extraction
(Murray & Perronnin, 2014). In this paper, we use the max pooling
operation in all stages except the final pooling layer, which em-
ploys avg pooling.

Let u' € R™P be the input to a pooling layer and suppose k de-
notes the sliding window used for aggregating the input. The out-
put of this pooling layer is an (r x (p — k+ 1))-matrix with ele-
ments

lol,y =max{uj;: j=v,....,v+p—k+1}, (7)

with I=1,...,r and v=1,...,p—k+ 1. By replacing the “max”
function with the “avg” function in Eq. (7), one can obtain a pool-
ing layer with avg operation. In the CNN literature for time series,
the common forms of pooling filter length are k=2 and k = 3;
larger pooling sizes often result in highly poor results (Simonyan
& Zisserman, 2015).

Remark 2. Similar to the Eq. (5), a more general form of Eq. (7) is
obtained by varying j within the set of values v, ..., v+ p—k+sp,
where s, is called the pooling stride parameter. The effect of this
parameter on the pooling operation is the same as the stride pa-
rameter for the convolutional layer.

Fig. 2 demonstrates an example in which a time-series with T =
p =35 is fed into the first convolutional layer with F = 6 filters of
size (r,q) = (1,4). Note that the we have s =1 for this example.
As depicted, the first convolutional layer produces a multivariate
time series of size 6 x 32. Next, the multivariate time series is fed
into the first pooling layer with parameters k=2 and s, =2. As a
result, the output of pooling operation becomes a (6 x 16)-matrix.

The stacking of convolutional and pooling layers may be re-
peated until a meaningful two-dimensional feature map is gener-
ated. After performing feature learning through the convolutional
and pooling layers, the feature map is flattened and provided as
a one-dimensional input to a 1-layer multilayer perceptron (MLP).
Finally, at the end of each epoch, the error is calculated using
the Eq. (3). The MLP is a standard feedforward ANN; we refer
the reader to LeCun, Bottou, Orr, and Miiller (1998b) about the
details of MLP. This layer then generates a one-dimensional fea-
ture vector and performs the binary classification through the sig-
moid activation function. Similar to ANNs, a CNN typically em-
ploys the gradient-based back-propagation to determine the op-
timal weight and bias values with the aim of minimizing error
function.

2.2.2. Back-propagation and gradient-based learning

To estimate the parameters w* and b* at each layer in a
so-called back-propagation stage (Rumelhart, Hinton, & Williams,
1986), the neural network models utilize certain optimization
methods. In the literature, the popular back-propagation algo-
rithms are gradient descent, Adaptive Moment Estimation (ADAM)
(Kingma & Ba, 2015), and root mean squared propagation (RM-
Sprop) (Tieleman & Hinton, 2012). In this study, we use the RM-
Sprop method in the back-propagation due to its robust behav-
ior, programming compatibility, and the ability to combine with
Nesterov momentum if needed (Tieleman & Hinton, 2012; Yang,
Nguyen, San, Li, & Krishnaswamy, 2015). The RMSprop originally
introduced by Tieleman and Hinton (2012), calculates the parame-
ters w* and b* at each epoch.

2.3. Classification performance metrics
It is often of interest to determine if any classification method

produces highly accurate classifier in terms of minority and ma-
jority class precisions. The primary tool for evaluating the perfor-
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Fig. 2. Example of convolution and pooling operations in the first layer.

mance of classification techniques is the confusion matrix. For bi-
nary classifiers, we use the following confusion matrix (Table 1):

Table 1
Binary confusion matrix.

Actual
Abnormal  Normal
:g Abnormal TP FP
T | Normal FN TN
&

where if data samples belong to the positive class (abnormal class)
and the classifier categorizes them as positive (abnormal), we con-
clude them as true positive (TP), but when the classifier assigns
them to the negative class (normal class), then we consider them
as false negative (FN). A similar definition is valid for the negative
class (normal class) samples for true negative (TN) and false pos-
itive (FP). The accuracy of classification algorithms is defined as,

TP+TN 8)
TP+TN+FP+FN
However, this measure is only useful for balanced problems. Sim-
ilarly, measures of sensitivity and specificity calculate the relative
accuracy of each class.

Accuracy =

L TP

Sensitivity = TP+ EN 9)
e TN

Specificity = TN+ EP (10)

Also, the balanced geometric mean (G-mean) of sensitivity and
specificity is given by

G — mean =\/Sensitiuity x Specificity (11)

In multi-class classification problems, we have similar issues
where imbalanced data makes accuracy a poor performance met-
ric. For these problems, we use the F-scorey or macro-averaging

score that is a harmonic average between macro-averaging pre-
cision, denoted by Precisiony, and macro-averaging recall (or
sensitivity), denoted by Recally;. We choose the macro-averaging
measure because macro-averaging considers all classes equally
while micro-averaging supports larger classes (Sokolova & La-
palme, 2009). We calculate the metrics with the following equa-
tions based on the multi-class confusion matrix:

Zm TP,
i=1 TP+FP,

Precisiony = = (12)
m TP,

Recally = Lzt i, (13)
2 - Precisiony; - Recally,

F— = — 14

scorem Precisiony; + Recally (14)
ym TP+TN;

Average Accuracy = =] TRAFNAFRATN, (15)

m
where m is the number of classes.

3. Computational results

In this section, we study the application of CNN and the pro-
posed CSCNN algorithm on various sets of simulated control chart
datasets as well as a real-world dataset collected from a wafer
manufacturing industry (Chen et al., 2015). We compare the perfor-
mance of these algorithms based on the evaluation metrics intro-
duced in Section 2.3. Both CNN and CSCNN algorithms are imple-
mented in Python version 3.6 with Keras (Chollet, 2015) and Ten-
sorFlow libraries (Martin et al., 2015). We perform all experiments
on an Intel i7-6500U 2.5 GHz processor and 32GB of RAM in a 64-
bit platform. An interested reader can refer to the online repository
mentioned in Appendix B in order to access our implementations.

3.1. Binary classification with simulated data

To generate time-series data for both normal and abnormal
classes, we employ a simulation model suggested in Guh and
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Fig. 3. G-mean vs. the number of convolutional layers for different abnormal pat-
terns.

Hsieh (1999) and Yang and Yang (2005) (see Appendix A). We let p
denote the imbalanced class ratio as the ratio of the number of ab-
normal samples over the total number of samples, ie., p = -

n—+nt*

Throughout this section, we use the notation (1: }) to denote the

degree of imbalancedness in a dataset. For example, a (1: 100)

dataset with 1000 samples contains n* = 10 abnormal samples and
~ =990 normal samples.

For each type of abnormal patterns, we consider two sets of
imbalanced class of the forms (1: 20) and (1: 200) each contain-
ing 10,000 data samples. Throughout this section, we refer to the
former and latter sets as the moderately-imbalanced set and the
severely-imbalanced set, respectively. We partition each generated
set into a three-quarter portion and a one-quarter portion, and
train our model with the first portion of the data for each inte-
ger value of T in the interval [10, 100]. The other portion of the
data is then used as the test set.

3.1.1. CSCNN architecture

Although optimization of CNN architecture has several open
questions, previous studies demonstrated that too few layers of-
ten fail to extract deep features, while too many layers can re-
sult in an overfitting problem (Sainath, Mohamed, Kingsbury, &
Ramabhadran, 2013). However, we identified the appropriate num-
ber of convolution layers and the size of the filters as well
as the number of pooling layers and the pooling slide win-
dow through extensive experiments. In particular, our architec-
ture is inspired by the LeNet 5 (LeCun et al, 1995) and the
CNN network developed by Krizhevsky et al. (2012). For US, DS,
UT, and DT patterns, we limited our preliminary experiments
to two-convolutional-layer CNN, as our experiments showed that
the computational burden incurred by using a deeper CNN does
not compensate with significantly improved results (see Fig. 3).
This choice is also justified by the simple nature of these ab-
normal patterns, which are detectable in early layers. Further-
more, the experiments showed that a moderate number of fil-
ters (60-100) and a small filter length (2-5) lead into the best re-
sult. This is motivated by our observations that small filters can
produce very deep networks with low-dimensional feature input
that can lead to higher performance metrics (Simonyan & Zis-
serman, 2015; Yan, Chen, Shyu, & Chen, 2015). However, this is
not the case for more complex patterns. For cyclic pattern, for
example, a four-convolutional-layer CNN (shown in Fig. 4) re-
sults in the best classification performance among other network
structures, particularly a shallower two-layer network (see Fig. 3).
In addition, our preliminary experiments showed that the com-
plex patterns require larger filters at the initial layers. Moreover,
combining two back-to-back convolutional layers (as suggested by
Liu, Meng, Yang, Sun, & Chen (2017)) prior to the dense layer
would improve the performance of CNN for cyclic and systematic
patterns.

We employed pooling layers after the first and second convolu-
tional layers (for all patterns) as well as after the last back-to-back
convolutional layers (for cyclic and systematic patterns). Based on
our experiments, the use of “max” pooling after the first and sec-
ond convolutional layers (for all patterns) as well as employing an

RM-Sprop backward pass
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Fig. 4. CSCNN architecture for cyclic pattern.



Table 2

CSCNN architecture for various abnormal patterns.
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Abnormal Pattern

Ci(F,q1) = Pi(ki) — G (R, q2) — P (ka) — G (B, q3) — Ca(Fy, q4) — P3(k3) — H(n) — O(v)

UT/DT C1(80,3) =P (3) — (5(100,2) —P,(2) —H(80 x T x n) — 0(2)

US/DS C1(80,3) =P (3) —(5(100,2) — P,(2) —H(80 x T x n) — 0(2)

CYc C1(100,3) — P;(4) — (5(40,2) — P, (3) —(5(80,3) — (4(60,4) —P5(2) —H(40 x T x n) — 0(2)
SYS C1(80,4) — P (4) —(5(40,2) — P, (3) — (3(60,4) —C4(20,5) —P3(2) —H(40 x T x n) — 0(2)
Table 3

Sensitivity, specificity, and G-mean of CNN and CSCNN over different abnormal patterns for moderately-
imbalanced PS problems. The highest sensitivity, specificity, and G-mean between two algorithms are denoted

in bold.
Pattern  Parameters CNN CSCNN
Sensitivity ~ Specificity =~ G-mean  Sensitivity  Specificity =~ G-mean
uT T =20,d; =0.005 0.0000 1.0000 0.0000 0.6960 0.3790 0.4980
us T =20,d, =0.100  0.0000 1.0000 0.0000 0.4132 0.7158 0.5296
CYC T =20,d; =0.100  0.0000 1.0000 0.0000 0.4684 0.6601 0.5561
SYS T =20,d4 =0.005 0.0000 1.0000 0.0000 0.5860 0.5135 0.5486
Table 4

Sensitivity, specificity, and G-mean of CNN and CSCNN over different abnormal patterns for severely-imbalanced
PS problems. The highest sensitivity, specificity, and G-mean between two algorithms are denoted in bold.

Pattern Parameters CNN CSCNN
Sensitivity ~ Specificity =~ G-mean  Sensitivity  Specificity =~ G-mean
uT T =20,d; =0.050 0.0000 1.0000 0.0000 0.2110 0.9950 0.3850
us T =20,d, =0.250 0.0000 1.0000 0.0000 0.2666 0.9155 0.4940
CYc T =20,d; =0.500 0.0000 1.0000 0.0000 0.5714 0.8765 0.7077
SYS T =20,d4 =0.050  0.0000 1.0000 0.0000 0.2857 0.9482 0.5205
Table 5

Comparison of CSCNN and CNN (in terms of G-mean) with MLP (Zan et al., 2019), and CNN (Miao & Yang, 2019),
and CNN (Zan et al.,, 2019) for moderately-imbalanced PS problems (10000 samples: 9950 normal, 50 abnormal). The
highest G-mean between the algorithms is in bold.

Pattern  Parameters CSCNN  CNN MLP CNN (Miao & Yang, 2019)  CNN (Zan et al., 2019)
uT T =20,d; =0.005 0.4980 0.0000 0.0000 0.0000 0.0000
us T =20,d, =0.100 0.5296 0.0000 0.0000 0.0000 0.0000
CYC T =20,d; =0.100 0.5561 0.0000 0.0000 0.0000 0.0000
SYS T =20,d, =0.005 0.5486 0.0000 0.0000 0.0000 0.0000
Table 6

Comparison of CSCNN (in terms of G-mean) with cost-sensitive MLP (CS+MLP (Zan et al., 2019)), CNN (CS+CNN
(Zan et al., 2019)), and decision tree classifier (CS+DT) for moderately-imbalanced PS problems (10000 samples: 9500
normal, 500 abnormal). The highest G-mean between the algorithms is in bold.

Pattern Parameters CSCNN CS+MLP CS+CNN (Zan et al., 2019) CS+DT

uT T =20,d; =0.005 0.4980 0.0000 0.4867 0.3305

us T =20,d, = 0.100 0.5296 0.0000 0.5440 0.2243

CYC T =20,d; = 0.100 0.5561 0.0000 0.0000 0.2237

SYS T =20,d4 = 0.005 0.5486 0.0000 0.4517 0.2431
Table 7

Comparison of CSCNN and CNN (in terms of G-mean) with MLP (Zan et al., 2019), and CNN (Miao & Yang, 2019), and
CNN (Zan et al., 2019) for severely-imbalanced PS problems (10000 samples: 9950 normal, 50 abnormal). The highest
G-mean between the algorithms is in bold.

Pattern  Parameters CSCNN  CNN MLP CNN (Miao & Yang, 2019)  CNN (Zan et al., 2019)
uT T =20,d; =0.050 0.3850 0.0000 0.0000 0.0000 0.0000
us T =20,d, =0250 0.4940 0.0000 0.0000 0.0000 0.0000
CYC T =20,d; =0.500 0.7077 0.0000 0.0000 0.0000 0.0000
SYS T =20,dy =0.050 0.5205 0.0000 0.0000 0.0000 0.0000
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Table 8

Comparison of CSCNN (in terms of G-mean) with cost-sensitive MLP (CS+MLP (Zan et al., 2019)), CNN
(CS+CNN (Zan et al., 2019)), and decision tree classifier (CS+DT) for severely-imbalanced PS problems (10000
samples: 9500 normal, 500 abnormal). The highest G-mean between the algorithms is in bold.

Pattern Parameters CSCNN CS+MLP CS+CNN (Zan et al., 2019) CS+DT
uT T =20,d; = 0.050 0.3850 0.0000 0.3774 0.0000
us T =20,d, = 0.250 0.4940 0.0000 0.0000 0.0000
CcYc T =20,d; = 0.500 0.7077 0.0000 0.0000 0.5340
SYS T =20,d, = 0.050 0.5205 0.0000 0.4987 0.0000

Table 9
Comparison between the CNN and CSCNN algorithms for a cyclic pattern with
T =25 and d; = 0.3 and imbalanced ratio 1: 20.

Data Size (n)  G-mean (SD) Time (sec) / Iteration
CNN CSCNN

10000 0.3026 (0.1882)  0.7614(0.0272) 154

30000 0.3059 (0.1268)  0.7620(0.0117) 734

50000 0.3329 (0.1185)  0.7677(0.0090)  235.2

70000 0.3371 (0.1122)  0.7297(0.0048)  435.5

90000 0.3389 (0.0861)  0.7369(0.0045)  788.5

“avg” pooling after the back-to-back convolutional layers (for cyclic
and systematic patterns) produce results with better performance
measures.

One can observe that convolutional and pooling layers may
significantly reduce the output size (From Egs. (5) and (7)). Fur-
thermore, this intuitively decreases the effects of information on
the first time steps in the time series. This phenomenon has
been widely studied in other applications, e.g., image recognition
(Simonyan & Zisserman, 2015). In general, sharp reduction in the
size of feature map often results in performance deterioration es-
pecially due to losing the valuable information in the boundaries
(i.e., first time steps) of each feature map. To prevent this, we use
the so-called zero-padding technique (Smith, III, & O., 2011) in all
convolutional layers. The zero-padding technique pads (i.e., aug-
ments) the input with zeros around the border, so that the size of
the input and the output time series become the same. While this
is unlikely to negatively affect the performance of the feature ex-
traction task, it reduces the likelihood of “neglecting” the valuable
information in the boundaries.

We also use dropout technique (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014) to reduce over-fitting in the CNN
model. This technique temporarily eliminate a randomly selected
set of neurons in a hidden layer by setting their output to zero.
Thus, these “dropout” neurons do not contribute to the forward
pass and backward pass at a epoch. In the next epoch, a new ran-
dom set of neurons is temporarily eliminated and the previously
“dropout” neurons will be added to the model if not randomly re-
selected. We set the dropout rate denoted by & to 0.25. We note
that all tests with simulated data were performed with 5 epochs
based on the validation error.

To specify our CSCNN'’s architecture and parameters, we use the
following notation:

Ci(F,q1) —Pi(k) —G(E, q2) — P(ky) —G(F, q3)
—C4(F4,q4) — P3(k3) —H(n) — 0(v),

where C,,¢=1...,4 is the ¢ convolutional layer, and P, ¢=
1,2,3 is the ¢ pooling layer; F;, and q, are the number of filters
and the filter length of the ¢ convolutional layer, respectively; k.
is the pooling sliding window in the ¢ pooling layer; H and O de-
notes the hidden layer and the output layer of MLP, respectively; n

is the number of neurons in the hidden layer; and v is the num-
ber of neurons in the output layer of MLP. Table 2 illustrates the
architecture and parameters used in the implementation of CSCNN
for each abnormal pattern.

3.1.2. Results and discussion

We calculated the G-mean of CNN and CSCNN of various abnor-
mal pattern data in a moderately-imbalanced environment (Fig. 5).
Based on Fig. 5, one can identify three categories of interest in
CCPR problems: 1) fully separable (FS) problems, 2) partially sep-
arable (PS) problems, and 3) inseparable (IS) problems. As shown
in Fig. 5, the FS, PS, and IS problems are illustrated by white, gray,
and black regions, respectively. This result agrees with recent stud-
ies (e.g., see Xanthopoulos & Razzaghi (2014)). According to this
figure, as the window length T and the abnormal pattern param-
eter increase, the CCPR problem becomes easily solvable with re-
spect to G-mean, while small values for the window length and
the abnormal pattern parameter, in general, lead to more challeng-
ing problems.

From Fig. 5, one can distinguish between IS, PS, and FS re-
gions obtained by CNN and CSCNN algorithms for moderately-
imbalanced sets. Based on this figure, CNN and CSCNN algorithms
result in comparable performance measures for UT and SYS ab-
normal patterns. For US patterns, CSCNN yields a better perfor-
mance with small window lengths, however it is slightly outper-
formed by CNN in general. For this pattern, both algorithms show
a very similar behavior for problems with d, < 0.250, but the dif-
ference is significant for 0.250 < d, < 0.750, where CSCNN re-
sults in a larger gray region. Note that, however, the CSCNN shows
a more robust behavior for problems with small abnormal pat-
tern parameters. The power of CSCNN is emphasized on detect-
ing cyclic patterns. While only a small range of the problems with
cyclic patterns (with parameter d3 > 0.500) lies in the IS region
using CSCNN, CNN is generally successful with cyclic parameter
d3 > 0.750. Since the cyclic abnormal pattern is the most complex
type of abnormality in our study, we believe this demonstrates the
power of CSCNN in successfully compensating for the minor class
size by assigning a higher weight in the loss function.

We particularly compared CNN and CSCNN for several represen-
tative problems from PS category. The reported performance met-
rics are accuracy, sensitivity, specificity and G-mean. The behavior
of accuracy and sensitivity is significantly dominated by the major-
ity class, and hence, they are not adequate performance metrics of
imbalanced classification. The correct classification of the minority
class is reflected by specificity. We choose to report G-mean be-
cause its value reflects both sensitivity and specificity. According to
Table 3, CSCNN generates substantially higher G-mean values com-
pared to CNN.

We also performed similar analysis for severely-imbalanced
datasets. Table 4 reports the results of using CSCNN and CNN for
these datasets. According to this table, CSCNN outperforms CNN in
terms of G-mean metric. However, CSCNN shows relatively inferior
specificity and higher sensitivity values.
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Fig. 5. G-mean results for CNN and CSCNN for each abnormal pattern with different parameters and window lengths for moderately-imbalanced datasets.



D. Fuqua and T. Razzaghi/Expert Systems With Applications 150 (2020) 113275 1

Table 10

G-mean of CNN and CSCNN with respect to different imbalanced ratios (1 : %) and different ab-
normal patterns of PS problems. The training set has 10000 data samples.

Pattern ur us

CYC SYS

T =25, d; = 0.06

T =40, dy = 0.43

T=30d;=075 T=25 ds=0.06

1: % CNN CSCNN  CNN CSCNN  CNN CSCNN  CNN CSCNN
1: 20 09166 09553 0.8085 0.8873 04163 0.7341 09739  0.9883
1: 40 0.8833  0.9311 0.7898 0.8979 0.1754 0.7468 0.9640  0.9888
1: 60 0.8297 0.9018 0.6852 0.8964 0.0000 0.6889 0.9062 0.9864
1: 100 0.7402 09426 0.6388 0.8809 0.0000 0.6926 0.8795 0.9789
1: 200 0.2582  0.7705 0.3015 0.8943 0.0000 0.5892 0.8560  0.9272

Table 11

CSCNN and CNN classification performance for the wafer dataset. The highest sensi-
tivity, specificity, G-mean, and accuracy values between CNN and CSCNN algorithms
are denoted in bold.

Accuracy  G-mean  Specificity  Sensitivity
Original Train/Test Split
(Train : 1000, Test : 6174)
CNN 0.9786 0.9401 0.9985 0.8876
CSCNN 0.9969 0.9917 0.9984 0.9850
New Train/Test Split (Train :
6174, Test : 1000)
CNN 1.0000 1.0000 1.0000 1.0000
CSCNN 1.0000 1.0000 1.0000 1.0000
Table 12
Parameters for all abnormal patterns.
Class  d3 (CYC) d4 (SYS) dy (US) dp (DS) di (UT) d; (DT)
Set 1 0.40 1.53 +0.38 -0.63 +0.93 -0.58
Set2 1.80 2.10 +0.70 -0.70 +1.00 —-1.00
Set3 020 0.20 +0.05 —-0.05 +0.20 -0.20

To further evaluate the performance of the CSCNN, we com-
pared our CSCNN with three existing methods: the MLP model
and the CNN model proposed by Zan et al. (2019), the CNN
model developed by Miao and Yang (2019), and decision tree (DT).
In this experiment, the MLP (adopted from Zan et al. (2019))
is a three-layer neural network with 25 neurons in one hid-
den layer. As already mentioned, the decision tree has shown
good performance results in the CCPR (Wang et al, 2008).
We report the results of the aforementioned three methods
for moderately- and severely-imbalanced datasets in 5, 6, 7, 8.
These tables reveal that CSCNN generate superior results com-
pared to other methods in moderately- and severely-imbalanced
cases.

Next we studied the behaviour of the performance metrics
of CNN and CSCNN for various dataset size. We randomly se-

Table 13

lected a representative problem from PS category and performed
each algorithm with the dataset size from {10000, 30000, 50000,
70000, 90000}. We report the average G-mean and standard de-
viation (SD) values in Table 9. We observe that CSCNN consis-
tently performs well compared to CNN on all dataset size val-
ues (in terms of G-mean metric). It is worth mentioning that
CSCNN shows a more robust behavior (small variation over mul-
tiple iterations) when the size of data increases. In our exper-
iments, the difference in computational time required by CNN
and CSCNN is insignificant. Accordingly, we only report the com-
putational time for CSCNN in Table 9. As expected, the compu-
tational time increases for larger training datasets. The increase,
however, is not severe (about 13 minutes for the largest training
datset).

We also studied the sensitivity of CNN and CSCNN with respect
to various imbalanced ratio values. We vary the imbalanced ratio
from {(1: 20), (1: 40), (1: 60), (1: 100), (1: 200)}. Table 10 presents
G-mean values in this experiment. According to this table, CSCNN
generally outperforms CNN. For example, while CSCNN can detect
UT, CYC, and SYS patterns for all imbalanced ratio values, CNN is
unable to detect the same patterns for the severely-imbalanced
ratio (1: 200). We also observe that CSCNN shows more robust
behavior in terms of G-mean for different abnormal patterns for
larger imbalanced ratio values.

3.2. Results for binary classification with real data

We also compared our proposed CSCNN with the standard CNN
on a real dataset collected from a wafer manufacturing industry
(Chen et al.,, 2015). The time-series dataset contains 7194 samples
(of length 152 each), which is partitioned into 1000 training sam-
ples and 6174 testing samples. The training data is approximately
moderately-imbalanced in nature (1: 10) in which 903 data sam-
ples belong to the majority class and 97 data samples to the mi-
nority class.

3.2.1. CSCNN architecture

For this dataset, we select the architecture C; (100,4) — P;(4) —
(5(80,4) — P, (3) — (3(60,3) —C4(40,2) — P3(2) — H(40 x 152 x
n) —0(2). To avoid high computational burden, we determine

Robustness of CSCNN versus our CNN, cost-sensitive CNN (Miao & Yang, 2019), CNN (Zan et al., 2019),and DT algorithms
for a multi-class PS problem (with set 1 parameters). The highest classification performance measure between the algo-

rithms is in bold.

Measure CSCNN CNN CS+CNN (Miao & Yang, 2019) CS+CNN (Zan et al., 2019) CS+DT
F-scorey 0.6240 0.5317  0.4649 0.3707 0.5697
Average Accuracy  0.8555 0.9675 0.9615 0.9634 0.9770
Precisiony 0.6078 0.5588  0.4338 0.3443 0.5680
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Table 14

Robustness of CSCNN versus our CNN, cost-sensitive CNN (Miao & Yang, 2019), CNN (Zan et al., 2019), and DT algo-
rithms for a multi-class FS problem (with set 2 parameters). The highest classification performance measure between

the algorithms is in bold.

Measure CSCNN CNN CS+CNN (Miao & Yang, 2019)  CS+CNN (Zan et al,, 2019)  CS+DT

F-scorey 0.8819 0.5589  0.6160 0.6113 0.6005

Average Accuracy  0.9683 0.9721 0.9622 0.9517 0.9770

Precisiony 0.8404 0.5673  0.5967 0.5941 0.6396
Table 15

Robustness of CSCNN versus our CNN, cost-sensitive CNN (Miao & Yang, 2019), CNN (Zan et al., 2019),and DT algo-
rithms for a multi-class IS problem (with set 3 parameters). The highest classification performance measure between

the algorithms is in bold.

Measure CSCNN CNN CS+CNN (Miao & Yang, 2019)  CS+CNN (Zan et al, 2019)  CS+DT
F-scorey 0.3866  0.2971 0.1380 0.1390 0.2313
Average Accuracy 0.9623 0.9468 0.9472 0.9483 0.9574
Precisiony 0.3614  0.1353 0.1353 0.1355 0.2046

Wafer Data (Train = 1000, Test = 6174) Wafer Data (Train = 6174, Test = 1000)
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Fig. 6. Accuracy and validation error for the wafer dataset.

the number of epochs based on the stopping criterion, where
additional epochs fail to improve predictive performance. Note
that this is performed using the validation set.

As shown in Fig. 6, the validation error becomes stable for
epochs greater than 20. Thus, we set the number of epochs
to 25 for our proposed CSCNN and CNN algorithms. In addi-
tion, Fig. 6 shows how accuracy improves and stabilizes over
training.

3.2.2. Results anddiscussion

Table 11 reports the performance metrics for both CSCNN and
CNN models on the test dataset. We observe that our CSCNN
method results in 5.5% improvement in G-mean and 11% increment
in sensitivity without compromising specificity compared to CNN.

We also compared CSCNN with baseline evaluation methods
based on the results reported in Chen et al. (2015). These meth-
ods are 1-nearest neighbor combined with Euclidean Distance (1-
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Table 16

13

Computational results for multi-class CSCNN, CS+CNN (Miao & Yang, 2019; Zan et al.,
2019), and CS+DT for a PS problem. Best scores are highlighted in bold text.

Actual
CNN CYC SYSs US DS UT DT N
CYC | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SYS 0.00 1.00 0.00 0.00 0.00 0.00 0.00
E Us 0.00  0.00 0.00 0.00 0.00 0.00 0.00
’? DS 0.00 0.00 0.00 0.67 0.00 0.00 0.00
& uT 0.00  0.00 0.00 0.00 0.00 0.00 0.00
DT 0.00  0.00 0.00 0.00 0.00 1.00 0.00
N 1.00 0.00 1.00 0.33 1.00 0.00 1.00
CSCNN CYC SYS Us DS uT DT N
CYC | 094 0.00 0.00 0.00 0.00 0.00 0.02
SYS | 0.00 1.00 0.00 0.00 0.00 0.00 0.00
E Us 0.06 0.00 1.00 0.00 0.00 0.00 0.02
—‘; DS 0.00 0.00 0.00 1.00 0.00 0.00 0.34
& uT 0.00  0.00 0.00 0.00 1.00 0.00 0.00
DT 0.00 0.00 0.00 0.00 0.00 1.00 0.11
N 0.00  0.00 0.00 0.00 0.00 0.00 0.53
CS+CNN (Miao & Yang, 2019) CYC SYS US DS uT DT N
CYC | 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SYS | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E Us 0.00 0.00 0.00 0.00 0.05 0.00 0.00
'E DS 0.00  0.00 0.00 1.00 0.00 0.00 0.01
& uT 0.00 1.00 0.00 0.00 0.00 0.00 0.00
DT 0.00 0.00 0.00 0.00 0.00 1.00 0.00
N 0.00 0.00 1.00 1.00 0.95 0.00 0.99
CS+CNN (Zan et al., 2019) CYC SYS US DS UT DT N
CYC | 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SYS 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E Us 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T; DS 0.00  0.00 0.00 1.00 0.00 0.00 0.01
& uT 0.00 1.00 0.00 0.00 0.00 0.00 0.00
DT 0.00  0.00 0.00 0.00 0.00 1.00 0.00
N 0.00 0.00 1.00 1.00 1.00 0.00 1.00
CS+DT CYC SYSs US DS UT DT N
CYC | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SYS 0.00 1.00 0.00 0.00 0.00 0.00 0.00
E Us 0.00  0.00 0.00 0.00 0.00 0.00 0.00
*; DS 0.00  0.00 0.00 0.00 0.00 0.00 0.00
= uT 0.00 0.00 0.00 0.00 1.00 0.00 0.00
DT 0.00 0.00 0.00 0.00 0.00 1.00 0.00
N 1.00 0.00 1.00 1.00 1.00 0.00 1.00

NN (ED)), 1-nearest neighbor combined with Best Warping Win-
dow (1-NN (DTW-1%)) and 1-NN (DTW, no Warping Window). The
test error for CSCNN is 0.0031, which outperforms the state-of-art
algorithms, including 1-NN(ED) with 0.005 test error, 1-NN (DTW-
1%) with 0.005 test error, and 1-NN (DTW, no Warping Window)
with 0.02 test error.

We also studied the effect of training the methods using larger
training sets. In particular, we partitioned the dataset into 6194
training samples and 1000 test samples. In this case, both CSCNN
and CNN algorithms lead to 100% accuracy. In fact, through ex-
changing data and increasing the size of the training set, we are
able to obtain perfect prediction on the smaller test set using both
CNN and CSCNN.

3.3. Results with multi-class classification

Finally, we studied an extended version of our CCPR model
that is capable of performing multi-class classification in a highly-
imbalanced environment. This is motivated by the applications in
which more than one possible fault pattern may occur. We per-
formed our study using simulated data; in particular, we generated
three sets of simulated data for partially separable, fully separa-
ble, and inseparable problems. For each set of problems, we gener-
ated a dataset with 10600 samples, which consists of 10000 nor-
mal samples and 600 abnormal samples (1: 17). Each set contains
seven classes of samples including normal, cyclic, systematic, up-
shift, down-shift, up-trend, and down-trend. We further let T = 50.
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Computational results for multi-class CSCNN, CS+CNN (Miao & Yang, 2019; Zan et al.,

2019), and CS+DT for a FS problem. Best scores are highlighted in bold text.
Actual

CNN CYC SYS US DS uT DT N
CYC | 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SYS 0.00 1.00 0.00 0.00 0.00 1.00 0.00

E uUs 0.00  0.00 0.00 0.00 0.00 0.00 0.00

'E DS 0.00  0.00 0.00 0.89 0.00 0.00 0.00

Slur | 000 000 000 000 000 0.00 000

DT | 0.00 0.00 0.00 0.00 000 0.00 0.00

N .00 0.00 100 011 1.00 0.00 1.00

CSCNN CcYC SYS US DS uT DT N
CYC | 096 0.00 0.00 000 0.00 0.00 0.00

SYS 0.00 1.00 0.00 0.00 0.00 0.00 0.00

E Us 0.00  0.00 1.00 0.00 0.00 0.00 0.01

'E DS 0.00  0.00 0.00 0.87 0.00 0.00 0.02

= uT 0.00  0.00 0.00 0.00 1.00 0.00 0.00

DT 0.00 0.00 0.00 0.00 0.00 1.00 0.00

N 0.40 0.00 0.00 0.13 0.00 0.00 0.97

CS+CNN (Miao & Yang, 2019) CYC SYS US DS uT DT N

CYC | 1.00  0.00 0.00 0.00 0.00 0.00 0.00

SYS | 0.00 0.00 0.00 000 0.0 1.00 0.00

g|US 0.00 0.00 084 000 000 0.0 0.00

% DS 0.00 100 0.00 0.00 000 0.00 0.01

= uT 0.00 0.00 0.00 0.00 0.86 0.00 0.06

DT 0.00 0.00 0.04 0.00 0.00 0.00 0.00

N 0.00 1.00 0.12 1.00 0.14 0.00 0.94

CS+CNN (Zan et al., 2019) CYC SYS US DS uT DT N
CYC | 1.00 0.00 0.00 0.00 0.00 0.00 0.00

SYS | 0.00 0.00 0.00 0.00 0.00 0.00 0.00

g|US 0.00 0.00 0.00 0.00 000 0.00 0.00

% DS 0.00 0.00 0.0 1.00 000 0.00 0.01

S1UuT | 000 100 000 000 000 000 000

DT | 0.00 0.00 0.00 0.00 000 1.00 0.00

N 0.00 0.00 1.00 1.00 1.00 0.00 1.0

CS+DT CYC SYS US DS uT DT N

CYC | 0.16 0.00 0.05 0.00 0.00 0.00 0.00

SYS 0.00 1.00 0.00 0.00 0.00 0.00 0.00

E uUs 0.00  0.00 0.00 0.00 0.00 0.00 0.00

f; DS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Slur | 000 000 000 000 1.00 0.00 000

DT | 0.00 0.00 0.00 0.00 0.00 095 0.00
N 0.84 000 095 1.00 000 0.05 1.00

Table 12 reports the parameters used to generate the abnormal
patterns.

We applied the one-against-all (OAA) framework for multi-class
classification. The OAA strategy performs multiple runs of binary
CSCNN; in each run, one class of samples is treated as the mi-
nority class and the rest of the samples (which originate from all
the remaining classes) construct the majority class. Then, any test
observation is assigned to its class by using the winner-takes-all
scheme (Duan & Keerthi, 2005). We calculate the weight of each
class using the following formula:

G

where m is the number of classes, and n; and C; are the size and
weight of class i respectively, i=1,2,...,m.

We also compared our CSCNN with other machine learn-
ing algorithms with cost-sensitive learning cost function, such
as MLP (Zan et al, 2019), CNN (Zan et al., 2019), and de-
cision tree. Tables 13, 14, and 15 show that CSCNN outper-
forms compared to other methods with respect to both F-
scorey; and Precisiony,. Tables 16, 17, and 18 show the confu-
sion matrices for three sets of highly-imbalanced CCPR prob-
lems using both our CSCNN and CNN. The diagonal ele-
ments denote the correct classification percentage (%) across all
classes.
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Computational results for multi-class CSCNN, CS+CNN (Miao & Yang, 2019; Zan et al.,
2019), and CS+DT for a IS problem. Best scores are highlighted in bold text.

Actual

CNN CYC SYS US DS UT DT N
CYC | 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SYS 0.00 0.94 0.00 0.00 0.00 0.85 0.00

E Us 0.00  0.00 0.00 0.00 0.00 0.00 0.00

% DS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

& uT 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DT 0.00 0.06 0.00 0.00 0.00 0.15 0.00
N 1.00 0.00 1.00 1.00 1.00 0.00 1.00

CSCNN CYC SYs US DS UT DT N
CYC | 1.00 0.00 0.00 0.00 0.00 0.00 0.00

SYS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E Us 0.00  0.00 0.00 0.00 0.00 0.00 0.00

% DS 0.00 1.00 0.00 0.00 0.00 0.00 0.01

= uT 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DT 0.00  0.00 0.00 0.00 0.00 1.00 0.00
N 0.00 1.00 1.00 1.00 1.00 0.00 1.00

CS+CNN (Miao & Yang, 2019) CYC SYS US DS UuT DT N
CYC | 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SYS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E Us 0.00 0.00 0.00 0.00 0.00 0.00 0.00

% DS 0.00 0.00 0.00 0.00 0.00 0.00 0.01

& UT 0.00 0.00 0.00 0.00 0.14 0.14 0.00

DT 0.00 0.00 0.00 0.00 0.86 0.86 0.00
N 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CS+CNN (Zan et al., 2019) CYC SYS US DS UT DT N
CYC | 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SYS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E Us 0.00  0.00 0.00 0.00 0.00 0.00 0.00

"'é DS 0.00  0.00 0.00 0.00 0.00 0.00 0.01

& uT 0.00 0.00 0.00 0.00 0.14 0.14 0.00

DT 0.00  0.00 0.00 0.00 0.86 0.86 0.00
N 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CS+DT CYC SYs US DS UT DT N
CYC | 0.00 0.00 0.05 0.00 0.00 0.00 0.00

SYS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tn_’; Us 0.00  0.00 0.00 0.00 0.00 0.00 0.00

% DS 0.00  0.00 0.00 0.00 0.00 0.00 0.00

& uT 0.00 1.00 0.00 0.00 0.00 0.00 0.00

DT 0.00 0.00 0.00 0.00 0.00 0.95 0.00
N 1.00 0.00 1.00 1.00 1.00 0.05 1.00

4. Conclusions and future research

In this paper, we have developed a CSCNN-based predictive
model to study the well-known CCPR problem in a manufactur-
ing setting. We have particularly addressed the literature gap of
developing computationally-efficient methods of CCPR classifica-
tion for large time-series datasets in the presence of imbalanced-
ness. To the best of our knowledge, our work offers the first such
model that is capable of treating such issues within the time-series
datasets for the CCPR problem in the manufacturing setting.

To demonstrate the advantages of our algorithm, we have con-
ducted an extensive experimental study using both simulated and
real-world datasets. We have particularly studied the performance
of our method on both simple and complex abnormal patterns and
have compared the results with the performance of the existing

CNN algorithms. We have further employed our method to study
multi-classification problems in CCPR and have reported the re-
lated performance metrics.

This research lays down the framework for several future lines
of research. For example, we have demonstrated the efficacy of
our method on standard abnormal patterns; however, a sequel re-
search work may consider developing deeper CNN models with the
aim of studying more complex abnormal patterns. Alternatively,
mixed-signal pattern recognition problems can be investigated in
future works. Furthermore, our CSCNN'’s structure is highly moti-
vated from the experimental results. However, the need to develop
theoretical results on optimal CNN structure is highly needed in
this growing field. Finally, similar research works might be con-
ducted with the aim of developing CNN-based models for time-
series datasets in other applications.
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Appendix A. Simulation model for control chart patterns

We used the simulation method to generate time-series for
both normal and abnormal classes. The formula for each pattern
is dependent on window length and abnormal parameter (given
different data size, and ratio of imbalance). Let X be a simu-
lated control chart such that X = [x1,Xs, ..., x;]. Then, the math-
ematical model (Guh & Hsieh, 1999; Yang & Yang, 2005) will be:
X(t) = T(t) +d(t), where 7(t) follows the Normal distribution N(O,
1). Any specific abnormal pattern is modelled by the function d(t).
For normal pattern (or in-control data), the term d(t) is zero:

X(t) =t (t) (A1)
Up-/down-trend patterns are formulated as:
X(t)=71(t) +tx*d; (A.2)

where d; is the trend slope. The parameter d; > 0 denotes up-
trend patterns and d; < 0 denotes down trend patterns.
Up/down shift patterns are defined as:

Xt)=1(t)+Axdy (A3)

where, A = 0 before a shift occurs, and A =1 after a shift occurs.
The parameter d, > 0 and d, < O represent the positive shift and
negative shift magnitudes, respectively.

Cyclic patterns will be as below:

X(t) = 7(t) + dﬁin(%)

where w is the cyclic pattern period and ds is the magnitude of

cyclic pattern. Similar to previous research works (Cheng, Cheng, &

Huang, 2009; Xanthopoulos & Razzaghi, 2014), we set w = 8.
Systematic patterns are defined as:

X(0) = 7(6) +da(-1)f

where d, is the systematic pattern parameter.

(A4)

(A5)

Appendix B. Supplementary material

The authors have provided an implementation of the proposed
method at https://github.com/spear6/NMSU_IE_Big_Data.
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