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a b s t r a c t 

Abnormal control chart patterns are naturally infrequent in an industrial setting. However, such patterns 

may indicate manufacturing faults that, if not treated in a timely manner, can lead to significant internal 

and external failure costs, ultimately threatening the product reputation. Therefore, the detection of ab- 

normalities, which is sought in the well-known control chart pattern recognition (CCPR) problem, is of 

utmost importance. Standard machine learning algorithms have been extensively applied to this problem. 

However, they often produce biased classifiers unless the inherent data imbalancedness, which originates 

from the scarcity of abnormal patterns, are carefully addressed. In this paper, we develop a cost-sensitive 

classification scheme within a deep convolutional neural network (CSCNN) for the imbalanced CCPR prob- 

lem. We further investigate the performance of our algorithm on both simulated and real-world datasets 

to determine separable and non-separable common fault patterns in a manufacturing setting. As the con- 

tribution of this work, we particularly demonstrate that the cost weighting strategy is both robust and 

efficient for moderately- and severely-imbalanced cases. We further show that our method can either 

be fine-tuned to specific faults or trained to detect multiple faults while remaining efficient for large 

datasets. To the best of our knowledge, this is the first deep CSCNN designed for imbalanced CCPR prob- 

lems, which presents great promise for other manufacturing applications in the presence of imbalanced 

datasets. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Statistical process control (SPC) is one of the most commonly-

sed quality control methods in manufacturing settings, which

dentifies unnatural patterns or faults in a manufacturing process.

nown as essential components of SPC, control charts can identify

hether a process is in-control or if it indicates abnormal behavior

riginating from certain defects. The early detection of these mal-

unctions provides valuable insights regarding preventive actions

nd process improvement. Since their invention in 1920s, SPC tools

ave proved to be extremely useful and are now an indispensable

odule of quality control systems. 

With the advent of smart manufacturing systems, quality con-

rol systems are now equipped with an extensive body of sensors
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nd new communication systems that collect large-size datasets

bout the manufacturing process status. This provides highly-

omplicated control charts to SPC, which can be employed to re-

eal several hidden (perhaps abnormal) patterns. As a result, con-

rol chart pattern recognition (CCPR) problem has become ex-

remely challenging and requires much faster and more intelli-

ent algorithms compared to data mining methods employed in

onventional SPC systems. In this regard, a rich body of various

achine learning algorithms have been developed to tackle this

roblem; they are capable of processing large amount of data into

eaningful information that can reveal future malfunctions and

aults in the process. CCPR algorithms can substantially improve

he level of automation and facilitate monitoring of the product

uality. Ultimately, CCPR algorithms aim at minimizing the time

nd cost to detect an out-of-control process with significantly high

egree of precision ( Montgomery, 2009 ). 

A taxonomy of the basic normal and abnormal patterns was

nitially proposed by Western Electric Company ( Company, 1958 ).

https://doi.org/10.1016/j.eswa.2020.113275
http://www.ScienceDirect.com
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These basic patterns are the (1) normal (N), (2) up-trend (UT), (3)

down-trend (DT), (4) up-shift (US), (5) down-shift (DS), (6) cyclic

(CYC), and (7) systematic (SYS) patterns. Fig. 1 shows examples of

these patterns. The mathematical formulation of these patterns is

described in Appendix A . It is worth mentioning that the presence

of abnormal patterns is not limited to manufacturing applications;

they can appear, for example, as misdiagnoses in healthcare or lags

in a supply chain. 

The CCPR problem is formulated and tackled by a wide range of

machine learning algorithms for several years ( Hachicha & Ghor-

bel, 2012; Veiga, Mendes, & Lourenço, 2016 ). A large spectrum

of the proposed algorithms are the supervised learning methods,

in which the labeled data is used for training and then an un-

known test data is assigned to its class using the trained classi-

fier. Some well-known proposed supervised CCPR methods include

artificial neural networks (ANN) ( Al-Assaf, 2004; El-Midany, El-

Baz, & Abd-Elwahed, 2010 ), rule-based expert systems ( Alexander

& Jagannathan, 1986; Bag, Gauri, & Chakraborty, 2012 ), decision

tree ( Wang, Guo, Chiang, & Wong, 2008 ), support vector machines

(SVM) ( Ranaee, Ebrahimzadeh, & Ghaderi, 2010 ), fuzzy systems

( Chang & Aw, 1996; Khormali & Addeh, 2016 ), and hybrid or com-

bined methods ( Guh, 2005; Kao, Lee, & Lu, 2016 ). Although clas-

sical machine learning algorithms promise many advantages when

applied to the CCPR problem, the following three challenges have

been known to negatively affect the performance of such algo-

rithms: 1) the inherent imbalancedness of datasets fed into CCPR,

2) the large-scale datasets, and 3) the prevalence of noisy data,

which makes feature extraction extremely important. We further

review each of these challenges bellow. 

Abnormal patterns and process shifts are inherently rare to

happen in industrial settings ( Company, 1958 ). This results in an

uneven (skewed) distribution of the normal samples and the sam-

ples with potential malfunctions. Accordingly, the dataset is re-

ferred to as an imbalanced dataset. The first aforementioned chal-

lenge originates from the skewness of the distribution in data. In

particular, since traditional classifiers treat all data samples with

equal importance, the skewed distribution leads to the classifier

being biased toward the majority class, and thus, neglecting the

minority class samples oduring the learning process ( Sun, Wong,

& Kamel, 2009 ). Despite the natural tendency for practical CCPR

problems to have data imbalance, there have been very few stud-

ies on this topic ( Xanthopoulos & Razzaghi, 2014 ) The oversam-

pling or undersampling techniques are among the most common

preprocessing methods to avoid the problem of data set imbal-

ance ( Estabrooks, Jo, & Japkowicz, 2004 ). These two methods cre-

ate a balanced classification problem through adding/removing

from the dataset ( Chawla, Bowyer, Hall, & Kegelmeyer, 2002; Liu,

Wu, & Zhou, 2008 ). One major drawback with these techniques

is that they can produce biased classification results or overfit-

ting. In particular, removing data points in undersampling can lead

to loss of significant information ( Batista, Prati, & Monard, 2004 ).

Our method, i.e., the cost-sensitive learning, solves a classification

problem by assigning different weights to each data sample. The

benefit of this class of methods is that it avoids creating biased

classification results and often outperforms re-sampling techniques

in practice ( Japkowicz & Stephen, 2002 ). Since the potential costs

in undetected abnormal items are high, there is a need to focus

learning on the correct identification of minority classes in CCPR

data through cost-sensitive learning techniques. 

The second challenge lies in the scale of the CCPR problem. The

advent of smart sensors provide ample datasets that offer higher

potential to detect the abnormal patterns; however, they require

more computational-intensive machine learning methods. Classi-

cal machine learning algorithms may not be scalable to such large

datasets. For example, despite the benefits of ANN and their ap-

plicability for CCPR, they can be impractical as the number of lay-
rs and size of data increases dramatically. When this happens, the

lassical algorithm needs to be altered to tackle the classification of

arge datasets. 

As indicated in the third challenge, the raw data might be

oisy, and most standard machine learning methods are not tol-

rant of erroneous data ( Panagopoulos, Xanthopoulos, Razzaghi, &

¸  eref, 2018 ). The majority of studies have used raw (unprocessed)

ata as the input for training a classifier. Extracting features, which

re representative of the characteristics of specific patterns, from

aw data can eliminate the impact of noise, improve the classifica-

ion accuracy, and save computational time ( Pham & Wani, 1997 ).

uring recent years, a few studies ( Al-Assaf, 2004; Gauri &

hakraborty, 2009 ) have developed CCPR models based on ex-

racted features from raw control chart data. They often use shape

eatures ( Pham & Wani, 1997 ), statistical features ( Hassan, Baksh,

haharoun, & Jamaluddin, 2003 ), and multi-resolution wavelet

nalysis ( Chen, Lu, & Lam, 2007 ). Pham and Wani (1997) built a

CPR model based on a small set of geometric features including

lope, cyclic memberships, number of mean crossings, the average

lope of the line segments, slope shifts, number of least-square line

rossings, and three other measures related to the area. In another

tudy, Gauri and Chakraborty (2009) proposed the use of a classifi-

ation and regression tree (CART) algorithm for selecting the most

elevant features from a large number of features; then used the

elected features as an input vector for ANN and heuristic meth-

ds. 

More importantly, most previous works have studied fea-

ure extraction and selection as a pre-processing process be-

ore learning the classifier, and research studies on implement-

ng feature learning and classification in one single frame-

ork are still very limited. Recently, convolutional neural net-

orks (CNNs) have been very successful in simultaneous fea-

ure learning and classification. The method was first developed

y LeCun et al. (1990) for image recognition. Later, it was fur-

her developed for one-dimensional sequential data in natural lan-

uage processing application ( LeCun, Bottou, Bengio, & Haffner,

998a ). However, the method has received significant interest in

ery recent years and various CNN models have been developed

n many real-world problems such as natural language processing

 Collobert et al., 2011 ), image classification ( Krizhevsky, Sutskever,

 Hinton, 2012 ), speech recognition ( Abdel-Hamid, Mohamed,

iang, & Penn, 2012 ), fault detection ( Wang, Yan, & Gao, 2017 ), dis-

ase diagnosis ( Anthimopoulos, Christodoulidis, Ebner, Christe, &

ougiakakou, 2016 ), and CCPR ( Miao & Yang, 2019; Zan, Liu, Wang,

ang, & Gao, 2019 ). The use of convolutional layers has the effect

f smoothing normal variation while attempting to find deeper fea-

ures and patterns within the data ( Schmidhuber, 2015 ). Besides,

nlike ANNs, the absence of full connects between layers reduces

he computational costs of the CNN algorithms ( Khan, Hayat, Ben-

amoun, Sohel, & Togneri, 2017 ). The most significant benefit of

NN is to build a robust model with sparse interactions, local con-

ectivity of neurons, and reduced number of parameter sharing

 LeCun et al., 1990 ). 

In this research work, we aim at addressing the aforemen-

ioned three challenges in a unified framework based on CNNs. Our

hoice of CNNs is justified by the proven scalability of these meth-

ds for large datasets, while being able to recognize and extract

he most significant features. We further consider an alteration of

he standard CNN technique, which introduces different weights

or the minority and majority classes in order to address the im-

alancedness in the data. While most research works have been

onducted on cost-sensitive learning extension of CNN for imbal-

nced image classification problems ( Drummond & Holte, 2006;

han et al., 2017; Zhou & Liu, 2006 ), the applicability of CNN in

ighly-imbalanced environments with large time-series data has

ot been comprehensively addressed. We are further motivated by
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Fig. 1. Examples of abnormal control chart patterns (black) versus a normal pattern (grey). 
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the shortcomings of existing CNN-based techniques ( Miao & Yang,

2019; Zan et al., 2019 ) in addressing the imbalanced class CCPR

problems and will present the comparative results. 

Our contributions in this paper are as follows. 

1. We propose a cost-sensitive CNN framework for the CCPR prob-

lem to simultaneously learn robust features and classification

parameters. We refer to this approach as a cost-sensitive CNN

(CSCNN). To the best of our knowledge, this is the first time

a deep CSCNN has been designed for the CCPR problem. We

carefully tune the architecture of our proposed CSCNN model

for various abnormal pattern recognition problems. 

2. We compare CSCNN with the standard and existing CNN mod-

els, and explore the robustness of CSCNN for highly-imbalanced

problems. To meet this purpose, we test and compare CSCNN

with CNN models for various abnormal patterns in moderately-

and severely-imbalanced problems, and present the optimal pa-

rameters and model structure for each problem. We also test

the CSCNN and CNN models for a real-world problem from

a manufacturing industry. Since the abnormal patterns in the

real-world are often unknown, the analysis will illustrate the

robust nature of the proposed CSCNN to detect potential faults.

3. We extend CSCNN to multi-class classification problems with

imbalanced data. We show the power of our proposed CSCNN

in applications with multiple fault types. 

This paper is organized as follows. Section 2 describes the stan-

dard CNN and our proposed CSCNN algorithm and the performance

evaluation measures. Section 3 presents the computational results.

Section 4 concludes the paper and provides future directions for

research. 

2. Methodology 

2.1. Preliminaries 

The input data of an instance of CCPR problem is a time series.

In this regard, we define D = { (x i , y i ) } n i =1 
as a dataset of n univari-

ate time series. Given an integer positive value T , we let x i ∈ R 
T 

denote the i th sample and y i ∈ {0, 1} denote the associated class

label. It is common to refer to parameter T as the window length

in the time series. 

The goal of any supervised learning algorithm is to determine

the related parameters with the aim of minimizing the cost func-

tion that represents the prediction error. In CNN, which is an ex-

tension of a typical ANN, the algorithm seeks the optimal values

for the parameters ( ω, b ), which define the separating hyperplane,

so that the error (cost) function 

E(ω, b) = 

1 

n 

n ∑ 

i =1 

� (y i , ˆ y i (ω, b)) , (1)

is minimized: given sample x i , i ∈ { 1 , . . . , n } , y i is the target out-
put, ˆ y i (ω, b) is the algorithm’s predicted output, and � (.) is the loss

function. The parameters ω and b are the set of all weights and

bias values in the network, respectively. For the sake of brevity in

our notation, we represent ˆ y i (ω, b) as ˆ y i in the rest of the paper. 

Various forms of the loss function � (.) have been used in ANNs.

Mean Squared Error (MSE) and Cross-Entropy (CE) loss functions

are among the most commonly-used loss functions. While CE loss

function (also called the “softmax log loss” function) has proven

to be more reliable for classification tasks in image recognition

( Khan et al., 2017 ), the choice of MSE loss function is recom-

mended for time-series data inputs ( Raj, Magg, & Wermter, 2016;

Zhao, Lu, Chen, Liu, & Wu, 2017 ). Since our algorithm receives

time-series data inputs, we choose to employ the MSE loss func-

tion, which specifies the squared variation between the actual out-
ut and the predicted output of the algorithm, given by 

(ω, b) = 

1 

2 n 

n ∑ 

i =1 

(
y i − ˆ y i 

)2 
. (2)

To tackle the class imbalance challenge in the CCPR prob-

em, we adopt a cost-sensitive MSE error function for our CNN

lgorithm. The algorithm, which is called a cost-sensitive CNN

CSCNN), allows different costs of misclassification for each data

ample depending on its class label. Therefore, CSCNN tends to be-

ome more flexible compared to the conventional CNN in the sense

hat CSCNN differentiates the data samples based on their “impor-

ance” in training the classifier. Hence, the majority class will not

ecessarily outweigh the minority class as it would naturally be

mplied in the conventional CNN. Accordingly, we choose to work

ith the following error cost function ( Castro & de Pádua Braga,

009; Kukar & Kononenko, 1998 ) 

(ω, b) = C + 
n + ∑ 

{ i | y i =1 } 

(
y i − ˆ y i 

)2 + C −
n −∑ 

{ j| y j =0 } 

(
y j − ˆ y j 

)2 
, (3)

here C + = 
1 

2 n + and C 
− = 

1 
2 n − are the weighted costs for minority

positive) class and majority (negative) class, respectively, and n + 

nd n − are the minority and majority class sizes, respectively. 

It is worth mentioning that the optimal parameters ( ω 
∗, b ∗) are

iven by 

(ω 
∗, b ∗) = argmin 

ω,b 

E(ω, b) , (4)

here E ( ω, b ) is given by (3) . Similar to ANNs, the optimal parame-

ers ( ω 
∗, b ∗) are calculated by applying the well-known chain-rule

f derivative of Eq. (3) with respect to the network weights and

ias values through the back-propagation pass. We discuss the de-

ails of this process in Section 2.2.2 . 

.2. Convolutional neural network for CCPR 

.2.1. General architecture 

ANNs are among the most widely-used machine learning al-

orithms. They are constructed from a series of layered building

locks called neurons. Mathematically, each neuron receives a se-

ies of inputs and applies an affine transformation (defined by a

et of to-be-trained weights and a bias value) followed by a spe-

ific nonlinear transformation (called the activation function and is

nown a priori) to generate an output. In ANN, the neurons in each

ayer are fully connected to the outputs of the previous layer. The

lgorithm then employs the well-known back-propagation tech-

ique to compute the set of weights and bias values with the aim

f minimizing the prediction error ( Rumelhart, Hinton, & Williams,

988 ). 

A CNN is a variant of the conventional ANN, with the capabil-

ty of extracting the most prominent features. This capability orig-

nates from the specific constraints imposed on neurons’ weights

nd bias values in a subset of layers called convolutional layers as

ell as the downsampling operations employed in another subset

f layers called pooling layers. As a result, one can observe three

istinct types of layers in CNN: convolutional layers, pooling lay-

rs, and fully-connected layers (i.e., conventional ANN layers). An

nstance of CNN includes stacks of convolutional layer(s) followed

y a pooling layer, which ultimately provide a compact represen-

ation of input data (through the most significant features) to the

ully-connected layers. 

The raw input data is first fed into a convolutional layer, which

roduces local feature representation of the input data. Unlike

tandard ANNs, the convolutional layer is constructed from many

dentical copies of the same neurons. Each collection of all iden-

ical neurons are also called filters (kernels). Furthermore, each
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euron is connected to only a subset of inputs. Clearly, these re-

trictions in the construction of the convolutional layer result in

maller number of parameters that need to be trained. It is worth

entioning that each neuron in the convolutional layer is still

quipped with an activation function similar to ANN. Next, we

ntroduce the details of our proposed CSCNN with respect to its

tructure. Inspired by the notations introduced by Zheng, Liu, Chen,

e, and Zhao (2014) and Zhao et al. (2019) , we demonstrate the

tructure and operation of convolutional layer as follows. 

Any convolutional layer is recognized by a series of F filters (to

e learned in the training process), a bias value b (to be learned in

he training process) and an activation function g , which are all ex-

lusive to that layer. It is worth mentioning that although it makes

ense to introduce a separate index in order to indicate the layer,

e purposefully avoid using layer indices for the sake of easier no-

ations. Let z i ∈ R 
r×p be the i th input to an arbitrary convolutional

ayer and define each filter f = 1 , . . . , F as a matrix ω 
f ∈ R 

r×q with

 < p . That is, the length of the input (to the convolutional layer) is

enoted by p and the filter length is denoted by q . Accordingly, the

utput of this convolutional layer is an (F × (p − q + 1)) -matrix

ith elements 

 o] f,l = g 

( 

b + 

r ∑ 

h =1 

q ∑ 

j=1 

ω 

f 

h, j 
∗ z i h,r+ j−1 

) 

, (5)

ith f = 1 , . . . , F and l = 1 , . . . , p − q + 1 . For the activation func-

ion, we employ the rectified linear unit (ReLU) function defined

s 

ReLU : g(ξ ) = max (0 , ξ ) , (6)

or all convolutional layers since it trains much faster than other

ctivation functions ( Krizhevsky et al., 2012 ). 

Observe that the output of performing one filter on a univariate

ime series is also a univariate time series (with a smaller size).

owever, applying F filters over a univariate time series will re-

ult in a multivariate time series that is constructed by stacking F

possibly) different univariate time series. Hence, the first convolu-

ional layer receives a univariate time series and applies a series of

 filters of size 1 × q (because r = 1 for the raw input data). The

esult of this layer, however, is a F × (T − q + 1) -matrix (because

p = T for the raw input data). Subsequently, the following layers

pply filters that are no longer one-dimensional vectors. Clearly,

he “height” of each filter and the “height” of the input data to

ach convolutional layer are equal. By applying different filters in

ach convolutional layer, CSCNN is able to extract various discrim-

native features that are helpful for the final classification task. 

emark 1. A more general form of Eq. (5) is obtained by replac-

ng z i 
h,r+ j−1 

with z i 
h,r+ j−s c 

, where s c is known as the stride pa-

ameter. When s c = 1 , a filter of size r × q is first applied to

ime steps { 1 , . . . , q } on the input. Next, it is applied to time steps

 2 , . . . , q + 1 } , and so on. For a general value of s c , each filter still
tarts from time steps { 1 , . . . , q } ; however, it then applies to the

ime steps { 1 + s c , . . . , q + s c } . One can observe that larger values
f stride parameter creates smaller output sizes. In our paper, we

onsider s c = 1 for all convolution layers. 

The output of a convolutional layer may enter another convolu-

ional layer or a pooling layer depending on the CNN architecture.

he pooling layers essentially aim at extracting higher-level fea-

ures through downsampling, which is achieved by performing a

ooling operation. In other words, pooling layers generate a time-

eries output by aggregating the time-series input over a sliding

indow. This aggregation function can be the “max” operation or

he “average” operation. In practice, max pooling has shown bet-
er performance over average pooling for sparse feature extraction

 Murray & Perronnin, 2014 ). In this paper, we use the max pooling

peration in all stages except the final pooling layer, which em-

loys avg pooling . 

Let u i ∈ R 
r×p be the input to a pooling layer and suppose k de-

otes the sliding window used for aggregating the input. The out-

ut of this pooling layer is an (r × (p − k + 1)) -matrix with ele-

ents 

 o] l, v = max { u i l, j : j = v , . . . , v + p − k + 1 } , (7)

ith l = 1 , . . . , r and v = 1 , . . . , p − k + 1 . By replacing the “max”

unction with the “avg” function in Eq. (7) , one can obtain a pool-

ng layer with avg operation. In the CNN literature for time series,

he common forms of pooling filter length are k = 2 and k = 3 ;

arger pooling sizes often result in highly poor results ( Simonyan

 Zisserman, 2015 ). 

emark 2. Similar to the Eq. (5) , a more general form of Eq. (7) is

btained by varying j within the set of values v , . . . , v + p − k + s p ,

here s p is called the pooling stride parameter. The effect of this

arameter on the pooling operation is the same as the stride pa-

ameter for the convolutional layer. 

Fig. 2 demonstrates an example in which a time-series with T =
p = 35 is fed into the first convolutional layer with F = 6 filters of

ize (r, q ) = (1 , 4) . Note that the we have s c = 1 for this example.

s depicted, the first convolutional layer produces a multivariate

ime series of size 6 × 32. Next, the multivariate time series is fed

nto the first pooling layer with parameters k = 2 and s p = 2 . As a

esult, the output of pooling operation becomes a (6 × 16)-matrix.

The stacking of convolutional and pooling layers may be re-

eated until a meaningful two-dimensional feature map is gener-

ted. After performing feature learning through the convolutional

nd pooling layers, the feature map is flattened and provided as

 one-dimensional input to a 1-layer multilayer perceptron (MLP).

inally, at the end of each epoch, the error is calculated using

he Eq. (3) . The MLP is a standard feedforward ANN; we refer

he reader to LeCun, Bottou, Orr, and Müller (1998b) about the

etails of MLP. This layer then generates a one-dimensional fea-

ure vector and performs the binary classification through the sig-

oid activation function. Similar to ANNs, a CNN typically em-

loys the gradient-based back-propagation to determine the op-

imal weight and bias values with the aim of minimizing error

unction. 

.2.2. Back-propagation and gradient-based learning 

To estimate the parameters ω 
∗ and b ∗ at each layer in a

o-called back-propagation stage ( Rumelhart, Hinton, & Williams,

986 ), the neural network models utilize certain optimization

ethods. In the literature, the popular back-propagation algo-

ithms are gradient descent, Adaptive Moment Estimation (ADAM)

 Kingma & Ba, 2015 ), and root mean squared propagation (RM-

prop) ( Tieleman & Hinton, 2012 ). In this study, we use the RM-

prop method in the back-propagation due to its robust behav-

or, programming compatibility, and the ability to combine with

esterov momentum if needed ( Tieleman & Hinton, 2012; Yang,

guyen, San, Li, & Krishnaswamy, 2015 ). The RMSprop originally

ntroduced by Tieleman and Hinton (2012) , calculates the parame-

ers ω 
∗ and b ∗ at each epoch. 

.3. Classification performance metrics 

It is often of interest to determine if any classification method

roduces highly accurate classifier in terms of minority and ma-

ority class precisions. The primary tool for evaluating the perfor-
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Fig. 2. Example of convolution and pooling operations in the first layer. 
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mance of classification techniques is the confusion matrix. For bi-

nary classifiers, we use the following confusion matrix ( Table 1 ): 

Table 1 

Binary confusion matrix. 

where if data samples belong to the positive class (abnormal class)

and the classifier categorizes them as positive (abnormal), we con-

clude them as true positive (TP), but when the classifier assigns

them to the negative class (normal class), then we consider them

as false negative (FN). A similar definition is valid for the negative

class (normal class) samples for true negative (TN) and false pos-

itive (FP). The accuracy of classification algorithms is defined as,

Accuracy = 

T P + T N 

T P + T N + F P + F N 

(8)

However, this measure is only useful for balanced problems. Sim-

ilarly, measures of sensitivity and specificity calculate the relative

accuracy of each class. 

Sensit i v it y = 

T P 

T P + F N 

(9)

Speci f icity = 

T N 

T N + F P 
(10)

Also, the balanced geometric mean (G-mean) of sensitivity and

specificity is given by 

G − mean = 

√ 

Sensit i v it y × Speci f icity (11)

In multi-class classification problems, we have similar issues

where imbalanced data makes accuracy a poor performance met-

ric. For these problems, we use the F-score or macro-averaging
M 
core that is a harmonic average between macro-averaging pre-

ision, denoted by Precision M 
, and macro-averaging recall (or

ensitivity), denoted by Recall M 
. We choose the macro-averaging

easure because macro-averaging considers all classes equally

hile micro-averaging supports larger classes ( Sokolova & La-

alme, 2009 ). We calculate the metrics with the following equa-

ions based on the multi-class confusion matrix: 

 recision M = 

∑ m 

i =1 
T P i 

T P i + F P i 
m 

(12)

ecall M = 

∑ m 

i =1 
T P i 

T P i + F N i 
m 

(13)

 − score M = 

2 · P recision M · Recall M 

P recision M + Recall M 

(14)

verage Accuracy = 

∑ m 

i =1 
T P i + T N i 

T P i + F N i + F P i + T N i 
m 

(15)

here m is the number of classes. 

. Computational results 

In this section, we study the application of CNN and the pro-

osed CSCNN algorithm on various sets of simulated control chart

atasets as well as a real-world dataset collected from a wafer

anufacturing industry ( Chen et al., 2015 ). We compare the perfor-

ance of these algorithms based on the evaluation metrics intro-

uced in Section 2.3 . Both CNN and CSCNN algorithms are imple-

ented in Python version 3.6 with Keras ( Chollet, 2015 ) and Ten-

orFlow libraries ( Martín et al., 2015 ). We perform all experiments

n an Intel i7-6500U 2.5 GHz processor and 32GB of RAM in a 64-

it platform. An interested reader can refer to the online repository

entioned in Appendix B in order to access our implementations. 

.1. Binary classification with simulated data 

To generate time-series data for both normal and abnormal

lasses, we employ a simulation model suggested in Guh and
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Fig. 3. G-mean vs. the number of convolutional layers for different abnormal pat- 

terns. 
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sieh (1999) and Yang and Yang (2005) (see Appendix A ). We let ρ
enote the imbalanced class ratio as the ratio of the number of ab-

ormal samples over the total number of samples, i.e., ρ = 
n + 

n −+ n + .
hroughout this section, we use the notation 

(
1 : 1 ρ

)
to denote the

egree of imbalancedness in a dataset. For example, a (1: 100)

ataset with 10 0 0 samples contains n + = 10 abnormal samples and

 
− = 990 normal samples. 

For each type of abnormal patterns, we consider two sets of

mbalanced class of the forms (1: 20) and (1: 200) each contain-

ng 10,0 0 0 data samples. Throughout this section, we refer to the

ormer and latter sets as the moderately-imbalanced set and the

everely-imbalanced set, respectively. We partition each generated

et into a three-quarter portion and a one-quarter portion, and

rain our model with the first portion of the data for each inte-

er value of T in the interval [10, 100]. The other portion of the

ata is then used as the test set. 
Fig. 4. CSCNN architectur
.1.1. CSCNN architecture 

Although optimization of CNN architecture has several open

uestions, previous studies demonstrated that too few layers of-

en fail to extract deep features, while too many layers can re-

ult in an overfitting problem ( Sainath, Mohamed, Kingsbury, &

amabhadran, 2013 ). However, we identified the appropriate num-

er of convolution layers and the size of the filters as well

s the number of pooling layers and the pooling slide win-

ow through extensive experiments. In particular, our architec-

ure is inspired by the LeNet 5 ( LeCun et al., 1995 ) and the

NN network developed by Krizhevsky et al. (2012) . For US, DS,

T, and DT patterns, we limited our preliminary experiments

o two-convolutional-layer CNN, as our experiments showed that

he computational burden incurred by using a deeper CNN does

ot compensate with significantly improved results (see Fig. 3 ).

his choice is also justified by the simple nature of these ab-

ormal patterns, which are detectable in early layers. Further-

ore, the experiments showed that a moderate number of fil-

ers (60-100) and a small filter length (2-5) lead into the best re-

ult. This is motivated by our observations that small filters can

roduce very deep networks with low-dimensional feature input

hat can lead to higher performance metrics ( Simonyan & Zis-

erman, 2015; Yan, Chen, Shyu, & Chen, 2015 ). However, this is

ot the case for more complex patterns. For cyclic pattern, for

xample, a four-convolutional-layer CNN (shown in Fig. 4 ) re-

ults in the best classification performance among other network

tructures, particularly a shallower two-layer network (see Fig. 3 ).

n addition, our preliminary experiments showed that the com-

lex patterns require larger filters at the initial layers. Moreover,

ombining two back-to-back convolutional layers (as suggested by

iu, Meng, Yang, Sun, & Chen (2017) ) prior to the dense layer

ould improve the performance of CNN for cyclic and systematic

atterns. 

We employed pooling layers after the first and second convolu-

ional layers (for all patterns) as well as after the last back-to-back

onvolutional layers (for cyclic and systematic patterns). Based on

ur experiments, the use of “max” pooling after the first and sec-

nd convolutional layers (for all patterns) as well as employing an
e for cyclic pattern. 
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Table 2 

CSCNN architecture for various abnormal patterns. 

Abnormal Pattern C 1 (F 1 , q 1 ) − P 1 (k 1 ) −C 2 (F 2 , q 2 ) − P 2 (k 2 ) −C 3 (F 3 , q 3 ) −C 4 (F 4 , q 4 ) − P 3 (k 3 ) − H(η) − O (ν) 

UT/DT C 1 (80 , 3) − P 1 (3) −C 2 (100 , 2) − P 2 (2) − H(80 × T × n ) − O (2) 

US/DS C 1 (80 , 3) − P 1 (3) −C 2 (100 , 2) − P 2 (2) − H(80 × T × n ) − O (2) 

CYC C 1 (100 , 3) − P 1 (4) −C 2 (40 , 2) − P 2 (3) −C 3 (80 , 3) −C 4 (60 , 4) − P 3 (2) − H(40 × T × n ) − O (2) 

SYS C 1 (80 , 4) − P 1 (4) −C 2 (40 , 2) − P 2 (3) −C 3 (60 , 4) −C 4 (20 , 5) − P 3 (2) − H(40 × T × n ) − O (2) 

Table 3 

Sensitivity, specificity, and G-mean of CNN and CSCNN over different abnormal patterns for moderately- 

imbalanced PS problems. The highest sensitivity, specificity, and G-mean between two algorithms are denoted 

in bold. 

Pattern Parameters CNN CSCNN 

Sensitivity Specificity G-mean Sensitivity Specificity G-mean 

UT T = 20 , d 1 = 0 . 005 0.0000 1.0000 0.0000 0.6960 0.3790 0.4980 

US T = 20 , d 2 = 0 . 100 0.0000 1.0000 0.0000 0.4132 0.7158 0.5296 

CYC T = 20 , d 3 = 0 . 100 0.0000 1.0000 0.0000 0.4684 0.6601 0.5561 

SYS T = 20 , d 4 = 0 . 005 0.0000 1.0000 0.0000 0.5860 0.5135 0.5486 

Table 4 

Sensitivity, specificity, and G-mean of CNN and CSCNN over different abnormal patterns for severely-imbalanced 

PS problems. The highest sensitivity, specificity, and G-mean between two algorithms are denoted in bold. 

Pattern Parameters CNN CSCNN 

Sensitivity Specificity G-mean Sensitivity Specificity G-mean 

UT T = 20 , d 1 = 0 . 050 0.0000 1.0000 0.0000 0.2110 0.9950 0.3850 

US T = 20 , d 2 = 0 . 250 0.0000 1.0000 0.0000 0.2666 0.9155 0.4940 

CYC T = 20 , d 3 = 0 . 500 0.0000 1.0000 0.0000 0.5714 0.8765 0.7077 

SYS T = 20 , d 4 = 0 . 050 0.0000 1.0000 0.0000 0.2857 0.9482 0.5205 

Table 5 

Comparison of CSCNN and CNN (in terms of G-mean) with MLP ( Zan et al., 2019 ), and CNN ( Miao & Yang, 2019 ), 

and CNN (Zan et al., 2019) for moderately-imbalanced PS problems (10 0 0 0 samples: 9950 normal, 50 abnormal). The 

highest G-mean between the algorithms is in bold. 

Pattern Parameters CSCNN CNN MLP CNN ( Miao & Yang, 2019 ) CNN ( Zan et al., 2019 ) 

UT T = 20 , d 1 = 0 . 005 0.4980 0.0000 0.0000 0.0000 0.0000 

US T = 20 , d 2 = 0 . 100 0.5296 0.0000 0.0000 0.0000 0.0000 

CYC T = 20 , d 3 = 0 . 100 0.5561 0.0000 0.0000 0.0000 0.0000 

SYS T = 20 , d 4 = 0 . 005 0.5486 0.0000 0.0000 0.0000 0.0000 

Table 6 

Comparison of CSCNN (in terms of G-mean) with cost-sensitive MLP (CS+MLP ( Zan et al., 2019 )), CNN (CS+CNN 

( Zan et al., 2019 )), and decision tree classifier (CS+DT) for moderately-imbalanced PS problems (10 0 0 0 samples: 950 0 

normal, 500 abnormal). The highest G-mean between the algorithms is in bold. 

Pattern Parameters CSCNN CS + MLP CS + CNN ( Zan et al., 2019 ) CS + DT 

UT T = 20 , d 1 = 0 . 005 0.4980 0.0000 0.4867 0.3305 

US T = 20 , d 2 = 0 . 100 0.5296 0.0000 0.5440 0.2243 

CYC T = 20 , d 3 = 0 . 100 0.5561 0.0000 0.0000 0.2237 

SYS T = 20 , d 4 = 0 . 005 0.5486 0.0000 0.4517 0.2431 

Table 7 

Comparison of CSCNN and CNN (in terms of G-mean) with MLP ( Zan et al., 2019 ), and CNN ( Miao & Yang, 2019 ), and 

CNN ( Zan et al., 2019 ) for severely-imbalanced PS problems (10 0 0 0 samples: 9950 normal, 50 abnormal). The highest 

G-mean between the algorithms is in bold. 

Pattern Parameters CSCNN CNN MLP CNN ( Miao & Yang, 2019 ) CNN ( Zan et al., 2019 ) 

UT T = 20 , d 1 = 0 . 050 0.3850 0.0000 0.0000 0.0000 0.0000 

US T = 20 , d 2 = 0 . 250 0.4940 0.0000 0.0000 0.0000 0.0000 

CYC T = 20 , d 3 = 0 . 500 0.7077 0.0000 0.0000 0.0000 0.0000 

SYS T = 20 , d 4 = 0 . 050 0.5205 0.0000 0.0000 0.0000 0.0000 
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Table 8 

Comparison of CSCNN (in terms of G-mean) with cost-sensitive MLP (CS+MLP ( Zan et al., 2019 )), CNN 

(CS+CNN ( Zan et al., 2019 )), and decision tree classifier (CS+DT) for severely-imbalanced PS problems (10 0 0 0 

samples: 9500 normal, 500 abnormal). The highest G-mean between the algorithms is in bold. 

Pattern Parameters CSCNN CS + MLP CS + CNN ( Zan et al., 2019 ) CS + DT 

UT T = 20 , d 1 = 0 . 050 0.3850 0.0000 0.3774 0.0000 

US T = 20 , d 2 = 0 . 250 0.4940 0.0000 0.0000 0.0000 

CYC T = 20 , d 3 = 0 . 500 0.7077 0.0000 0.0000 0.5340 

SYS T = 20 , d 4 = 0 . 050 0.5205 0.0000 0.4987 0.0000 

Table 9 

Comparison between the CNN and CSCNN algorithms for a cyclic pattern with 

T = 25 and d 3 = 0 . 3 and imbalanced ratio 1: 20. 

Data Size (n) G-mean (SD) Time (sec) / Iteration 

CNN CSCNN 

10000 0.3026 (0.1882) 0.7614(0.0272) 15.4 

30000 0.3059 (0.1268) 0.7620(0.0117) 73.4 

50000 0.3329 (0.1185) 0.7677(0.0090) 235.2 

70000 0.3371 (0.1122) 0.7297(0.0048) 435.5 

90000 0.3389 (0.0861) 0.7369(0.0045) 788.5 
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avg” pooling after the back-to-back convolutional layers (for cyclic

nd systematic patterns) produce results with better performance

easures. 

One can observe that convolutional and pooling layers may

ignificantly reduce the output size (From Eqs. (5) and (7) ). Fur-

hermore, this intuitively decreases the effects of information on

he first time steps in the time series. This phenomenon has

een widely studied in other applications, e.g., image recognition

 Simonyan & Zisserman, 2015 ). In general, sharp reduction in the

ize of feature map often results in performance deterioration es-

ecially due to losing the valuable information in the boundaries

i.e., first time steps) of each feature map. To prevent this, we use

he so-called zero-padding technique ( Smith, III, & O., 2011 ) in all

onvolutional layers. The zero-padding technique pads (i.e., aug-

ents) the input with zeros around the border, so that the size of

he input and the output time series become the same. While this

s unlikely to negatively affect the performance of the feature ex-

raction task, it reduces the likelihood of “neglecting” the valuable

nformation in the boundaries. 

We also use dropout technique ( Srivastava, Hinton, Krizhevsky,

utskever, & Salakhutdinov, 2014 ) to reduce over-fitting in the CNN

odel. This technique temporarily eliminate a randomly selected

et of neurons in a hidden layer by setting their output to zero.

hus, these “dropout” neurons do not contribute to the forward

ass and backward pass at a epoch. In the next epoch, a new ran-

om set of neurons is temporarily eliminated and the previously

dropout” neurons will be added to the model if not randomly re-

elected. We set the dropout rate denoted by δ to 0.25. We note

hat all tests with simulated data were performed with 5 epochs

ased on the validation error. 

To specify our CSCNN’s architecture and parameters, we use the

ollowing notation: 

 1 (F 1 , q 1 ) − P 1 (k 1 ) −C 2 (F 2 , q 2 ) − P 2 (k 2 ) −C 3 (F 3 , q 3 ) 

−C 4 (F 4 , q 4 ) − P 3 (k 3 ) − H(η) − O (ν) , 

here C � , � = 1 . . . , 4 is the � th convolutional layer, and P � , � =
 , 2 , 3 is the � th pooling layer; F � and q � are the number of filters

nd the filter length of the � th convolutional layer, respectively; k � 
s the pooling sliding window in the � th pooling layer; H and O de-

otes the hidden layer and the output layer of MLP, respectively; η
s the number of neurons in the hidden layer; and ν is the num-

er of neurons in the output layer of MLP. Table 2 illustrates the

rchitecture and parameters used in the implementation of CSCNN

or each abnormal pattern. 

.1.2. Results and discussion 

We calculated the G-mean of CNN and CSCNN of various abnor-

al pattern data in a moderately-imbalanced environment ( Fig. 5 ).

ased on Fig. 5 , one can identify three categories of interest in

CPR problems: 1) fully separable (FS) problems, 2) partially sep-

rable (PS) problems, and 3) inseparable (IS) problems. As shown

n Fig. 5 , the FS, PS, and IS problems are illustrated by white, gray,

nd black regions, respectively. This result agrees with recent stud-

es (e.g., see Xanthopoulos & Razzaghi (2014) ). According to this

gure, as the window length T and the abnormal pattern param-

ter increase, the CCPR problem becomes easily solvable with re-

pect to G-mean, while small values for the window length and

he abnormal pattern parameter, in general, lead to more challeng-

ng problems. 

From Fig. 5 , one can distinguish between IS, PS, and FS re-

ions obtained by CNN and CSCNN algorithms for moderately-

mbalanced sets. Based on this figure, CNN and CSCNN algorithms

esult in comparable performance measures for UT and SYS ab-

ormal patterns. For US patterns, CSCNN yields a better perfor-

ance with small window lengths, however it is slightly outper-

ormed by CNN in general. For this pattern, both algorithms show

 very similar behavior for problems with d 2 < 0.25 σ , but the dif-

erence is significant for 0.25 σ < d 2 < 0.75 σ , where CSCNN re-

ults in a larger gray region. Note that, however, the CSCNN shows

 more robust behavior for problems with small abnormal pat-

ern parameters. The power of CSCNN is emphasized on detect-

ng cyclic patterns. While only a small range of the problems with

yclic patterns (with parameter d 3 > 0.50 σ ) lies in the IS region

sing CSCNN, CNN is generally successful with cyclic parameter

 3 > 0.75 σ . Since the cyclic abnormal pattern is the most complex

ype of abnormality in our study, we believe this demonstrates the

ower of CSCNN in successfully compensating for the minor class

ize by assigning a higher weight in the loss function. 

We particularly compared CNN and CSCNN for several represen-

ative problems from PS category. The reported performance met-

ics are accuracy, sensitivity, specificity and G-mean. The behavior

f accuracy and sensitivity is significantly dominated by the major-

ty class, and hence, they are not adequate performance metrics of

mbalanced classification. The correct classification of the minority

lass is reflected by specificity. We choose to report G-mean be-

ause its value reflects both sensitivity and specificity. According to

able 3 , CSCNN generates substantially higher G-mean values com-

ared to CNN. 

We also performed similar analysis for severely-imbalanced

atasets. Table 4 reports the results of using CSCNN and CNN for

hese datasets. According to this table, CSCNN outperforms CNN in

erms of G-mean metric. However, CSCNN shows relatively inferior

pecificity and higher sensitivity values. 
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Fig. 5. G-mean results for CNN and CSCNN for each abnormal pattern with different parameters and window lengths for moderately-imbalanced datasets. 
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Table 10 

G-mean of CNN and CSCNN with respect to different imbalanced ratios ( 1 : 1 ρ ) and different ab- 

normal patterns of PS problems. The training set has 10 0 0 0 data samples. 

Pattern UT US CYC SYS 

T = 25 , d 1 = 0 . 06 T = 40 , d 2 = 0 . 43 T = 30 , d 3 = 0 . 75 T = 25 , d 4 = 0 . 06 

1 : 1 ρ CNN CSCNN CNN CSCNN CNN CSCNN CNN CSCNN 

1: 20 0.9166 0.9553 0.8085 0.8873 0.4163 0.7341 0.9739 0.9883 

1: 40 0.8833 0.9311 0.7898 0.8979 0.1754 0.7468 0.9640 0.9888 

1: 60 0.8297 0.9018 0.6852 0.8964 0.0000 0.6889 0.9062 0.9864 

1: 100 0.7402 0.9426 0.6388 0.8809 0.0000 0.6926 0.8795 0.9789 

1: 200 0.2582 0.7705 0.3015 0.8943 0.0000 0.5892 0.8560 0.9272 

Table 11 

CSCNN and CNN classification performance for the wafer dataset. The highest sensi- 

tivity, specificity, G-mean, and accuracy values between CNN and CSCNN algorithms 

are denoted in bold. 

Accuracy G-mean Specificity Sensitivity 

Original Train/Test Split 

(Train : 1000, Test : 6174) 

CNN 0.9786 0.9401 0.9985 0.8876 

CSCNN 0.9969 0.9917 0.9984 0.9850 

New Train/Test Split (Train : 

6174, Test : 1000) 

CNN 1.0000 1.0000 1.0000 1.0000 

CSCNN 1.0000 1.0000 1.0000 1.0000 

Table 12 

Parameters for all abnormal patterns. 

Class d 3 (CYC) d 4 (SYS) d 2 (US) d 2 (DS) d 1 (UT) d 1 (DT) 

Set 1 0.40 1.53 +0 . 38 −0 . 63 +0 . 93 −0 . 58 

Set 2 1.80 2.10 +0 . 70 −0 . 70 +1 . 00 −1 . 00 

Set 3 0.20 0.20 +0 . 05 −0 . 05 +0 . 20 −0 . 20 
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To further evaluate the performance of the CSCNN, we com-

ared our CSCNN with three existing methods: the MLP model

nd the CNN model proposed by Zan et al. (2019) , the CNN

odel developed by Miao and Yang (2019) , and decision tree (DT).

n this experiment, the MLP (adopted from Zan et al. (2019) )

s a three-layer neural network with 25 neurons in one hid-

en layer. As already mentioned, the decision tree has shown

ood performance results in the CCPR ( Wang et al., 2008 ).

e report the results of the aforementioned three methods

or moderately- and severely-imbalanced datasets in 5, 6, 7, 8.

hese tables reveal that CSCNN generate superior results com-

ared to other methods in moderately- and severely-imbalanced

ases. 

Next we studied the behaviour of the performance metrics

f CNN and CSCNN for various dataset size. We randomly se-
Table 13 

Robustness of CSCNN versus our CNN, cost-sensitive CNN ( Miao

for a multi-class PS problem (with set 1 parameters). The highe

rithms is in bold. 

Measure CSCNN CNN CS + CNN ( Miao & Y

F-score M 0.6240 0.5317 0.4649 

Average Accuracy 0.8555 0.9675 0.9615 

Precision M 0.6078 0.5588 0.4338 
ected a representative problem from PS category and performed

ach algorithm with the dataset size from {10 0 0 0, 30 0 0 0, 50 0 0 0,

0 0 0 0, 90 0 0 0}. We report the average G-mean and standard de-

iation (SD) values in Table 9 . We observe that CSCNN consis-

ently performs well compared to CNN on all dataset size val-

es (in terms of G-mean metric). It is worth mentioning that

SCNN shows a more robust behavior (small variation over mul-

iple iterations) when the size of data increases. In our exper-

ments, the difference in computational time required by CNN

nd CSCNN is insignificant. Accordingly, we only report the com-

utational time for CSCNN in Table 9 . As expected, the compu-

ational time increases for larger training datasets. The increase,

owever, is not severe (about 13 minutes for the largest training

atset). 

We also studied the sensitivity of CNN and CSCNN with respect

o various imbalanced ratio values. We vary the imbalanced ratio

rom {(1: 20), (1: 40), (1: 60), (1: 100), (1: 200)}. Table 10 presents

-mean values in this experiment. According to this table, CSCNN

enerally outperforms CNN. For example, while CSCNN can detect

T, CYC, and SYS patterns for all imbalanced ratio values, CNN is

nable to detect the same patterns for the severely-imbalanced

atio (1: 200). We also observe that CSCNN shows more robust

ehavior in terms of G-mean for different abnormal patterns for

arger imbalanced ratio values. 

.2. Results for binary classification with real data 

We also compared our proposed CSCNN with the standard CNN

n a real dataset collected from a wafer manufacturing industry

 Chen et al., 2015 ). The time-series dataset contains 7194 samples

of length 152 each), which is partitioned into 10 0 0 training sam-

les and 6174 testing samples. The training data is approximately

oderately-imbalanced in nature (1: 10) in which 903 data sam-

les belong to the majority class and 97 data samples to the mi-

ority class. 

.2.1. CSCNN architecture 

For this dataset, we select the architecture C 1 (100 , 4) − P 1 (4) −
 2 (80 , 4) − P 2 (3) −C 3 (60 , 3) −C 4 (40 , 2) − P 3 (2) − H(40 × 152 ×
 ) − O (2) . To avoid high computational burden, we determine
 & Yang, 2019 ), CNN ( Zan et al., 2019 ),and DT algorithms 

st classification performance measure between the algo- 

ang, 2019 ) CS + CNN ( Zan et al., 2019 ) CS + DT 

0.3707 0.5697 

0.9634 0.9770 

0.3443 0.5680 
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Table 14 

Robustness of CSCNN versus our CNN, cost-sensitive CNN ( Miao & Yang, 2019 ), CNN ( Zan et al., 2019 ), and DT algo- 

rithms for a multi-class FS problem (with set 2 parameters). The highest classification performance measure between 

the algorithms is in bold. 

Measure CSCNN CNN CS + CNN ( Miao & Yang, 2019 ) CS + CNN ( Zan et al., 2019 ) CS + DT 

F-score M 0.8819 0.5589 0.6160 0.6113 0.6005 

Average Accuracy 0.9683 0.9721 0.9622 0.9517 0.9770 

Precision M 0.8404 0.5673 0.5967 0.5941 0.6396 

Table 15 

Robustness of CSCNN versus our CNN, cost-sensitive CNN ( Miao & Yang, 2019 ), CNN ( Zan et al., 2019 ),and DT algo- 

rithms for a multi-class IS problem (with set 3 parameters). The highest classification performance measure between 

the algorithms is in bold. 

Measure CSCNN CNN CS + CNN ( Miao & Yang, 2019 ) CS + CNN ( Zan et al., 2019 ) CS + DT 

F-score M 0.3866 0.2971 0.1380 0.1390 0.2313 

Average Accuracy 0.9623 0.9468 0.9472 0.9483 0.9574 

Precision M 0.3614 0.1353 0.1353 0.1355 0.2046 

Fig. 6. Accuracy and validation error for the wafer dataset. 
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o  
the number of epochs based on the stopping criterion, where

additional epochs fail to improve predictive performance. Note

that this is performed using the validation set. 

As shown in Fig. 6 , the validation error becomes stable for

epochs greater than 20. Thus, we set the number of epochs

to 25 for our proposed CSCNN and CNN algorithms. In addi-

tion, Fig. 6 shows how accuracy improves and stabilizes over

training. 
.2.2. Results anddiscussion 

Table 11 reports the performance metrics for both CSCNN and

NN models on the test dataset. We observe that our CSCNN

ethod results in 5.5% improvement in G-mean and 11% increment

n sensitivity without compromising specificity compared to CNN. 

We also compared CSCNN with baseline evaluation methods

ased on the results reported in Chen et al. (2015) . These meth-

ds are 1-nearest neighbor combined with Euclidean Distance (1-
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Table 16 

Computational results for multi-class CSCNN, CS+CNN ( Miao & Yang, 2019; Zan et al., 

2019 ), and CS+DT for a PS problem. Best scores are highlighted in bold text. 

N  

d  

t  

a  

1  

w

 

t  

t  

a  

c  

a  

C

3

 

t  

i  

w  

f  

t  

b  

a  

m  

s  
N (ED)), 1-nearest neighbor combined with Best Warping Win-

ow (1-NN (DTW-1%)) and 1-NN (DTW, no Warping Window). The

est error for CSCNN is 0.0031, which outperforms the state-of-art

lgorithms, including 1-NN(ED) with 0.005 test error, 1-NN (DTW-

%) with 0.005 test error, and 1-NN (DTW, no Warping Window)

ith 0.02 test error. 

We also studied the effect of training the methods using larger

raining sets. In particular, we partitioned the dataset into 6194

raining samples and 10 0 0 test samples. In this case, both CSCNN

nd CNN algorithms lead to 100% accuracy. In fact, through ex-

hanging data and increasing the size of the training set, we are

ble to obtain perfect prediction on the smaller test set using both
NN and CSCNN. s  
.3. Results with multi-class classification 

Finally, we studied an extended version of our CCPR model

hat is capable of performing multi-class classification in a highly-

mbalanced environment. This is motivated by the applications in

hich more than one possible fault pattern may occur. We per-

ormed our study using simulated data; in particular, we generated

hree sets of simulated data for partially separable, fully separa-

le, and inseparable problems. For each set of problems, we gener-

ted a dataset with 10600 samples, which consists of 10 0 0 0 nor-

al samples and 600 abnormal samples (1: 17). Each set contains

even classes of samples including normal, cyclic, systematic, up-

hift, down-shift, up-trend, and down-trend. We further let T = 50 .
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Table 17 

Computational results for multi-class CSCNN, CS+CNN ( Miao & Yang, 2019; Zan et al., 

2019 ), and CS+DT for a FS problem. Best scores are highlighted in bold text. 
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Table 12 reports the parameters used to generate the abnormal

patterns. 

We applied the one-against-all (OAA) framework for multi-class

classification. The OAA strategy performs multiple runs of binary

CSCNN; in each run, one class of samples is treated as the mi-

nority class and the rest of the samples (which originate from all

the remaining classes) construct the majority class. Then, any test

observation is assigned to its class by using the winner-takes-all

scheme ( Duan & Keerthi, 2005 ). We calculate the weight of each

class using the following formula: 

 i = 

C 

n 
, i = 1 , 2 , ..., m, 
i 
here m is the number of classes, and n i and C i are the size and

eight of class i respectively, i = 1 , 2 , . . . , m . 

We also compared our CSCNN with other machine learn-

ng algorithms with cost-sensitive learning cost function, such

s MLP ( Zan et al., 2019 ), CNN ( Zan et al., 2019 ), and de-

ision tree. Tables 13 , 14 , and 15 show that CSCNN outper-

orms compared to other methods with respect to both F-

core M 
and Precision M 

. Tables 16 , 17 , and 18 show the confu-

ion matrices for three sets of highly-imbalanced CCPR prob-

ems using both our CSCNN and CNN. The diagonal ele-

ents denote the correct classification percentage (%) across all

lasses. 
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Table 18 

Computational results for multi-class CSCNN, CS+CNN ( Miao & Yang, 2019; Zan et al., 

2019 ), and CS+DT for a IS problem. Best scores are highlighted in bold text. 
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. Conclusions and future research 

In this paper, we have developed a CSCNN-based predictive

odel to study the well-known CCPR problem in a manufactur-

ng setting. We have particularly addressed the literature gap of

eveloping computationally-efficient methods of CCPR classifica-

ion for large time-series datasets in the presence of imbalanced-

ess. To the best of our knowledge, our work offers the first such

odel that is capable of treating such issues within the time-series

atasets for the CCPR problem in the manufacturing setting. 

To demonstrate the advantages of our algorithm, we have con-

ucted an extensive experimental study using both simulated and

eal-world datasets. We have particularly studied the performance

f our method on both simple and complex abnormal patterns and

ave compared the results with the performance of the existing
NN algorithms. We have further employed our method to study

ulti-classification problems in CCPR and have reported the re-

ated performance metrics. 

This research lays down the framework for several future lines

f research. For example, we have demonstrated the efficacy of

ur method on standard abnormal patterns; however, a sequel re-

earch work may consider developing deeper CNN models with the

im of studying more complex abnormal patterns. Alternatively,

ixed-signal pattern recognition problems can be investigated in

uture works. Furthermore, our CSCNN’s structure is highly moti-

ated from the experimental results. However, the need to develop

heoretical results on optimal CNN structure is highly needed in

his growing field. Finally, similar research works might be con-

ucted with the aim of developing CNN-based models for time-

eries datasets in other applications. 
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Appendix A. Simulation model for control chart patterns 

We used the simulation method to generate time-series for

both normal and abnormal classes. The formula for each pattern

is dependent on window length and abnormal parameter (given

different data size, and ratio of imbalance). Let X be a simu-

lated control chart such that X 
T = [ x 1 , x 2 , ..., x n ] . Then, the math-

ematical model ( Guh & Hsieh, 1999; Yang & Yang, 2005 ) will be:

X (t) = τ (t) + d(t) , where τ ( t ) follows the Normal distribution N (0,

1). Any specific abnormal pattern is modelled by the function d ( t ).

For normal pattern (or in-control data), the term d ( t ) is zero: 

X (t) = τ (t) (A.1)

Up-/down-trend patterns are formulated as: 

X (t) = τ (t) + t ∗ d 1 (A.2)

where d 1 is the trend slope. The parameter d 1 > 0 denotes up-

trend patterns and d 1 < 0 denotes down trend patterns. 

Up/down shift patterns are defined as: 

X (t) = τ (t) + λ ∗ d 2 (A.3)

where, λ = 0 before a shift occurs, and λ = 1 after a shift occurs.

The parameter d 2 > 0 and d 2 < 0 represent the positive shift and

negative shift magnitudes, respectively. 

Cyclic patterns will be as below: 

X (t) = τ (t) + d 3 sin 

(
2 πt 

ω 

)
(A.4)

where ω is the cyclic pattern period and d 3 is the magnitude of

cyclic pattern. Similar to previous research works ( Cheng, Cheng, &

Huang, 2009; Xanthopoulos & Razzaghi, 2014 ), we set ω = 8 . 

Systematic patterns are defined as: 

X (t) = τ (t) + d 4 (−1) t (A.5)

where d 4 is the systematic pattern parameter. 

Appendix B. Supplementary material 

The authors have provided an implementation of the proposed

method at https://github.com/spear6/NMSU _ IE _ Big _ Data . 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.eswa.2020.113275 . 
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