®

Check for
updates

Opunit: Sanity Checks for Computing
Environments

Samim Mirhosseini®) and Chris Parnin®

North Carolina State University, Raleigh, NC 27695, USA

{smirhos,cjparnin}@ncsu.edu

Abstract. Computing environments, including virtual machines and
containers, are essential components of modern software engineering
infrastructure. Despite emerging tools that support the creation and con-
figuration of computing environments, they are limited in testing and
validating the construction of these environments. Furthermore, profes-
sionals and students new to these concepts, lack feedback on their con-
struction efforts. In this paper, we argue that the design of environment
testing tools should fundamentally support asserting essential properties,
such as reachability and availability, in order to maximize usability and
utility. We present OPUNIT, an environment testing tool that supports
assertion of these properties. We describe properties students failed to
check when testing computing environments, which guided the design
of OPUNIT. Finally, we share our early experiences with using OPUNIT
in the classroom to support education and training in configuration of
computing environments.

Keywords: Configuration management - Environment verification -
Testing + DevOps training

1 Introduction

Software developers no longer simply build software in isolation: They now are
expected to continuously deploy fixes and experimental features to production
environments serving millions of customers. Making such ultra-fast and auto-
matic changes to production means that testing and verifying the design and
implementation of computing environments is increasingly important. However,
based on the 2018 State of DevOps Report [6], only 36% of participants have
capacity for dedicated testing of computing environments in their companies,
making environment construction easy to get wrong. For example, GitLab lost
300 GB of customer data after accidentally deleting their production database [5].
Even worse, they could not restore the data because they discovered their backup
procedure had been failing due to a mismatch in versions between the dump util-
ity (pg-dump 9.2) and their database (PostgreSQL 9.6).

Unfortunately, the skills required to construct and test these computing envi-
ronments supporting continuous deployment requires expertise and training that
© Springer Nature Switzerland AG 2020

J.-M. Bruel et al. (Eds.): DEVOPS 2019, LNCS 12055, pp. 167-180, 2020.
https://doi.org/10.1007/978-3-030-39306-9_12

cjparnin@ncsu.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39306-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-39306-9_12

168 S. Mirhosseini and C. Parnin

is even more rare and highly sought than data science skills.! For example,
Mozilla’s Kim Moir says she “recently looked at the undergrad classes required
to graduate with a computer science degree from a major university, and [she]
was struck by [a lack of] practice on deploying code. In most computer science
programs, there is little emphasis on infrastructure” [3]. Similarly, Google’s Boris
Debic claims that “Release engineering is not taught; it’s often not even men-
tioned in courses where it should be mentioned” [3]. For this reason, Facebook’s
Chuck Rossi considers hiring release engineers “is like finding unicorns.”

In this study, we used our experiences and observations from five years of
teaching over 400 students the concepts and tools related to continuous deploy-
ment in a university course [1]. Consider one assignment, where students were
installing and configuring an open-source chat server called Mattermost?, which
works much like Slack®. The computing environment requires several compo-
nents: a database, system dependencies, the Mattermost server itself, and several
configuration files (systemd services, mysql.cnf, and config. json for Matter-
most). In configuring this environment, many things could go wrong. For exam-
ple, a simple typo or malformed JSON in a configuration file could result in an
non-functioning environment, but with little hints as to why. To diagnose this
problem, students might need to check a variety of system components using
a myriad of tools and shell utilities in which they have little experience, such
as mysql shell, systemctl, journalctl, cat, grep, and jq. In response, we
would have to ask a series of questions: “did you check your mysql credentials,”
“did you check your connection string is correct,” “did you run jsonlint on your
configuration file.” Other times, strange behaviors would result from incidental
factors, which we would only resolve after asking, “did you check dns,” “did you
check your VM’s memory size.” Overall, this experience of asking students to
perform various sanity checks eventually helped, but resulted in a frustrating
and problematic learning environment for students.

To make matters worse, no single tool can support this process meaning stu-
dents must simultaneously learn many. For example, ps, top, ss, cURL, netcat,
free, 1sof, who, last, dmsg, history, vmstat, dstat, iostat, htop, find and
more. In this paper, we argue for two ways to help with the mentioned shortcom-
ings: (1) Train software engineers to be able to recognize desirable properties of
a computing environment, (2) Provide them a simple means for evaluating these
properties. To this end, we formalized these checks in a simple environment ver-
ification tool, OPUNIT. We categorized common student mistakes and issues into
violations of properties that computing environments should have. These prop-
erties can be verified to easily point out the cause of common issues related to
environment setup. Categories of the properties which we include are availabil-
ity, reachability, identifiable, and capability. They respectively indicate whether
an environment provides expected services, can access specified resources, has
certain items (files, software, etc.), and supports required operations.

! http://stackoverflow.com /insights/survey /201 7#salary.
2 https://mattermost.com/.
3 https:/ /slack.com/.

cjparnin@ncsu.edu

http://stackoverflow.com/insights/survey/2017#salary
https://mattermost.com/
https://slack.com/

Opunit: Sanity Checks for Computing Environments 169

Finally, we share our early experiences with OPUNIT as a training aid in a
DevOps course. First, we used OPUNIT to verify the student’s initial local com-
puting environments to ensure they contained appropriate tools and capabilities
for the course. Next, we used OPUNIT in workshops and homework assignments
to provide formative feedback on their progress (Fig.1). Then, we administered
a usability and feedback survey. Students indicated OPUNIT has increased their
confidence about their work because they could ensure they have completed tasks
correctly by running the tests. They also showed continued interest in using the
tool for other courses and future assignments.

To summarize, our contributions are:

— Environment properties that are root causes for the most common issues
students experience.

— OPUNIT, a tool for environment verification, inspired by the common proper-
ties in student issues.

— A survey about OPUNIT to suggest its effectiveness as a training tool.

2 Properties

Based on our experience with students in software engineering courses and a
specialized DevOps course, we categorized common student mistakes. Then we
identified four main properties of a computing environment which can be checked
to point out these mistakes. In this section we explain the properties that we
identified, an example of student issues related to those properties as well as a
verification method that can help point out the issue, and finally application of
those properties.

2.1 Availability

Environment functionality depends on availability of services that were set up
in previous steps of environment construction. One common issue that students
face occurs when they write a whole configuration script without intermediate
testing. As a result, they often experience errors which they incorrectly ascribe
to the last step they worked on. In reality, the errors often lie in one of the earlier
steps. By supporting the ability to check availability of services, students can
better test their configuration scripts incrementally, allowing them to establish
stepping stones of progress.

Example Problem. FEzpected services are not available in the environment,
because they have not been started: The goal is to run automated GUI tests for
a web application using Selenium*. Students run the tests, but the server was
not able to start successfully before the tests executed. As a result, all of the
GUI tests fail as none of web application pages can be served. They often think

4 https://docs.seleniumhgq.org/.

cjparnin@ncsu.edu

https://docs.seleniumhq.org/

170 S. Mirhosseini and C. Parnin

(N N J
= Pipelines git:(master) X opunit verify local

Checks
Essential workshop tools

version check

v node --version: 11.9.0 > A10.x.x => true
version check

v git --version: 2.20.1 > A2.17.x => true
version check

v curl --version: 7.54.0 > A7.54.x => true

Demo hook
reachable check
4 status:
contains check
v contains status: message:
App setup
contains check
v contains status: message:
reachable check
(4 status:
(4 status:
Pre-commit setup
contains check
v contains status: message:
Deploy directory setup
reachable check
(4 status:
[4 status:
(4 status:
version check
v pm2 --version: 3.2.4 > A3.2.4 => true
Post-receive setup
contains check
4 contains status: message:

reachable check
(4 status:

Summary

Fig. 1. OPUNIT’s verify command to test pipelines workshop

this is because of not running Selenium tests correctly, or the tests are really
failing. More careful inspection of logs is required to find the reason for the test
failures.

The failed server start up can have many different causes. For example, a bind
exeception could occurs if there is another server running on the same port and
often happens due to other instances of the same application still running in the

Cjparnin@ncsu.edu

Opunit: Sanity Checks for Computing Environments 171

"' ||b||' "', nbn, "a"s "l

"e's "q" nav. nen' nets "gn

Fig. 2. Examples of students’ broken JSON files shown in red color (Color figure online)

background. Another cause can be a broken formatting in configuration files,
like an extra “” at the end of a JSON configuration file. This was a common
failure because students used string replacements instead of using a utility like

jq, and created a broken JSON format as shown in Fig.2 in red color.

Example Verification. If the configuration management scripts was tested
incrementally, student would have been able to send a simple HTTP request
using cURL utility to test if the server is started and can respond to requests.

Application. This property helps with ensuring availability of services before
running a task. For example, it can be implemented as a simple HT'TP request to
a web server, to see if it is available. This idea has been implemented in Google
Borg’s tasks [7]. Each task implemented an internal health check end-point, and
this allowed Borg to send an HT'TP request to this end-point to do a health check
on each task. Automating the steps for checking availability property allows the
user to do a quick health check without having to learn cURL utility or other
more complicated tools.

2.2 Reachability

Another common issue among students is unexpected software failures as a result
of an unreachable resource. We might not be able to access a resource because
of various reasons such as a missing/wrong configuration file, wrong file permis-
sions, and bad firewall rules. Checking reachability of these resources can help
find the reason for the failures. In other words, after discovering an unavailable
service, checking reachability of its related resources can help find the root cause
for this unavailability.

Example Problem. Database is not reachable in the environment because cre-
dentials has not been updated in a configuration file: The goal is to start a web
application that requires database access. This application uses a configura-
tion file to store database credentials. Forgetting to update and correctly ensure
appropriate access rights to configuration files is a common mistake among stu-
dents. The application may start without explicit errors, and the Ul pages may
even be rendered, but the pages will be missing information. Finding the problem
will require more careful inspection of the logs from this web application.

cjparnin@ncsu.edu

172 S. Mirhosseini and C. Parnin

Example Verification. Existence of database configuration file should be
checked using 1s -1 <config file>, and this file’s permissions should be acces-
sible by the application. So students need to at least understand Unix file per-
missions and know what parameters they need to use with 1s. While the check
itself may be relatively simple, students may not be well-attuned to pay atten-
tion to details such as mismatches in group permissions of a file. Automating
these steps will also require experience with tools such as grep. And finally, if
the permission needs to be changed, students also need to understand how to
use the chmod command.

Application. Reachability issues in industry, especially in microservices, is
even more crucial: “Reachability is definitely an important thing, security group
changes that make downstreams unreachable in a microservice architecture can
be dangerous.”® Automated verification of reachability of the resources will pre-
vent reachability issues. It can be implemented as a series of requests to all the
needed resources, and triggered after each change to know when reachability is
affected.

2.3 Identifiable

Another common property that causes confusion for students is related to the
version of installed software, wrong content in configuration files, and such identi-
fiable properties or items in the environment. We called these types of properties
identifiable because of their relation to one of the core components in traditional
configuration management, “identification”.

Example Problem. Unezpected behavior when wrong version of a dependency
is installed: One of the most common observed issues with setting up an envi-
ronment for running a specific software occurs when incompatible versions of
dependencies are installed. For example, if the software required MySQL v5.7, it
may not work as expected if version v8 is installed. GitHub does not link commit
authors to their profile on GitHub: Another example of identifiable property is
when students forget to create git configuration file, .gitconfig, and as a result
their git commits are not linked to any GitHub account.

Example Verification. Most utilities use a -v or --version option to print
their current version; this can be used to check if the installed version is the
same as the expected version. Also, the content of the configuration files can
be checked by opening the files and manually checking for expected changes.
Manually checking these properties may not seem very difficult, but automating
the steps for checking them will require experience with Unix utilities such as
cat, grep, awk, and more.

5 Personal correspondence from industry.

cjparnin@ncsu.edu

Opunit: Sanity Checks for Computing Environments 173

Application. One of primary objectives in real-world configuration manage-
ment is to install tools and systems, and fine-grain details. Many of these details
can be categorized as identifiable properties. As we explained earlier, a serious
case of not testing this property happened at GitLab in 2017. GitLab’s version
of dump utility (pg-dump 9.2) was not compatible with the version of their
database (PostgreSQL 9.6) which resulted in failure in the backup process and
unrecoverable loss of 300 GB of customer data. A simple verification of the ver-
sions could prevent such incidents. Automating the steps needed for checking
the mentioned identifiable properties of environment will enable the user have
more confident about their environment setup without having to learn how to
write a testing script.

2.4 Capability

Capability property is about ensuring that the system has sufficient resources to
support required operations. Capability of the environment is typically related
to the hardware, which is another important property that can effect how appli-
cations run. A few examples of this property are number of CPU cores, amount
of RAM, free disk space, and virtualization support.

Example Problem. One of the workshops in our software engineering and
DevOps courses focuses on provisioning virtual machines. 64-bit virtual machines
require having a CPU which supports virtualization (VT-x on Intel and AMD-V
on AMD CPUs). Most modern CPUs and laptops support virtualization but
many manufacturers disable this feature by default. So, when students try to
create a virtual machine, they receive a complicated error messages which is
hard for them to understand.

Example Verification. On Windows, virtualization status can be checked
in Windows Task Manager. On Linux virtualization support can be checked by
inspecting CPU flags and looking for vmx and svm flags. Modern Apple computers
(macOS) have virtualization enabled by default.

Application. One of the most common issues with setting up a system for
building java programs, such as a Jenkins® executor, was memory limitations.
Students would provision instances with 1 GB of RAM, and would experience
a variety exotic errors, none of which made it clear insufficient memory was
the root cause. By introducing a capability check for RAM, we can reduce the
likelihood that students experience these issues.

5 https://jenkins.io/.

cjparnin@ncsu.edu

https://jenkins.io/

174 S. Mirhosseini and C. Parnin
3 Opunit

Inspired by the properties that we identified, we developed an environment test-
ing automation tool, OPUNIT. Figure 1 shows an example of the test results on
a DevOps workshop which was about constructing a delivery pipeline using git
hooks. This workshop was completed inside a virtual machine. In this study,
we are specially concerned with the needed verification in the initial phase of
environment creation, rather than monitoring the application for changes.

The goal of OPUNIT is to be a simple tool for verifying the construction
of a computing environment by asserting the properties we introduced. Often,
multiple properties must be verified and checked in order to understand the
cause of a misconfiguration.

3.1 Using Opunit

OPUNIT uses a YAML configuration file, opunit.yml, to define the verification
steps. Listing 1 shows an example opunit.yml file. The verification steps are
defined under checks property. In this example, OPUNIT will be using node
--version command to verify version of node is in semver” range ~10.x.x.
OPUNIT tests can be started with opunit verify command. OPUNIT searches
the default paths for an opunit.yml file and runs the provided checks against
the target environment.

1 - group:

2 description: "Check node.js support"
3 checks:

4 - version:

5 cmd: node --version

6 range: ~10.x.x

Listing 1: An example opunit.yml file with a simple check for having the
appropriate version of nodejs installed.

3.2 Checks

OPUNIT uses automated scripts, checks, to implement how each property needs
to be checked. To verify the Availability property, OPUNIT uses a check called
“availability” which runs a command on target environment followed by a HTTP
request to do a health check. A simple example of version check is shown in
Listing 1. This check has two parameters, the command that needs to be executed
to get the version, and a semver range that the version should be in. OPUNIT has
checks to verify all the mentioned properties in Sect. 2 and each require different
parameters which are explained in more details in OPUNIT documentation®.

" https:/ /semver.org)/.
8 https://github.com/ottomatica/opunit.

cjparnin@ncsu.edu

https://semver.org/
https://github.com/ottomatica/opunit

Opunit: Sanity Checks for Computing Environments 175

In summary the supported checks are availability to check if a service can
be started successfully, reachability to check reachability of specified resources,
contains to check content of specified files, version to check version of the spec-
ified tool and comparing it with the provided semver range, service to check
status of installed Linux services, timezone to check timezone of the environ-
ment, cores to check number of available CPU cores, virt to check if virtual-
ization is supported, and disk and memory to check the memory size available
disk space.

3.3 Environments

The target Environment that OPUNIT verifies can be the local machine, a remote
server, a virtual machine or a container. OPUNIT also supports all three common
operating systems, macOS, Windows, and Linux. Supporting various types of
environments and operating systems allowed us to use OPUNIT in classroom.

The environment type in some cases can be automatically inferred based
on the existence of other configuration files in the project, or the arguments
passed to the verify command. For example if there is a Vagrantfile in the
project, OPUNIT will try to connect to that Vagrant virtual machine. Or, if
OPUNIT is executed with opunit verify root@example.com:2222 command,
then OPUNIT will use ssh to connect to the target environment. OPUNIT has a
few more advanced inference rules in the tool’s documentation which we don’t
discuss in this paper.

3.4 Report

After OPUNIT verification checks are executed, the results are printed in the
terminal window. Figure 1 shows an example of this report. The green check (¢)
indicates that a check was passed, while the red x (%) indicates that a check
failed. The report is very verbose and includes both expected and actual values
for each check. Each check can also include a description defined in opunit.yml
file. The descriptions for the checks proved very useful for learning in workshops
as we discuss in the next sections.

4 Experiences

To better understand the impact of using OPUNIT in the classroom, we integrated
the tool in our DevOps course. In this section we discuss the experiences of
students using OPUNIT, as well as feedback we received from them.

4.1 Supporting Initial Course Setup

In the first week, students are required to prepare their local development environ-
ment for the rest of semester. opunit profile CSC-DevOps/profile:519.yml?

9 https://github.com/CSC-DevOps/profile /blob/master /519.yml.

cjparnin@ncsu.edu

https://github.com/CSC-DevOps/profile/blob/master/519.yml

176 S. Mirhosseini and C. Parnin

verifys their development environment’s configuration. profile is an opunit.yml
file hosted in a GitHub repository.

The resulting output is shown in Fig. 3. Notice that one of the checks under
“Editor Support”, fails to validate. This check looks for syntax highlighting being
enabled for vim. This check fails because the .vimrc file is not present on the
machine.

= demo opunit profile CSC-DevOps/profile:519.yml
Using profile CSC-DevOps/profile:519.yml

Checks

Essential development tools
version check

v node --version: 11.7.0 > AlQ.x.x => true
version check

v git --version: 2.20.1 > A2.x.x => true
contains check

4 contains status: message:
Shell utilities
version check

v curl --version: 7.54.0 > A7.x.x => true
version check

v wget --version: 1.20.1 > AL.9.x => true
Editor support

version check

v code --version: 1.30.2 > A1.30.1 => true
contains check

contains status: message:
contains check

(4 contains status: message:

Virtualization support and tools

capability check

v expected at least: actual :

4 expected at least: actual:

v expected: actual :
version check

v baker --version: 0.6.15 > 40.6.15 => true
version check

v vagrant --version: 2.2.2 > A2.1.1 => true
version check

v VBoxManage --version: 5.2.22 > A5.2.18 => true

Summary

Fig. 3. Result of running an OPUNIT profile

Cjparnin@ncsu.edu

Opunit: Sanity Checks for Computing Environments 177

4.2 Using Opunit for Workshops

We added OPUNIT checks in a workshop about pipelines by providing students
an opunit.yml file. In this workshop students learn how to use git hooks to run
static analysis checks before committing their code and then triggering deploy-
ment of an application on git push. We provided them an interactive way of
knowing what they need to complete for the workshop. Each OPUNIT check had
a description that help with understanding the corresponding task. When stu-
dents start the workshop, all the OPUNIT checks fail and as they complete the
workshop, they see OPUNIT checks start passing.

YAML snippet in Listing 2 shows the opunit.yml file used in the workshop.
In this snippet three types of checks are shown, contains check, reachable
check and version check. contains check verifies that students have updated
the pre-commit hook to run npm test command, reachable check verifies stu-
dents created needed directories, and version check verifies they installed a
version of pm2 package in the range ~3.2.4.

1 - group:

2 description: "Pre-commit setup"

3 checks:

4 - contains:

5 comment: App is a submodule, its hooks are located in
— ~.git/modules/App/hooks”.

6 string: npm test

7 file: .git/modules/App/hooks/pre-commit

8

9 - group:

10 description: "Deploy directory setup"

11 checks:

12 - reachable:

13 - deploy

14 - deploy/production-www

15 - deploy/production.git

16 - version:

17 comment: Install with "npm install pm2 -g~

18 cmd: pm2 --version

19 range: ~3.2.4

Listing 2: Part of the opunit.yml file used in the pipelines workshop

4.3 Student Feedback

After students used OPUNIT for supporting their development environment setup
and for completing a workshop, we sent them a feedback form with open-ended
responses and an usability survey [2] to collect data about their experience with
the tool. We used this feedback to find possible issues and determine if OPUNIT
was effective in supporting students.

cjparnin@ncsu.edu

178 S. Mirhosseini and C. Parnin

Feedback. In the feedback form, we asked students to explain how their experi-
ence with OPUNIT was comparing to the other assignments that they completed
without using OPUNIT. The responses showed that using OPUNIT made it very
easy for the students to know if they completed all the necessary tasks or they
missed something. In many instances students explained how OPUNIT saved them
a lot of time by showing them descriptive errors about what mistakes they made
in doing a task. Students explained that they had higher level of confidence when
they completed the workshop that took advantage of OPUNIT. Finally, students
also showed interest in using OPUNIT in their future assignments and even in
other courses.

Usability. On the usability survey, we asked students ten multiple choice ques-
tions as shown in the Likert chart in Table 1. Summary of the survey responses
confirms the findings of our general feedback form, about higher level of confi-
dence and interest in using the tool in the furure. Additionally, student responses
showed OPUNIT was easy to learn without spending too much time. Most of the
students also think they are likely to be able to use OPUNIT in their future
projects, without needing assistant from us.

OPUNIT has been effective in classroom and provided good support for train-
ing configuration of computing environments. Very few students had difficulty
in running the tool. They mostly liked seeing the green check marks after com-
pleting each task and indicated this increased their confidence. Students even
showed interest in using OPUNIT in future assignments and other courses. We
think this is the right direction for OPUNIT, however there are limitations which
we try to resolve, and improvements which we plan to add. We discuss these
limitations and future directions in next sections in more details.

Based on our observation, we believe one of the reasons for why students
are often confused and have a hard time when debugging environments is
that they fail to read and understand the error messages. In many cases
that students asked us for help in debugging, we noticed the errors explic-
itly and clearly indicates the problem. However, students either did not care-
fully read the error messages, or the did not understand it. An example of
such error message is “Permission 0644 for /Users/ubuntu/id_rsa are too
open.” which makes SSH ignore a key. As mentioned by an StackExchange user
who asked a similar question'?, a reason for not reading the error messages and
logs can be frustration.

I failed to read the output due to a combination of frustration, disillusion-
ment and pessimism

As mentioned by students in our general survey, OPUNIT improved students’
confidence. If the written opunit.yml file includes description for the possible
causes of the failures, it can especially be helpful for student who missed the
error message details as we mentioned earlier.

It’s all about confidence and I think that opunit gives me such confidence.

19 https: / /superuser.com/questions /1159790 /chocolatey-python-am-i-doing-it-
wrong?rq=1#comment1672782_1159793.

cjparnin@ncsu.edu

https://superuser.com/questions/1159790/chocolatey-python-am-i-doing-it-wrong?rq=1#comment1672782_1159793
https://superuser.com/questions/1159790/chocolatey-python-am-i-doing-it-wrong?rq=1#comment1672782_1159793

Opunit: Sanity Checks for Computing Environments 179

Table 1. Follow-up survey responses

Likert Responses!

% Agree SD D N A SA Distribution®

50% 0% 50%

i
I thought opunit was easy to use. 92% 0 0 215 11 | ||
I think that I would like to use opunit in 89% 0 1 211 14 [
my future projects.
I found the various features in opunit were 8% 0 0319 4 | | |
well integrated.
I would imaging that most people would 8% 0 1 311 13 |
learn to use opunit very quickly.
I felt very confident using opunit. 64% 0 28 9 9 |
I needed to learn many things before I could 28% 610 4 6 2 H 1
get going with opunit sanity checks.
I think that I would need assistance using 14% 7 98 3 1 m
opunit in my future projects.
I thought there were too much inconsistency 3% 8136 1 0o M |
in the opunit tool.
I found opunit very cumbersome/awkward 3% 15102 1 o [N |
to use.
I found opunit unnecessarily complex. 0% 12151 0 o W |

! Likert responses: Strongly Disagree (SD), Disagree (D), Neutral (N), Agree (A),
Strongly Agree (SA). ?Net stacked distribution removes the Neutral option and
shows the skew between positive (more useful) and negative (less useful) responses.

B Strongly Disagree, = Disagree, I Agree; B Strongly Agree.

5 Future Directions

OPUNIT is a new tool and it’s important to realize its limitations. One limitation
is the type of checks that OPUNIT supports. Although OPUNIT checks cover many
common properties that we identified, there could be more properties which we
have not considered. Furthermore, current OPUNIT checks can be extended to
support more fine-grain verification. To address this, we accept pull requests and
feature requests for the tool, and we are actively adding more checks as we find
the need for them.

After seeing promising effectiveness in the current version of OPUNIT, we
think adding a CI system integration is an appropriate next step. Using OPUNIT
in a CI system will allow developers and students automatically get feedback
about the changes they make on every git commit. Another possible future
direction for OPUNIT are adding monitoring capabilities and combining our idea
of checks with chaos engineering principles [4]. This will allow developers easily
measure resilience of the environment and configuration in turbulent conditions.

Additionally we plan to extend our interviews with the professionals to find
other properties that are checked in industry and improve the list of supported
checks in OPUNIT. The new OPUNIT checks that we have identified and plan

cjparnin@ncsu.edu

180 S. Mirhosseini and C. Parnin

to implement are integration with different services. For example, support for
verifying write access of a GitHub token, or verifying needed rules in AWS!!
EC2 security groups. Finally, as we mentioned earlier, the currently supported
checks still can be improved by better fine-grain verification.

6 Conclusion

This paper describes the design of an environment testing tool, OPUNIT, guided
by experiences and observations obtained after five years of teaching the concepts
and tools related to continuous deployment. Our experience in a DevOps course
showed that our tool was effective and this could be a step in the right direction,
however there is more work to be done.

Acknowledgement. This material is based in part upon work supported by the
National Science Foundation under grant number 1814798.

References

1. DevOps 519. https://github.com/CSC-DevOps/Course/#devops-csc-519

2. Opunit Survey. https://forms.gle/uhBYmtftdsfj5TxP8

3. Adams, B., Bellomo, S., Bird, C., Marshall-Keim, T., Khomh, F., Moir, K.: The
practice and future of release engineering: a roundtable with three release engineers.
IEEE Softw. 32(2), 42-49 (2015). https://doi.org/10.1109/MS.2015.52

4. Basiri, A., Jones, N., Blohowiak, A., Hochstein, L., Rosenthal, C.: Chaos Engineer-
ing. O’Reilly Media, Inc., Newton (2017)

5. GitLab: Postmortem of database outage of January 31. https://about.gitlab.com/
2017/02/10/postmortem-of-database-outage-of-january-31/

6. Puppet: 2018 state of DevOps report. https://puppet.com/resources/whitepaper/
state-of-devops-report/

7. Verma, A., Pedrosa, L., Korupolu, M.R., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: Proceedings of the Euro-
pean Conference on Computer Systems (EuroSys), Bordeaux, France, p. 18 (2015)

1 https://aws.amazon.com/.

cjparnin@ncsu.edu

https://github.com/CSC-DevOps/Course/#devops-csc-519
https://forms.gle/uhBYmtftdsfj5TxP8
https://doi.org/10.1109/MS.2015.52
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://about.gitlab.com/2017/02/10/postmortem-of-database-outage-of-january-31/
https://puppet.com/resources/whitepaper/state-of-devops-report/
https://puppet.com/resources/whitepaper/state-of-devops-report/
https://aws.amazon.com/

	Preface
	Organization
	Contents
	Teaching DevOps in Academia and Industry: Reflections and Vision
	1 Introduction
	2 Teaching in Academia
	3 Teaching in Industry
	4 Discussion
	5 Vision
	5.1 Phases of Software Engineering Education
	5.2 Transition Towards the New Curriculum

	6 Conclusions
	References

	A Model-Driven Approach Towards Automatic Migration to Microservices
	1 Introduction
	1.1 Structure of the Paper

	2 Background
	2.1 Microservices
	2.2 Model-Driven Engineering and Domain Specific Languages
	2.3 JetBrains MPS: A Text-Based Metamodelling Framework
	2.4 Jolie Language for Microservices

	3 Related Work
	4 Model-Driven Migration Approach
	4.1 The Microservice Language
	4.2 The Deployment Language
	4.3 Microservices Miner
	4.4 Microservices Generator

	5 Prototype Implementation
	6 Conclusion
	References

	Anomaly Detection in DevOps Toolchain
	1 Introduction
	2 Background
	2.1 The DevOps Toolchain
	2.2 Anomaly Detection in Software Development

	3 Integrating Anomaly Detection into DevOps
	4 A Case Study: SpaceViewer
	4.1 DevOps Toolchain
	4.2 Space Viewer Anomaly Detection System

	5 Experiments, Results and Discussion
	6 Conclusions
	References

	From DevOps to DevDataOps: Data Management in DevOps Processes
	1 Introduction
	2 DevOps and DataOps
	2.1 The DevOps Process and Toolchain
	2.2 DataOps

	3 DevOps Data
	4 DevDataOps
	4.1 DevOps Dataflow Pipeline
	4.2 DataOps Implementation

	5 Conclusions
	References

	Exploiting Agile Practices to Teach Computational Thinking
	1 Introduction
	2 Related Works
	3 Research Methodology
	4 Results
	4.1 Individual Learning
	4.2 Paired Learning
	4.3 Directed Group Learning
	4.4 Self-directed Group Learning

	5 Implications for Practice
	5.1 Learning Path
	5.2 The Influence of the Context

	6 Discussion
	7 Conclusions
	References

	Towards a Model-Based DevOps for Cyber-Physical Systems
	1 Introduction
	2 Overall Vision
	3 A CPS Demonstrator Calling for Model-Based DevOps Practices
	4 Research Roadmap
	4.1 From Dev to Ops
	4.2 From Ops to Dev
	4.3 Synopsis

	5 Looking Ahead
	References

	A DevOps Perspective for QoS-Aware Adaptive Applications
	1 Introduction
	2 Motivating Example
	3 Background
	4 Compliance of the Design for Adaptation with the DevOps Life-Cycle
	5 QoS-Based Evaluation of Adaptive by Design Applications
	5.1 Overview
	5.2 Experimentation

	6 Discussion
	7 Related Work and Conclusion
	References

	Learning Agility from Dancers – Experience and Lesson Learnt
	1 Introduction, Motivation and Hypothesis
	2 Background and Related Works
	3 Methodology
	4 Results and Discussion
	5 Conclusion
	References

	Development and Operation of Trustworthy Smart IoT Systems: The ENACT Framework
	1 Introduction
	2 The ENACT Approach
	2.1 Conceptual Architecture of the ENACT DevOps Framework
	2.2 Evolution and Adaptation Improvement Layer
	2.3 Evolution and Adaptation Management Layer
	2.4 Evolution and Adaptation Enactment Layer
	2.5 System Layer
	2.6 Monitoring and Analytics Layer

	3 An Example of the ENACT Workflow
	4 Trustworthiness as a Driver for Feedback Between Ops and Dev
	5 Shared Models and Artefacts
	6 Related Work
	7 Conclusion
	References

	Towards Modeling Framework for DevOps: Requirements Derived from Industry Use Case
	1 Introduction
	1.1 Problem
	1.2 Proposed Approach
	1.3 Outline of the Paper

	2 Related Work
	2.1 Background
	2.2 Current Works on DevOps Modeling

	3 Description of DevOps at Kaloom
	3.1 Product Build and Test Process
	3.2 Product Planning Process

	4 Requirements for Process Modeling Languages for DevOps
	4.1 General Requirements
	4.2 Description Requirements
	4.3 Analysis and Simulation Requirements

	5 Future Work
	6 Conclusion
	References

	Towards Designing Smart Learning Environments with IoT
	1 Introduction
	2 Related Work
	3 Monitoring Emotional State of On-line Learner: A Tool
	4 Challenges of Incorporating IoT in Education
	5 Conclusions
	References

	Opunit: Sanity Checks for Computing Environments
	1 Introduction
	2 Properties
	2.1 Availability
	2.2 Reachability
	2.3 Identifiable
	2.4 Capability

	3 Opunit
	3.1 Using Opunit
	3.2 Checks
	3.3 Environments
	3.4 Report

	4 Experiences
	4.1 Supporting Initial Course Setup
	4.2 Using Opunit for Workshops
	4.3 Student Feedback

	5 Future Directions
	6 Conclusion
	References

	Towards Bridging the Value Gap in DevOps
	1 Introduction
	2 Value in Software Engineering
	3 Framing the Software Development LifeCycle
	4 Value Streams
	5 Exploring Features in Open Source
	5.1 Kubernetes
	5.2 Moodle
	5.3 Firefox

	6 The Value Gap
	7 Bridging the Gap
	References

	ArchiMate as a Specification Language for Big Data Applications - DataBio Example
	1 Introduction
	2 Applying ArchiMate to Modelling DataBio Pilot Systems
	3 Discussion, Related Works and Conclusions
	References

	Fallacies and Pitfalls on the Road to DevOps: A Longitudinal Industrial Study
	1 Introduction
	2 Background
	2.1 Continuous Integration (CI)
	2.2 Continuous Delivery (CDE) and Continuous Deployment (CD)
	2.3 Main Characteristics of DevOps

	3 Migrating to DevOps: A Longitudinal Study
	3.1 Research Question and Method
	3.2 Case-Study Context
	3.3 Fallacies and Pitfalls Found

	4 Road Map
	5 Conclusions and Future Work
	References

	Author Index

