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ABSTRACT ARTICLE HISTORY
Understanding the characteristics of tourist movement is essential for tourist behavior studies Received 20 February 2018
since the characteristics underpin how the tourist industry management selects strategies for Accepted 29 June 2018
attraction planning to commercial product development. However, conventional tourism KEYWORDS

research methods are not either scalable or cost-efficient to discover underlying movement Twitter; geospatial data
patterns due to the massive datasets. With advances in information and communication technol- mining; tourist movement;
ogy, social media platforms provide big data sets generated by millions of people from different big data; Markov clustering
countries, all of which can be harvested cost efficiently. This paper introduces a graph-based

method to detect tourist movement patterns from Twitter data. First, collected tweets with geo-

tags are cleaned to filter those not published by tourists. Second, a DBSCAN-based clustering

method is adapted to construct tourist graphs consisting of the tourist attraction vertices and

edges. Third, network analytical methods (e.g. betweenness centrality, Markov clustering algo-

rithm) are applied to detect tourist movement patterns, including popular attractions, centric

attractions, and popular tour routes. New York City in the United States is selected to demon-

strate the utility of the proposed methodology. The detected tourist movement patterns assist

business and government activities whose mission is tour product planning, transportation, and

development of both shopping and accommodation centers.

1. Introduction With the advances in information and communica-
tion technologies, many social media platforms (e.g.
Twitter, Flicker, Facebook, YouTube, FourSquare)
allow people to publish and share information, images,
and videos. Particularly, the adoption of location-aware
technologies (e.g. GPS) in the communication devices
(e.g. mobile phones, watches) allow stories and infor-
mation to be shared with their geo-locations on social
media (Hu et al, 2015; Yang, Huang et al, 2017). In
contrast to travel diary data, social media data are
voluntarily generated and usually include a large num-
ber of users for extended periods of time. These data
not only record the interactions among people and
their surrounding environment (Mckercher & Lau,
2008) but capture critical spatiotemporal trajectory
features of the social media users (Huang & Wong et
al., 2015; Huang & Wong, 2016; Huang et al., 2016).
As a result, social media data with geotagged infor-
mation provide an alternative data source for many
geospatial and social applications (Goodchild, 2007;
Sui et al,, 2012; Yang, Yu et al, 2017), including ana-
lyses of socioeconomic characteristics of social media

Understanding tourist movement patterns is important
for tourism behavior and management since the pat-
terns reflect a suite of tourism industry activities
including public transportation and planning of shop-
ping centers (Mckercher & Lau, 2008). Substantial
efforts have been made to map and model the move-
ment of tourists between their home and destinations
or among different destinations. Most of the previous
studies acquire people’s travel data by surveying an
individual’s location history (Lau, 2007; Lew &
Mckercher, 2002; Mckercher & Lew, 2004) or using
automatic location-sensing devices, notably GPS
(Mckercher & Lau, 2008; Zheng et al, 2011). These
data collection methods have two limitations: (1) data
are usually collected with high cost but cover a small
number of individuals for a certain demographic group
in a short time period (Sui, Elwood, & Goodchild,
2012; Yang, Wu, Liu, & Kang, 2017); and (2) the
methods are not scalable and cost-efficient to study
the tourist movement patterns from a large number
of tourists (Zheng, Zha, & Chua, 2012).
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users (Malik et al., 2015), people’s references for land-
marks and movement patterns (Jankowski et al., 2010),
and the flood inundation areas (Huang, Wang, & Li,
2018a, 2018b; Li et al, 2017). Several studies have
leveraged social media data to analyze tourism districts,
tourist behavior patterns, or provide travel route
recommendations (e.g. Kurashima et al, 2010; Lu
et al, 2010; Shao, Zhang, & Li, 2017; Zheng et al,,
2012). These studies demonstrated the advantages of
social media data (e.g. low cost, large volume) on
tourism studies. However, these data are big and com-
plex in nature, which makes it hard to quantitatively
describe the data and mine the intrinsic knowledge
(Sakaki et al., 2010).

To bridge the gap, this paper introduces a graph-based
spatiotemporal analysis method to quantitatively detect
the tourist movement patterns from social media data.
Specifically, a tourist model is introduced to identify the
social media data generated by the tourists. Second, a
DBSCAN:-based clustering method is adapted to identify
the attractions and edges by clustering the geo-tweets and
then constructing the tourist graph. Third, network ana-
lytical methods are applied on the tourist graph to detect
tourist movement patterns, including popular attractions,
most visited point-to-point routes, and centric attrac-
tions. Last, a probability graph is constructed to detect
the popular tourist routes using the Markov Clustering
algorithm (MCL). New York City (NYC) in the United
States is used as the study case to demonstrate the pro-
posed approach. The detected tourist movement patterns
assist business and governmental entities focused on tour
product development, transportation, and development
of shopping centers and other accommodations.

2, Literature review
2.1. Activity pattern analysis in social media

Understanding activity patterns contributes to a variety
of planning and decision support activities (Noulas
et al,, 2011). The interaction among population groups
has implications for various social and environmental
features (e.g. disease spread, hazards, business, culture)
(Haythornthwaite et al., 2005; Li et al., 2017; Sakaki,
Okazaki, & Matsuo, 2013; Wilson et al., 2009). The key
aspect of analyzing activity patterns is to identify the
individual spatiotemporal interaction patterns that rely
on tracking data for individuals. Travel diary is a com-
mon data source to study human activity patterns but is
expensive to collect (Li, Goodchild, & Xu, 2013). To
simplify the travel diary-type data gathering, GPS
devices are widely adopted (e.g. cell phones) but do
not cover a large number of users from different social
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groups. As another data source to support activity pat-
tern studies, social media data are generated by people
and allow users to attach geoinformation, allowing the
data to be used in activity pattern analysis. For example,
Stefanidis, Crooks, and Radzikowski (2013) developed a
framework to harvest ambient geospatial information to
support situational awareness of human activities.
Kisilevich, Mansmann, and Keim (2010) collected geo-
tagged photos to analyze event places by designing a
density-based clustering algorithm. Cranshaw et al
(2012) designed a clustering algorithm to map the
dynamic urban areas for local activities derived from
social media data generated by residents. Gou and
Karimi (2017) examined the relationship between
human mobility and spatiotemporal features in urban
environments. Other studies determined a user’s home
and work locations from the Twitter data and used the
data to examine the individual’s activity patterns (e.g.
Huang & Wong, 2016; Huang et al., 2016).

Social media data have limitations, notably sparsity
and irregularity spatiotemporally (Agichtein et al.,
2008). Accordingly, there are several challenges to
overcome when analyzing activity patterns using
social media data. The first is the demographic bias
of user groups in social media platforms being the
younger and with positive economic status (Hawelka
et al., 2014; Hu et al,, 2015; Huang & Wong, 2016;
Jiang, Li, & Ye, 2018; Li et al., 2013). Second, social
media data with geotagged information take up a
small partition of the total published data. For exam-
ple, about 1% of the public accessible Twitter data has
geospatial location information. Moreover, the loca-
tion information is recorded only when the social
media platform is used, so that the data do not reflect
the user’s activity history in a high percentage (Hasan,
Zhan, & Ukkusuri, 2013). Despite these shortcomings,
a small percentage of the social media data still can be
used to discover interesting spatial mobility patterns
(Martin et al., in press; Panteras et al., 2015; Sakaki
et al.,, 2013). Morstatter et al., (2013) state that they
were confident that they collected a complete sample
of Twitter data when geographic boundary boxes are
used for data collection, although the data reflect a
small amount of the general pool.

2.2. Tourist movement patterns

According to Haldrup (2004, p. 434), “tourist mobility
has often been transformed into a black box explaining
the character of specific forms of tourism and tourist
behaviour, rather than a phenomenon in its own right
that has to be explored and explained.” Nevertheless, it
is essential to understand movements within a
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destination, which can be directly applied to a suite of
destination management activities (Mckercher & Lau,
2008).

Twenty-six different itinerary types have been identi-
fied by at least five studies, which differ in the mode of
transportation, distance, number of stops, and domestic
versus international travel (Mckercher & Lau, 2008). The
choice of movement patterns depends on the personal
power of control and the knowledge of the destination.
The spatial distribution of attractions (e.g. clustered, dis-
persed) influence whether tourists move widely or nar-
rowly within the destination. Mckercher and Lau 2008, p.
363) conducted 1273 arrival interviews to identify 11
tourist movement styles and found them closely related
to “territoriality, the number of journeys made per day,
the number of stops made per journey, participation in a
commercial day tour, participation in extra-destination
travel and observed patterns of multi-stop journeys.”
Mckercher, Shoval, Ng, and Birenboim (2012) utilized
GPS data to analyze first and repeat visitor behaviors,
which revealed that first-timers and repeaters spend dif-
ferent amounts of time at the same attractions and visit at
the different times of the day. Leung et al. (2012) manu-
ally collected 500 inline trip diaries to detect the overseas
tourist movement patterns in Beijing during the
Olympics using the content analysis and social network
analytical methods.

The effectiveness of the traditional survey-based
methods in the above studies is hindered by issues
of cost, scalability, data volume, and privacy. To
tackle these issues, researchers turn to social media
data. For example, Lu et al. (2010) recovered the
existing travel clues from 20 million geotagged
photos to suggest customized travel plans according
to users’ preferences. Zheng et al. (2011) used Flickr
data to analyze tourist movement patterns about
RoAs, and the topological characteristics of travel
routes have been investigated (Zheng et al., 2012).
In this work, a sequence clustering method is devel-
oped to analyze and distinguish between relaxed
versus busy trips. Lee and Tsou (2018) applied the
kernel density estimate mapping and dynamic time
warping methods on 1-year geotagged Flickr photos
in Grand Canyon area to analyze the differences
among popular points of interests and spatiotem-
poral movement patterns of tourists, focusing on
hotspot detection and visitation frequency changes
by season. Additionally, the interactive visualization
of social medial data is useful to understand the
movement patterns in social media. For example,
Chen et al. (2016) developed an interactive visual
analytical system to enable users to select reliable
data based on the guidance of a heuristic model

and interactive selection tools. However, this method
requires human’s intervention to detect movement
patterns.

Recently with the advance of complex network
science, graph-based methods have been applied to
quantitatively study tourist movement patterns.
Kurashima et al. (2010) built a directed graph model
to represent the tourist’s traveling sequences and lever-
aged the topic models with attraction location informa-
tion to help travelers plan new trips. Schneider, Belik,
Couronné, Smoreda, and Gonzélez (2013) utilized the
network theory to detect the daily human mobility
patterns, and the experiment results capture ~90% of
the population in surveys and mobile phone datasets
from different countries. Yang et al. (2017) extended
the motif concept in the complex network theory to
mine tourist behavior patterns and identify their pre-
ferences in an urban environment. Shao et al. (2017)
developed a framework to extract and analyze a city’s
tourism districts from Sina Weibo data.

These previous studies illustrate the capability of graph
theories for mining tourist movement patterns at macro-
and microlevels, but human intervention is often needed
for data collection and cleaning, pattern identification,
and extracting ancillary background information of the
study activity and area for pattern mining. This paper
leverages the power of social media data and graphical
analytical theories but focuses more on how to develop a
graph-based approach to automatically detect tourist
movement patterns at the microlevel from massive social
media data with consideration of their preferences. A
tourist graph model is proposed and constructed to quan-
titatively represent a tourist’s travel preference among
different attractions and detect the tourist’s movement
patterns by using MCL. The experimental results demon-
strate the effectiveness of research approach to the detec-
tion of tourist movement patterns and highlight the
applicability of the method to other study areas.

3. Methodology

The proposed methods for detecting the tourist move-
ment pattern are composed of three modules
(Figure 1). The first collects the geo-tweets in the
research area and time and identifies the tweets pub-
lished by the tourists. The second builds the tourist
graph by using DBSCAN algorithm to detect nodes
and edges. The third applies the network analysis algo-
rithms (e.g. betweenness centrality, MCLs) to detect
tourist movement patterns, including popular attrac-
tions, centric attractions, and most popular tour routes.
More details of the methodology are elaborated in the
following sections.
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Figure 1. The workflow for the tourist movement pattern detection.

3.1. Tourists extraction

To detect the tourist movement pattern with social
media data, the first step is to identify the data generated
from tourists rather than from local residents. The exist-
ing literature (Li et al, 2013) indicates that a Twitter
user can be considered a local resident if the time inter-
val between the first and last tweets in the collected
tweets is more than 10 days. Since detecting the move-
ment of a tourist requires at least two location points,
the users with only one geotagged tweet during the
study time period are excluded. Following the above
two rules, the geotagged tweets posted by out-of-town
tourists are extracted. The extracted tweets will be
further filtered by the DBSCAN algorithm (Section 3.2).

The second step models the tourists and their tra-
jectories by introducing an object-based model for the
target social media (Twitter) user called “fourist”. A
tourist is defined as follows:

fOMI’iSt:{id, (xlvyla tl)v(x25y27 tZ)a-“)(xn,ym tn)})

where by each tourist contains an id and a list of tweets.
Each tweet, denoted as (x;,y;, 1), stores information
about time and location (latitude or x, longitude or y);
n is the total number of tweets a user posts within
the study area and time. Specifically, the metrics are
n>2,t,—t; <10 days, t € TimePeriod, (x,y) €
StudyArea.

Based on the fourist model and geotagged tweets, a
spatiotemporal trajectory is generated to show the tour-
ist’s journey path. As an example, a tourist’s trajectory
(blue lines, Figure 2) is displayed in a space-time cube
with the x-, y-, and z-axes representing latitude, long-
itude, and time dimension, in series. The green dash line
is the 2D trajectory decomposed from the 3D trajectory
with only latitude and longitude dimensions.

Time

Longfl'ud A

Figure 2. lllustration of the spatiotemporal trajectory for a
single tourist (blue line).

3.2. Tourist graph construction with DBSCAN
clustering

To analyze the movement patterns from the massive
tourist data extracted earlier (Section 3.1), a tourist
graph with a set of vertices and edges is built to conduct
the spatiotemporal network analytics. On the tourist
graph, the vertex represents the attraction, and the edge
connecting two vertices indicates there are tourists mov-
ing among these two attractions (Figure 3). To define the
tourist graph, let V be the vertex of the graph, and E be
the edge of the graph, so that the graph G is represented as
G = (V, E). The vertex set of graph G is denoted as
V(G) = {v1, vay.ev... , Vn},and the edge set is denoted
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as E(G) ={ey, es,...... , em}. Each edge e € E con-
nects two adjacent vertices, u and v, which are the
edge’s start and end points, respectively.

Based on the graph definition, the first step in build-
ing the tourist graph identifies the representative ver-
tices (place of attractions). The second step generates
the edges between the vertices. The vertices should be
based on a common agreement by different tourists
and have a significant number of tourists who pub-
lished their tweets nearby. However, the locations in
geotagged tweets are resolved to six decimal places of
latitude and longitude, equivalent to 10 cm. This reso-
lution means that even for the same building, the
location for different tweets is likely to be different.
To address the location variance for the place of attrac-
tion, the points visited by the tourists is clustered to
detect the graph vertex.

Density-based spatial clustering of applications with
noise (DBSCAN) is a density-based clustering algo-
rithm (Ester et al.,, 1996). The DBSCAN has several
advantages in clustering massive social media data
(Hu et al., 2015) to extract the vertices of the tourist
graph. In the first advantage, the two parameters Eps
(search radius) and MinPts (minimum number of
points in the search radius) match well with the defini-
tion of vertex in the tourist graph so that it allows the
locations to be in a certain range, while the cluster
needs to meet the density threshold. In the second

advantage, the shape of clustering results can be arbi-
trary, so it represents the attractions with different
shapes. In the third advantage, it does not require the
number of clusters in advance (as it is unknown how
many vertices or attractions exist before clustering).
The key to getting the appropriate clustering results
from DBSCAN is setting the proper Eps and MinPts. In
general, a larger Eps generates a broader cluster, while a
smaller Eps produces a smaller region. The MinPts
determines the number of clusters: a larger MinPts
creates a cluster with higher significance but excludes
some interesting areas, while a smaller MinPts gener-
ates more clusters but includes more noise points (Hu
et al,, 2015; Huang & Wong, 2016). Herein, it is pro-
posed that the two parameters be selected based on the
actual study area and the data to be used (Section 5.1).
Once the graph’s vertices are identified, the points in
the same cluster are updated to be the centroid coor-
dinate of the cluster. Meanwhile, the points outside of
the clusters are treated as noisy data to be further
filtered (Figure 3). The hollow circle represents the
original locations of the tourists’ tweets, the bigger
solid circle represents the centroid coordinate of the
cluster (i.e. vertex in the tourist graph), and the gray
circle represents the filtered noise points. The next step
constructs the edges between the vertices. As the gray
lines illustrate in Figure 3, the tweets published by each
tourist are sorted by publishing time, and then the edge

Vertex: ®@®® © ® Edge: ———> Tourist trajectory:

Figure 3. lllustration of the tourist graph construction. (Note that the dash circles and dash squares represent the boundary of the
clustering results. The different shapes between them mean that the clustering result may be in different shape with each other).



is connected from the tweets published earlier to the
one at the next time stamp until the tourist’s last tweet.
This operation is repeated for all the tourists, resulting
in repeated edges from multiple tourists. The number
of repeated edges is set as the weight of the edge. It is
noted that the noisy points outside of the clusters are
discarded when constructing the tourist graph, which
further filters tweets not published by the tourists. The
proposed tourist graph provides a graph-based model
to quantitatively summarize the spatial transition/
movement flows from massive and noisy social media
data and builds a bridge for applying the graph net-
work analysis methods to discover the activity patterns
for social media users.

3.3. Tourist movement pattern detection

Popular attractions and routes are often those with the
largest number of tourist visit. Meanwhile, the tourist
traffic flows usually gather at a certain few attractions
(i.e. centric attraction). Herein, the tourist movement
patterns are quantitatively measured from the perspec-
tives of popular attractions, point-to-point routes, cen-
tric attractions, and popular routes.

3.3.1. Detecting the popularity of attractions

The popular attractions (i.e. most visited point-to-
point routes, centric attractions) are analyzed based
on the constructed tourist graph.

The popular attractions are detected by measuring
the weighted degree of a vertex in the tourist graph.
The weighted degree for each node (s;)including the in-
weighted degree (s;") and out-weighted degree (s;) is
calculated using Equations (1), (2), and (3), where
i, j,and k are the vertex id € [0, n], wj is the weight
for the edge from the vertex v; to the vertex v;, and wi
is the weight for the edge from the vertex v; to the
vertex vk. The rank of the nodes by the weighted degree
indicates the attraction’s popularity.

n
S;L = ZW]‘,' (1)
j=1
n
sT= ) Wik ()
k=1

n n
si= s§+ 5 = iji+ sz‘k 3)
=1 k=1

The most visited point-to-point routes are detected
based on the weight of the edges once the tourist graph
is constructed. The weight (w;;) for the edge that con-
nects the vertices v; and v; is indicated by how many
times this edge is visited.
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The centric attraction is the place where tourist
traffic tends to flow to or leave from and is discovered
by measuring the betweenness centrality of the tourist
graph. The location of centric attractions may be
affected by popularity, geographical location, and
transportation convenience (Zheng et al., 2012). The
betweenness centrality Cg(v,,) for the vertex v,, indi-
cates the vertex’s centrality in a network and equals the
number of shortest paths from all vertices to all others
that pass through the vertex v, (Brandes, 2001). The
betweenness centrality is computed as follows:

(1) for each pair of vertices v; and v;, compute the
shortest paths and denote as o0y

(2) For the above shortest paths, count the number
of paths that pass through the vertex v, and
denote as 0jj(v,) ; and

(3) Compute the fraction of shortest paths that pass
through the vertex, and sum the fractions for all
pairs of vertices (Equation (4)).

Colvm) = Y %y(¥m) (4)

izmzev i
Note that the shortest path is the one with the high-
est sum of edge weights (i.e. path visited by most
people). Therefore, a vertex with a high betweenness
centrality has a significant influence on the spatial
movement patterns of tourists.

3.3.2. Popular tour routes detected with MCL

To detect the popular tour routes, the weighted graph
Gw(V, E, w(u,v)) (Section 3.2) is used to compute
the transition probability graph of the tourists, where V
denotes the vertex of the graph, E denotes the edges of
the graph, and w(u, v) denotes the weight matrix which
measures the frequencies of the tourists traveling from
the vertex u to the vertex v.

Based on the weighted graph, the transition prob-
ability matrix M, ) for the graph G, is derived, where
p(u, v) denotes the probability of the vertex v being
the next stop for a tourist at the vertex u. By introdu-
cing the probability matrix, the tourist graph G is
further expressed as follows:

Gy, = (V, E, p(u,v)), where

B w(u,v) o
PO = Sl o
= {reV]w(u, v)o} (5)

Based on the probability graph G,, we are able to
estimate how likely a tourist travels from one to
another connected vertex. If the tourists follow the
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transition probability graph to randomly walk among
vertices, it is possible to discover at which vertices the
tourists tend to gather. The frequently gathered places
are considered as popular tourist routes revealed from
the collected tweets. Random walks on the proposed
graph are performed by adapting “Markov Chains”
(Hastings, 1970) using the probability matrix M, )
as the initial input. This assumes that the probabilities
for the next time step only depend on the current
probabilities. Specifically, three operations are per-
formed in the MCL to detect the popular tour routes
from the tourist graph as follows:

(1) The expansion operator (Equation (6)) allows
the tourists to connect different regions of the
graph by taking the Markov Chain transition
matrix powers. A large expansion rate expedites
clusters merging. For the expansion rate = 2, the
expansion equation is as following

Expa(M,,) = Z My, * My, (6)
k=1:n

(2) The inflation operator (Equation (7)) strengthens
the strong parts and weakens the weak parts of the
transition probability matrix, and the existing clus-
ters are strengthened by a big inflation rate (r); and

(Mpij)r
k r
Zj:l (MPIJ)
(3) The repeat expansion and inflation operators
lead to the steady state of the probability graph
with the clustered vertices and Equation (8) is

used to identify if the probability graph reaches
the steady state as follows:

Diff (Mp — Mp) = > > My, —Mp;  (8)

i=linj=1mn

I"ﬂ<MPij) = (7)

The resultant clusters represent the popular routes that
tourists prefer to visit, and the vertices (attractions) have
some similar natural or cultural value or offer similar
leisure, adventure, and amusement. Herein, the grid
hyper-parameter search is conducted with different pairs
of expansion ([1, 8]) and inflation rates ([1, 8]) to identify
the best pair of expansion and inflation rates. When the
expansion and inflation rates become larger, the steady
state is achieved faster. However, more vertices are dis-
carded in the final clustering results and each cluster con-
tains fewer vertices because the larger expansion and
inflation rates greatly weaken the connection between the
preferred and less popular vertices. Based on the grid
hyper-parameter search results, both the expansion and

the inflation rates are set to 2 in the MCL algorithm to keep
the detected vertices in the clustered results, since all these
vertices are detected as popular attractions. The selected
pair of expansion and inflation rates means that after the
tourists visit an attraction, the probability for other attrac-
tions is inflated by taking an inflation operator.

4, Case study and data

To demonstrate how the proposed approach detects
tourist movement patterns, New York City (NYC) is
selected as a case study because it is one of the most
tourist-frequented cities in the United States, attracting
62.8 million tourists in 2017 (NYC & Company, 2018).

Geotagged tweets (geo-tweets) of the NYC metro-
politan region are collected using the Twitter streaming
API from 1 July 2016 to 30 April 2017. The total
number of tweets is 5,019,637, and each tweet contains
the user id, latitude, longitude, date, text, and other
information. These geo-tweets are displayed as a den-
sity map (Figure 4) with color brightness representing
tweet density (the brighter, the higher density).
Moreover, the top-50 attractions in NYC ranked by
TripAdvisor (https://www.tripadvisor.com), the world’s
largest travel site in the world, are manually extracted
to evaluate the results (blue circles, Figure 5).

5. Results and discussion

5.1. Vertices detected using DBSCAN and the
constructed graph

Based on the tourist model (Section 3.1), 55,957 tourists
who posted 258,540 geotagged tweets from the NYC
Twitter dataset were extracted after which the DBSCAN
clustering algorithm (Section 3.2) was applied on the
extracted geotagged tweets to filter noisy tweets and
identify the tweet clusters (attractions). This reduces the
number of geotagged tweets to 109,998. To evaluate the
accuracy of the detected tourists, 100 tourists were
selected from the detected tourists to manually check
their twitter profile and posted tweets. Of these, 94 users
are identified as out-of-town tourists based on the loca-
tion information in their profiles and the locations of
their historical tweets and only two are residents in
NYC. Four users are company accounts or nonhuman.
Accordingly, the detection accuracy of tourists is 94%.
Using DBSCAN clustering, the centroid of each
cluster is the vertices of the tourist graph. Herein Eps
(search radius) is set as the mean length of the street
block on the Manhattan Island (~100 m) because these
attractions can be well separated at the block scale. To
find the appropriate MinPts, a grid hyper-parameter
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Figure 4. The NYC study area and geotagged Twitter data.

searching approach is selected wherein it is initially set
to be from 100 to 5000 with a 100 step and then
comparing the different clustering results with the dis-
tribution of the top 50 places of interest obtained from
the TripAdvisor. Based on the experiment results, the
minimum number of points in the search radius
(MinPts) is set to 1500.

The clustering result with 16 clusters, where the
orange icons represent the centroid point for each
cluster and the blue circles represent the top 50 attrac-
tions from TripAdvisor is illustrated (Figure 5). The
centroid of each cluster is selected as the vertex of the
graph and labeled by one of their most nearby attrac-
tions listed on TripAdvisor. The labels for each vertex
and the number of points within the cluster that vertex
represents are provided (Table 1).

After connecting the edges between vertices based
on tourists’ traveling trajectories, the final graph with
the nodes and edges is constructed (Figure 6) in which
the arrow indicates the direction from one vertex to
another and the thickness of the edges represents the
frequency of the edge visited by tourists.

5.2. Tourist movement patterns

5.2.1. Popular attractions

The concept of weighted degree indicates the popular-
ity of an attraction (Section 3.3.2). The weighted degree
for the 16 nodes (clusters) (Figure 7) and the weighted
degree for each node by the font size of labels
(Figure 8) is illustrated. The top 10 attractions are
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Times Square, World Trade Center, Top of the Rock
Observation Deck, Brooklyn Bridge, Central Park,
Empire State Building, The High Line, MoMA, The
Metropolitan Museum of Art, Statue of Liberty, and
Madison Square Garden. Their rankings at
TripAdvisor are 27, 14, 4, 9, 1, 11, 8, 2, 3, 15, and 23
in series. All of the identified popular attractions are
ranked as top 25 by TripAdvisor, and 60% of our
results are at the top 10 attractions ranked by
TripAdvisor. It is proposed that the difference is due
to the different ranking approaches as the research
methodology ranks based on how many tourists visit,
whereas TripAdvisor considers every reviewer’s evalua-
tion score.

5.2.2. Centric attractions

The centric attractions are the places tourists prefer to
visit when moving from one attraction to another. The
betweenness centrality is calculated to identify the cen-
tric attractions. The centric attractions (Figure 9) high-
light the betweenness centrality by the label size of the
node. The nodes with the largest betweenness centrality
are Times Square, World Trade Center, the Museum of
Modern Art (MoMA), Metropolitan Museum of Art,
Brooklyn Bridge, the High line, and Ground Zero
Memorial, all physically close to metro, bus stations,
or the traffic centers. These seven nodes are evenly
distributed across the Manhattan Island without clus-
tering and are the centric regions of attractions and
treated as transition traffic centers. This finding sug-
gests that allocating more transportation resources to
these seven regions would help relieve traffic pressure.



376 (&) F.HUETAL

@ O

Figure 5. The clustering result using DBSCAN.

5.2.3. Popular point-to-point routes

The popular point-to-point routes are identified by the
weighted degree for each node (Figure 10), where the
width and color of edges indicate the weighted degree
for each node. The top three routes are identified as
being (1) from Top of the Rock Observation Deck to
Times Square, (2) from Times Square to World Trade
Center, and (3) from Central Park to Times Square. All
three point-to-point routes contain Times Square as it
has the highest weight. Moreover, the distance of the
three routes differs among the three, indicating that the
distance is not the key factor for trip planning in NYC.

5.3. The popular tour routes

Using the Markov clustering approach, the detected
clustering vertices based on the probability graph G,
(Table 2) identify the most probable tourist movement
patterns from tourists’ preferences.
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Two clusters of vertices (attractions) are detected
(Table 3) and the attractions in each cluster are connected
using the shortest path (Figure 11). The first cluster is
centered at the Grand Central Terminal with eight mem-
bers consisting of museums and historical attractions
(Figure 11(a)). The second cluster is centered at the
Times Square with eight members themed with modern
architecture (Figure 11(b)). When examining the two clus-
ter members in the spatial context, it is evident that mem-
bers of both clusters are not geographically clustered,
indicating that the geographic distance in NYC may not
be the determining factor for the tourist travel pattern.
Conversely, the tourists’ preference for the attractions
plays a more critical role in determining the tourist move-
ment patterns. Lastly and based on the clustering results,
the two most popular tour routes (Figure 11) are identified
and recommended for tourists visiting NYC. For the tour-
ists identified herein, 38.1% visited the attractions in the
first cluster, 44.2% visited the attractions in the second
cluster, and 17.7% visited both the attractions.
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Table 1. The selected attractions used for labeling each vertex.

ID Coordinates Label Number of points
0 40.740272,-74.008383 Meatpacking District 4286
1 40.758895,-73.985131 Times Square 22,843
2 40.723382,-74.003198 SoHo 2914
3 40.752735,-73.977002 Grand Central Terminal 5484
4 40.711246,-74.012749 Ground Zero Memorial 4071
5 40.768924,-73.975307 Central Park 6965
6 40.689189,-74.044654 Statue of Liberty 5968
7 40.77913,-73.962974 The Metropolitan Museum of Art 6000
8 40.711805,-74.012641 World Trade Center 20,672
9 40.761478,-73.977123 The Museum of Modern Art (MoMA) 6157
10 40.758985,-73.979257 Top of The Rock 9853
1 40.748803,-73.985626 Empire State Building 6393
12 40.750465,-73.993521 Madison Square Garden 5029
13 40.744263,-74.006199 The High Line 6181
14 40.759873,-73.978917 Radio City Music Hall 3530
15 40.706086,-73.996864 Brooklyn Bridge 8432

As a further validation, the research results for the
discovered routes are compared with the Big Bus Tour
Routes in NYC (https://www.bigbustours.com/en/new-
york/new-york-routes-and-tour-maps/). The first clus-
tered attractions are similar to that of the downtown
and uptown tour of the Big Bus Tours (Figure 11(a)),
and the second clustered attractions are similar to that
of the midtown and uptown tours (Figure 11(b)). This
similarity further supports the utility of the MCL-based
probability graph clustering approach in helping to
discover the most popular tourist routes.

6. Conclusion and future research

A graph-based approach is introduced to detect the
tourist movement patterns from massive and noisy
social media (Twitter) data, and an object-based model

is designed to represent the tourist’s spatiotemporal
movement trajectory. To build the tourist graph, the
DBSCAN-based method is used to cluster the tourist
trajectories to identify the vertices in the graph and then
connect the vertices by using the tourist trajectories to
generate the edges of the graph. Once the tourist graph
is constructed, a set of graph-based network analysis
methods is introduced to detect the most common
tourist movement patterns.

New York City is used to evaluate the proposed
approach. The tourist movement patterns are identified
by detecting the popular attractions, centric attraction,
popular point-to-point routes, popular tour routes
from the tourist graph, and the results demonstrate
that the proposed methodologies provide a feasible
and effective way to build a graph-based network
model for tourists from big social media data. The

The Metropolitan Museum of Art

Central Park

The Museum of Modern Art (MoMA)

Radio CityyMusic Hall

Tob of;’re Rock

Madison Square Garden ' Grand Central Terminal

The High Line ‘
/

Meatpackihg District

/

/ )
Ground Zero Memorial

World Trade Center

/
Statue o(LIberty

Brookl?h Bridge

Figure 6. The network graph for the tourists in NYC from 1 July 2016 to 30 April 2017.
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Figure 7. The weighted degree for each node.
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Figure 8. The graph visualization by the weighted degree (font size of labels indicates the node weighted degree).

proposed graph-based methodologies can be extended
to study other topics in human dynamics studies in
large areas using social media data. Compared with the
traditional tourist behavior studies, this study proposes
a cost-efficient approach to automatically identify the
behavior features of tourists from the big and noisy
social media data (geotagged tweets) using quantitative
methods.

While the results are promising, several limitations
are recognized, and more efforts are needed to improve

the approach. First, while the detection accuracy of
tourists is high (94%), a small percentage of bots
remained in the identified tourists. Fully eliminating
these bots in an automatic manner without manual
checking is challenging (Guo & Chen, 2014). A poten-
tial new line of research is to leverage more advanced
methods, such as artificial intelligence, natural lan-
guage processing, and image recognition to improve
the understanding of the social media data content and
the accuracy of noisy data filtration and bot detection.
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Figure 10. Visualization of the weighted degree among nodes (label font size indicates the weighted degree between nodes).

Second, the trajectory derived from the tweets may not
represent the actual trip trajectory as the tourists may
not publish tweets for every visited attraction or the
tweets were not streamed into our dataset. Third, the
movement sequences along the time dimension is
another import attribute of the tourist behaviors,
which reflects how tourists choose the next stop
based on the previous stops. Limiting the graph to
only consider the spatial aspect may hide the

underlying detailed tourist movement patterns in the
time series. Future research should utilize time-series-
based methods to further improve the tourist graph by
computing the movement probability in considering
the individual’s previous movements. Lastly, only one
data source is considered, and the fusion of multiple
data sources (e.g. Flickr, Uber, Facebook) may help
discover more interesting features and patterns of tour-
ist behaviors.
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Table 2. The probability matrix calculated from the weight

matrix for the tourist graph.

0 1 2 3 4 5 6

7 8 9 10 1 12

13

14

15

0.0000 0.0810 0.1750 0.0670 0.0560 0.0360 0.0160
0.0720  0.0000 0.0230 0.0040 0.0920 0.0970 0.0210
0.0720 0.0730 0.0000 0.0320 0.0480 0.0520 0.0240
0.0510 0.1450 0.0090 0.0000 0.0760 0.1070 0.0000
0.0250 0.0450 0.0390 0.0550 0.0000 0.1600 0.0490
0.0040 0.0710 0.1090 0.0080 0.0160 0.0000 0.0350
0.0140 0.0730 0.0080 0.0450 0.0320 0.0460 0.0000
0.0480 0.4540 0.0180 0.0410 0.0220 0.0450 0.0690
0.0280 0.1280 0.0150 0.0900 0.0540 0.0810 0.1630
0.1240 0.3970 0.0430 0.0050 0.1240 0.0780 0.0530
0.0710 0.3810 0.0300 0.0000 0.1250 0.1480 0.0000
0.0100 0.2930 0.0070 0.0400 0.0170 0.0190 0.0000
0.0910 0.1640 0.0180 0.0270 0.0190 0.0040 0.0000
0.0130 0.0350 0.0080 0.0310 0.0090 0.0170 0.1280
0.2020 0.0000 0.0380 0.0000 0.2510 0.2400 0.0000
0.0190 0.0510 0.0020 0.0440 0.0240 0.0210 0.0050

oNOTULDh WN = O

—_—_ = a a .
viphWN = O

0.0280 0.1180 0.0470 0.0500 0.0250 0.0160
0.1040 0.1810 0.0590 0.1380 0.1190 0.0140
0.0440 0.1770 0.0460 0.0800 0.0540 0.0200
0.0000 0.0200 0.0800 0.4410 0.0000 0.0000
0.0820 0.0000 0.0000 0.0040 0.4520 0.0000
0.0610 0.3020 0.1450 0.0430 0.0590 0.0280
0.0310 0.2480 0.0280 0.0700 0.1090 0.1010
0.0000 0.0140 0.0400 0.1290 0.0080 0.0450
0.0480 0.0000 0.0720 0.2500 0.0000 0.0000
0.0350 0.0220 0.0000 0.0270 0.0190 0.0010
0.0000 0.0000 0.1130 0.0000 0.0200 0.0110
0.0350 0.2300 0.0220 0.0630 0.0000 0.0590
0.0480 0.4110 0.0460 0.0790 0.0080 0.0000
0.0430 0.3040 0.0230 0.0540 0.0400 0.0850
0.0000 0.0000 0.2420 0.0000 0.0000 0.0000
0.0340 0.5120 0.0480 0.0230 0.0610 0.1220

0.0120
0.0230
0.0440
0.0020
0.0000
0.0340
0.0000
0.0410
0.0000
0.0090
0.0170
0.0000
0.0180
0.0000
0.0040
0.0090

0.1140
0.0300
0.1060
0.0680
0.0650
0.0420
0.0240
0.0250
0.0720
0.0060
0.0670
0.0140
0.0510
0.0360
0.0000
0.0270

0.1590
0.0220
0.1270
0.0000
0.0250
0.0440
0.1710
0.0000
0.0000
0.0570
0.0170
0.1920
0.0160
0.1730
0.0230
0.0000

Table 3. The clustered attractions based on the probability tourist graph.

Cluster ID Center of cluster Members (clustering vertices)
1 Grand Central Meatpacking District, Brooklyn Bridge, The Metropolitan Museum of Art, Statue of Liberty, Ground Zero Memorial, The
Terminal Museum of Modern Art, SoHo, Grand Central Terminal
2 Times Square Empire State Building, Times Square, Madison Square Garden, The High Line, World Trade Center, Radio City Music
Hall, Top of The Rock, Central Park
a TheMelmpah}s;Museu’m.ofArl b o

Ground Zero Memorial

| statue of Liberty Cluster 1
| ~ — = Downtown tour

~ — = Uptown tour

Radio City Music Hal)”
7% 1 SLy

/TimesSquare’,
/

/Orld Trade Center

Cluster 2

== = = Midtown tour

N | ~ — = Uptown tour

Figure 11. Geographic distribution of the clustered attractions and the recommended routes for tourists based on the Markov
clustering result: (a) the first cluster; (b) the second cluster. The red dash line represents the route of Big Bus downtown tour; the
green dash line represents the route of Big Bus uptown tour; the purple dash line represents the route of Big Bus midtown tour.
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