Taylor & Francis
Taylor & Francis Group
International Journal of

TRl 8 nternational Journal of Digital Earth

ISSN: 1753-8947 (Print) 1753-8955 (Online) Journal homepage: https://www.tandfonline.com/loi/tjde20

Deep learning for real-time social media text
classification for situation awareness - using
Hurricanes Sandy, Harvey, and Irma as case
studies

Manzhu Yu, Qunying Huang, Han Qin, Chris Scheele & Chaowei Yang

To cite this article: Manzhu Yu, Qunying Huang, Han Qin, Chris Scheele & Chaowei Yang
(2019) Deep learning for real-time social media text classification for situation awareness — using
Hurricanes Sandy, Harvey, and Irma as case studies, International Journal of Digital Earth, 12:11,
1230-1247, DOI: 10.1080/17538947.2019.1574316

To link to this article: https://doi.org/10.1080/17538947.2019.1574316

ﬁ Published online: 10 Feb 2019.

N
C/J Submit your article to this journal &

||I| Article views: 493

A
& View related articles &'

PN

@ View Crossmark data (&

CrossMark

@ Citing articles: 5 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tjde20


https://www.tandfonline.com/action/journalInformation?journalCode=tjde20
https://www.tandfonline.com/loi/tjde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17538947.2019.1574316
https://doi.org/10.1080/17538947.2019.1574316
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2019.1574316
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2019.1574316
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2019.1574316&domain=pdf&date_stamp=2019-02-10
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2019.1574316&domain=pdf&date_stamp=2019-02-10
https://www.tandfonline.com/doi/citedby/10.1080/17538947.2019.1574316#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/17538947.2019.1574316#tabModule

INTERNATIONAL JOURNAL OF DIGITAL EARTH Q'
2019, VOL. 12, NO. 11, 12301247 (ISDE /9 e Taylor & Francis
https://doi.org/10.1080/17538947.2019.1574316 RADI Taylor &Francis Group

W) Check for updates

Deep learning for real-time social media text classification for
situation awareness - using Hurricanes Sandy, Harvey, and Irma as
case studies

Manzhu Yu?, Qunying Huang®, Han Qin®<, Chris Scheele® and Chaowei Yang®

Department of Geography and Geoinformation Science, George Mason Univeristy, Fairfax, VA, USA; PDepartment of
Geography, University of Wisconsin—-Madison, Madison, WI, USA; “Ankura, Washington, DC, USA

ABSTRACT ARTICLE HISTORY
Social media platforms have been contributing to disaster management Received 1 June 2018
during the past several years. Text mining solutions using traditional Accepted 22 January 2019

machine learning techniques have been developed to categorize the

messages into different themes, such as caution and advice, to better T D L
. . R . ext mining; deep learning;

understand the meaning and leverage useful information from the social hurricanes; Twitter:

media text content. However, these methods are mostly event specific convolutional neural

and difficult to generalize for cross-event classifications. In other words, network; situational

traditional classification models trained by historic datasets are not awareness

capable of categorizing social media messages from a future event. This

research examines the capability of a convolutional neural network

(CNN) model in cross-event Twitter topic classification based on three

geo-tagged twitter datasets collected during Hurricanes Sandy, Harvey,

and Irma. The performance of the CNN model is compared to two

traditional machine learning methods: support vector machine (SVM)

and logistic regression (LR). Experiment results showed that CNN models

achieved a consistently better accuracy for both single event and cross-

event evaluation scenarios whereas SVM and LR models had lower

accuracy compared to their own single event accuracy results. This

indicated that the CNN model has the capability of pre-training Twitter

data from past events to classify for an upcoming event for situational

awareness.

KEYWORDS

1. Introduction

Recently, we have unfortunately witnessed a series of deadly hurricane events (e.g. Harvey, Irma,
Florence, and Michael) and Northern California wildfires. These events claim many lives, result
in billions of dollars of economic loss, and significantly impact the environment. When a natural
hazard occurs, managers and responders rely on timely and accurate information about the disaster
situations (e.g. damages) to make effective response decisions and improve management strategies.
Such information is referred as ‘situational awareness” (SA), i.e. an individually as well as socially
cognitive state of understanding ‘the big picture’ during critical situations (Vieweg et al. 2010).
Since SA relevant information mostly has a spatial component (e.g. all damages occur at a specific
location), it has been referred as geographically grounded situational awareness (MacEachren et al.
2011) or geographic situational awareness (GSA) (Huang and Xiao 2015) in geospatial fields. GSA
focuses on identifying the locations or areas of damaged infrastructure, affected people, evacuation
zones, and the communities of great needs of resources, etc.
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Because of the massive popularity of social media networks and their real-time production of
data, social media offers new opportunities for natural hazards. For example, social media has con-
tributed significantly in disaster management as a tool to communicate information during emer-
gencies (Charalabidis et al. 2014). Social media is increasingly being used by both Non-
Governmental Organizations and government emergency management agencies to determine public
sentiment and reaction to an event (Emergency Alerting Platform Working Group 2016). As a multi-
directional flow of communication and information platform, social media efficiently facilitates
response and recovery efforts (Roche, Propeck-Zimmermann, and Mericskay 2013).

Much useful information in social networks such as Twitter is textual. For example, people post
text messages related to the resource, damage, donation or aid during a disaster. From the text, dis-
aster relevant data can be extracted to establish GSA or produce a crisis map (Huang and Xiao 2015;
Vieweg et al. 2010). As the messages broadcasted and shared through the social media networks are
extremely massive and varying, an effective text mining solution should be developed to separate the
messages into different themes before we can understand the meaning and leverage useful infor-
mation from the social media text content (Aggarwal and Wang 2011). Information about casualties
and damage, donation efforts, and alerts are more likely to be used and extracted to improve SA
during a time-critical event (Huang and Xiao 2015). As a result, messages are typically categorized
into these categories. For example, previous work (Imran et al. 2013) extracted tweets published
during a natural disaster into five categories, including caution and advice, casualty and damage,
donation and offer, people, and information source to augment our understanding about disaster
situation. While manually examining 5000 sampled tweets generated during the 2012 Hurricane
Sandy, we noticed that a large number of informative messages were reporting the status of infra-
structure (e.g. transportation) and resource (e.g. gas, power, internet, food). Therefore, we created
an additional category named as infrastructure and resource in our classification schema for this
study.

Traditional text mining methods mostly rely on machine learning techniques, such as support
vector machine (SVM; Cortes and Vapnik 1995) and logistic regression (LR; Freedman 2009).
Those methods have shown mixed results and are criticized for being unable to generalize beyond
the scope of the designed study. Such retrospect models have little value for handling data generated
during a new disaster event, as they yield the best result in a specific disaster situation. What has been
learnt from a specific event was difficult to generalize for other events. One possible reason is that
different disaster events evolve differently through time, resulting in different topics could be dis-
cussed throughout the social media platform. Another possible reason is that incidents and damages
occurred within a specific disaster are different and unpredictable in nature (Lazreg, Goodwin, and
Granmo 2016).

This research aims to address this challenge by examining the capability of deep learning in
cross-event topic classification of Twitter data for disaster SA in different hurricane events.
Recently, deep learning has produced promising results for various tasks in text mining (Collobert
et al. 2011), particularly topic classification, sentiment analysis, question answering (Yu et al.
2014), and language translation (Wang, Raj, and Xing 2017). The key characteristics of deep learn-
ing is that nonlinear, high-level features are self-learned directly from unstructured data, such as
images, sound, video, and text (LeCun, Bengio, and Hinton 2015). These characteristics have
granted deep learning the capability of solving much more complicated artificial intelligence
(AI) tasks, including speech recognition, genomic pattern discovery, and unmanned car driving
(Wang, Raj, and Xing 2017). Currently, deep learning methods include autoencoder, restricted
Boltzmann model, deep belief network, convolutional neural network (CNN) and recurrent neural
network, and so on.

Using three geo-tagged twitter datasets collected during Hurricane Sandy, Hurricane Harvey, and
Hurricane Irma, this research evaluates the performance of the CNN model for cross-event topic
classification by comparing with two traditional machine learning models, including SVM and
LR. Specifically, two groups of experiments are conducted, including (1) single-event experiment,



1232 (&) M.YUETAL

which randomly selects 80% of the dataset from each disaster event to build the classifiers, and tests
the performance of every classifier using the remaining 20%, and (2) cross-event validation exper-
iment, which compares the classifiers that are trained with historical Twitter datasets to classify
tweet messages generated during a later event into different topics. Experimental results reveal the
proposed model based on CNN is able to establish an evolving SA knowledge base using historical
Twitter datasets to facilitate the topic classification for future hurricane events with insufficient train-
ing data.

The rest of paper is organized as follows. Section 2 reviews the state-of-the-art work in social
media text analysis efforts for disaster management and deep learning efforts for text mining. Section
3 describes the CNN model architecture and the underlying layers inside the network. Section 4
introduces the Twitter dataset for training and testing, the model configuration, and the experiment
results of the CNN classifier compared to two well-known machine learning models, including SVM
and LR. Section 5 demonstrates the experiment for cross-event validation of the CNN model, and
compares it with SVM and LR. Finally, in Section 6, we conclude the research and provide future
research directions.

2, Literature review
2.1. Social media for disaster analysis

Previously, methodologies such as phone calls, direct observation or personal interview are com-
monly used by disaster responders, relief coordinators and damage evaluators to gain SA for emer-
gency response and relief coordination during a critical crisis. However, these data collection
methods are time-consuming and laborious in processing the data. Social media data, however,
can provide ‘real-time’ information for decision-making through multiple stages of the disaster man-
agement. Recently, much work has been done to leverage these new data sources to support various
disaster relevant analysis and management, such as disaster event detection and tracking (Sakaki,
Okazaki, and Matsuo 2010), disaster response and relief (Ashktorab et al. 2014; Kumar et al.
2011; Purohit et al. 2014), and damage assessment (Cervone et al. 2016).

Among the massive social media data collected during a period for a natural hazard, only a
small portion of the messages are related and contribute to SA. Due to the volume of data is
far beyond the capabilities of manual examination, text mining of social media messages typically
starts with filtering out non-relevant messages and transforms unstructured text data sets into a
structured form using various natural language processing techniques (NLP; Chae et al. 2012).
Next, more advanced text mining techniques based on machine learning algorithms then can
be applied to assign pre-defined topics to text documents (classification) or automatically struc-
ture document collections to find groups of similar documents (clustering; Hotho, Niirnberger,
and Paaf} 2005). A few attempts have been made to uncover and explain the social media message
topics discussed when Twitter users communicate during mass emergencies (Huang and Xiao
2015; Imran et al. 2013; Vieweg et al. 2010). Imran et al. (2013), for instance, extracted tweets pub-
lished during a natural disaster into several categories, including caution and advice, casualty and
damage, donation and offer, and information source. The content categories (or topics) defined in
those studies (Vieweg et al. 2010; Imran et al. 2013) are very useful to explore and extract the data
involved in the disaster response and recovery phases. However, those content categories or topics
(Imran et al. 2013; Imran and Castillo 2015; Vieweg et al. 2010; Vieweg 2012) mostly considered
and are very useful to explore and extract the data involved in the disaster response and recovery
phases. Huang and Xiao (2015) made an effort by coding social media messages into different cat-
egories within various stages of disaster management by including useful information that could
be posted before or after a disaster event. Since our study focuses on the messages during the
response and recovery phases, we will use the message coding schema based on Imran et al.
(2013)’s work.
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While classifying social media messages into different topics, previous work primarily applies tra-
ditional machine learning techniques, such as SVM (Cortes and Vapnik 1995) and LR (Freedman
2009). One drawback for traditional machine learning approaches is that these supervised classifiers
learnt from a specific event do not generalize well to other events as different events may generate
unique responses on social media (Li et al. 2015). Due to this drawback, when using these methods,
we have to manually examine tweets for a new event and train a new classifier to identify different
topics, which is labor intensive and time-consuming.

2.2. Deep learning for text mining

Deep learning technology is applied in common text mining tasks, such as sentiment analysis
(Severyn and Moschitti 2015), text classification (Liu et al. 2015), text generation (Graves 2013)
and social event detection (Chen et al. 2015). In this study, we examine the capability of CNN in
text classification for disaster relevant tweets and facilitate the rapid identification of disaster
response and relief contents. Therefore, here we review the deep learning technologies, particularly
for text classification.

CNN was one of the most popular methods for pattern recognition. Kim (2014) described the
basics of CNN for sentence-level classification tasks using pre-trained word vectors. Detection
filters with different lengths were used to convolve text matrix to search for the presence of specific
features or patterns present in the text. Then max pooling, operating extractive vectors of every filter,
was employed to down-sample the input representation by reducing its dimensionality and allowing
for assumptions to be made about features contained in the filtered subregions. Finally, each filter
corresponded to a digit and these filters were connected to obtain a vector representing this sentence,
on which the final prediction was based. Zhang and LeCun (2015) applied deep learning to text
understanding using temporal convolutional networks (ConvNets; LeCun et al. 1998) and conducted
experiments, including ontology classification, sentiment analysis, and text categorization, on var-
ious large-scale datasets. Results showed that temporal ConvNets can achieve satisfactory perform-
ance without the knowledge of words, phrases, sentences and any other syntactic or semantic
structures with regards to a human language. Furthermore, Zhang, Zhao, and LeCun (2015) applied
ConvNets only on characters using large-scale datasets, and the experiment results showed that deep
ConvNets is able to classify words without the knowledge of words or the syntactic or semantic struc-
ture of a language. The aforementioned literature deals with sentence-based text data, whereas Lai
et al. (2015) proposed a recurrent convolutional neural network (RCNN) and achieved promising
results on document-level datasets.

More recently, deep learning methods have been applied to the field of disaster response utilizing
social media datasets. Caragea, Silvescu, and Tapia (2016) and Nguyen et al. (2017) utilized CNN
models to identify informative tweets for flood events and earthquake events respectively. Aipe
et al. (2018) utilized a deep CNN model to extract linguistic features from tweets and utilize these
features to classify tweets into different informative categories for crisis management. However,
the capability of deep learning on cross-event multi-class tweet topic classification needs to be further
examined, and this research serves as the starting point of establishing an evolving knowledge base
for Twitter topic classification for disaster situation awareness.

3. Methodology

The general CNN architecture can be created using multiple layers, such as input, convolution,
pooling, activation, and output layers. A deep CNN is defined when the architecture is composed
of convolution layers and auxiliary layers (e.g. dropout and batch normalization layers). This
section explains the overall architecture, the layers used in this study, and the backgrounds of
each layer.
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3.1. Overall architecture

Figure 1 presents the CNN architecture, which is the configuration for geo-tagged tweet theme
classification. The first step is preprocessing, where each word of the tweet is represented by an inte-
ger (Section 3.2). The preprocessed tweet passes through the first layer, word embedding, which
expands the word integers to a larger matrix and represents them in a more meaningful way (Section
3.3). The convolution layer then extracts features from the word embedding and transforms them
through global max pooling (Sections 3.4 and 3.5). Then two fully connected layers predict the
themes of each tweet (Section 3.8). Dropout layers are utilized before the convolution layer and
the last fully connected layer (Section 3.6). Activation functions are used after the convolution
layer and the fully connected layers (Section 3.7).

3.2. Preprocessing

Since machines understand numbers better than words, we first need to split each text into words
and represent each word by a number to train our neural network with texts. The most common
words are represented with lower numbers, thus we can easily train on only the N most common
words in our dataset, and adjust N as necessary. In this way, we can ignore rare words, which neural
networks can hardly learn from and might increase the processing time. In the experiment, we cal-
culate the frequency of each word and select the 2,000,000 first most-common words in the dataset.
Then all tweets are converted to list of integers. Finally, each list of integers is ‘padded’, so that all
training and testing examples are in the same size (50 integers).

3.3. Embedding layer

The list of integers is further computed into known embedding, by parsing the data using pre-trained
embedding, word2vec, which were trained on 100 billion words from Google News (Mikolov et al.
2013). In word2vec, words with similar semantic meanings are represented closely in the embedded
vector space. The words oak, elm, and birch may cluster in one corner, while war, conflict and strife
group together in another. This layer lets the network expand each token to a larger vector, allowing
the network to represent words in a meaningful way (Table 1).

3.4. Convolution layer

The convolution layer performs the following three operations throughout an input array. First, it
performs element-by-element multiplications (i.e. dot product) between a subarray of an input
array, and a filter, which is also often called the filter, or kernel. Second, the multiplied values are
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Figure 1. Overall architecture of the CNN.
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Table 1. Dimensions of layers and operations.

Layer Operator Output height Output width Output depth
Input - 1 50 -
Embedding 1 50 300
Dropout Rate =0.25 1 50 300
Convolution Stride =1, zero padding = 0, depth = 250, 1 50 250

filter size = 3; activation = ReLU

Global max pooling - 1 1 250
Fully connected Output depth = 250; activation = ReLU 1 1 250
Dropout Rate =0.25 1 1 250
Fully connected Output depth = 5; activation = Softmax 1 1 5

summed, and bias is added to the summed values. One of the advantages of the convolution is that it
reduces input data size, which reduces computational cost. A convolution operation involves a
weight matrix w, which is applied to a window of & words to produce a new feature. For example,
a feature ¢; is generated through

¢i = f(WsXiipn—1 + b) (D

Here b is a bias term and fis a nonlinear function. This operation is applied to each possible window
of words in the text array {x;.;, X2541 .- » Xn—p+1.n yand produces a feature map:

c=le, e oo Cnmht] (2)

Three hyperparameters control the size of the output: the depth, padding and stride. The depth
corresponds to the number of filters, and each different number will learn different information
from the input. For example, the convolution layer takes the word embedding as input, and
then different neurons along the depth dimension may activate in presence of various oriented
edges. So, the depth column is a set of neurons looking at the same region of the input. The pad-
ding controls the size of the output volumes. The stride defines for the filter how many of columns
and rows slide at a time across the input array’s width and height. A larger stride size leads to fewer
filter applications and a smaller output size reduces computational cost but may lose features of the
input data.

The convolution layer accepts word embedding of size [50*300]. It uses neurons with filter size F
=3, stride S=1, no padding P =0, and depth K=250. The output size of a convolution is [(input
width - filter size)/stride + 1 =48]. Each of the 48%250 neurons in this volume is connected to a
size [1*3] region of the input. Moreover, all 250 in each depth column are connected to the same
[1*3] region of the input, but with different weights.

3.5. Global max pooling layer

The global max pooling layer (Lin, Chen, and Yan 2013) reduces the size of the representation to
decrease the number of parameters and computation in the network, and hence also controls overfi-
tting. Consecutive layers of the network are activated by ‘higher’ or more complex features, thus stra-
tegically reducing the size of the representation will still pass on the valid information from the
previous layer to the next one. The global max pooling operation performs by reducing the dimen-
sions of the input of 1x50x250-1x1x250, and reduces each 1x50 feature map to a single number by
simply taking the average of all 1x50 values.

3.6. Dropout layers

Opverfitting, a long-standing issue in the field of machine learning, happens when a network classifies
a training data set effectively but fails to provide satisfactory validation and testing results. This
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happens when a neural network is built, two or more neurons begin to detect the same feature
repeatedly, i.e. co-adaptations. To address this issue, dropout layers (Srivastava et al. 2014) are
used to randomly disconnect the connections between neurons of connected layers at a certain drop-
out rate. Accordingly, a network can generalize training examples much more efficiently by reducing
these co-adaptations. In this model, the dropout rate is 0.2.

3.7. Activation layer

Activation functions are an extremely important feature of the artificial neural networks. They basi-
cally decide whether a neuron should be activated or not. Whether the information that the neuron is
receiving is relevant for the given information or should it be ignored. Since all layers in a neural
network are nonlinear, values for each of the neurons are calculated and put through an activation
function. The most typical way to give nonlinearity in the neural network calculation is using sigmoi-
dal functions, such as y = tanh(x). However, it has been claimed that saturating nonlinearities slows
down computations (Nair and Hinton 2010).

ReLU was introduced as a nonlinear activation function (Nair and Hinton 2010). It is defined as
f(x) = max(0, x). Briefly, while other nonlinear functions are bounded to output values (e.g. positive
and negative ones and zeros), the ReLU has no bounded outputs except for its negative input values,
which means that it does not activate all the neurons at the same time, making the network sparse
but efficient and easy for computation. Intuitively, the gradients of the ReLU are always zeros and
ones. These features speed up computations than those using sigmoidal functions and achieve better
accuracies.

The softmax function is another type of sigmoid function. The sigmoid function can only handle
two classes, whereas softmax is effective in handling multi-classification problems. The output of the
softmax function can be represented as a categorical distribution. The goal of softmax is to highlight
the largest values and suppress values which are significantly below the maximum value. The soft-
max function can be defined as

e
K 2
D ke €%

The softmax function is ideally used in the output layer of the classifier where we intend to obtain the
probabilities to define the class of each input.

ofz); = ji=1,..,K 3)

3.8. Fully connected layer

Neurons in a fully connected layer have full connections to all activations in the previous layer, as
seen in regular Neural Networks. Their activations can be computed with a matrix multiplication
followed by a bias offset: Y = X.W + b, where Y is the predictions, X is the previous layer output,
W is the weights, and b is the biases.

Adding a fully connected layer is a cheaper way of learning nonlinear combinations of these fea-
tures. Most of the features from convolutional and pooling layers are good for the classification task,
but combinations of those features could be even better. The first fully connected layer uses ReLU as
the activation function, and its output is [0, +c0).

The output from the convolution and pooling layers represent high-level features of the input text
array. The purpose of the fully connected layer is to use these features for classifying the input into
various classes based on the training dataset. The sum of output probability from the fully connected
layer is 1, ensured by using softmax as the activation function in the output layer of the fully con-
nected layer. The softmax function takes a vector of arbitrary real-valued scores and squashes it to a
vector of values between zero and one that sums to one.
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4. Building a classifier for classifying tweet theme

This section describes the dataset generation and the underlying hyperparameters assigned to train
the deep learning model. Configuring and choosing adequate hyperparameter (e.g. batch size and
iteration number) is tedious and no existing guidelines for those parameter optimizations are avail-
able. Thus, the optimal network architecture for the tweet theme classification must be explored via
trial-and-error and guided by checking the validation set error (Goodfellow et al. 2016). The classifier
is developed by the library Keras (https://github.com/keras-team/keras) with TensorFlow as the
backend.

4.1. Dataset

Twitter data from three hurricane events, including the 2012 Sandy, 2017 Harvey and 2017 Irma, are
collected and used as experiment datasets. For each hurricane event, around 5000-15,000 tweets
were manually reviewed (Sandy: 5000, Harvey: 7342, Irma: 15,254), and around 2000-3000 informa-
tive tweets (Sandy: 1900, Harvey: 2180, Irma: 3910) were annotated into different categories.

Our classification scheme is derived and modified from existing work with five commonly
used classes, including (1) Caution and Advice (CA), (2) Casualties and Damage (CD), (3) Infor-
mation Sources (IS), (4) Donation and Aid (DA), and (5) People (Imran et al. 2013). Due to few
samples in People and oversized sample in CA, we removed People class and extracted a portion
of CA tweets and defined an additional class named infrastructure and resource (IR). IR is related
to the status of infrastructure (e.g. transportation) and resource (e.g. gas, power, internet, food),
which are very useful to establish GSA. For example, disaster managers and the public may want
to quickly traffic status for an effective evacuation plan. The descriptions for the five classes are
illustrated in Table 2. This classification scheme is suitable for the twitter data of the three hur-
ricane events, as it produces equally distributed samples within each class without a great imbal-
ance issue.

Figure 2 shows the temporal distribution of the five tweet topics during the hurricane events. For
Hurricane Sandy, a significant increase of tweet number for ‘Caution and Advice’ can be observed on
October 29, since the wind, rain, and flooding occurred in the city during that night. We also observe
an increase for the class ‘Infrastructure and Resources’ on October 30, and a continuous increase of
‘Casualties and Damage’ during the two days of October 30 and 31. Moving forward, we observe a
gradual increase for ‘Donation and Aid’ throughout the study time period until it reaches its peak on
November 3, and decreases gradually for the rest of the time.

For Hurricane Harvey, ‘Caution and Advice’ also appears to be the dominating topic with a peak
of ~250 tweets on August 27 and a rapid increase and decrease before and after the peak. Both ‘Infra-
structure and Resources’ and ‘Information Sources’ display a different pattern between Hurricane

Table 2. Social media classification scheme.

Class Description Example
1 Caution and Advice Warning given about a related incident Flooded neighborhoods in Norfolk and its
(CA) approaching low tide
2 Casualties and Information about casualties or infrastructure  This tree and power lines are down at the corner of
Damage (CD) damage Station Road and Bethlehem Pike in Quakertown
3 Information Sources A message from an official news source, @NYCMayorsOffice: Mayor: All @NYCSchools are
(1S) media or government closed tomorrow
4 |Infrastructure and Information about IR that is not reported from  Two gas stations at my hotel are out of gas. Had to buy
Resource (IR) an official news source and is not related to potato bread at the store ... Train services are being
donation or aid shut down #HurricaneSandy
5 Donation and Aid Goods or services offered or needed by | do not have any money to donate but | have lots of
(DA) victims time, where can | help/volunteer in #Hoboken? Who

do | call?



https://github.com/keras-team/keras

1238 (&) M.YUETAL

Hurricane Sandy
400
300

200

Tweet number

100

28-Oct 29-Oct 30-Oct 31-Oct 1-Nov 2-Nov 3-Nov 4-Nov 5-Nov 6-Nov 7-Nov

Hurricane Harvey

.
[
e}
E
3
<
-
[
E
= a
— . ]
P AT A AT AT

Hurricane Irma

250

8 200 o

£ 150

[~

= 100

(7]

E 50

0 i — = P = =

oo O O O 0 0 o O o o 9 o o o Q O O O O O O O O O O O o Q Q Q
8883388333438 53538383883585383888 3
HHNM'Q‘UI'\\DI\WOHOHNMQ‘WLDI\OOmOﬁNmQ'm&DY\UJmO
o™ D I B B B B ™ = = = N N N N N N N N N N ™M
=a— Caution and Advice (CA) =#—Casualties and Damage (CD) Information Sources (IS)

Infrastructure and Resources (IR) =e==Donation and Aid (DA)

Figure 2. Tweet topic over time.

Sandy and Harvey, which has two peaks on August 25th and 29th, 2017. On 25 August 2017, Harvey
hit Port Aransas and Port O’Connor near Corpus Christi with 130 mph winds. The Category 4 hur-
ricane left 250,000 people without power. On August 29, Harvey made landfall for a third time as it
hit the coastal cities of Port Arthur and Beaumont Texas on the border of Louisiana. It dumped 26 in.
of rain in 24 h. It flooded Port Arthur, a city of 55,000 people. Water entered one-third of the city’s
building, including the shelter. Beaumont has been without drinking water since the storm. A time
lag can be observed for ‘Casualties and Damage” which reached its peak on August 26th, one day
after Harvey made its landfall, and remained active during Harvey’s peak days. ‘Donation and
Aid’ shows a similar pattern as the one in Hurricane Sandy, which increases gradually until it reached
its peak on August 30th and decreased gradually.

For Hurricane Irma, it was first developed from a tropical wave near Cape Verde on 30 August
2017. Topics about preparing for Irma started until it reached to its first peak on 6 September 2017
when it hit the Leeward Islands and left hundreds in Puerto Rice without power on 7 September
2017. Irma remained a Category 5 hurricane on September 8, downgraded to Category 3 on Septem-
ber 9, and regained its strength to Category 4 on September 10, when it affected Florida Keys with
hugh rainfall and high storm surge. After September 11, Irma downgraded to Category 1 and then a
tropical storm.

Figure 3 shows the spatial distribution of the five topics in the New York area during the Hurri-
cane Sandy using heatmaps. It is observed that most tweets for ‘Caution and Advice’ are from the
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Figure 3. Spatial distribution of Hurricane Sandy tweet topic.

communities of lower Manhattan, since news reports broadcasted that this area would be impacted
and drew people’s attention. Similar distribution can be observed for the class ‘Information
Resources’ due to the dense population in the same area. Tweets about ‘Casualties and Damage’
are more distributed in the area indicating damages of storm surge and high winds occurred
throughout the area. Similar patterns can be observed for the class ‘Donation and Aid’ mentioning
about ‘red cross’, FEMA’, and ‘volunteering’.

Figure 4 illustrates the spatial distribution of tweets in the Texas and Louisiana area during Hur-
ricane Harvey. Tweets providing ‘Caution and Advice’ were spread in major cities in Texas, includ-
ing Houston, Dallas, Austin, San Antonio and the Texas coast area. Given that Hurricane Harvey
impacted most severely in Houston area where most of the population are located, most of the tweets
related to ‘Casualties and Damage’, ‘Information Sources’, and ‘Infrastructure and Resources’ are
located at the Houston area. ‘Donation and Aid’ are more broadly distributed and not so much
dependent on destruction severity and geography area.

Different from Hurricane Harvey, Hurricane Irma had a more spatially distributed impact to
Florida area regarding ‘Caution and Advice’, ‘Casualty and Damage’, ‘Infrastructure and Resources’,
and ‘Donation and Aid’, but there was fewer official information than Harvey. Irma’s large wind field
resulted in strong winds across the state of Florida and over 70% homes lost power. Heavy rainfall -
and storm surge, in some instances — caused at least 32 rivers and creeks to overflow, resulting in
significant flooding, especially along the St. Johns River and its tributaries. These impacts occurred
in a fairly short amount of time (September 9-11) sweeping from Southeast Florida towards Georgia,
which explains the spatial distribution of tweets in the impacted area.
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Figure 4. Spatial distribution of Hurricane Harvey tweet topic.

4.2. Experiment configuration

As the CNN model is defined and described in Section 3, it needs to be compiled for efficient train-
ing, which represents the process of finding the best set of weights to make predictions. Compiling
the model requires the specification of the lost function (used to evaluate a set of weights), the opti-
mizer (used to search through different weights for the network) and metrics (used to judge the per-
formance of the model). The metrics are similar to a loss function, but the results from evaluating a
metric are not used when training the model, whereas the loss function gets minimized by the opti-
mizer to optimize the model during training. In this experiment, we use the categorical cross-entropy
as the loss function, RMSprop (Hinton, Srivastava, and Swersky 2012) as the optimizer, and categ-
orical accuracy as the metrics.

After being compiled for efficient computation, the model is executed on training data for the train-
ing process. The training process runs for 50 iterations, which is specified by the parameter ‘epoch’. We
used a batch size of 70, the number of instances that are evaluated before a weight update in the net-
work is performed. The epoch and batch size are chosen experimentally through trial and error. Tweets
are randomly selected from the dataset to generate training (80%) and validation (20%) sets.

4.3. CNN results

The classification accuracy on the training data and test data changes over time (Figure 5). The accu-
racy rises gradually towards 1.0, whereas the test accuracy reaches ~0.81. This indicates that our net-
work is overfitting, i.e. the network is memorizing the training set, without understanding texts well
enough to generalize to the test set. As a major problem in neural networks, overfitting is difficult to
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Figure 5. Spatial distribution of Hurricane Irma tweet topic.

address especially when deep learning networks often have very large numbers of weights and biases.
In this case, the network has 2,138,155 parameters with 289,255 trainable parameters. Although
techniques like dropout and regularization have been utilized in our network, the sign of overfitting
is still not improving. The reason is that our training dataset is relatively small with ~1200 samples
for each hurricane event, comparing to other benchmarking large-scale datasets, e.g. AG’s news:
120,000 train samples and Amazon Review Full: 3,600,000 train samples (Zhang, Zhao, and
LeCun 2015). The size of our train and test data is limited by the nature of twitter data, which
was harvested real time through Twitter Streaming API. Currently, while we are not able to increase
the dataset, we assume that using twitter data integrated from multiple disasters to increase the data-
set will produce better performance with this CNN model (Figure 6).

5. Comparative studies

The CNN classifier is compared in terms of its capability on single-event and cross-event topic
classification against the well-established text classification methods SVM and LR. For single-
event experiment, we randomly select from the single-event dataset to generate training (80%)
and validation (20%) sets. For cross-event experiment, we train the classifiers using the dataset
from one event and test the others.

5.1. Single-event experiment among the classifiers

Three single-event experiments were conducted for using the twitter datasets for each hurricane
event correspondingly. We performed a statistical analysis on the outcomes of the classification
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Figure 6. Learning curve of the CNN classifier.

for both methods. A confusion matrix for each experiment was created by calculating values for the
five classes in main diagnostic tests including Positive predictive value (Precision), True positive rate
(Recall), and F1-score. The overall or averaged accuracy scores are demonstrated in Table 3 and the
scores for each topic are demonstrated in box plots in Figure 7. It is evident that the CNN model
outperformed SVM and LR. With respect to Precision, the CNN model had values ~0.8 while the
SVM model had 0.63-0.72 and LR had 0.44-0.6 for the three experiments. Almost similar behavior
is observed in the Recall and in F1-score, where CNN achieved the best performance while SVM and
LR had lower scores. These findings state clearly that CNN outperforms traditional text mining
approaches for tweet classification presenting the potential for further development on tweet
theme identification.

5.2. Cross-event validation

We apply the same methodology for cross-event experiments, and based on the three Hurricane
events, we have designed four experiments which utilize twitter data from one or more historical
events as training data to classify the data from a later event. This design ends up with four exper-
iments: (a) Train Hurricane Sandy tweets to classify Hurricane Harvey tweets, (b) Train Hurricane
Sandy tweets to classify Hurricane Irma tweets, (c) Train Hurricane Harvey tweets to classify Hur-
ricane Irma tweets, and (d) Train Hurricane Sandy and Harvey tweets to classify Hurricane Irma
tweets.

Table 3. Overall accuracy scores for single event experiments.

(a) Hurricane Sandy (b) Hurricane Harvey (c) Hurricane Irma
CNN SVM LR CNN SVM LR CNN SVM LR
Precision 0.81 0.72 0.56 0.81 0.63 0.44 0.80 0.64 0.6
Recall 0.80 0.70 0.53 0.81 0.64 0.51 0.80 0.63 0.53

F1-score 0.80 0.70 0.50 0.81 0.63 0.40 0.79 0.63 0.51
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Figure 7. Performance scores comparison among CNN, SVM, and LR.

The accuracy scores are recorded in Table 4. Results showed that the CNN model achieved a con-
sistent accuracy for the cross-event experiments with an average precision around 0.8. However,
SVM and LR resulted in much lower accuracy than using a single event for training and testing.
In addition, by combining the twitter data from two historical events (Sandy and Harvey) as training
data to classify the topics for a later event (Irma), we achieved better accuracy results for all three
classifiers (for precision, CNN: 0.83, SVM: 0.67 and LR: 0.67) than using only one event to classify
another. Therefore, the CNN model outperformed SVM and LR when applying to different events;
and this capability enables CNN to better predict and classify twitter topics for future events based on
a pre-trained model built on the datasets generated during past events.

The boxplots (Figure 8) for each cross-event experiment reveal the limitations for SVM and LR on
classifying different topic categories. It is observed that the ranges in accuracy scores are more
stretched compared to the single-event experiments (Figure 7) for SVM and LR.

A notable difference is that in Hurricane Sandy twitter texts were more explicit in text messages,
whereas in Hurricane Harvey and Irma twitter texts contained more links to other websites or apps,
such as Instagram, news reports, and using images and videos rather than expressing in full sen-
tences. Therefore, the messages conveyed from Hurricane Harvey and Irma tweets are less explicit
than the ones from Hurricane Sandy. In future studies, we will incorporate the information discov-
ered from images, videos, and news reports to complete the message being shared from the Twitter
users to better facilitate the disaster response stage.

Table 4. Overall accuracy scores for cross-event experiments.

(d) Train Sandy and
(a) Train Sandy tweets to (b) Train Sandy tweets (c) Train Harvey tweets Harvey tweets to classify
classify Harvey tweets to classify Irma tweets to classify Irma tweets Irma tweets

CNN SVM LR CNN SVYM LR CNN SVYM LR CNN SVM LR

Precision 0.79 0.65 0.58 0.79 0.61 0.56 0.76 0.64 0.56 0.83 0.67 0.67
Recall 0.79 0.64 0.50 0.78 0.59 0.46 0.65 0.51 0.37 0.8 0.65 0.65
F1-score 0.78 0.62 0.45 0.78 0.58 0.4 0.66 0.51 0.31 0.8 0.65 0.65
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Figure 8. Cross-event classification accuracy.

5.2. Discussion

CNN outperforms SVM and LR in single-event topic classification. This is probably due to the com-
plexity of Twitter data in nature since the tweets typically contain misspellings, abbreviations, del-
etions and phonetic spellings. The training set is produced through a human labeling process,
which may introduce different levels of uncertainty. SVM, LR, and other machine learning methods
largely depend on the correctness of the training set, whereas CNN is capable of deducting high-level
abstraction from the tweets.

The capability of CNN on cross-event topic classification indicates that with existing knowledge
base constructed from past hurricane events, we are able to classify twitter topics in the early hours of
a new event. CNN outperforms SVM and LR in cross-event classification because it can provide a
generic solution that infers similarity and dissimilarity patterns between different events. However,
CNN is more time consuming than SVM and LR because there are more parameters to learn, which
poses a challenge for utilizing CNN for online learning when social media data is streaming and
accumulating rapidly.

6. Conclusion and future research

This research examines the capability of a deep learning model based on CNN for twitter topic
classification under the background of Hurricanes Sandy, Harvey, and Irma disaster management.
In the paper, we described the CNN model, and applied the classifier to three manually labeled
twitter datasets, which are classified into five different topics: Caution and Advice, Casualties
and Damage, Information Sources, Infrastructure and Resources, and Donation and Aid. Even
though the CNN used in the experiments is a basic model and has not been further optimized
to the task at hand, the results show a significantly higher performance in direct comparison to
traditional approaches on the considered dataset. For single-event experiment, the CNN classifier
achieves an accuracy up to 0.81 for all three datasets, and consistently outperforms two well-
known classification methods SVM (0.63-0.72) and LR (0.44-0.60). The cross-event validation
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was conducted by using the CNN built on twitter data from historical events to classify tweet
messages posted during a later event t. Experiment results showed that CNN achieved a consistent
performance, whereas the accuracy of SVM and LR dropped significantly. Additionally, by com-
bining multiple datasets from different historical events, we can achieve a higher accuracy when
classifying datasets generated from a later event. This leads to the assumption that a CNN
model, similar to the one evaluated in the experiments, is preferable for the task of social
media data classification in a context of disaster management. In addition, the CNN model has
the capability of using Twitter data from past events to classify twitter topics of an upcoming
event in real time for enhanced SA.

A significant improvement can be expected using larger-scale dataset for training and testing.
Future research may test the performance of CNN-based model using labeled twitter datasets
from multiple disasters of the same kind (e.g. combining twitter data from multiple hurricane events,
hurricanes in the past 10 years). In addition, this research is applying the CNN model to twitter text
only. To improve the classification accuracy, features of each tweet can be enhanced by adding the
contextual information, including its geolocation, environmental conditions (e.g. wind and precipi-
tation), and other linked media (news, blogs, images, and videos). Finally, other deep learning tech-
nologies, such as recurrent neural networks (RNN) and long-short term memory (LSTM), may be
further explored.
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