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Abstract: The volume, variety, and velocity of different data, e.g., simulation data, observation
data, and social media data, are growing ever faster, posing grand challenges for data discovery.
An increasing trend in data discovery is to mine hidden relationships among users and metadata
from the web usage logs to support the data discovery process. Web usage log mining is the process
of reconstructing sessions from raw logs and finding interesting patterns or implicit linkages. The
mining results play an important role in improving quality of search-related components, e.g., ranking,
query suggestion, and recommendation. While researches were done in the data discovery domain,
collecting and analyzing logs efficiently remains a challenge because (1) the volume of web usage logs
continues to grow as long as users access the data; (2) the dynamic volume of logs requires on-demand
computing resources for mining tasks; (3) the mining process is compute-intensive and time-intensive.
To speed up the mining process, we propose a cloud-based log-mining framework using Apache
Spark and Elasticsearch. In addition, a data partition paradigm, logPartitioner, is designed to solve
the data imbalance problem in data parallelism. As a proof of concept, oceanographic data search
and access logs are chosen to validate performance of the proposed parallel log-mining framework.

Keywords: web usage mining; log mining; cloud computing; parallel computing; data balance

1. Introduction

Spatial data portals (SDPs) serve the Earth science community with massive geospatial data [1].
However, as the volume and variety of the data are increasing faster than ever, they pose a great
challenge for SDPs to provide reliable and quality service [2]. An emerging trend in data discovery
is mining user behaviors from logs for the latent linkages between users and data [3]. Taking the
National Aeronautics and Space Administration (NASA) Physical Oceanography Distributed Active
Archive Center (PO.DAAC) as an example, a solution was proposed to improve oceanography data
discovery and access by mining user behavior data, called the Mining and Utilizing Dataset Relevancy
from Oceanographic Dataset (MUDROD) [2]. The MUDROD engine manages logs and converts
them into a series of sessions and domain-knowledge-like oceanographic vocabulary linkages based
on Elasticsearch [4,5]. Elasticsearch is a component of the ELK stack and provides a solution to
automatically index, search, analyze, and visualize logs with Logstash and Kibana.
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When learning useful knowledge from web usage logs, as more logs are collected, the more
comprehensive a knowledge base will be populated. The faster the log analysis performs, the sooner
the knowledge base keeps up with the trends in the data portal. However, the log-mining process is
compute-intensive and time-intensive because it associates with complicated data preprocessing and
mining algorithms such as user identification, crawler detection, session identification, and knowledge
extraction (Figure 1). Session identification, e.g., requires the mining framework to differentiate a
user’s log from another user’s log efficiently [4]. PO.DAAC provides nearly 10 years of historical logs
as starting seeds for the MUDROD search engine. It takes more than five days (~120 h) to process all
logs. In addition, the changing log volume requires on-demand computing resources. History logs are
gathered once, and online logs are collected for analysis periodically. Enough computing resources are
an indispensable prerequisite for large historical log analysis, while, for those logs collected on the fly,
fewer computing resources are needed. Therefore, a scalable framework is desirable to optimize the
log-mining process with a dynamic number of computing nodes.
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Elasticsearch can search data and ingest logs with simple operations, e.g., filtering Uniform
Resource Locator (URL) with the aid of Logstash. Kibana enables users to analyze and visualize
logs. As an evolving open-source project, Elasticsearch provides rich resources and Application
Programming Interfaces (APIs) for customizable search functionalities. We can implement log analysis
functionalities using existing resources provides by the ELK stack efficiently. However, the ELK
stack has an orientation toward efficient search rather than high-performance analysis. To improve
performance of the log-mining framework built on Elasticsearch, a straightforward way is to adopt
parallel processing frameworks. Big data frameworks, e.g., Apache Spark and Hadoop, are used to
handle big data in recent years. Spark can accelerate the data analysis process with data parallelism
and provide in-memory computing capability. To efficiently mine knowledge from web usage logs and
make historical logs searchable and visualizable, we proposed a cloud-based framework for large-scale
log mining using Spark and Elasticsearch. The framework can efficiently reconstruct sessions from
offline logs and learn knowledge from user behavior data by making full use of advanced features
provided by Spark and Elasticsearch, e.g., data parallelism and full-text indexing features. In addition,
logs and extracted sessions are searchable on the platform. An information flow graph describes
how data are flowing in the framework, and a log partitioner is designed to further speed up the
log-mining process. We utilize PO.DAAC web usage log mining to demonstrate and evaluate the
proposed framework and methods.

2. Related Work

As an important complementary component of the data discovery engine, log mining discovers
implicit knowledge from user behavior data by learning meaningful patterns, trends, and linkages,
e.g., Google explores user logs to catch what the world is searching and publishes reports of trends in
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a year (https://trends.google.com/trends/), whereby it was found that the two most popular phrases
searched in the Unites States were “world cup” and “Hurricane Florence” in 2018. Joachims et al.
proposed the RankSVM algorithm to improve the ranking performance of a search engine by tracking
user behavior on the ranking list. The assumption is that if a user clicked a link with a lower rank,
the link is more relevant to the user’s search than other links with a higher rank [6]. In the GIScience
domain, researchers also pay close attention to log mining. Logs were collected and analyzed to
assist search engines to understand queries [7], rank data intelligently [8], analyze a traveler’s moving
patterns for route recommendation [9], discover semantic relationships among geospatial vocabularies
for domain ontology population [5], discover interesting spatiotemporal theme patterns [10], etc.

Sessionization is the process of splitting a collection of logs into multiple sessions which record a
user’s behavior on a website during a time period, serving as the first and fundamental step of log
mining. However, it is quite a challenge to reconstruct sessions when the user identifier is missing in
the raw logs. Multiple methods were proposed to group logs into sessions relying on time interval,
referrer, or both [4,11,12]. In previous research, we proposed a method of reconstructing sessions from
multiple logs to build a semantic knowledge base [4,5]. The knowledge extracted from logs is valuable,
but the speed of the log-mining process needs improvement. For instance, for the small vertical search
portal PO.DAAC, the log-mining framework built on Elasticsearch took more the one hour to finish
monthly log analysis. Thus, we propose a cloud-based framework to speed up log mining with Apache
Spark and Elasticsearch.

Logs are continually produced in different formats and rates, and can uncover useful information
through proper and effective analysis. Cloud computing and parallel computation frameworks were
introduced to support log analysis, as they can manage and analyze data of large size with a high
production rate [13,14] The distributed computing paradigm can provide on-demand storage and
computing resources for log mining [15,16]. The parallel computation frameworks, e.g., Apache
Spark and Apache MapReduce, improve data analysis performance through data parallelism. Lin
et al. proposed a unified cloud platform with batch analysis and in-memory computing capacity
by combining Hadoop and Spark [16]. Therdphapiyanak et al. applied Hadoop for large-scale log
analysis to efficiently detect abnormal traffic from high-volume data [17].

Given the significance of log analysis, several open-source and commercial solutions were
designed for log collection, storage, search, analysis, and visualization. The ELK stack, i.e.,
Elasticsearch, Logstash, and Kibana, automatically collects, indexes, aggregates, and visualizes logs [18].
Prakash et al. efficiently geo-identified the website user traffic through logs using ELK stack [19].
Bagnasco et al. used the Elasticsearch ecosystem to monitor the Infrastructure as a Service (IaaS) and
scientific application on the cloud, keeping track of usage and dynamic allocation of resources [20].

Both Spark and Elasticsearch have advantages and disadvantages for log mining. Spark is capable
of handling big data, but it is not designed for log analysis. We have to conduct a significant amount
of development if we implement a log analysis platform from scratch with Spark. Elasticsearch has the
capability of indexing logs and searching specific records from billions of log records instantly; however,
it only provides basic analysis functions, e.g., monthly aggregation and total count. Meaningful hidden
patterns cannot be automatically detected by the ELK stack. Furthermore, Elasticsearch is a search
engine, not a parallel analysis framework. A trend is to integrate Spark and Elasticsearch to implement
an efficient and scalable log management and analysis system. Metha et al. proposed a streaming
architecture based on ELK, Spark, and Hadoop to do anomaly detection from network connection logs
in near real time [21]. Li et al. introduced a method to speed up log mining with Elasticsearch and
Spark; however, Elasticsearch and Spark work independently in their framework [22]. Specifically,
Spark is only used to split logs and distribute them to multiple machines prior to the log-mining process.
In this research, we propose a log-mining framework integrating both Elasticsearch and Spark, and
design a log partitioner approach to solve the skewed data problem. The framework aims to (1) present
a platform which integrates Spark and Elasticsearch to make full use of the functionalities offered by
both; (2) serve as a guide about how to speed up Elasticsearch-based data analysis with Spark.

https://trends.google.com/trends/
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This paper introduces our research on utilizing cloud, Spark, and Elasticsearch in an interactively
and optimized fashion to mine interesting patterns from log files. In addition to the introduction
(Section 1) and literature review (Section 2), Section 3 introduces the logs used in the experiment.
Section 4 delineates the proposed log-mining framework and the log-partitioning algorithm. Section 5
details the experiment, and Section 6 interprets and evaluates the experimental results. Section 7
reviews the framework and discusses future work.

3. Data

Logs of both Hypertext Transfer Protocol (HTTP) and File Transfer Protocol (FTP) are used in our
research. For a data archive portal, HTTP logs record a user’s search and click behavior when he/she
visits the website. Generally, it consists of a client Internet Protocol (IP) address, request date/time,
the page requested, HTTP code, user agent, and referrer (Figure 2) in the combined log format. The
combination of client IP and user agent could identify a unique user. The date illustrates when the
user visited the page [23]. FTP logs track the download operations on all datasets archived. Similarly,
the FTP log has IP and time fields (Figure 3). HTTP, combined with FTP logs, records a user’s activities
on the websites, e.g., which collection-level metadata were viewed after a user submitted a query and
which granule-level data the user downloaded. Through the log-mining process, such knowledge
could be mined from the raw HTTP and FTP logs (Figure 1). Other popular types of logs in geospatial
data service, such as Open-source Project for a Network Data Access Protocol (OPeNDAP) [24], are
not included in our research, but the framework can support these log types with minor modification.
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4. Methodology

4.1. Proposed Framework Architecture for Log Mining

After an extensive study of the open-source tools supporting log mining, we propose an
architecture integrating Elasticsearch with Spark for log mining. Elasticsearch, a component in the ELK
stack ecosystem, provides a series of log management functionalities including log ingestion, index,
query, statistical analyses and visualization. Spark is an in-memory parallel computing framework
for big data. The goal of this framework is to utilize existing resources and tools to establish a
flexible and scalable system for the entire log-mining process. The Elasticsearch ecosystem provides
the framework as a log management system, in which logs are indexed for query, visualization,
and statistical analyses. Spark accelerates the mining process through parallel computing. Figure 4
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shows the system architecture. A cloud infrastructure, e.g., Amazon Web Service (AWS) [25] and
OpenStack [26], automatically and efficiently launches virtual resources like virtual machines and
network configurations. Once a virtual machine starts, a series of open-source tools cooperate with
each other to manage and analyze logs. The Hadoop Distributed File System (HDFS) stores massive
logs distributedly; Elasticsearch provides the capabilities of indexing and searching logs in a near
real-time manner; Spark accelerates log-mining subtasks through data parallelism. An image can be
created in advance to facilitate the installation of log-mining clusters on demand, including an HDFS
cluster, a Spark cluster, and an Elasticsearch cluster.
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The framework indexes and analyzes multi-source, heterogeneous logs through user identification,
crawler detection, session reconstruction, and knowledge extraction. User identification recognizes
all users from billions of logs. The IP or IP combined with other fields, e.g., agent, identifies a user.
Crawler detection recognizes crawlers with well-known robots and visiting rate. Session reconstruction
splits logs belonging to one user into small groups, and each group records a user’s behavior in a
relatively short time. Knowledge extraction summarizes a user’s behavior in a session including the
dataset the user clicked or viewed [4]. With the framework, big raw logs could be efficiently converted
to knowledge, e.g., vocabulary linkage or metadata linkage, which can be adopted to improve search
engines through better ranking, recommendation, and query understanding [2,5,8].

4.2. Information Flow

Logs flow through different stages to the final mining results. The raw log collection stage gathers
multi-source logs and migrates them into the HDFS. Then, logs are loaded by Spark and indexed
into Elasticsearch in parallel. During the ingestion process, Elasticsearch builds a full content index
of logs for better access. Then, a list of unique users is recognized from ingested logs through the
Elasticsearch term aggregation operation, which aggregates data based on a search query. For any user
in the list, all logs belonging to a specific user are aggregated to visiting rates to determine if the user is
a crawler. If the user is a crawler, all his/her logs will be discarded to reduce noise. Alternatively, real
user logs will be kept for further analysis. The real user list is fed to Spark for identifying sessions and
extracting knowledge parallelly. As shown in Figure 5 and described above, data flow between Spark
and Elasticsearch during the whole process to fully leverage the advantages of both.

4.3. Log Partitioner

In the information flow, a pattern occurs repeatedly in which all users are recognized by
Elasticsearch and partitioned into small groups. This repetitive process for user-level analyses can be
performed in parallel, e.g., constructing sessions from a user’s logs. In the process, term aggregation,
one of the most beneficial features that Elasticsearch offers, returns the unique terms for a given field
along with the count of matching documents on the fly [27]. Given an IP, term aggregation returns
all IPs in the log and the count of logs associated with each IP. Apache Spark divides the IP list into
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sub-datasets and distributes them to different computing nodes for the same analyses. HashPartitioner,
the default partitioner in Spark, assigns IPs to different groups according to the hash value of the
IP address.
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In the log-mining process, the Spark driver splits all users into k partitions, each of which will be
passed to an executor and run as a task. Although the HashPartitioner splits the user list evenly with
the hash code of IP address, the log size in each task (partition) is significantly different because the
partitioner ignores the fact that different users have different behavior. Some users interacting with
the website frequently produce many logs, while others who visit the website seldom populate few
logs. As a result, the workloads are quite different, known as the skewed data problem (Figure 6). The
skewed data problem will result in most tasks waiting for a slow task, which is the bottleneck of the
whole process, since the Spark application runtime depends on the slowest task.
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To solve the problem, we propose a customized partitioner called LogPartitioner to balance
logs across Spark tasks. As shown in Figures 7 and 8, the LogPartitioner algorithm consists of the
following steps:

1. Calculate log records for each user. A user map stores the user and the corresponding log count
as (user1, log_count1), (user2, log_count2), . . . , (userk, log_countk). The calculation module is
implemented with the Elasticsearch term aggregation API and the performance depends on the
cluster configuration and unique IPs in the log. Generally, the runtime increases linearly with the
increment of log number; thus, the time complexity is approximately O(n).
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2. Sort the user map by the log number in descending order. The higher a user is ranked in the map,
the more frequently the user uses the website. The time complexity of the map sort operation is
O(nlog2n)).

3. Split users into k groups using the greedy algorithm [28]. The top k users in the sorted user map
are assigned to k groups in series. For the rest, each user is assigned to the group with minimal
logs until all users are assigned to the k groups. A user group map stores the split strategy in the
format of (useri, group1), (userj, group1), . . . , (userk, groupn). Note that the greedy algorithm
yields local optimum group strategy. The dynamic planning solutions can be adopted to split
users too. In addition, to maximize the usage of all computation resources, k is suggested to be
equal to or be multiples of the total number of Central Processing Unit (CPU) cores managed by
Spark. The greedy algorithm is straightforward, and the time complexity is linear (O(n)).

4. Load all users into Spark and distribute user data across Spark tasks with a customized partitioner.
The partitioner receives the user map and partition number as input and assigns each user to a
partition using the corresponding group identifier instead of the hash value of the user IP. As a
result, the logs are nearly evenly distributed across all partitions, which prevents significant slow
tasks and improves the log-mining performance.
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5. Experiments

In this research, the NASA Advanced Information System Technologies (AIST) cloud platform
was used to set up a testbed for the framework effortlessly and efficiently. An image with required
software, e.g., HDFS, Spark, and Elasticsearch, was deployed in advance to facilitate the creation of a
log-mining cluster on demand. Conveniently, whenever the cluster needs more computing resources
to process growing logs, we can start a new instance from the preconfigured image. In our experiments,
six virtual machines were launched for the log-mining process. Each machine was configured with
four CPU cores, 16 GB of memory, and a 2.4-GHz clock speed (Figure 9). Operations provided by the
AIST cloud platform make it possible and efficient to group these virtual machines into a cluster.
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The entire 2014 PO.DAAC logs were used to test the performance of the framework. The log
volume was >32.8 GB and the logs consisted of >154 million records in total. Figure 10 shows the
distribution of logs in the 12 months in 2014. The user traffic changed dramatically from month to
month and, in February, there were 6,727,710 (~7 million) logs in total and the log volume was >3.5 GB.
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Figure 10. Monthly log distribution of the Physical Oceanography Distributed Active Archive Center
(PO.DAAC).

Three experiments were conducted to evaluate the performance of the framework. Firstly,
the February 2014 monthly log was randomly selected and processed with HashPartitioner and
LogPartitioner separately to validate the proposed partitioner. Secondly, the entire logs were processed
by the proposed framework to test performance. The log-mining algorithm implemented only on
Elasticsearch with the same procedure was used for comparison. Then, the monthly log was processed
with multiple clusters consisting of different numbers of workers to validate the scalability of the
framework. Finally, we discussed the evaluation results.
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6. Result and Evaluation

6.1. Comparison of the HashPartitioner and the LogPartitioner

To demonstrate the validity of the proposed LogPartitioner, the February 2014 monthly logs were
separately parallelized through the HashPartitioner and the LogPartitioner. Table 1 shows the time
spent on each log-mining step. Initially, it took more than one hour (~3873 s) to finish the entire mining
process with Elasticsearch. With the proposed framework running on a cluster which consisted of four
worker nodes, the processing time decreased from 3873 s to 589 s if the logs were split with the default
HashPartitioner. By applying the proposed LogPartitioner, the processing time was further reduced
to 310 s.

Table 1. Comparison of time cost of each step in the log-mining process.

Log-Mining
Steps/Processing Time

Index Log and User
Identification Crawler Detection Session

Identification Total Time

With Elasticsearch (s) 3140 130 603 3873
Cluster with the

HashPartitioner (s) 152 108 329 589

Cluster with the
LogPartitioner (s) 152 54 104 310

The cluster had one master node and four worker nodes, on each of which an executor ran tasks
with four CPU cores. It means 16 tasks were executed in parallel. Figure 11 shows the sum of log
processing time on each executor in the crawler detection step. The dark line displays the runtime
of executors when users were grouped with the HashPartitioner. Executor 10 worked much longer
than other executors, indicating that most executors need to wait for the slow executor. The light
line represents the processing time of all executors after introducing the LogPartitioner. All executors
finished their tasks at almost the same time and no executor needed to wait extensively for other
executors. Thus, the processing time was significantly reduced by our proposed LogPartitioner.
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6.2. Comparison of Performance with and without the Framework

The whole 2014 PO.DAAC logs were processed with a cluster consisting of five worker nodes. For
comparison, the entire logs were processed with and without the proposed framework. The log-mining
process took about one hour to process the entire logs with the framework. With Elasticsearch, it took
more than 10 h. Monthly processing time was not positively correlated with the log size because some
records generated by robots in the raw logs were discarded during the mining process (Figure 12).
Figures 13 and 14 show time spent on each stage of the log-mining process without and with the
framework, respectively. The log ingestion time was significantly reduced since logs were read from the
file system and written into Elasticsearch in parallel. The crawler detection and session reconstruction
steps were also accelerated with the support of the proposed framework.
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6.3. Scalability of the Proposed Framework

To demonstrate the scalability of our proposed framework, multiple clusters were set up with one
master node and different numbers of worker nodes ranging from one to five. On each worker node, an
executor performed the log-mining tasks with a maximum of four CPU cores. In experiments 1 and 2,
only two CPU cores were in use because the processing speed exceeded the log ingestion speed if all cores
were allocated. The partition number was set to 112 in experiment 4 and 120 in all other experiments
to make sure the partition number was a multiple of the number of CPU cores. Table 2 shows that the
processing time decreased as the worker number increased, and the results remained the same.

Table 2. The processing time of the February 2014 monthly log on different clusters.

Experiment
No.

No. of
Workers

No. of
Executors

No. of
Cores

No. of
Partitions Time Cost Session

Number

1 1 1 2 120 2056 1073
2 2 2 4 120 1055 1073
3 3 3 12 120 386 1073
4 4 4 16 112 317 1073
5 5 5 20 120 281 1073
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6.4. Sample Mining Results

Through the log-mining workflow, 11,360 sessions were reconstructed from the entire 2014
raw logs. Figure 15 shows an example of the reconstructed session. The tree structure
makes it easy to track which dataset a user clicked or downloaded after he/she performed a
query. In this session, the user download granule data from the “recon_sea_level_ost_l4_v1” and
“alt_tide_gauge_l4_ost_sla_us_west_coast” collection after searching “sea surface topography”. Such
information could be used for calculating vocabulary linkage to maintain a live knowledge base for
ranking, recommendation, and query suggestion [2,5]. Figure 16 lists statistical analysis results of a
selected month, e.g., the most popular user input keys, the most popular datasets, session duration,
and others.
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7. Discussion and Conclusions

Log mining is the process of reconstructing sessions from raw web logs and discovering
meaningful usage patterns and implicit linkages. The mining result is valuable in improving the data
discovery experience. We proposed a cloud-based framework for large-scale log mining by integrating
Elasticsearch and Spark. A customized partitioner named LogPartitioner solves the skewed data issue
in the log parallelism process. The cloud platform serves as the framework with virtual resources.
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Experiments demonstrated that the processing time of one month of logs decreased from 60+ minutes
to ~5 min with the framework. To share the framework with the public, the research results were
published as a GitHub open-source project (https://github.com/apache/incubator-sdap-mudrod).

Several aspects are worth further investigation. Firstly, since the framework cannot analyze
real-time logs, a real-time data streaming tool, e.g., Apache Spark Streaming, can be introduced into
the framework for near real-time analysis and tracking [29]. Secondly, the network transportation
cost in the cloud-based framework should be experimented for the mining process when both the
Elasticsearch and Spark cluster are integrated as a whole entity. Thirdly, although the framework
reported in the article focused on log data mining, one can accelerate the analysis process with a
customized partitioner for other types of data, e.g., geo-tagged tweets. We will continue this research
to improve the framework with more specific performance-improving techniques.
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