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Abstract: In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same
spatial resolution as the optical sensors (Skm here) and applied for drought analysis in the continental United States. A
new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated pre-
cipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in
the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipita-
tion demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is
providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is
derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and
used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather
conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived
from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis
and made the flash drought analysis and monitoring become possible.
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1. Introduction Department of Agriculture (USDA) have teamed up with
the National Drought Mitigation Center (NDMC) to

Drought is considered to be the most severe natural .
& produce a weekly drought monitor (DM) map that in-

hazard in terms of impact, duration, and spatial extent!']. . . .
R ] corporates climate data and professional input from all

The sparse spatial distribution of weather stations makes . .
levels and is well known as the U.S. Drought Monitor
(USDM). The USDM maps are consensus product based

on several indicators and key variables, and the final

it daunting for drought monitoring and predicting. Satel-
lite remote sensing capabilities have been greatly im-
proved for decades and served as the main method for :

o ) maps are adjusted manually by numerous experts
drought monitoring. Drought may occur unnoticeably throughout the country to reflect the real-world condi-
tions as reported (Svoboda ef al. 2002). The USDM

drought conditions are classified into five classes based

and varyingly. Lack of information to drought may lead
to severe disaster. The damage was extensive and the
impact to livestock and farm production is uncounta-
blel.

Government agencies within National Oceanic and
Atmospheric Administration (NOAA) and United States

on a ranking percentile approach: (1) DO - abnormally, (2)
D1 - moderate, (3) D2 - severe, (4) D3 - extreme, and (5)
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D4 -exceptional dry conditions. They are utilized as (1)
DO0-D4 (percentile<30%), (2) D1-D4 (percentile<20%),
(3) D2-D4 (percentile<10%), (4) D3-D4 (percen-
tile < 5%), and (5) D4 (percentile < 2%)".

The USDM maps are currently distributed online
(http://droughtmonitor.unl.edu/) with relatively coarse
resolution. They served as one of the criteria to deter-
mine the eligibility for relief of aggravation due to
drought condition.

Agricultural interest in drought is important in much
of the U.S. In fact, there is considerable interest in indi-
ces that can monitor agricultural drought. The hydrolog-
ical condition of agricultural drought is closely linked to
soil moisture!®, which is dependent on precipitation, wa-
ter infiltration, and soil water holding capacity. Since it’s
hard to measure soil moisture over large area directly,
Leese et al.!” concluded it’s better to monitor soil mois-
ture with combination of in-situ model and remote
sensed variables respond to soil moisture. Satellite re-
mote sensing data with large area coverage is a promis-
ing and economical tool to estimate soil moisture and
enables drought monitoring based on surface parameters,
such as NDVI, LST, evaportranspiration, and soil mois-
ture. The microwave-optical/IR synergistic approach is
an efficient method to improve the current
drought-related soil moisture products with several ad-
vantages including higher spatial and temporal resolu-
tions. Zhan et al.™ described a synergistic technique us-
ing optical/infrared frequency products to overcome the
coarse spatial resolution of the MW satellite products.
This method was later enhanced by Chauhan et al.”’).
They built the

near-surface soil moisture and optical-derived soil mois-

statistical relationships between
ture indices. Merlin et al.'” applied these relations and
transferred this method to a wider range of conditions.
However, this method requires many surface parameters
and micrometeorological data, which may not be availa-
ble over large areas. It’s desirable to find a simple and
reasonable model for drought monitoring comparable to
the USDM drought classifications, and to explore the
possibility for linking a real-time index with surface
wetness condition in a fine resolution. In this study, a
new approach to build a drought indicator at fine resolu-
tion are implemented with near real time microwave and
optical satellite observations. After introduction of the

study area and data used, specifics of these approaches

Remote Sensing

and their results in analyzing drought conditions in the
continental United States (CONUS, the latitude and lon-
gitude range is about 20~50 °N, and -125° ~ -75°W)
during the recent years are presented in the following

sections.

2. Materials and methods
2.1 data used

A comprehensive data set is collected and processed
for deriving soil moisture at optical sensor resolution (5
km in this study) from satellite observations and evalu-
ating drought conditions in the CONUS. These data in-
clude:

- MODIS LST and emissivity daily L3 global cli-
mate modeling grid (CMG) product (short name:
MYDI11C1) with a resolution of 0.05°!"",

- MODIS LST/emissivity 8-Day L3 CMG product
(short name: MYD11C2) with a resolution of 0.05°!"!

- NDVI data is extracted from the MODIS 16-day
composite NDVI product (short name: MYD13C1) with
a resolution of 0.05°1"%,

- Precipitation data are obtained from the TRMM
(Tropical Rainfall Measuring Mission) Multi-satellite
Precipitation Analysis (TMPA) with 0.25° spatial resolu-
tion and 3-hourly temporal resolution'!.

- Elevation data are derived from the National Ele-
vation Dataset (NED) data at a resolution of 100 me-
[14]

- MODIS land cover Climate Modeling Grid (CMG)
product (Short Name: MCD12C1) provides the dominant

land cover types at a spatial resolution of 0.05°.

ters

- Soil texture data, including sand and porosity, are
obtained from the Food and Agriculture Organization /
United Nations Educational, Scientific and Cultural Or-
ganization (FAO/UNESCO) soil map, with a resolution
of about 0.0833°1'>1°],

- Soil moisture data used for calibration is obtained
from the Soil Moisture Operational Product System
(SMOPS) at 0.25° resolution developed by NO-
AA-NESDIS. This SMOPS product merges soil moisture
retrievals from microwave satellite sensors such as the
Advanced Scatterometers (ASCAT) on MetOp-A and B,
Soil Moisture and Ocean Salinity of European Space
Agency, WindSat of Naval Research Lab based on the
Single Channel Algorithm!”'®,

- Soil moisture outputs at 0.125° resolution from the
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three land-surface models (LSMs): the community Noah
%] the Mosaic®, and the Variable Infiltration Capacity
(VIC) model®”, are obtained from the North American
Land Data Assimilation System (NLDAS)"**,

2.2 Temporal compositing and spatial
resampling

The datasets used in this study were obtained at dif-
ferent temporal and spatial resolutions. All the datasets
were needed to be resampled to the same resolution.

- For calibration using the SMOPS soil moisture
(SM) data, all the datasets were aggregated to 25 km, the
same resolution as the SMOPS SM data. The SM models
were firstly built at 25 km resluiton, then were applied to
optical sensor data to estimate SM at the optical sensor
resolution (5 km here).

- In order to compare with the USDM drought con-
dition maps, all the datasets have been resampled or in-
terpolated to uniform weekly (7 days) temporal and
0.0833° (about 12-km) spatial resolutions.

- For “flash” drought study, all the datasets were
resampled or downscaled to the same 5 km spatial reso-
lution as the MODIS LST product and estimate SM at 5
km spatial resolution on daily basis.

Land cover data has been resampled via the nearest
neighbor assignment due to its discrete value. The bicu-

23] was used to re-scale the

bic interpolation assignment
other datasets, assuming that each point value changes

consistently during observations.

2.3 Methods

2.3.1 A new model for high resolution soil mois-
ture estimate

A close relationship exists between vegetation vigor
and soil moisture availability, especially in arid and
semiarid areas, thus in many cases satellite derived
NDVI and LST products have been used to evaluate
drought condition. Carlson et al. found the relation-
ship between measured surface temperature, vegetation
fraction, and soil moisture, known as the “Universal Tri-
angle Model”*. Chauhan et al."”! argued that the second
or third order polynomial gives a better representation of
the data since a single polynomial represents a wide
range of surface climate conditions and land surface
types. Thus an Universal Triangle Model was developed

and can be described as:

Remote Sensing

SM = ay, +a,,NDVI" +a,,NDVI"*
+ay, LST" +a,LST"
+a, NDVI'LST" +a,,NDVI " LST"

2

+a,,NDVI'LST" + a, NDVI *LST"

e)
NDVI' = NDVI-NDVI . . gST_ Lsgmm
Where NDV[max _NDVImin , L Tmax —L Tmin

b
maximum and
., ap are the re-

subscripts max and min refer to the
minimum values. Parameters ay, a;g, ..

gression coefficients.
Sun and Kafatos'™™
relation between NDVI and LST can only hold during

warm or growing seasons, therefore, NDVI and LST

indicated the negative or reverse

related drought indices may only be used during warm
seasons, but not winter. Chauhan et al. added surface
albedo into the Universal Triangle Model to strengthen
the relationship between soil moisture and measurable
land surface parameters'”. Nevertheless, surface types
vary significantly, and therefore, even a combination of
NDVI, LST or albedo is not enough to fully describe the
surface conditions. Soil moisture is also highly related
to precipitation (the land water balance equation indi-
cates the change of soil moisture is highly related to pre-
cipitation), soil texture (physical properties such as die-
lectric constant can affect water content in soil), topog-
raphy (runoff is highly related to the topographic position,
slope aspect, and steepness), and land cover (different
land cover will influence the hydrological processes dif-
ferently). LC data is a numerical values. According to the
product user guide
(https://lpdaac.usgs.gov/sites/default/files/public/product
_documentation/mcd12_user_guide_v6.pdf), the LC
value range is from 1-17 and is assigned as: Evergreen
Need leaf Forest as 1, Evergreen Broadleaf Forests as 2,
Deciduous Needleleaf Forests as 3, Deciduous Broadleaf
Forests as 4, Mixed Forests as 5, Closed Shrublands as 6,
Open Shrublands as 7, Woody Savannas as 8, Savannas
as 9, Grasslands as 10, Permanent Wetlands as 11,
Urban

Cropland/Natural Vegetation Mosaics as 14, Permanent

Croplands as 12, and Built-up Lands,

Snow and Ice as 15, and Barren as 16, and Water Bodies

as 17. Thus it is desirable to combine and integrate all
these datasets to build a soil moisture model as:
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SM = b, +b,NDVI" +b,NDVI"" +b,LST" + b, Pr+ b,DEM
+ bgSand+ b, Poro + by LC
)
where “Pr” represents precipitation, “DEM” is for
Digital Elevation Model (DEM) data, “Sand” is the indi-
vidual grains or particles which can be seen with the na-
ked eyes, “Poro” refers to porosity about how many
pores/ holes a soil has, and “LC” is for land cover da-
ta. by, by, ..

As shown in Figure 1, the black line in Figure 1b is

., bg are regression coefficients.

the corresponding normalized monthly accumulated pre-
cipitation, and the LOWESS (LOcally Weighted Scatter-
plot Smoothing)®* (Cleveland 1979) is applied to de-
scribe the nonlinear trends of precipitation (the blue line
in Figure 1b). The drought condition may not be directly
reflected by temporal variation in precipitation because
drought is caused by precipitation deficit during some
period of time, usually more than a season. It is found
that precipitation has an accumulating and lagging effect
on drought condition. For example, the trend of precip-

itation is reduced in 2006 and 2011 (Figure 1b), yet the

100 —

(a)

tage

Perce

i

USDM drought maps marked these years as normal con-
ditions (Figure 1a) due to sufficient accumulated rainfall
in previous period. While in 2014, the precipitation had
increasing trend, but short of accumulated rainfall from
the previous period in 2013 and early 2014, thus the
USDM classified year 2014 as drought condition. This
result demonstrated that the accumulated precipitation
from the last year’s warm season to the current time can
describe the drought conditions better than the daily pre-
cipitation. Therefore, a refined soil moisture model is
proposed by using the accumulated precipitation starting
from the last year’s warm season. The refined soil mois-
ture model can be described as:
SM =c, +¢,NDVI" +c,NDVI" +¢,LST" +¢, Ac _Pr+c,DEM

+cySand+c,Poro+c, LC

)

where Ac_Pr is for the accumulated precipitation
starting from April of the previous year until the re-
quested day, all other variables are the same as equation

2. ¢y, .... Cg are the regression coefficients.
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Figure 1. (a) The USDM weekly drought condition map. (b) Normalized Monthly accumulated precipitation over California (32

-42°N, 114 - 125 °W) retrieved from the TRMM, and normalized monthly accumulated precipitation seasonal decomposition by the
LOWESS (blue line), from Jan. 2003 to Dec. 2014.
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The SMOPS soil moisture products were used for
calibration to derive the regression coefficients in equa-
tions (1), (2), and (3). The least square regression was
applied to estimate the regression coefficients and 50%
data were used for training.

2.3.2 Anomaly calculation

Soil moisture changes slowly, therefore cannot
catch the fast change of drought conditions. Soil mois-
ture anomaly is more appropriate to describe drought
conditions than the absolute soil moisture®”. In this
study, we averaged daily soil moisture into weekly to
match with the UM drought maps temporally. Soil mois-
ture anomaly maps are obtained by the difference be-
tween weekly soil moisture and the long-term average
soil moisture based on the equation:

SM _ Anomaly = SM —SM

- @)
where the average soil moisture SM for each pixel is
calculated for the same weeks over the 11 years from
January 1 2003 to December 31 2014. Negative soil
moisture anomalies stand for the observed data are lower
than the averaged data, and indicate dry conditions.
2.3.3 Comparison with some other drought indi-
ces

- Evaporative Stress Index (ESI)
The ESI
actual-to-potential ET (AET/PET), derived from the

thermal remote sensing based on the Atmosphere-Land

is defined as the anomalies in the ratio of

Exchange Inverse (ALEXI) surface energy balance mod-
el®™3 The ALEXI uses measurements of morning
land-surface temperature retrieved from geostationary
satellite thermal band imagery to solve the Two-Source
Energy Balance (TSEB) algorithm® in time-differential
model. Actual ET (AET) output from the ALEXI is esti-
mated as the potential ET (PET) expected under
non-moisture  limiting  conditions,  yielding a
non-dimensional ET variable, ESI, ranging from 0 (dry)
to approximately 1 (wet).

- Vegetation Health Index (VHI)

Kogan et al.’¥ proposed to combine the Vegetation
Condition Index (VCI) and the Temperature Condition
Index (TCI) to Vegetation Health Index (VHI):

VHI=a*VCI+b*TCI 5)

where the coefficient a and b are usually taken as
0.5. The VClI is defined as:

NDVI-NDVI

NDVI_ —~NDVI_

VCI =

(6)

Remote Sensing

where NPVlwand NDVlii are the multi years maxi-

mum and minimum NDVI in a given area for growing
season. The TCI is defined by Kogan®" as:

TCI = 100 X (BT nax — BT;)/ (BT nax ~BTumin) (7)

where BT, BT, and BTy, are smoothed bright-
ness temperature, its maximum and minimum, respec-
tively calculated for each pixel and week from multiyear
data, and i is the year.

The Center for Satellite Applications and Research
(STAR) of NOAA Satellite and Information Service
(NESDIS) is providing global VCI, TCI, and VHI map
every week at:
(http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_b
rowse.php).

- Vegetation Temperature Condition Index (VTCI)

Wang et al.P” developed Vegetation Temperature
Condition Index (VTCI) based on the triangular space of
LST and NDVI for monitoring drought stress. It’s de-

fined as following:

VTCI = LSTNDVIi.max B LSTNDVIi
LSTNDVIi.max - LSTNDVIi.mjn

(®)
LST

where NDVIimin are the maxi-
mum and minimum land surface temperature of pixels

TNDVI i.max and

which have the same
LST

© value, respectively,
NDVIi - denotes land surface temperature of one

pixel whose NDVI value is NDVI, . If VTCI() < 0.4,
then the area (i) is under severe drought condition.
2.3.4 Correlation analyses

The temporal correlation coefficients are comput-
ed between the outputs from the refined soil moisture
model and the USDM drought classifications at weekly
scales during the growing season from April to October

of each year.

3. Results

Figure 2 demonstrates drought conditions over the
contiguous U.S. based on soil moisture anomalies (the
first 8 rows) and percentiles (bottom) derived from the
refined model and compared with the USDM drought
maps (the first row), the VTCI (the second row), the VHI
(the third row), the ESI (the fourth row), and soil
moitsure anomalies from the Mosaic LSM (the five row),
the community Noah LSM (the six row), and the VIC
LSM (the seven row) for drought conditions from 2005
to 2010 (6 years).
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Figure 2. Drought conditions in the contiguous U.S. from different indicators. From top to bottom: the USDM classification
(top), VTCI (the 2“d), VHI (the third), ESI (the fourth), the Mosaic LSM (the five), the Noah LSM (the sixth), the VIC LSM (the
seventh), soil moisture anomalies based on the refined model (the eighth), and the soil moisture percentile (the bottom) based on the

refined model. The three LSMs (Mosaic, Noah, and VIC) share the same color palette.
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Figure 3. The temporal correlation coefficient maps between the refined soil moisture model outputs and the USDM drought

classifications during different years.

Triangle model 0.245 0.548 0.105 0.219 0.460 0.298
Basic model 0.672 0.720 0.382 0.557 0.486 0.423
Refined model 0.748 0.773 0.599 0.618 0.766 0.759

Table 1. The statistical metrics of Averaged Temporal Correlation Coefficients between the soil moisture outputs
from the three different models and USDM classifications.

It is found the percentile of soil moisture cannot
easily catch the fast changes, so percentile of soil mois-
ture anomalies is used instead. The VHI and ESI show
good agreements with the USDM classifications, while
the NLDAS three LSM outputs demonstrate similar pat-
terns. The soil moisture derived from the proposed soil
moisture model provides an easy way for monitoring
surface drought conditions, and the surface dry/wetness
patterns agree with the USDM classifications.

Figure 3 shows the temporal correlation coeffi-
cients between the soil moisture anomalies derived from
the refined model and the USDM drought classes during

Remote Sensing

different years from 2005 to 2010, where greener color
indicates a better agreement between the two classifica-
tions. In general, the refined soil moisture model outputs
have high correlations with the USDM drought classifi-
cations. The statistical metrics of Averaged Temporal
Correlation Coefficients are also listed in Table 1. In
general, the basic model with the introduction of soil
texture data show improvement to the triangle model,
while the refined model outputs have higher correlation
with the USDM drought classifications and show further

improvement to the basic model.
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Figure 4. a) Cloud free MODIS LST at 5 km resolution; b) the derived AMSR-E LST at 25 km resolution; c¢) the merged
MODIS and AMSR-E LST at 25 km resolution; d) the integrated LST from MODIS and AMSR-E with the GWR-based method ap-

plied to fill the gaps and also downscale to the same 5 km resolution as the MODIS LST, during daytime on June 2, 2008.
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Figure 5. The flow-chart for soil moisture estimate and application in drought analysis.
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USDM Classification

June 3, 2008

June 10, 2008
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SMA derived from MODIS LST  SMA derived from MODIS-AMSR-E LST

Figure 6. An example of daily SM anomalies compared with the weekly USDM drought map. First column: weekly USDM ob-

servations. Soil moisture anomalies observations in the continuous 8 days (from June 3 to June 10) (Second column) based on previ-

ous LST and (Third column) based on the new derived Example-based LST. A equals to 0.02 (unit: m*m™).

Recently, “flash” drought concept appears. Flash
drought frequently occurred in the central and eastern
United States”®®. The 2012 drought over the Northern
American demonstrated the worst surface condition since
the 1930s Dust Bowl®”. The drought started in 2011,
extended rapidly in 2012 (especially in June and July
according to the USDM classifications), and continued in
2013. This event was pervasive in the central regions of
the United States due to the absence of rainfall in the

Remote Sensing

growing season. The rapid soil moisture loss led this
event as “flash drought”*]. Unlike the common drought
that is caused by external forcing like SST anomalies, the
flash drought event was a result of natural weather varia-
tions, with little warnings found from the traditional
drought metrics or climate model simulations™. The
flash drought event suggests that the current drought
monitoring should enhance its temporal resolution.

In the above drought analyses as shown in Figure 2

Volume 7 Issue 1| 2018 | 9



and Figure 3, the LST input to the soil moisture model is
the weekly composite data. Because thermal infrared
(TIR) LST can only be obtained under clear conditions,
as shown in Figure 4a, there are a lot of gaps or missing
values due to clouds in the daily MODIS LST. Only
weekly composite can get a clear LST map. Since mi-
crowave sensor can penetrate most non-rainy clouds and
observe the Earth surface, so we think about using mi-
crowave observations to fill the gaps due to clouds in the
thermal IR LST. The microwave observations will be
firstly calibrated to thermal IR (MODIS here) LST, and
then downscaled to the same spatial resolution as the TIR
LST, and then merged with the TIR observations to fill
the gaps due to clouds in the TIR LST. The detailed in-
formation and processes are described in another pa-
pert®®!. Here we show an example in Figure 4. As demon-
strated in Figure 4, the original daily MODIS LST exist a lot of
gaps due to clouds (Figure 4a), while the LST derived from the

AMSR-E with a new proposed five-channel algorithm!*"!

can
get a clear and spatial continuous distribution (Figure 4b), Fig-
ure 4c is the merged MODIS and AMSR-E LST by using the
AMSR-E to fill the gaps in the MODIS LST, and Figure 4d
shows the integrated MODIS and AMSR-E LST by applying
the geographically weighted regression (GWR) method to
downscale the AMSR-E LST to the same MODIS resolution
and further fill the pass gaps in the AMSR-E observations. With
the integrated MODIS and AMSR-E LST, spatial continuous
LST on a daily basis can be input into the proposed refined SM
model to obtain soil moisture anomaly every day. The flow
chart of the process is shown in Figure 5.

The USDM as well as other drought indicators can
provide a weekly drought monitoring, while the new
algorithm can provide soil moisture anomaly observa-
tions on a daily basis. The previous LST product that
input into the soil moisture model is lack of observations
due to clouds, and made the observation of soil moisture
anomalies with gaps (Figure 6, the second column, white
area is lack of observation, thus is considered as in the
normal surface condition). With the TIR and microwave
integrated LST, daily soil moisture anomalies can be
obtained continuously without gaps (Figure 6, the third
column). It matches with the USDM drought maps, and
meanwhile catches the flash changes of dought condi-

tions.

4. Discussion and conclusion

In this study, we integrated microwave and optical
10 | Donglian Sun et al.

sensors to estimate soil moisture at high spatial resolu-
tion and used them to evaluate drought conditions in the
continental United States. A new model is proposed to
estimate soil moisture with the auxiliary data such as
precipitation, topography, soil texture, and surface types,
in addition to LST and NDVI used in traditional univer-
sal triangle model. We further applied the LOWESS
model based on time series analysis, and found precipita-
tion had some kind of accumulated and lagging effects
on soil moisture, therefore we proposed to use accumu-
lated precipitation starting from last year’s warm season,
instead of daily precipitation. The drought conditions
identified by the soil moisture anomalies derived from
the proposed model show close agreement with the
USDM classifications.

There are still some limitations in this study: (1) this
application was limited to the warm season, while cold
season needs further investigation to fulfill the require-
ment of surface monitoring. (2) to further improve the
applications, more agricultural related data should be
examined. Since our model output can also provide the
information of wetness level, agricultural related data
such as irrigation, should be used as an important evalua-

tion for the outputs.
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