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Abstract: In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same 

spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A 

new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated pre-

cipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in 

the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipita-

tion demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns.  Currently, the USDM is 

providing a weekly map.  Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is 

derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and 

used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather 

conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived 

from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis 

and made the flash drought analysis and monitoring become possible. 
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1. Introduction  

Drought is considered to be the most severe natural 

hazard in terms of impact, duration, and spatial extent
[1]

. 

The sparse spatial distribution of weather stations makes 

it daunting for drought monitoring and predicting. Satel-

lite remote sensing capabilities have been greatly im-

proved for decades and served as the main method for 

drought monitoring. Drought may occur unnoticeably 

and varyingly. Lack of information to drought may lead 

to severe disaster. The damage was extensive and the 

impact to livestock and farm production is uncounta-

ble
[2]

.  

Government agencies within National Oceanic and 

Atmospheric Administration (NOAA) and United States 

Department of Agriculture (USDA) have teamed up with 

the National Drought Mitigation Center (NDMC) to 

produce a weekly drought monitor (DM) map that in-

corporates climate data and professional input from all 

levels and is well known as the U.S. Drought Monitor 

(USDM). The USDM maps are consensus product based 

on several indicators and key variables, and the final 

maps are adjusted manually by numerous experts 

throughout the country to reflect the real-world condi-

tions as reported (Svoboda et al. 2002). The USDM 

drought conditions are classified into five classes based 

on a ranking percentile approach: (1) D0 - abnormally, (2) 

D1 - moderate, (3) D2 - severe, (4) D3 - extreme, and (5)  
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D4 -exceptional dry conditions. They are utilized as (1) 

D0-D4 (percentile≤30%), (2) D1-D4 (percentile≤20%), 

(3) D2-D4 (percentile ≤ 10%), (4) D3-D4 (percen-

tile ≤ 5%), and (5) D4 (percentile ≤ 2%)
[3-5]

.  

The USDM maps are currently distributed online 

(http://droughtmonitor.unl.edu/) with relatively coarse 

resolution. They served as one of the criteria to deter-

mine the eligibility for relief of aggravation due to 

drought condition. 

Agricultural interest in drought is important in much 

of the U.S. In fact, there is considerable interest in indi-

ces that can monitor agricultural drought. The hydrolog-

ical condition of agricultural drought is closely linked to 

soil moisture
[6]

, which is dependent on precipitation, wa-

ter infiltration, and soil water holding capacity. Since it’s 

hard to measure soil moisture over large area directly, 

Leese et al.
[7]

 concluded it’s better to monitor soil mois-

ture with combination of in-situ model and remote 

sensed variables respond to soil moisture. Satellite re-

mote sensing data with large area coverage is a promis-

ing and economical tool to estimate soil moisture and 

enables drought monitoring based on surface parameters, 

such as NDVI, LST, evaportranspiration, and soil mois-

ture. The microwave-optical/IR synergistic approach is 

an efficient method to improve the current 

drought-related soil moisture products with several ad-

vantages including higher spatial and temporal resolu-

tions. Zhan et al.
[8]

 described a synergistic technique us-

ing optical/infrared frequency products to overcome the 

coarse spatial resolution of the MW satellite products. 

This method was later enhanced by Chauhan et al.
[9]

. 

They built the statistical relationships between 

near-surface soil moisture and optical-derived soil mois-

ture indices. Merlin et al.
[10]

 applied these relations and 

transferred this method to a wider range of conditions. 

However, this method requires many surface parameters 

and micrometeorological data, which may not be availa-

ble over large areas. It’s desirable to find a simple and 

reasonable model for drought monitoring comparable to 

the USDM drought classifications, and to explore the 

possibility for linking a real-time index with surface 

wetness condition in a fine resolution. In this study, a 

new approach to build a drought indicator at fine resolu-

tion are implemented with near real time microwave and 

optical satellite observations. After introduction of the 

study area and data used, specifics of these approaches 

and their results in analyzing drought conditions in the 

continental United States (CONUS, the latitude and lon-

gitude range is about 20~50 N, and -125 ~ -75W) 

during the recent years are presented in the following 

sections. 

2. Materials and methods 

2.1 data used 

A comprehensive data set is collected and processed 

for deriving soil moisture at optical sensor resolution (5 

km in this study) from satellite observations and evalu-

ating drought conditions in the CONUS. These data in-

clude: 

- MODIS LST and emissivity daily L3 global cli-

mate modeling grid (CMG) product (short name: 

MYD11C1) with a resolution of 0.05°
[11]

.  

- MODIS LST/emissivity 8-Day L3 CMG product 

(short name: MYD11C2) with a resolution of 0.05°
[11]

  

- NDVI data is extracted from the MODIS 16-day 

composite NDVI product (short name: MYD13C1) with 

a resolution of 0.05°
[12]

.  

- Precipitation data are obtained from the TRMM 

(Tropical Rainfall Measuring Mission) Multi-satellite 

Precipitation Analysis (TMPA) with 0.25° spatial resolu-

tion and 3-hourly temporal resolution
[13]

.  

- Elevation data are derived from the National Ele-

vation Dataset (NED) data at a resolution of 100 me-

ters
[14]

. 

- MODIS land cover Climate Modeling Grid (CMG) 

product (Short Name: MCD12C1) provides the dominant 

land cover types at a spatial resolution of 0.05°.  

- Soil texture data, including sand and porosity, are 

obtained from the Food and Agriculture Organization / 

United Nations Educational, Scientific and Cultural Or-

ganization (FAO/UNESCO) soil map, with a resolution 

of about 0.0833°
[15,16]

.  

- Soil moisture data used for calibration is obtained 

from the Soil Moisture Operational Product System 

(SMOPS) at 0.25° resolution developed by NO-

AA-NESDIS. This SMOPS product merges soil moisture 

retrievals from microwave satellite sensors such as the 

Advanced Scatterometers (ASCAT) on MetOp-A and B, 

Soil Moisture and Ocean Salinity of European Space 

Agency, WindSat of Naval Research Lab based on the 

Single Channel Algorithm
[17,18]

.  

- Soil moisture outputs at 0.125° resolution from the 
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three land-surface models (LSMs): the community Noah 
[19]

, the Mosaic
[20]

, and the Variable Infiltration Capacity 

(VIC) model
[21]

, are obtained from the North American 

Land Data Assimilation System (NLDAS)
[22]

. 

2.2 Temporal compositing and spatial 

resampling 

The datasets used in this study were obtained at dif-

ferent temporal and spatial resolutions. All the datasets 

were needed to be resampled to the same resolution.  

- For calibration using the SMOPS soil moisture 

(SM) data, all the datasets were aggregated to 25 km, the 

same resolution as the SMOPS SM data. The SM models 

were firstly built at 25 km resluiton, then were applied to 

optical sensor data to estimate SM at the optical sensor 

resolution (5 km here).      

- In order to compare with the USDM drought con-

dition maps, all the datasets have been resampled or in-

terpolated to uniform weekly (7 days) temporal and 

0.0833° (about 12-km) spatial resolutions.  

- For “flash” drought study, all the datasets were 

resampled or downscaled to the same 5 km spatial reso-

lution as the MODIS LST product and estimate SM at 5 

km spatial resolution on daily basis. 

Land cover data has been resampled via the nearest 

neighbor assignment due to its discrete value. The bicu-

bic interpolation assignment
[23]

 was used to re-scale the 

other datasets, assuming that each point value changes 

consistently during observations. 

2.3 Methods 

2.3.1 A new model for high resolution soil mois-

ture estimate 

A close relationship exists between vegetation vigor 

and soil moisture availability, especially in arid and 

semiarid areas, thus in many cases satellite derived 

NDVI and LST products have been used to evaluate 

drought condition. Carlson et al. found the relation-

ship between measured surface temperature, vegetation 

fraction, and soil moisture, known as the “Universal Tri-

angle Model”
[24]

. Chauhan et al.
[9]

 argued that the second 

or third order polynomial gives a better representation of 

the data since a single polynomial represents a wide 

range of surface climate conditions and land surface 

types. Thus an Universal Triangle Model was developed 

and can be described as: 
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where , ,  

subscripts max and min refer to the  maximum and 

minimum values. Parameters a00, a10, …, a22 are the re-

gression coefficients.  

Sun and Kafatos
[25]

 indicated the negative or reverse 

relation between NDVI and LST can only hold during 

warm or growing seasons, therefore, NDVI and LST 

related drought indices may only be used during warm 

seasons, but not winter. Chauhan et al. added surface 

albedo into the Universal Triangle Model to strengthen 

the relationship between soil moisture and measurable 

land surface parameters
[9]

. Nevertheless, surface types 

vary significantly, and therefore, even a combination of 

NDVI, LST or albedo is not enough to fully describe the 

surface conditions.  Soil moisture is also highly related 

to precipitation (the land water balance equation indi-

cates the change of soil moisture is highly related to pre-

cipitation), soil texture (physical properties such as die-

lectric constant can affect water content in soil), topog-

raphy (runoff is highly related to the topographic position, 

slope aspect, and steepness), and land cover (different 

land cover will influence the hydrological processes dif-

ferently). LC data is a numerical values. According to the 

product user guide 

(https://lpdaac.usgs.gov/sites/default/files/public/product

_documentation/mcd12_user_guide_v6.pdf), the LC 

value range is from 1-17 and is assigned as: Evergreen 

Need leaf Forest as 1, Evergreen Broadleaf Forests as 2, 

Deciduous Needleleaf Forests as 3, Deciduous Broadleaf 

Forests as 4, Mixed Forests as 5, Closed Shrublands as 6, 

Open Shrublands as 7, Woody Savannas as 8, Savannas 

as 9, Grasslands as 10, Permanent Wetlands as 11, 

Croplands as 12, Urban and Built-up Lands, 

Cropland/Natural Vegetation Mosaics as 14, Permanent 

Snow and Ice as 15, and Barren as 16, and Water Bodies 

as 17. Thus it is desirable to combine and integrate all 

these datasets to build a soil moisture model as:  

 

NDVI * =
NDVI −NDVImin

NDVImax −NDVImin minmax

min*

LSTLST

LSTLST
LST






*2*

21

2**

12

2*2*

22

**

11

2*

02

*

01

2*

20

*

1000

LSTNDVIaLSTNDVIa

LSTNDVIaLSTNDVIa

LSTaLSTa

NDVIaNDVIaaSM











 

4 | Donglian Sun et al. Remote Sensing 

                                           
(2) 

where “Pr” represents precipitation, “DEM” is for 

Digital Elevation Model (DEM) data, “Sand” is the indi-

vidual grains or particles which can be seen with the na-

ked eyes, “Poro” refers to porosity about how many 

pores/ holes a soil has, and “LC” is for land cover da-

ta. b0, b1, …, b8 are regression coefficients.  

As shown in Figure 1, the black line in Figure 1b is 

the corresponding normalized monthly accumulated pre-

cipitation, and the LOWESS (LOcally Weighted Scatter-

plot Smoothing)
[26]

 (Cleveland 1979) is applied to de-

scribe the nonlinear trends of precipitation (the blue line 

in Figure 1b). The drought condition may not be directly 

reflected by temporal variation in precipitation because 

drought is caused by precipitation deficit during some 

period of time, usually more than a season. It is found 

that precipitation has an accumulating and lagging effect 

on drought condition.  For example, the trend of precip-

itation is reduced in 2006 and 2011 (Figure 1b), yet the 

USDM drought maps marked these years as normal con-

ditions (Figure 1a) due to sufficient accumulated rainfall 

in previous period. While in 2014, the precipitation had 

increasing trend, but short of accumulated rainfall from 

the previous period in 2013 and early 2014, thus the 

USDM classified year 2014 as drought condition. This 

result demonstrated that the accumulated precipitation 

from the last year’s warm season to the current time can 

describe the drought conditions better than the daily pre-

cipitation. Therefore, a refined soil moisture model is 

proposed by using the accumulated precipitation starting 

from the last year’s warm season. The refined soil mois-

ture model can be described as: 

                                          (3) 

where Ac_Pr is for the accumulated precipitation 

starting from April of the previous year until the re-

quested day, all other variables are the same as equation 

2. c0, …. c8 are the regression coefficients.  

  

 

Figure 1. (a) The USDM weekly drought condition map. (b) Normalized Monthly accumulated precipitation over California (32 

- 42°N, 114 - 125 °W) retrieved from the TRMM, and normalized monthly accumulated precipitation seasonal decomposition by the 

LOWESS (blue line), from Jan. 2003 to Dec. 2014. 
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The SMOPS soil moisture products were used for 

calibration to derive the regression coefficients in equa-

tions (1), (2), and (3). The least square regression was 

applied to estimate the regression coefficients and 50% 

data were used for training.   

2.3.2 Anomaly calculation 

Soil moisture changes slowly, therefore cannot 

catch the fast change of drought conditions. Soil mois-

ture anomaly is more appropriate to describe drought 

conditions than the absolute soil moisture
[27]

. In this 

study, we averaged daily soil moisture into weekly to 

match with the UM drought maps temporally. Soil mois-

ture anomaly maps are obtained by the difference be-

tween weekly soil moisture and the long-term average 

soil moisture based on the equation: 

                                             
                                           (4) 

where the average soil moisture  for each pixel is 

calculated for the same weeks over the 11 years from 

January 1 2003 to December 31 2014. Negative soil 

moisture anomalies stand for the observed data are lower 

than the averaged data, and indicate dry conditions. 

2.3.3 Comparison with some other drought indi-

ces 

- Evaporative Stress Index (ESI) 

The ESI  is defined as the anomalies in the ratio of 

actual-to-potential ET (AET/PET), derived from the 

thermal remote sensing based on the Atmosphere-Land 

Exchange Inverse (ALEXI) surface energy balance mod-

el
[28-31]

. The ALEXI uses measurements of morning 

land-surface temperature retrieved from geostationary 

satellite thermal band imagery to solve the Two-Source 

Energy Balance (TSEB) algorithm
[32]

 in time-differential 

model. Actual ET (AET) output from the ALEXI is esti-

mated as the potential ET (PET) expected under 

non-moisture limiting conditions, yielding a 

non-dimensional ET variable, ESI, ranging from 0 (dry) 

to approximately 1 (wet). 

- Vegetation Health Index (VHI) 

Kogan et al.
[33]

 proposed to combine the Vegetation 

Condition Index (VCI) and the Temperature Condition 

Index (TCI) to Vegetation Health Index (VHI):  

VHI=a*VCI+b*TCI                       (5) 

where the coefficient a and b are usually taken as 

0.5. The VCI is defined as: 

                                                             
(6) 

where and are the multi years maxi-

mum and minimum NDVI in a given area for growing 

season. The TCI is defined by Kogan
[34]

 as: 

TCI = 100 x (BTmax – BTi)/ (BTmax –BTmin)     (7) 

where BT, BTmax, and BTmin are smoothed bright-

ness temperature, its maximum and minimum, respec-

tively calculated for each pixel and week from multiyear 

data, and i is the year.   

The Center for Satellite Applications and Research 

(STAR) of NOAA Satellite and Information Service 

(NESDIS) is providing global VCI, TCI, and VHI map 

every week at: 

(http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_b

rowse.php). 

- Vegetation Temperature Condition Index (VTCI) 

Wang et al.
[35]

 developed Vegetation Temperature 

Condition Index (VTCI) based on the triangular space of 

LST and NDVI for monitoring drought stress. It’s de-

fined as following: 

                 
(8) 

where and are the maxi-

mum and minimum land surface temperature of pixels 

which have the same value, respectively, 

 denotes land surface temperature of one 

pixel whose NDVI value is . If VTCI(i) < 0.4, 

then the area (i) is under severe drought condition. 

2.3.4 Correlation analyses 

The temporal correlation coefficients are comput-

ed between the outputs from the refined soil moisture 

model and the USDM drought classifications at weekly 

scales during the growing season from April to October 

of each year.  

3. Results 

Figure 2 demonstrates drought conditions over the 

contiguous U.S. based on soil moisture anomalies (the 

first 8 rows) and percentiles (bottom) derived from the 

refined model and compared with the USDM drought 

maps (the first row), the VTCI (the second row), the VHI 

(the third row), the ESI (the fourth row), and soil 

moitsure anomalies from the Mosaic LSM (the five row), 

the community Noah LSM (the six row), and the VIC 

LSM (the seven row) for drought conditions from 2005 

to 2010 (6 years). 
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Figure 2. Drought conditions in the contiguous U.S. from different indicators. From top to bottom: the USDM classification 

(top), VTCI (the 2nd), VHI (the third), ESI (the fourth), the Mosaic LSM (the five), the Noah LSM (the sixth), the VIC LSM (the 

seventh), soil moisture anomalies based on the refined model (the eighth), and the soil moisture percentile (the bottom) based on the 

refined model. The three LSMs (Mosaic, Noah, and VIC) share the same color palette. 
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Figure 3. The temporal correlation coefficient maps between the refined soil moisture model outputs and the USDM drought 

classifications during different years. 

 

 

SM models\years 

2005 2006 2007 2008 2009 2010 

Triangle model 0.245 0.548 0.105 0.219 0.460 0.298 

Basic model 0.672 0.720 0.382 0.557 0.486 0.423 

Refined model 0.748 0.773 0.599 0.618 0.766 0.759 

 

Table 1. The statistical metrics of Averaged Temporal Correlation Coefficients between the soil moisture outputs 

from the three different models and USDM classifications. 

It is found the percentile of soil moisture cannot 

easily catch the fast changes, so percentile of soil mois-

ture anomalies is used instead.  The VHI and ESI show 

good agreements with the USDM classifications, while 

the NLDAS three LSM outputs demonstrate similar pat-

terns. The soil moisture derived from the proposed soil 

moisture model provides an easy way for monitoring 

surface drought conditions, and the surface dry/wetness 

patterns agree with the USDM classifications. 

Figure 3 shows the temporal correlation coeffi-

cients between the soil moisture anomalies derived from 

the refined model and the USDM drought classes during 

different years from 2005 to 2010, where greener color 

indicates a better agreement between the two classifica-

tions. In general, the refined soil moisture model outputs 

have high correlations with the USDM drought classifi-

cations. The statistical metrics of Averaged Temporal 

Correlation Coefficients are also listed in Table 1. In 

general, the basic model with the introduction of soil 

texture data show improvement to the triangle model, 

while the refined model outputs have higher correlation 

with the USDM drought classifications and show further 

improvement to the basic model. 
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Figure 4.  a) Cloud free MODIS LST at 5 km resolution; b) the derived AMSR-E LST at 25 km resolution; c) the merged 

MODIS and AMSR-E LST at 25 km resolution; d) the integrated LST from MODIS and AMSR-E with the GWR-based method ap-

plied to fill the gaps and also downscale to the same 5 km resolution as the MODIS LST, during daytime on June 2, 2008. 

 

Figure 5. The flow-chart for soil moisture estimate and application in drought analysis. 
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Figure 6. An example of daily SM anomalies compared with the weekly USDM drought map. First column: weekly USDM ob-

servations. Soil moisture anomalies observations in the continuous 8 days (from June 3 to June 10) (Second column) based on previ-

ous LST and (Third column) based on the new derived Example-based LST. ∆ equals to 0.02 (unit: m3m-3). 

Recently, “flash” drought concept appears. Flash 

drought frequently occurred in the central and eastern 

United States
[36]

. The 2012 drought over the Northern 

American demonstrated the worst surface condition since 

the 1930s Dust Bowl
[37]

. The drought started in 2011, 

extended rapidly in 2012 (especially in June and July 

according to the USDM classifications), and continued in 

2013. This event was pervasive in the central regions of 

the United States due to the absence of rainfall in the 

growing season. The rapid soil moisture loss led this 

event as “flash drought”
[38]

. Unlike the common drought 

that is caused by external forcing like SST anomalies, the 

flash drought event was a result of natural weather varia-

tions, with little warnings found from the traditional 

drought metrics or climate model simulations
[39]

. The 

flash drought event suggests that the current drought 

monitoring should enhance its temporal resolution. 

In the above drought analyses as shown in Figure 2 
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and Figure 3, the LST input to the soil moisture model is 

the weekly composite data. Because thermal infrared 

(TIR) LST can only be obtained under clear conditions, 

as shown in Figure 4a, there are a lot of gaps or missing 

values due to clouds in the daily MODIS LST. Only 

weekly composite can get a clear LST map. Since mi-

crowave sensor can penetrate most non-rainy clouds and 

observe the Earth surface, so we think about using mi-

crowave observations to fill the gaps due to clouds in the 

thermal IR LST. The microwave observations will be 

firstly calibrated to thermal IR (MODIS here) LST, and 

then downscaled to the same spatial resolution as the TIR 

LST, and then merged with the TIR observations to fill 

the gaps due to clouds in the TIR LST. The detailed in-

formation and processes are described in another pa-

per
[40]

. Here we show an example in Figure 4. As demon-

strated in Figure 4, the original daily MODIS LST exist a lot of 

gaps due to clouds (Figure 4a), while the LST derived from the 

AMSR-E with a new proposed five-channel algorithm[40] can 

get a clear and spatial continuous distribution (Figure 4b), Fig-

ure 4c is the merged MODIS and AMSR-E LST by using the 

AMSR-E to fill the gaps in the MODIS LST, and Figure 4d 

shows the integrated MODIS and AMSR-E LST by applying 

the geographically weighted regression (GWR) method to 

downscale the AMSR-E LST to the same MODIS resolution 

and further fill the pass gaps in the AMSR-E observations. With 

the integrated MODIS and AMSR-E LST, spatial continuous 

LST on a daily basis can be input into the proposed refined SM 

model to obtain soil moisture anomaly every day. The flow 

chart of the process is shown in Figure 5. 

The USDM as well as other drought indicators can 

provide a weekly drought monitoring, while the new 

algorithm can provide soil moisture anomaly observa-

tions on a daily basis. The previous LST product that 

input into the soil moisture model is lack of observations 

due to clouds, and made the observation of soil moisture 

anomalies with gaps (Figure 6, the second column, white 

area is lack of observation, thus is considered as in the 

normal surface condition). With the TIR and microwave 

integrated LST, daily soil moisture anomalies can be 

obtained continuously without gaps (Figure 6, the third 

column). It matches with the USDM drought maps, and 

meanwhile catches the flash changes of dought condi-

tions.  

4. Discussion and conclusion 

In this study, we integrated microwave and optical 

sensors to estimate soil moisture at high spatial resolu-

tion and used them to evaluate drought conditions in the 

continental United States. A new model is proposed to 

estimate soil moisture with the auxiliary data such as 

precipitation, topography, soil texture, and surface types, 

in addition to LST and NDVI used in traditional univer-

sal triangle model. We further applied the LOWESS 

model based on time series analysis, and found precipita-

tion had some kind of accumulated and lagging effects 

on soil moisture, therefore we proposed to use accumu-

lated precipitation starting from last year’s warm season, 

instead of daily precipitation. The drought conditions 

identified by the soil moisture anomalies derived from 

the proposed model show close agreement with the 

USDM classifications.   

There are still some limitations in this study: (1) this 

application was limited to the warm season, while cold 

season needs further investigation to fulfill the require-

ment of surface monitoring. (2) to further improve the 

applications, more agricultural related data should be 

examined. Since our model output can also provide the 

information of wetness level, agricultural related data 

such as irrigation, should be used as an important evalua-

tion for the outputs. 
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