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Abstract 15 

Peak levels of ozone (O3)—quantified by concentration metrics such as accumulated 16 
O3 exposure over a threshold of 40 ppb (AOT40) and the sigmoidal-weighted cumulative 17 
exposure (W126)—have decreased over large parts of the United States and Europe in the last 18 
several decades. Past studies have suggested that these improvements in AOT40 and W126 19 
indicate reductions in plant injury, even though it is widely recognized that O3 flux into leaves, 20 
not ambient O3 concentration, is the cause of plant damage. Using a new dataset of O3 uptake 21 
into plants derived from eddy covariance flux towers, we test whether AOT40, W126, or 22 
summer mean O3 are useful indicators of trends in the cumulative uptake of O3 into leaves, 23 
which is the phytotoxic O3 dose (POD or PODy, where y is a detoxification threshold). At 32 24 
sites in the United States and Europe, we find that the AOT40 and W126 concentration metrics 25 
decreased over 2005-2014 at most sites: 25 and 28 sites, respectively. POD0, however, increased 26 
at a majority (18) of the sites. Multiple statistical tests demonstrate that none of the concentration 27 
metrics—AOT40, W126, and mean O3—are good predictors of POD0 temporal trends or 28 
variability (R2 ≤	0.15). These results are insensitive to using a detoxification threshold (POD3). 29 
The divergent trends for O3 concentration and plant uptake are due to stomatal control of flux, 30 
which is shaped by environmental variability and plant factors. As a result, there has been no 31 
widespread, clear improvement in POD over 2005-2014 at the sites we can assess. Decreases in 32 
concentration metrics, therefore, give an overly optimistic and incomplete picture of the direction 33 
and magnitude of O3 impacts on vegetation. Because of this lack of relation between O3 flux and 34 
concentration, flux metrics should be preferred over concentration metrics in assessments of 35 
plant injury from O3.   36 
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1. Introduction 37 

Ground-level ozone (O3) is harmful to people and plants (Ainsworth et al., 2012; Fleming et al., 38 

2018). In plants, O3 causes internal oxidative damage following uptake through their stomata, 39 

which then slows photosynthesis (Reich and Amundson, 1985; Morgan et al., 2003; Ainsworth et 40 

al., 2012), impairs stomatal control (Hoshika et al., 2015), suppresses the land-carbon sink, and 41 

indirectly forces climate change (Sitch et al., 2007; Lombardozzi et al., 2012). O3 exposure can 42 

also increase plant metabolic costs (Iriti and Faoro, 2009), affect reproduction (Black et al., 43 

2000; Iriti and Faoro, 2009), alter nutrient cycling and biodiversity (Fuhrer et al., 2016), heighten 44 

the effects of other environmental stressors (Sandermann et al., 1998; Black et al., 2000; Iriti and 45 

Faoro, 2009), and diminish crop yield and quality (Ainsworth, 2017). Although plant species and 46 

varieties vary in their sensitivity to O3 (Feng et al., 2018; Harmens et al., 2018; Mills et al., 47 

2018c), nearly all are injured to some degree and O3 is the most damaging air pollutant for most 48 

plants (Krupa et al., 2001; Wittig et al., 2009; Ainsworth et al., 2012; Lombardozzi et al., 2012). 49 

At present-day levels of O3, injuries are documented in crops, grasses, shrubs, and trees across 50 

Europe, North America, and Asia (Chappelka and Samuelson, 1998; Krupa et al., 2001; 51 

Baumgarten et al., 2009; Sarkar and Agrawal, 2010; Mills et al., 2011a; Ainsworth et al., 2012; 52 

Tang et al., 2013; Feng et al., 2014; Büker et al., 2015; Hoshika et al., 2015). These injuries 53 

reduce crop yields and lead to economic losses. It is estimated that O3 has reduced global 54 

soybean, wheat, rice, and maize yields about by 5-15%, valued at $10-25 billion annually (Reich 55 

and Amundson, 1985; Van Dingenen et al., 2009; Fishman et al., 2010; Avnery et al., 2011; Tai 56 

et al., 2014; Mills et al., 2018c). The magnitude of these impacts and their relevance to food 57 

security and carbon storage in the biosphere show the importance of quantifying and 58 

understanding trends in O3 and its impacts on vegetation, which is our goal in this work.  59 

 60 

Several metrics are used to quantify surface O3 and its impacts. For human health, the maximum 61 

daily average over 8 hours (MDA8), a concentration metric, is widely used to predict respiratory 62 

injury (EPA, 2011; McDonnell et al., 2012; Turner et al., 2016; Fleming et al., 2018). For 63 

assessing plant impacts, some metrics quantify O3 concentration in ambient air while others 64 

quantify the flux of O3 into leaf tissue through the stomata. The most widely used concentration 65 

metrics are the accumulated O3 exposure over a threshold of 40 ppb (AOT40) and sigmoidal-66 
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weighted cumulative exposure (W126) indices, both of which give greater weight to high 67 

concentrations (Lefohn and Runeckles, 1987; Hůnová et al., 2003; Avnery et al., 2011; Lefohn et 68 

al., 2018; Mills et al., 2018a). Although correlations between these concentration metrics and 69 

plant injuries have been reported, the flux of O3 through stomata is a better predictor of plant 70 

damage because it reflects the physiological dose to tissues within the leaves (Musselman et al., 71 

2006; Mills et al., 2011a,b; Braun et al., 2014; Büker et al., 2015; CLRTAP, 2017). The 72 

phytotoxic O3 dose (POD) metric integrates the stomatal flux over a growing season or other 73 

designated time period. The related PODy metric integrates flux that exceeds a threshold (y nmol 74 

O3 m–2 s–1) that can be detoxified by the plant (PODy, Mills et al., 2011a,b; CLRTAP, 2017; 75 

Mills et al., 2018a). When stomata are closed, high ambient O3 concentrations may not injure 76 

plants. Conversely, when stomata are open wide, large fluxes and resulting injuries can occur at 77 

low O3 concentrations. For these reasons, flux-based metrics are generally preferred, where they 78 

are available, and critical PODy levels have been determined for many plant species (Mills et al., 79 

2011b; CLRTAP, 2017). Indeed, several studies have found that impacts predicted from modeled 80 

stomatal uptake differ in size and pattern from impacts predicted from concentration metrics 81 

(Mills et al., 2011a; 2018c; Tang et al., 2013). Despite the advantages of POD and related flux 82 

metrics over concentration metrics, however, many plant impact studies continue to use 83 

concentration metrics because O3 concentration data are much more widely available than 84 

stomatal O3 flux data (Fuhrer et al., 1997; Musselman et al., 2006; Van Dingenen et al., 2009; 85 

Avnery et al., 2011; Mills et al., 2011a; Braun et al., 2014; Holmes, 2014; Lefohn et al., 2018; 86 

Mills et al., 2018a).  87 

 88 

Across large parts of the United States and Europe, surface O3 air quality has improved in recent 89 

decades, according to many concentration metrics (Cooper et al., 2014; Chang et al., 2017; 90 

Lefohn et al., 2017; Fleming et al., 2018; Lefohn et al., 2018; Mills et al., 2018a), after 91 

deteriorating for much of the 20th century (Vingarzan, 2004; Shindell et al., 2006; Parrish et al., 92 

2012; Cooper et al., 2014). These recent O3 improvements resulted from policies and technology 93 

that reduced emissions of O3 precursors, particularly nitrogen oxides, carbon monoxide, and 94 

volatile organic compounds (EPA, 2003; Council of the European Union and European 95 

Parliament, 2008; EPA, 2011; EEA, 2016; EPA, 2016). The Tropospheric Ozone Assessment 96 
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Report (TOAR) concluded that these O3 declines reduced the potential risk of damage to crops 97 

and other vegetation in these regions, while recognizing that climate, soil, and plant controls on 98 

stomatal conductance also determine the risk of damage (Mills et al., 2018a, hereafter TOAR-99 

Vegetation). While the TOAR-Vegetation report used concentration metrics—principally 100 

AOT40 and W126—because long-term O3 flux data are very sparse, the report recommended 101 

that stomatal uptake metrics be used in future risk assessments (Lefohn et al., 2018; Mills et al., 102 

2018a).  103 

 104 

Although some studies use empirical stomatal models to calculate O3 flux metrics and predict 105 

reductions in crop yield (Emberson et al., 2000; Mills et al., 2011a; Büker et al., 2012; Grünhage 106 

et al., 2012; Tang et al., 2013; Emberson et al., 2013; Mills et al., 2018b, 2018c), there has been 107 

little analysis of decadal or longer trends in POD or whether those trends match the trends in 108 

concentration metrics (Colette et al., 2018). POD and concentration metrics can be well 109 

correlated, at least on short time scales, under conditions where stomatal variability is limited, 110 

such as containers with a single plant species or irrigated and fertilized fields (Cieslik, 2004; 111 

Karlsson et al., 2004; Gonzalez-Fernandez et al., 2010; Matyssek et al., 2010; González-112 

Fernández et al., 2014). Under less controlled, natural conditions, however, weather, hydrology, 113 

and climate can drive substantial changes in conductance on time scales from minutes to years 114 

(Emberson et al., 2000; Büker et al., 2012; Keenan et al., 2013; Clifton et al., 2017). This 115 

environmental variability may disrupt the relationship between POD and O3 concentration. The 116 

widespread and well-documented reductions in AOT40 and W126 in the United States and 117 

Europe may, therefore, misrepresent the benefits for plant health because of the influence of 118 

stomata on POD. As a result, there is a need to test whether O3 flux into vegetation (POD) 119 

covaries with concentration metrics (AOT40 and W126) on multi-year time scales. 120 

 121 

This paper quantifies temporal variability and trends of O3 uptake into vegetation and compares 122 

them to variability and trends in O3 concentration over a decade. While past work has 123 

documented that POD has low spatial correlation with AOT40 and W126 (Mills et al., 2011a; 124 

Ducker et al., 2018), we specifically test temporal trends and relationships. We use a new dataset 125 
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of O3 fluxes in the United States and Europe (Ducker et al., 2018), which covers the period 2005-126 

2014 when previous studies documented declines in O3 concentration metrics (Chang et al., 127 

2017; Lefohn et al., 2017; Lefohn et al., 2018; Mills et al., 2018a). We will show that POD 128 

trends differ significantly from the concentration metrics—specifically AOT40, W126, and mean 129 

O3—and we examine the implications of those divergent trends for vegetation health.  130 

 131 

2. Ozone data and methods 132 

We analyze trends in stomatal O3 uptake and O3 concentration in the SynFlux dataset. As 133 

described by Ducker et al. (2018), SynFlux calculates stomatal conductance and other 134 

components of O3 deposition velocity from measurements at eddy covariance flux towers 135 

(Pastorello et al., 2017), with some additional information from remote sensing. The method uses 136 

observed fluxes of water vapor, heat, and momentum, leaf area, and standard meteorology 137 

variables. Direct measurements of O3 flux are not needed for SynFlux. The stomatal conductance 138 

and deposition velocity are then combined with a gridded dataset of O3 mole fractions to 139 

estimate stomatal fluxes of O3 into vegetation around the flux tower. The O3 dataset, described 140 

by Schnell et al. (2014), is a weighted interpolation of about 4000 of air quality monitoring 141 

stations and has horizontal resolution of 1° and temporal resolution of 1 hour. At sites with O3 142 

flux measurements, the gridded O3 dataset reproduces 60-90% of observed daily O3 variability 143 

(R2 = 0.6–0.9) with mean bias of 5-10 ppb (Ducker et al., 2018). At a broader range of sites, 144 

Schnell et al. (2014) estimated gridded O3 errors to be 6-9 ppb (rms). Since O3 errors at a 145 

particular site and time affect all concentration and flux metrics simultaneously, the metric vs. 146 

metric comparisons shown here are insulated from inaccuracies in the O3 dataset. SynFlux 147 

reproduces approximately 90% of the day-to-day variability (R2 = 0.9) in stomatal O3 uptake at 148 

flux measurement sites with a mean bias of 20% or less that can mostly be explained by the O3 149 

concentration bias (Ducker et al., 2018). 150 

 151 

We examine trends in O3 concentration and POD in the summer growing season over the ten-152 

year period 2005-2014. This decade has the greatest number of sites in the SynFlux dataset and 153 

longer periods would significantly reduce the number of sites in the analysis. All SynFlux sites 154 

with at least eight years of observations in the period are used, which results in 32 qualifying 155 

sites: 10 in the United States and 22 in Europe. These sites are listed in Table S1. The sites 156 



 6 

sample ecosystem types that are widely distributed in the United States and Europe. Of the 32 157 

sites, 21 are forests (10 needleleaf, 7 broadleaf, and 4 mixed), 5 are grassland, 2 are crops, 2 are 158 

savanna or shrubland, and 1 is wetland.  159 

 160 

At each SynFlux site, we calculate POD0, POD3, AOT40, W126, and daytime mean O3 for each 161 

summer growing season, defined as June-September. PODy is the cumulative daytime stomatal 162 

flux above threshold y nmol m–2 s–1 during these months, which is contained in the SynFlux 163 

dataset described by Ducker et al. (2018). Recommended thresholds vary by species, so we use 164 

POD3, a predictor for damage in several vegetation types (Mills et al., 2011a; Büker et al., 2015; 165 

CLRTAP, 2017), to test whether the threshold affects our results. We integrate the stomatal flux 166 

over times when the sun is at least four degrees above the horizon. When some stomatal flux data 167 

are missing, the integral of available fluxes in each month is scaled up by the fraction of missing 168 

data; the scaled monthly integrals are summed to obtain PODy for the summer growing season. 169 

Months with fewer than 100 observations are discarded from the analysis because of the greater 170 

uncertainty in the monthly integral. When one of the four growing season months is missing, we 171 

scale up the remaining months in the same way to get total PODy for the growing season; if two 172 

or more months are missing, the PODy is treated as missing for that year. The AOT40 and W126 173 

metrics are calculated from the gridded O3 dataset following previously documented methods 174 

(Ducker et al., 2018; Lefohn et al., 2018). Unlike some studies, we do not apply a three-year 175 

running mean, so our W126 and AOT40 values describe O3 concentrations in the summer 176 

growing season of a single year. Gaps in the O3 concentration data, although rare, are treated 177 

similarly to PODy, by scaling up the AOT40 or W126 by the fraction of missing data. All metrics 178 

are calculated over the same growing period, June-September, at all 32 sites. Accumulating the 179 

O3 metrics over site-specific growing months could alter the metric values or their trends, but is 180 

less likely to affect whether PODy and concentration metrics have consistent temporal 181 

variability, which is the main focus of this work. In cases where PODy is missing for a particular 182 

site and year, the AOT40, W126, and mean O3 are also discarded for consistent analysis of 183 

trends and variability. For some analyses, we remove mean spatial differences between sites by 184 

computing anomalies, 𝑥 − �̅�, where 𝑥 represents a metric value at a particular site and �̅� is its 10-185 

year mean at that site. To compare fractional changes among metrics with different units, we also 186 

normalize values using 𝑥& = 𝑥 �̅�⁄ − 1. Figure S1 shows time series of all normalized metrics. 187 
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 188 

We estimate the linear trends in O3 metrics at each site using ordinary least squares regression: 189 

𝑥 = 𝑎 + 𝑏𝑡, where 𝑥 represents a metric value, 𝑡 is time, and 𝑎 and 𝑏 are fitted parameters. To 190 

test if two metrics have the same trend, we normalize the metrics, as described above, and add 191 

interaction effects to the regression model: 𝑥′ = 𝑎 + 𝑏𝑡 + 𝛼𝐶 + 𝛽𝐶𝑡, where 𝐶 is a categorical 192 

variable for metric type (𝐶 = 0 for metric one, 𝐶 = 1 for metric two) and 𝛼 and 𝛽 are fitted 193 

parameters expressing the differences in the intercept and slope, respectively, for the two 194 

metrics. If 𝛽 is significantly different from zero, then the metrics have different trends. We will 195 

use this approach to compare pairwise the trends in POD0, POD3, AOT40, and W126, thus 196 

highlighting the relationship between the flux and concentration metrics. In addition to standard 197 

p-values of regression coefficients, we use Fisher’s combined probability test, a meta-analysis 198 

method, to assess whether an ensemble of p-values collectively provide evidence of an effect 199 

(Fisher, 1934). We also assess the temporal co-variability of metrics in three additional ways. 200 

First, we pool the anomaly data from all sites and years (n = 299) and compute the coefficient of 201 

determination (R2) for each pair of metrics. Any correlation among the anomalies is strictly from 202 

temporal co-variability since mean spatial differences have been removed. Second, we calculate 203 

the coefficients of determination site-by-site for each pair of metrics (m = 8-10 years) and then 204 

average the resulting R2 values across sites (n = 32). Finally, we correlate the temporal trends, 205 

described above, for each pair of metrics (n = 32 sites). Analyses are performed in Python using 206 

the statsmodels module for statistical tests (Seabold and Perktold, 2010). We use the graphical 207 

format of Cooper et al. (2014) and Mills et al. (2018a) to visualize trend results in Figures 1 and 208 

2.  209 

 210 

3. Trends in O3 uptake and concentration metrics 211 

Figures 1 and 2 show that summer daytime mean O3 concentrations decreased at a large majority 212 

of sites over 2005-2014—14 of the 22 European SynFlux sites and 7 of the 10 sites in the United 213 

States—although only 3 sites had trends with the customary p < 0.05 level. Past studies have 214 

found that the highest quantiles of O3 distribution have fallen faster than the median and lower 215 

quantiles (Cooper et al., 2014; Lefohn et al., 2018). As a result, W126 and AOT40, which 216 

emphasize high concentrations, have stronger declining trends than daytime mean O3. For W126, 217 

28 of the 32 sites have negative trends and 7 of these have p < 0.05. For AOT40, 25 of the 32 218 
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sites have decreasing trends and 3 have p < 0.05. No sites had positive trends with p < 0.05 for 219 

either AOT40 or W126.  220 

 221 

Our analysis methods differ from some past trend studies in that we use gridded O3 data rather 222 

than original station measurements. Nevertheless, our concentration trend patterns are very 223 

similar to those reported by others (Cooper et al., 2014; Lefohn et al., 2017; Mills et al., 2018a), 224 

despite each of those studies using different averaging methods (daytime or 24 hour) and 225 

examining different ranges of years. They generally show that summer mean O3 in Europe has 226 

decreased or held steady since the 1990s, while concentrations in the United States decreased in 227 

the eastern United States and were steady or rising across most of the western and central United 228 

States. Like us, those earlier studies also found more consistent downward trends in AOT40 and 229 

W126 than mean O3 in all of these regions except the western and central United States (Fleming 230 

et al., 2018; Mills et al., 2018a). The TOAR-Vegetation analysis suggests that statistically 231 

significant declines of W126 and AOT40 are more widespread than we report (45-50% of 232 

TOAR-Vegetation sites in the United States and Europe had declines; Mills et al., 2018a), but 233 

this apparent difference is explained by the larger fraction of TOAR-Vegetation sites in areas 234 

recovering from severe historical O3 pollution, like the eastern United States and California, and 235 

the longer period of the TOAR-Vegetation analysis (1995-2014). Overall, the comparison shows 236 

that our trend results for concentration metrics using SynFlux and gridded O3 fields are 237 

consistent with TOAR-Vegetation results using station O3 observations.  238 

 239 

Trends in POD0 are distinctly different from trends in mean O3, AOT40, and W126, as seen in 240 

Figures 1, 2, and S1. Unlike all of the concentration metrics, POD0 increased at more than half 241 

(18 of 32) of the sites, although 4 had POD0 declines with p < 0.05. The sign or direction of the 242 

POD0 (and POD3) trends also disagree with the concentration trends about as often as they agree. 243 

Of the 28 sites with decreasing W126, 16 have increasing POD0. Of the 25 sites with decreasing 244 

AOT40, 14 have increasing POD0. Similar patterns appear in the multi-site mean trends. For 245 

AOT40, W126, and mean O3 the multi-site mean trends are downward (p = 0.001, p ≤ 0.0001, 246 

and p = 0.06, respectively) while the mean POD0 trend is upward (p = 0.9).  247 

 248 
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The discrepancies between POD0 and concentration trends occur in nearly all vegetation types 249 

examined. The POD0 trends have opposite sign to W126 and AOT trends at roughly half of the 250 

forest sites (5 of 10 needleleaf, 4 of 7 broadleaf, 3 of 4 mixed forest), grassland sites (2 of 5 251 

sites), and shrubland sites (1 of 2). At the one wetland site all metrics have the same trend sign, 252 

which is consistent with stomatal flux correlating with O3 concentration in a moisture-rich 253 

environment that promotes stomatal opening (CLRTAP, 2017). Conversely, at both crop sites, 254 

POD0 and concentration trends have opposite sign. While the crop sites used irrigation, which 255 

relieves water stress, they also rotated crops in some years, which would increase the interannual 256 

variability in stomatal conductance and POD0 while having less effect on O3 concentrations, 257 

thereby partly decoupling O3 concentration and uptake. Trend disagreements also occur across 258 

most of the examined geographical region and climate types, with no clear pattern. While the 259 

small number of sites for some vegetation types (particularly non-forests), regions, and climates 260 

make it difficult to determine if O3 concentration and flux preferentially decouple in certain 261 

environments, it is clear that discrepancies between PODy and concentration trends are 262 

widespread. 263 

 264 

Some differences in trends should be expected because of statistical fitting errors in each slope 265 

estimate stemming from errors and uncertainty in the measurements that underlie each metric. 266 

Nevertheless, if stomatal conductance and deposition velocity were steady, the normalized O3 267 

concentration and normalized POD should have similar trends. Using a regression model of 268 

normalized data with interaction effects (Section 2), we find that the fractional trends in POD are 269 

indeed different (p < 0.05 level) from the fractional trends in other metrics at 7 sites, regardless 270 

of which concentration metric is chosen. Many more sites have trend differences with marginal 271 

or low significance (0.05 < p < 0.2) (9 for AOT40 and mean O3, 11 for W126). The statistical 272 

strength of these results may be underestimated due to the random errors in SynFlux (section 2), 273 

which inflate the POD0 variance and diminish the significance (p value) of differences from 274 

concentration metrics. Mean biases do not affect the POD0 trends, so they should not affect the 275 

relationship to concentration metrics. In an aggregate meta-analysis (Fisher’s combined 276 

probability test), the skew towards zero of all 32 p-values gives strong evidence that the 277 

normalized POD0 trends systematically differ from the concentration trends (p ≪	0.001), for all 278 

normalized concentration metrics. The divergent trends for POD0 and concentration metrics are 279 
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likely explained through stomatal conductance, which is driven by many factors such as weather, 280 

hydrology, and climate. Rising stomatal conductance increases O3 uptake into plants, while 281 

decreasing ambient O3 concentration through dry deposition (Solberg et al., 2008; Emberson et 282 

al., 2013; Kavassalis and Murphy, 2017). Regardless of the causes, however, the divergent trends 283 

indicate that the common AOT40 and W126 metrics have limited utility for tracking changes in 284 

O3 impacts on vegetation. 285 

 286 

While the O3 trends in our 10-year study period are consistent with past studies that investigated 287 

other periods, as shown above, the trends for any given site and metric can vary depending on 288 

which years are analyzed. Individual years with extreme or missing data can sometimes 289 

discernably affect trend estimates, which may contribute to a few apparently large differences 290 

between some neighboring sites (e.g. POD0 trends in Italy). Calculating trends over a longer time 291 

period could reduce the influence of individual years, but at the expense of having fewer sites in 292 

this analysis. However, the occurrence of an extreme value in one metric but not another (e.g. 293 

W126 vs. PODy) at a single site is still a meaningful indicator that those metrics have different 294 

temporal variability. In addition, the regression model that tests differences in trends between 295 

metrics accounts for the greater uncertainty in the individual trends that result from extreme 296 

values, yet we still find statistically significant different trends across metrics.  297 

 298 

Another measure of the usefulness of concentration metrics is their temporal correlation with 299 

POD, shown Figures 3 and 4 and Table S2. Mills et al. (2011a) recognized that the spatial pattern 300 

of POD can be quite different from the O3 concentration pattern, particularly when considering 301 

sites with contrasting climate and vegetation. Ducker et al. (2018) further showed that their 302 

spatial correlations are very low (R2 ≤ 0.05 for POD0 vs. AOT40, W126, or mean O3). We 303 

quantify the temporal correlation between PODy and other metrics in three ways (Table S2). The 304 

first approach, seen in Figure 3, which pools data from all sites, reveals no meaningful 305 

correlation between POD0 and any of the concentration metrics (R2 < 0.01) while all pairs of 306 

concentration metrics are strongly correlated (R2 = 0.7–0.9). Results are unchanged when using 307 

POD3 in place of POD0 (R2 < 0.01, Figure S2). The second, site-by-site approach also shows that 308 

the concentration metrics are closely correlated with each other (R2 = 0.72–0.84 averaged across 309 

sites; Table S2) but not with POD0 (R2 = 0.13-0.14). Both of these approaches mean that none of 310 
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the concentration metrics can predict well the interannual variability of POD0. Finally, the linear 311 

trends shown in Figure 4, which are fitted to data at each individual site, indicate that POD0 312 

trends are essentially unrelated to trends in any concentration metric (R2 ≤ 0.05; Figure 4; Table 313 

S2), while all of the concentration metric trends have considerable common variability (R2 = 0.5–314 

0.9). The trend correlations are again similarly weak when using POD3 (R2 ≤ 0.1; Figure S3). 315 

This means that neither AOT40 trend nor W126 trend has any skill in predicting the PODy trend.  316 

 317 

While it is already widely recognized that variations in stomatal conductance complicate the 318 

relationship between O3 concentrations and stomatal uptake (Musselman et al., 2006), these 319 

results go a step further. Our results show that the conductance changes under common 320 

environmental conditions are sufficiently large and important that W126 and AOT40 trends are 321 

poor predictors of PODy trends. AOT40 and W126 might still be useful for assessing ozone 322 

extremes for other applications, however. Thus, the widespread decreases of W126 and AOT40 323 

in large parts of the United States and Europe, while favorable, are not robust indicators for 324 

improved plant uptake or health. In fact, we have shown that there has been no widespread 325 

improvement in PODy at sites in these regions.  326 

 327 

4. Conclusions 328 

By many metrics, O3 air quality has improved in large parts of the United States and Europe over 329 

the last two decades in response to policies and technological improvements that reduced 330 

emissions of O3 precursors. Past work and our results show that there are downward trends in 331 

mean O3, AOT40, and W126 metrics at a majority of sites that we studied in the eastern United 332 

States and Europe. These metrics are widely used to assess the impacts of O3 and their declines 333 

have been interpreted as indicating reduced O3 damage to vegetation. While POD is known to be 334 

a better predictor of the physiological O3 dose than ambient O3 concentration, its use has been 335 

limited by data availability.  336 

 337 

We use the SynFlux dataset to report decadal trends in POD for the first time and find that POD 338 

does not follow the same trends as the O3 concentration metrics commonly used to assess 339 

vegetation injury. POD trends have mixed increases and decreases across the United States and 340 

Europe, in contrast to the predominant decrease in concentration metrics at the sites we 341 
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examined. Many sites have simultaneous decreasing AOT40 and W126 while POD is increasing. 342 

Using multiple statistical approaches, we show that the multi-year trends and temporal variability 343 

in POD differ significantly and systematically from the concentration metrics. The results are not 344 

affected by PODy threshold choices (y = 0 or 3 nmol m–2 s–1). Past work showed that 345 

concentration metrics have low spatial correlation with POD and, here, we add that there is also 346 

little temporal correspondence. Thus, AOT40 and W126 are not robust predictors of trends in 347 

plant injuries from O3. Rather, the widespread decreases of AOT40 and W126 in the United 348 

States and Europe in recent decades give an overly optimistic view of changing plant injury risk 349 

in recent years. If all else were equal, reduced concentrations would lead to less plant injury, but, 350 

in reality, stomatal conductance and its variability—driven by meteorology, hydrology, and 351 

climate—is an equally important control on POD. The analysis here further supports the 352 

recommendations of TOAR-Vegetation and others that future studies of plant damage and 353 

economic losses should avoid relying primarily on AOT40 or W126 and make greater effort to 354 

account for stomatal activity and stomatal flux. This is particularly important when considering 355 

the combined effects of climate variability and change in combination with evolving surface O3 356 

concentrations.    357 
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 603 
Figure 1. Trends (2005-2014) in O3 metrics relevant to plant injury at SynFlux sites in 604 
Europe. All metrics are calculated for June-September daytime. Arrows show linear trends and 605 
colors indicate significance of the trend (p value).  606 
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 607 
Figure 2. Trends (2005-2014) in O3 metrics relevant to plant injury at SynFlux sites in the 608 
United States. See Figure 1 caption.  609 
 610 

 611 
Figure 3. Temporal co-variation of ozone metrics relevant to vegetation health. 612 
Each point represents a single site and year. The site-specific mean has been subtracted from 613 
each metric to highlight temporal co-variability.  614 
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616 
Figure 4. Co-variation of temporal trends in ozone metrics relevant to vegetation health. 617 
Each point represents fitted trends at a single site.  618 
  619 
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Table S1. SynFlux sites used in this work and their O3 trends. All are Tier 1 in 644 
FLUXNET2015. 645 
Site ID PFT1 O3 Trend, % yr–1   Site Name 
  Mean AOT40 W126 POD0  
AT-Neu GRA –1.3 –6.7 –7.8 –1.3 Neustift 
BE-Bra MF –0.4 –6.6 –8.6 3.1 Brasschaat 
BE-Vie MF –1.0 –6.6 –8.6 2.1 Vielsalm 
CH-Cha GRA 0.1 –2.0 –4.9 –6.8 Chamau 
CH-Dav ENF 0.1 –1.7 –4.4 0.8 Davos 
CH-Lae MF 0.0 –1.8 –3.9 0.2 Laegern 
CZ-wet WET –1.2 –6.3 –9.2 –9.5 Trevon (CZECHWET) 
DE-Gri GRA –1.1 –6.3 –8.1 3.0 Grillenburg 
DE-Tha ENF –1.1 –6.3 –8.1 –1.6 Tharandt 
DK-Sor DBF 0.2 –6.7 –3.9 1.1 Soroe 
FI-Hyy ENF –2.3 –4.7 –13.5 3.4 Hyytiala 
FR-Fon DBF –0.4 –6.0 –6.7 5.9 Fontainebleau-Barbeau 
FR-Gri GRA –0.9 –8.6 –8.4 9.9 Grignon 
FR-Pue EBF –0.6 –2.5 –5.2 –0.7 Puechabon 
IT-BCi CRO –0.2 –4.3 –7.2 6.1 Borgo Cioffi 
IT-Co1 DBF 0.4 –4.1 –8.7 –2.5 Collelongo 
IT-Lav ENF 1.0 3.6 0.9 3.2 Lavarone 
IT-MBo GRA 1.8 5.7 2.8 8.7 Monte Bondone 
IT-Noe CSH –1.0 –8.7 –11.6 0.8 Arca di Noe – Le Prigionette 
IT-Ren ENF 0.4 2.9 –1.1 –9.2 Renon 
NL-Loo ENF –0.7 –6.4 –8.4 0.1 Loobos 
RU-Fyo ENF 0.9 6.0 –0.8 1.5 Fyodorovskoye 
US-GLE ENF –0.4 –1.4 –1.7 –7.4 GLEES 
US-MMS DBF –1.2 –6.2 –7.5 –4.1 Morgan Monroe State Forest 
US-Me2 ENF 1.1 –1.1 –4.0 2.0 Metolius mature ponderosa pine 
US-NR1 ENF 0.0 0.4 –1.6 2.0 Niwot Ridge Forest (LTER NWT1) 
US-Ne2 CRO 1.7 9.8 8.6 –3.7 Mead – irrigated maize-soybean rotations site 
US-PFa MF –2.2 –13.5 –11.6 –5.0 Park Falls/WLEF 
US-SRM WSA –0.4 –2.3 –3.6 –4.2 Santa Rita Mesquite 
US-Ton WSA –1.1 –4.8 –7.7 –3.1 Tonzi Ranch 
US-UMB DBF –1.5 –10.5 –10.0 0.6 University of Michigan Biological Station 
US-UMd DBF 0.3 2.0 3.9 –0.6 UMBS Disturbance 

1 Plant functional type. CRO: crop, CSH: closed shrubland, DBF: deciduous broadleaf forest, 646 
EBF: evergreen broadleaf forest, ENF: evergreen needleleaf forest, GRA: grassland, MF: mixed 647 
forest, WET: wetland, WSA: woody savanna. 648 
  649 
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Table S2. Temporal correlation (R2) between O3 flux and concentration metricsa  650 
Metrics Pooledb Site-by-sitec Trendsd  
mean O3 & AOT40  0.83 ± 0.02 0.80 ± 0.05 0.68 −0.11

+0.09 
mean O3 & W126 0.70 ± 0.03 0.72 ± 0.04 0.57 −0.13

+0.11 

AOT40 & W126 0.88 ± 0.01 0.84 ± 0.04 0.90 −0.04
+0.03 

POD0 & mean O3 < 0.01 0.14 ± 0.03 0.05 −0.05
+0.10 

POD0 & AOT40  < 0.01 0.12 ± 0.03 0.03 −0.02
+0.09 

POD0 & W126 < 0.01 0.14 ± 0.03 0.04 −0.04
+0.10  

POD3 & mean O3 < 0.01 0.20 ± 0.04 0.08	78.89:8.;; 

POD3 & AOT40  < 0.01            0.19 ± 0.04  0.06	78.8=:8.;; 

POD3 & W126 < 0.01 0.22 ± 0.04  0.05	78.8?:8.;8 
a Values in table are the coefficients of determination. Underlying metrics are for summer 651 
daytime 2005-2014. 652 
b Correlation of all metric anomalies, which have no mean spatial differences, pooled across sites 653 
and years (n = 299). See also Figures 3, S2. 654 
c Correlation calculated at each site (m = 8-10 years), then the R2 values are averaged across sites 655 
(n = 32). Range is the multi-site standard error. 656 
d Correlation of temporal trends (i.e. regression slopes; n = 32 sites). See also Figures 4, S3. 657 
  658 
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 659 
Figure S1. Time series (2005-2014) of ozone flux and concentration at all sites. Values are 660 
shown as relative deviation from the ten-year mean of each metric at each site (value/mean – 1).  661 
 662 
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663 
Figure S2. Temporal co-variation of POD3 with concentration metrics. As in Figure 3, each 664 
point represents a single site and year. The site-specific mean has been subtracted from each 665 
metric to highlight temporal co-variability. 666 
 667 
 668 

 669 
Figure S3. Co-variation of temporal trends in POD3 and concentration metrics. As in Figure 670 
4, each point represents fitted trends at a single site.  671 
 672 


