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Abstract

Inspired by the unique nonclassical character of two-photon interactions induced by en-

tangled photons, we develop a new comprehensive Förster-type formulation for entangled

two-photon resonance energy transfer (E2P-RET) mediated by inhomogeneous, dispersive

and absorptive media with any space-dependent and frequency-dependent dielectric function

and with any size of donor/acceptor. In our theoretical framework, two uncoupled particles

are jointly excited by the temporally entangled field associated with two virtual photons

that are produced by three-level radiative cascade decay in a donor particle. The temporal

entanglement leads to frequency anticorrelation in the virtual photon’s field, and vanishing of

one of the time-ordered excitation pathways. The underlying mechanism leads to more than

three orders of magnitude enhancement in the E2P-RET rate compared with the uncorre-

lated photon case. With the power of our new formulation, we propose a way to characterize

E2P-RET through an effective rate coefficient KE2P , introduced here. This coefficient shows

how energy transfer can be enhanced or suppressed depending on rate parameters in the

radiative cascade, and by varying the donor-acceptor frequency differences.

1 Introduction

Excitation energy transfer including radiative and non-radiative mechanisms, is a universally

important photophysical process in photoactive systems defined as the relocation of electronic

excitation energy from an optically excited donor to a nearby acceptor. The originally

formulated Förster theory1 can describe RET in various problems and with some changes it

can be utilized in more efficient hybrid systems2–6 as well.

With the design and synthesis of multi-chromophore macromolecules, a new theoretical

framework has been developed for the general case of twin-donor RET7 in the vicinity of an

acceptor,8–11 which is of interest for biomimetic energy conversion. These systems capture
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optical radiation with high efficiency due to the large number of antenna chromophores and

efficient mechanisms for channeling energy to an acceptor core.12

In another direction, with advances in non-classical light sources13–17 and their appli-

cation in exploring new phenomena in multiphoton processes, there has been a rebirth of

interest and extensive attention in nonlinear laser spectroscopy involving entangled photons,

perhaps most prominently in two-photon absorption/emission as fundamental components

of non-classical light-matter interaction. The features of quantum light open up a new era

for discovery of valuable information on relaxation, transport pathways, spectroscopy at ex-

tremely low input photon fluxes,18,19 entanglement-induced two-photon transparency20 and

entangled-photon virtual-state spectroscopy.17,21,22 These fascinating developments cannot

be retrieved from the linear response of the system interacting with the classical form of

the light. Today we have access to a variety of techniques for producing quantum light,23,24

entangled coherent states,25 and E2P states from spontaneous parametric down-conversion

(SPDC)26,27 widely used in quantum information, data encryption28–30 and quantum com-

munication.31,32

In recent experiments21,22,33 utilizing the SPDC technique, the phenomenon of entangled

two-photon absorption (E2PA) interestingly showed linear rather than quadratic dependence

of the absorption rate on excitation intensity which was dominant at low intensity. Indeed,

the non-classical approaches involving two or more entangled photons provide exceptional

efficiency over conventional incoherent light sources. This motivates the present work.

In this paper we seek to understand the underlying mechanism of RET for a system

consisting of a single excited donor and a pair of uncoupled acceptors, with RET involving

an entangled virtual pair of photons. The main goal here is to explore if the quantum state

of light can give us better control/enhancement for the RET rate. This work thus bridges

between the two fields of quantum optics and resonance energy migration in photoactive

materials, and a goal of our analysis is to develop the theory of RET in arbitrary media and

going beyond the electric dipole approximation.
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We assume that the source of entangled photons is a biexciton cascade34–36 that takes

place in a single particle quantum dot (QD). This provides us with a table-top source of

triggered entangled virtual photon pairs, as it can produce no more than two photons per

excitation cycle.34 Indeed, using pulsed excitation, the two emitted photons are ”clocked”

with one appearing shortly after the other.37–40 And the entangled state in this case is both

Figure 1: The schematic generation of a two-photon state from the excited cascade of a
three-level donor system. Initially the system is in excited state |e〉, and through the se-
quential emissions, a photon pair is generated with frequency anti-correlation due to energy
conservation.

correlated in time and anti-correlated in frequency.

In general, for any frequencies ω1 and ω2, if the cross frequency correlation function

satisfies g
(2)
× (r, ω) = 1,41 the bipartite light beam is factorable; otherwise, the light beam

has some frequency correlations between parts. In a bipartite two-photon state with total

energy of ~(ω1 + ω2) = E2p, frequency anti-correlation means that if there is one photon

in the ω1-frequency mode in the first partite, there is a higher probability to find the other

photon in (E2p − ω1)-frequency mode in the second partite. We employ this concept in our

method for the cascade emission from the three level QD source (see Fig. 1) with a small

width γα and a large width γβ. The entangled state which is produced by this emission

process involves a single particle donor.

We assume that RET involves absorption of the two photons by a pair of uncoupled

particles (see Fig. 2) taken to be two-level systems (ground and excited states |gi〉 and |ei〉,
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Figure 2: Schematic of the two-acceptor interacting with E2P-model. There is no interaction
between the two acceptors, and the frequencies of the excited states are ω1, ω2 respectively.
The central frequencies of the two incident beams, ωα and ωβ, are far from resonance with
the single-particle but their sum is almost equal to the sum of the excitation energy of the
acceptors i.e., δ = ωα + ωβ − ω1 − ω2 ≈ 0.

i = 1, 2). Generally the acceptors are not identical with corresponding excitation energies

~ωi, and spontaneous emission rates γi. We assume that the mean excitation time for each

particle is much shorter than the lifetimes of the two excited acceptors so that we can

consider that the two excited states have infinite lifetimes (γ1,2 ≈ 0) and maintain their

excitation forever. Under the rotating-wave approximation the Hamiltonian of the system

can be written as

H = H0 + Vint

= ~ω1b1b
†
1 + ~ω2b2b

†
2 + ~

∑
λ=1,2

∑
l

ωla
λ
l a

λ†
l + Vint

(1)

where bi = |gi〉 〈ei| and the annihilation operators al are time-independent. Here [aλl , a
λ′†
l′ ] =
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δλ,λ′δl,l′ and the interaction potential, Vint is defined as

Vint(t) = −
∑
i

µi(bi + b†i ).
[
E

(+)
i (Ri, t) +E

(+)†
i (Ri, t)

]
(2)

Here µi is the electric dipole transition of acceptor i whileE(+)+E(+)† is the emitted induced

electric field generally written as a mode expansion,12,42 arising from donor at the position

of the acceptor Ri (where donor is placed at rD, the acceptor i is at rAi , and Ri = rAi−rD),

E(+)(Ri, t) = i
∑
λ=1,2

∑
l

ε
(λ)
l â

(λ)
l ei(kl.Ri−ωlt)

(3)

In Eq. 3, ε
(λ)
l =

√
~ωl

2ε0V
e
(λ)
l and the two e

(λ)
l (polarization vectors) are conventional unit

vectors for left and right hand circularly polarized (LCP and RCP) waves, perpendicular to

the wave vector, kl = ωl/c and V is an arbitrary quantization volume. Then the field-matter

interaction involves a coupling term of the form

Ei(ωl) = − i
~
∑
λ=1,2

〈ei|µgei |gi〉 .ε
(λ)
l ei(kl.Ri−ωlt) = Eilei(kl.Ri−ωlt)

(4)

where Eil = −i
√

ωl
2~ε0V

×µgei .e(λ) is a slowly varying function of the virtual photon frequency

transferring energy from donor to the acceptors. For the sake of simplicity, we assume a single

polarization, so the creation/annihilation operators depend only on the frequency a(ωl) = al

and the interaction potential is given by

Vint = ~b†1
∑
l

E1(ωl)al + ~b†2
∑
l

E2(ωl)al +H.c.. (5)

We proceed by defining the initial state of the donor as ρ0 = |φ〉 〈φ| (ρ0;kk′,qq′ = 〈1k, 1q| ρ0 |1k′ , 1q′〉)

and the initial state of the acceptors as |g1g2〉 〈g1g2|. Note that the initial state of the donor

can be defined as the pure two-photon state; |φ〉 =
∑

k,q ηk,q |1k, 1q〉 or a mixed state in its

spectral decomposition form. The characteristics of the whole system are then determined
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by |g1g2〉 〈g1g2| ⊗ ρ0 and a unitary evolution super operator U(t), since we assume the two

acceptors have infinite excited state lifetimes. This informs us about the dynamics of the

system over time using the density matrix of the entire system at any time t denoted by

ρ̃(t) = U(t) |g1g2〉 〈g1g2| ⊗ ρ0.

Generally a pure two-photon state in Hilbert space is represented by

|II, donor〉 =
∑
k,q

η(ωk, ωq) |1 : ωk, α; 1 : ωq, β〉 (6)

The symbol |1k, 1q〉 represents the tensor product |1k〉 ⊗ |1q〉 of two single photon states in

frequency mode ωk(q) of subsystem α(β) with the normalized coefficient of η(ωk, ωq) ≡ ηk,q.

We then define the donor (emitter) as a three-level particle generating a photon pair

through the cascade process (see Fig. 2). In this process, the donor is initially excited at

t = 0 to the top level |e〉 with the energy ~(ωα + ωβ) and width γα. The first photon is

radiated after the transition from |e〉 to the intermediate state |m〉 with the frequency ωα

and a Lorentzian distribution in frequency in which its width is |γα− γβ|. For γα > γβ there

will be some population accumulation, but if γα � γβ, the state |m〉 has a short lifetime

and another photon is quickly emitted. At a given time t, the state after these emissions is

given by43

|II, Cas〉 =
∑
k,q

ηCask,q |1k, α; 1q, β〉

ηCask,q =
N

(ωk − ωα) + i(γα − γβ)

{
1− e−γβt+i(ωq−ωβ)t

ωq − ωβ + iγβ
− 1− e−i(ωα+ωβ−ωk−ωq)t−γαt

−(ωα + ωβ − ωk − ωq) + iγα

} (7)

In the above expression, N is the normalization of the two-photon state defined as N =
2c3
√
γαγβ

V
43,44 associated with the spontaneous emission rate γα(β) =

d2α(β)ω
3
α(β)

6πε0~c3
.43 Here

dα = µem,ωα and dβ = µmg,ωβ corresponds to the transition dipole between |e〉 → |m〉 and

|m〉 → |g〉 respectively.

Note that Eq. 7 indicates that the state of the entangled photons cannot be factorized
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into two separable parts. The first term in the bracket represents the general single photon

emission process and the second term corresponds to the frequency anti-correlated (of the

second) emission. The (anti-)correlation term comes from energy conservation, since the

total energy ~(ωk + ωq) of a photon pair should be close to ~(ωα + ωβ).

Classically, there should be four possible ways of passing the two-photon energy from a

single donor to two acceptors: two pathways corresponding to which photon is absorbed first,

and two pairings corresponding to which acceptor absorbs which photon. Indeed we have

a temporally entangled field from the cascade state with four contributions from the joint

excitation amplitude. However with the entangled input field, a time ordering is imposed

at the emitter and two of the interfering pathways in each acceptor-field pairing have zero

amplitude.45 Later we use the conclusion of this discussion to obtain the correct expression

for the probability transition amplitude of the system with entangled photons.

Given the above expression for the field states, the initial and final states of the system

are described as

|i〉 ∝
∑
k,q

ηk,q |g1g2〉 |1k, 1q〉 ,

|f〉 ∝ |e1e2〉 |0〉 .

(8)

This means both acceptors are initially in the ground state, |g1g2〉, and the field is initially

in a pure two-photon state (or it can be a mixed state)
∑

k,q ηk,q |1k, 1q〉.

From second-order perturbation theory, the state of the acceptor after two interaction

events (at times t1 < t2) is obtained from

U(t) |φ〉 ∝
∑
k,q

ηk,q

∫ t

0

dt2

∫ t2

0

dt1V
I
int(t2)V

I
int(t1) |g1g2〉 |1k, 1q〉 . (9)

The donor-field coupling in the interaction picture, V I
int(t) = eiH0tVint(t)e

−iH0t can be sim-

plified using the Baker-Campbell-Hausdorff formula. The joint-excitation amplitude is then
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given by43,45

M(ω1, ω2, t) = {〈e1e2| 〈0|}U(t) |φ〉 ,

=
∑
k,q

ηk,q 〈e1e2, 0|U(t) |1k, 1q; g1g2〉 ,
(10)

Assuming the interactions between entangled field and two acceptors are weak, the leading

term from the evolution operator Eq. 9 (the second term of Dyson’s series) is presented as

〈e1e2|U (2)(t) |g1g2〉 = e−iH0t/~
∑
k,q

akaqRkq, (11)

Suppose we have a continuous frequency distribution of the emitted field, so that we can

make the replacement
∑

kq ↔ 2
∫

2
∫ ( V

(2πc)3

)2
ω2
kω

2
qdωkdωqdΩkdΩq. Then we arrive at

〈e1e2|U (2)(t) |g1g2〉 =
V 2

π4c6

∫ ∫
dωkdωq

[
ω2
kω

2
qa(ωk)a(ωq)Rkq

]
(12)

The response function of the uncoupled acceptors to the incoming field Rkq is defined as the

product of two individual single-photon single-particle response functions

Rkq = E1(ωk)E2(ωq)e−i(k1.R1+k2.R2)
1− ei(ω1−ωk)t

ωk − ω1

× 1− ei(ω2−ωq)t

ωq − ω2

(13)

If we ignore the propagation length from donor to acceptor by setting z1 ∼ z2 ∼ 0, it

then leads to the approximation Ei(ωl) ≈ Ei(ωi). (Later in this derivation we will include for

the propagation length explicitly.)

Imposing the time ordering t2 > t1, the resulting expression for the total joint-excitation

amplitude becomes45

M(ω1, ω2, t) = Mαβ,12 +Mαβ,21

=
V 2

π4c6

∫ ∫
dωkdωq

[
ω2
kω

2
qa(ωk)a(ωq)Rkq

]
(ηkq + ηqk)

(14)

8



where Mαβ,12 is defined as the probability amplitude that acceptor 1 interacts with virtual

photon α first (at time t1), and acceptor 2 absorbs virtual photon β after that (at time

t2). This time-ordered excitation amplitude is closely related to the two-photon correlation

amplitude.

Furthermore, the time dependent two-photon excitation probability due to quantum en-

tanglement is defined as the projection (measurement) of the density matrix of the whole

system at any time t; ρ̃ = U |g1g2〉 〈g1g2| ⊗ ρ0 onto |e1e2〉 〈e1e2|,

P = Tr 〈e1e2| ρ̃ |e1e2〉 = Tr 〈e1e2| (U |g1g2〉 〈g1g2| ρ0) |e1e2〉 = |M(ω1, ω2, t)|2 (15)

The ”Tr” stands for the trace operation over the field variable. Substituting the response

function Eq. 13, into Eq. 14, and employing the residue theorem to integrate over the fre-

quencies ωk and ωq, the total transition probability amplitude can be determined (more

details in SI). However for two-photon cascade state introduced in Eq. 7, if γα � γβ the

decaying terms related to e−γβt vanish at a short time t ∼ γ−1β and the only remaining term

at longer time is

|II, Cas〉 ≈ N
(ωk − ωα) + i(γα − γβ)

{
1− e−i(ωα+ωβ−ωk−ωq)t−γαt

(ωα + ωβ − ωk − ωq)− iγα

}
(16)

Using Eq. 13 and Eq. 14 and some rearrangement, the transition probability amplitude reads

as follows

MCas(ω1, ω2, t) = −Λ
( 1

ωα1 + i(γβ − γα)
+

1

ωα2 + i(γβ − γα)

){1− e−(γα+iδ)t

δ − iγα

}
≈ −Λ

( 1

ωα1 + iγβ
+

1

ωα2 + iγβ

){1− e−(γα+iδ)t

δ − iγα

} (17)

where Λ = N 4V 2

π2c6
ω2
1ω

2
2E1(ω1)E2(ω2) =

8V
√
γαγβ

π2c3
ω2
1ω

2
2E1(ω1)E2(ω2) and ωij = ωi − ωj. The

detuning for two-entangled virtual photon absorption where none of the two photons are

in resonance with the two acceptors is defined by δ = ωα + ωβ − ω1 − ω2. Note that in
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the resonance condition the sum of their two energies almost matches the sum of the two

acceptor’s excitation energies; ωα +ωβ ∼ ω1 +ω2 (i.e. δ ≈ 0). It then follows from the above

expression that the transition probability is given by

PCas(t) = |MCas(ω1, ω2, t)|2 = |Λ|2
(ωα1 + ωα2)

2 + 4γ2β
(ω2

α1 + γ2β)(ω2
α2 + γ2β)

∣∣∣1− e−(γα+iδ)t
δ − iγα

∣∣∣2 (18)

In the case where γα � δ, Eq. 18 is recast as

PCas(t) = |Λ|2
(ωα1 + ωα2)

2 + 4γ2β
(ω2

α1 + γ2β)(ω2
α2 + γ2β)

× sin2(Eδt/2~)

(Eδ/2~)2
γα � δ (19)

where Eδ = Eωα+ωβ − Eω1+ω2 = ~δ. The above expression shows how the transition

probability varies with line-shape parameter δ and time. At large enough time τ (τ ≥

2π~/Eδ), the total probability of transition is a linear function of time and using Fermi’s

Golden rule accordingly (more details in SI), we can determine the rate as

WCas
τ = lim

τ→∞

PCas(τ)

τ
= 2π~

(ωα1 + ωα2)
2 + 4γ2β

(ω2
α1 + γ2β)(ω2

α2 + γ2β)
|Λ|2 × δ(Eδ)

WCas
τ = KE2P |E1(ω1)E2(ω2)|2δ(Eδ)

(20)

Note that δ(E) stands for the Dirac delta function in this formula, and is not to be

confused with the line-shape parameter defined above. The E2P coefficient, KE2P , is defined

as:

KE2P =
128~V 2

π3c6
× ω2

1ω
2
2 × γαγβ ×

(ωα1 + ωα2)
2 + 4γ2β

(ω2
α1 + γ2β)(ω2

α2 + γ2β)
γα � δ (21)

The above expression for the energy transfer rate is one of the main accomplishments of

this work. This shows that the rate of the E2P-RET process functions in many respects like

the usual one-photon RET rate (see also Eq. 20). In particular, we see that the rate depends

on the product of decay rates γβγα, which is related to the rate at which the two photons are
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emitted. Also, in the limit where ωα1 and ωα2 are much greater than γβ we see an inverse

dependence on these frequency differences. This inverse dependence means inhibition of the

rate as the transitions are detuned from resonance, as makes sense. Finally note that the

volume-dependent terms cancel in the overall rate expression, as is physically required. A

discussion of what it means to take the time t long enough compared with the lifetime of

the two transitions, t� γ−1β ,γ−1α can be found in the SI.

RET rate calculations for separated two photons (S2P) may exemplify further details on

the features and benefits of using E2P. If we follow the same procedure as above, we are

able to derive the same type of expression for the RET rate with two separated photon wave

packets of mean frequencies ωα and ωβ, and the corresponding spectral widths γα and γβ. For

two identical acceptors (ω1,2 ≈ ω0), the resulting expression for S2P-transition probability

(See SI for more details) is

P11(ω0, t) = |M11(ω0, t)|2 ≈ |Λ|2 ×
∣∣∣1− e−γαt−iωα0t−ωα0 + iγα

× 1− e−γβt−iωβ0t

−ωβ0 + iγβ

∣∣∣2 (22)

We numerically calculated the S2P-RET rate in the resonance condition and plotted the

result in order to compare with the corresponding E2P-RET rate based on Eq. 18 (see Fig. 3).

We performed our calculations using parameters in the same range as polarization-entangled

photon pairs from the biexciton cascade of a single InAs QD embedded in a GaAs/AlAs

planar microcavity.46,47 In those experiments the pair entangled photon emissions occur at

1.398 eV and 1.42 eV. The graphs in Fig. 3 show us that the rate from E2P-RET is in general

more than three orders of magnitude higher than the rate from S2P-RET. According to the

E2P rate graph, the rate has a strong inverse dependence on both γβ and ωα0 when ωα0 is

close to zero. However by increasing the detuning excitation energy ωα0, γβ can effectively

control the rate. On the other hand the S2P-RET rate is weakly dependent on γβ for a wide

range of ωα0 values. These differences arise from the quite different denominators in Eq. 18

and the corresponding equation for S2P-RET (see Eq. S15).
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Figure 3: Contour-plot of rate for E2P-RET(left) and S2P-RET(right) for identical acceptors
in resonance condition. In this set of calculations γα = 0.005 eV and 0.05 < γβ < 0.35 eV,
and ωα0 = δ − ωβ0.

Note that in the case of S2P-RET, the transition probability is not an explicit function

of the two-photon two acceptor detuning δ = ωα + ωβ − ω1 − ω2, while it is for E2P-RET.

This plays an important role in determining the differences between E2P-RET and S2P-

RET, and it reflects the crucial influence of the frequency anticorrelation that is built into

entanglement.

In Eq. 13 and thereafter, we ignored the propagation length in our derivation. However,

in principal the distance dependence of RET in the dipole approximation regime, is contained

in matrix elements of the electric dipole-dipole coupling tensor,
←→
Θ (ω, , rD, rAi)

42,48 that is

hidden in the ”Λ ” coefficient of Eq. 17.

Recalling that µem,ωα(rD), µmg,ωβ(rD) and µge(rAi) are transition dipoles of the donor and

acceptors respectively, we revise the transition amplitude Eq. 17 to a more comprehensive

expression for E2P-RET,

MCas(ω1, ω2, t) = N 4V 2

π2c6
ω2
1ω

2
2

[
µem,ωα(rD)

←→
Θ (ωα, rD, rA1)µ

ge,ω1(rA1)
]

[
µmg,ωβ(rD)

←→
Θ (ωβ, rD, rA2)µ

ge,ω2(rA2)
]
×
( 1

ωα1 + iγβ
+

1

ωα2 + iγβ

){1− e−(γα+iδ)t

δ − iγα

}(23)

Although the distance and orientation dependence of the energy transfer rate are nicely
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included in the above equation, the time-domain electrodynamics (TED)-RET formula-

tion49,50 is more convenient for a wide spectrum of applications in inhomogeneous absorbing

and dispersive media. Employing this scheme in the dipole approximation, the transition

amplitude can be formulated based on the induced field emerging from donor at the position

of the two acceptors,51

MCas(ω1, ω2, t) = N 4V 2

π2c6
ω2
1ω

2
2

[
µem,ωα(rD)µge,ω1(rA1)

eA1 .E
D(rA1 , ωα)

pex(ωα)

]
[
µmg,ωβ(rD)µge,ω2(rA2)

eA2 .E
D(rA2 , ωβ)

pex(ωβ)

]
×
( 1

ωα1 + iγβ
+

1

ωα2 + iγβ

){1− e−(γα+iδ)t

δ − iγα

} (24)

Here, ED(rAi , ωα(β)) (i=1,2) is the induced electric field mode with angular frequency

ωα(β) and unit polarization vector eAi and at the position of acceptor rAi . We proceed by

using the above concept to obtain a general expression for the E2P-RET rate in a manner

similar to Eq. 20;

WCas
τ = KE2P |Π|2

∣∣∣eA1 .E
D(rA1 , ωα)

pex(ωα)

eA2 .E
D(rA2 , ωβ)

pex(ωβ)

∣∣∣2δ(Eδ) (25)

where Π = µem,ωαµge,ω1µmg,ωβµge,ω2 . The above expression is another major accomplishment

in this work which shows a fourth power dependence (compared with single photon energy

transfer) of the rate on the induced electric fields by the donor. This expression allows us

to calculate the enhanced E2P-RET rate in arbitrary media, which is more convenient for

practical implementation. We also note that the dependence of the energy transfer rate on

polarization properties of the donor and acceptors in included in this formula.

In a regime where the size of the donor and acceptor are as big as the distance between

them, we should go beyond the point dipole approximation by including the effect of higher

order multipoles. In that case, the E2P-RET rate is calculated according to the total induced
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field in the system (more details in SI) using the following expression,

WCas
τ = KE2P

∣∣∣ETotal(rA1 , rD, ωα)
∣∣∣2 ∣∣∣ETotal(rA2 , rD, ωβ)

∣∣∣2δ(Eδ) (26)

The proposed theory provides a framework for simulation that has significant computational

advantages compared to calculating the coupling factor utilizing dyadic Greens functions.

In conclusion, we developed a new theory for the resonance energy transfer between a

donor and a pair of uncoupled acceptor particles via entangled photons. The underlying

mechanism is uncovered through the joint excitation of acceptors using a temporally entan-

gled field. The calculated result shows more than a three order of magnitude enhancement in

the E2P-RET rate compared with the S2P case for parameters that are relevant to biexciton

sources. Empowered with the quantum description of light, our theory provides a way to

control the E2P-RET phenomena through the effective coefficient KE2P . This coefficient

emphasizes the importance of the emission rate parameters of the donor and there was also

an important effect arising from detuning of the emitted photons energy relative to the ex-

citation energies of the acceptors. Furthermore we have extended our theory to include for

the effect of donor-acceptor separation, and the influence of inhomogeneous, dispersive and

absorptive materials with any space-dependent, frequency-dependent dielectric function and

with any size of donor and acceptor.

Since SPDC is a very common method for producing entangled photons in experimental

studies, it will also be important to examine energy transfer associated with SPDC sources

and comparing it with the cascade source of the present study. The theoretical results of this

work will lead the way to a new platform for exploring exciton and biexciton transport in cou-

pled plasmonic-semiconductor nanostructures, with potential applications in spectroscopy,

nanophotonics devices, biosensing and quantum information.
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2 Supporting Information

Details of theoretical derivations can be found here.
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General RET Rate Calculation

The total transition probability amplitude using Eq.15 in main text reads as follows

MCas(ω1, ω2, t) = N 4V 2

π2c6
ω2
1ω

2
2

E1(ω1)E2(ω2)

(ωβ2 − δ)− i(γβ − γα)

{
1− e−(γβ+iωβ2)t

ωβ2 − iγβ
− 1− e−(γα+iδ)t

δ − iγα

}
+ (1↔ 2)(S1)

For two identical acceptors (ω1 = ω2 = ω0), the total transition probability is therefore

PCas(t) =
4|Λ|2

(ωβ0 − δ)2 + (γβ − γα)2

∣∣∣∣∣1− e−(γβ+iωβ0)tωβ0 − iγβ
− 1− e−(γα+iδ)t

δ − iγα

∣∣∣∣∣
2

(S2)

where Λ = N 4V 2

π2c6
ω2
1ω

2
2E1(ω1)E2(ω2) . If the resonance condition (δ ∼ 0) is met, the transition

probability simplifies to

PResCas(t) ≈ |Λ|2
{
e−γβtsin2(ωβ0t/2)

(ω2
β0 + γ2β)2/4

+
1

(ω2
β0 + γ2β)

∣∣∣∣ 1− e−γβtωβ0 − iγβ
+

1− e−γαt

iγα

∣∣∣∣2
}

(S3)

Although the above expression gives us some insight on the characteristic properties of

time-dependent transition probability and associated parameters, it is a very complicated

expression if we wish to calculate the rate of energy transfer initiated by entangled photons.

Using concepts that arise in deriving Fermi’s Golden rule, a general formula for determining
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the RET rate can be developed in the limit of large τ and δ → 0,

Wτ = lim
τ→∞

PCas(τ)

τ
(S4)

where Eδ = Eωα+ωβ − Eω1+ω2 = ~δ. In the main text with some assumptions, we give an

analytical expression for the RET rate that results from this analysis.

For the two-photon cascade state introduced in the main text, if γα � γβ the decaying

terms related to e−γβt vanish at short time t ∼ γ−1β , and if the spectral width γα is much

smaller than the two-photon two-acceptor’s detuning δ, the transition probability is recast

as

PCas(t) = |Λ|2
(ωα1 + ωα2)

2 + 4γ2β
(ω2

α1 + γ2β)(ω2
α2 + γ2β)

× sin2(δt/2)

(δ/2)2

= |Λ|2
(ωα1 + ωα2)

2 + 4γ2β
(ω2

α1 + γ2β)(ω2
α2 + γ2β)

× sin2(Eδt/2~)

(Eδ/2~)2
γα � δ

(S5)

Rearranging Eq. S5, we see for large enough t = τ and in the resonance condition δ ∼ 0,

F (0)→∞ which means F behaves a like a delta function.

F (Eδ) =
sin2(Eδτ/2~)

τ(Eδ/2~)2
= |Λ|−2

(ω2
α1 + γ2β)(ω2

α2 + γ2β)

(ωα1 + ωα2)2 + 4γ2β
× PCas(τ)

τ
(S6)

has the property that

∫ +∞

−∞
F (Eδ)dEδ = 2π~ (S7)

From this it follows that

lim
τ→∞

F (Eδ) = 2π~δ(Eδ) (S8)

Thus in this limit, the total probability of transition is a linear function of time and using

S23



Fermi’s Golden rule accordingly, we can determine the rate as

Wτ = lim
τ→∞

PCas(τ)

τ
= 2π~

(ωα1 + ωα2)
2 + 4γ2β

(ω2
α1 + γ2β)(ω2

α2 + γ2β)
|Λ|2 × δ(Eδ) (S9)

Very Long Time Transition Probability and Rate

For time t long compared to the lifetime of the two transitions, t� γ−1β ,γ−1α , the two-photon

wave-packet given by Eq.7 in the main text is time-independent.43,52,53 However, there still

exist significant anti-correlations between the emitted fields. As we mentioned earlier, in

order to produce a two-entangled photon wavepacket, the excited state’s life time should be

much longer than the spontaneous emission rates of the intermediate state |m〉; i.e. γβ � γα.

This leads to the second emission occurring soon after the first one, leading to following state

of light,

|II, Cas〉t→∞ =
∑
k,q

N
[−(ωα + ωβ − ωk − ωq) + iγα](ωq − ωβ + iγβ)

|1k, 1q〉 (S10)

Using the above expression for the quantum state of light and in the same manner as discussed

in the main text, we can obtain the time-independent transition amplitude and the total

transition probability as

Mt→∞(ω1, ω2) = −N 4V 2

π2c6
ω2
1ω

2
2

E1(ω1)E2(ω2)

δ − iγα

{
1

ωβ2 − iγβ
+

1

ωβ1 − iγβ

}
Pt→∞ = |M(ω1, ω2)|2 =

|Λ|2

(δ2 + γ2α)
×

(ωβ1 + ωβ2)
2 + 4γ2β

(ω2
β1 + γ2β)(ω2

β2 + γ2β)

(S11)

When the resonance condition is satisfied (δ ∼ 0), the transition probability is then given by

PResCas ≈ ≈ 1

2π~γα
KE2P × |E1(ω1)E2(ω2)|2 γαt, γβt� 1 (S12)
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It should be noted that the Fermi’s golden rule is valid when the initial state has not been

significantly depleted by transferring into the final states. This is related to the population

accumulation of the final state, and in the large time limit it leads to a finite probability for

populating the excited states of the acceptors. It therefore makes sense that the probability

in Eq. S12 involves the same dependence on donor/acceptor frequency differences as the rate

coefficient in Eq. 21 (in main text).

S2P-transition Probability

Calculating the RET rate for two separated photons can give us more insight into the features

and benefits of using E2P. If we follow the same procedure as above, we are able to derive

the same type of expression for the RET rate with two separated photon wave packets of

mean frequencies ωα and ωβ, and the corresponding spectral widths γα and γβ. In this case

neither of the two photons are in resonance with the two acceptors but again the sum of their

two energies almost matches the sum of the emitted energy from donors; ωα +ωβ ∼= ω1 +ω2.

Here we compare the rate of E2P-RET with two virtual photons passing energy to two

non-interacting acceptors. We assume that the two separate events happen almost at the

same time but otherwise there is no correlation between the two-photons. This should not

be mistaken with two-photon energy transfer by a pair of donors and acceptors, i.e. this is

not comparable with the two-photon absorption/emission process.8–11 However each photon

has a chance to interact with either acceptor 1 or 2 in our derivation. We assume the donor

particle that has two different excited states, emitting two unentangled photons followed by

absorption via two acceptors. The near-simultaneous arrival of the two unentangled photons

is not crucial in this derivation since we also assume that the acceptors have infinite lifetime.

(Note: if we include for decay of the acceptors into the account then these two events need

to occur very close in time as otherwise by the time a photon is received by the second

acceptor, the first acceptor can be depleted.)
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To construct nonentangled photons with the same mean energy and the same single

photon spectrum, we define the state of the system as two quasimonochromatic uncorrelated

photons emitted by two uncorrelated particles excited at the same time earlier and arriving

at the acceptor’s location at t = 0 as44

∣∣Ψ11
〉

=
∑
k

gα(ωk)

{
1− e−γαt−i(ωα−ωk)t

ωk − ωα + iγα

}
|1k〉 ⊗

∑
q

gβ(ωq)

{
1− e−γβt−i(ωβ−ωq)t

ωq − ωβ + iγβ

}
|1q〉 (S13)

where gα(β)(ωk(q)) = µα(β)

√
ωk(q)

2~ε0V
and µα(β) is the transition dipole moment of each particle.

We also have the option of choosing one of two special cases that will allow for a quantitative

evaluation of the role of correlations: the donor emits correlated but separable photons with

the density matrix: ρ1 =
∑

k,q ρ0;kk,qq |1k, 1q〉 |1k, 1q〉 or we have a fully factorized state with

ρ2 =
(∑

k,q′ ρ0;k,q′ |1k〉 |1k〉
)
⊗
(∑

k′,q ρ0;k′,q |1q〉 |1q〉
)

.54

Based on Eq. S13 the probability amplitude can be determined through

M11(ω1, ω2, t) = Λ

{
1− e−γαt−iωα1t

−ωα1 + iγα
× 1− e−γβt−iωβ2t

−ωβ2 + iγβ
+ 1↔ 2

}
(S14)

And for two identical acceptors (ω1,2 ≈ ω0), we can simplify the transition probability

equation as

P11(ω0, t) = |M11(ω0, t)|2 ≈ |Λ|2 ×
∣∣∣1− e−γαt−iωα0t−ωα0 + iγα

× 1− e−γβt−iωβ0t

−ωβ0 + iγβ

∣∣∣2 (S15)

Distance-dependence of E2P-RET Process

In the first part of the derivation in the main text, we ignored the propagation length.

However, in principal the distance dependence in RET in the dipole approximation regime

comes from matrix elements of the electric dipole-dipole coupling tensor,
←→
Θ (ω, , rD, rAi)

42,48

hidden in the ”Λ ” coefficient in Eq. 17 in main text.
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Generally,
←→
Θ (ω, rD, rA) in vacuum is defined as

←→
Θ (ω, rD, rA) =

ω3eiωR/c

4πε0c3

{
(δmn − 3eRmeRn)

( c3

ω3R3
− ic2

ω2R2

)
− (δmn − eRmeRn)

c

ωR

}
(S16)

where R = |R| = |rA − rD| is the amplitude of the spatial displacement vector between the

donor and the acceptor, eRi stands for the ith component of the unit vector of R (eR = R/R)

and δ denotes the Kronecker delta.

Setting µem,ωα(rD), µmg,ωβ(rD) and µge(rAi) as the transition dipoles of the donor during

the cascade process and also of the acceptors respectively, we revise the transition amplitude

to a more comprehensive expression when the process involves E2P,

MCas(ω1, ω2, t) = N 4V 2

π2c6
ω2
1ω

2
2

[
µem,ωα(rD)

←→
Θ (ωα, rD, rA1)µ

ge,ω1(rA1)
]

[
µmg,ωβ(rD)

←→
Θ (ωβ, rD, rA2)µ

ge,ω2(rA2)
]

×
{

1

ωβ2 − δ − i(γβ − γα)

(1− e−(γβ+iωβ2)t

ωβ2 − iγβ
− 1− e−(γα+iδ)t

δ − iγα

)
+ (1↔ 2)

}(S17)

The superscripts e,m and g represent the excited, intermediate, and ground states respec-

tively.

Although the distance and orientation dependence are nicely included in the above equa-

tion, it is more convenient and more general to use the time-domain electrodynamics res-

onance energy transfer (TED-RET) formulation49,50 which enables a wide spectrum of ap-

plications, particularly in inhomogeneous absorbing and dispersive media using a real-time

electrodynamics approach. In this scheme the donor is assumed to be a single radiating par-

ticle positioned at rD whose size is much smaller than the distance between the donor and

the acceptor. Thus we employ the point-dipole approximation; Pex(r, t) = pex(t)δ(r− rD),

in which the external polarization Pex generated by the donor in a dielectric medium is

defined by pex(t) (or its temporal Fourier transform pex(ω)). Furthermore, the transition

matrix element at angular frequency ω, is calculated from the electric field ED(rA) at the
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position of the acceptor (rA) originating from the donor as follows

M(rD, rA, ω) = µeg(rD)
←→
Θ (rD, rA, ω)µge(rA) = −µeg(rA)µge(rD)

eA.E
D(rA, ω)

pex(ω)
(S18)

Employing the above equation, the magnitude of transition dipole of the donor (acceptors)

and pex(ω) can be obtained via computational electromagnetic software based on the FDTD

method. The normalization factor pex(ω) is the amplitude in the frequency domain of the

Hertzian dipole pex. Dividing by this factor and then multiplying by µge(rD), one obtains

the correct field strength generated by the donor.

Plugging the right hand side of Eq. S18 in Eq. S17, the transition amplitude can be

calculated based on the induced field from donor at the position of the two acceptors,51

MCas(ω1, ω2, t) = N 4V 2

π2c6
ω2
1ω

2
2

[
µem,ωα(rD)µge,ω1(rA1)

eA1 .E
D(rA1 , ωα)

pex(ωα)

]
[
µmg,ωβ(rD)µge,ω2(rA2)

eA2 .E
D(rA2 , ωβ)

pex(ωβ)

]
×
{

1

ωβ2 − δ − i(γβ − γα)

(1− e−(γβ+iωβ2)t

ωβ2 − iγβ
− 1− e−(γα+iδ)t

δ − iγα

)
+ (1↔ 2)

}(S19)

Here, ED(rAi , ωα/β) (i=1,2) is the induced electric field mode with angular frequency ωα/β

and unit polarization vector eAi and at the position of acceptor rAi . The dipole moments

µge,ωi(rAi) represent an average over random orientations.51 If we just follow the steps that

we used to obtain Eq. S9, the general expression for the rate of resonance energy transfer is

given by

WCas
τ = KE2P |Π|2

∣∣∣eA1 .E
D(rA1 , ωα)

pex(ωα)

eA2 .E
D(rA2 , ωβ)

pex(ωβ)

∣∣∣2δ(Eδ) (S20)

where Π = µem,ωαµge,ω1µmg,ωβµge,ω2 .

When the optical transition in donor and/or acceptor is dipole forbidden, or the size

of the donor and/or the acceptor is comparable with distance between them, the dipole
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approximation is not valid anymore and the effect of higher order multipoles needs to be

included. In that case, the total electric field in the system is the sum of the E-field of

the electric dipole (EED), the E-field of the magnetic dipole (EMD), and the E-field of

the electric quadrupole (EEQ), while the total magnetic field is the sum of the M-field of

the electric dipole (BED), the M-field of the magnetic dipole (BMD), and the M-field of

the electric quadrupole (BEQ). Including for these effects, the transition matrix elements

for RET in terms of interactions between acceptor transition multipoles (electric dipole µ,

magnetic dipole m, and electric quadrupole
←→
Q ) and the corresponding electromagnetic fields

generated by the donor transition multipoles are given by:55

ETotal(rA, rD, ω) = Ee(rA, rD, ω) + Em(rA, rD, ω) + Eq(rA, rD, ω), (S21a)

Ee(rA, rD, ω) = −µegA e
µ
A ·
[
µgeD
p(ω)

EED +
mge
D

m(ω)
EMD +

qgeD
q(ω)

EEQ

]
, (S21b)

Em(rA, rD, ω) = −meg
A e

m
A ·
[
µgeD
p(ω)

BED +
mge
D

m(ω)
BMD +

qgeD
q(ω)

BEQ

]
, (S21c)

Eq(rA, rD, ω) = −qegA
←→e q

A :

[
µgeD
p(ω)
∇EED +

mge
D

m(ω)
∇EMD +

qgeD
q(ω)
∇EEQ

]
, (S21d)

where p(ω), m(ω) and q(ω) are the amplitude of the physical multipoles used to calculate

the fields generated by the electric dipole (p), magnetic dipole (m) and electric quadrupole

(
←→
Q ), respectively. These normalization factors ensure that the fields have the correct mag-

nitudes corresponding to the donor transition multipole moments, as well as to signify the

approximation of transition multipoles by physical multipoles. Eq. S21 facilitates the study

of resonance energy transfer in inhomogeneous, absorbing, and dispersive media for the cases

where the sizes of the donor and the acceptor are comparable to the distance between them.

Utilizing Eq. S21 the generalized form of the RET rate is calculated using the following

expression,

WCas
τ = KE2P

∣∣∣ETotal(rA1 , rD, ωα)
∣∣∣2 ∣∣∣ETotal(rA2 , rD, ωβ)

∣∣∣2δ(Eδ) (S22)

S29



The proposed theory provides a framework for simulation that has significant computational

advantages compared to calculating the coupling factor utilizing dyadic Greens functions.
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