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Abstract

Inspired by the unique nonclassical character of two-photon interactions induced by en-
tangled photons, we develop a new comprehensive Forster-type formulation for entangled
two-photon resonance energy transfer (E2P-RET) mediated by inhomogeneous, dispersive
and absorptive media with any space-dependent and frequency-dependent dielectric function
and with any size of donor/acceptor. In our theoretical framework, two uncoupled particles
are jointly excited by the temporally entangled field associated with two virtual photons
that are produced by three-level radiative cascade decay in a donor particle. The temporal
entanglement leads to frequency anticorrelation in the virtual photon’s field, and vanishing of
one of the time-ordered excitation pathways. The underlying mechanism leads to more than
three orders of magnitude enhancement in the E2P-RET rate compared with the uncorre-
lated photon case. With the power of our new formulation, we propose a way to characterize
E2P-RET through an effective rate coefficient Kgop, introduced here. This coefficient shows
how energy transfer can be enhanced or suppressed depending on rate parameters in the

radiative cascade, and by varying the donor-acceptor frequency differences.

1 Introduction

Excitation energy transfer including radiative and non-radiative mechanisms, is a universally
important photophysical process in photoactive systems defined as the relocation of electronic
excitation energy from an optically excited donor to a nearby acceptor. The originally
formulated Forster theory! can describe RET in various problems and with some changes it

6 as well.

can be utilized in more efficient hybrid systems?"
With the design and synthesis of multi-chromophore macromolecules, a new theoretical
framework has been developed for the general case of twin-donor RET7 in the vicinity of an

acceptor,® ! which is of interest for biomimetic energy conversion. These systems capture



optical radiation with high efficiency due to the large number of antenna chromophores and
efficient mechanisms for channeling energy to an acceptor core.!?

13117 and their appli-

In another direction, with advances in non-classical light sources
cation in exploring new phenomena in multiphoton processes, there has been a rebirth of
interest and extensive attention in nonlinear laser spectroscopy involving entangled photons,
perhaps most prominently in two-photon absorption/emission as fundamental components
of non-classical light-matter interaction. The features of quantum light open up a new era
for discovery of valuable information on relaxation, transport pathways, spectroscopy at ex-

1819 entanglement-induced two-photon transparency?’ and

tremely low input photon fluxes,
entangled-photon virtual-state spectroscopy.!”?1?2 These fascinating developments cannot
be retrieved from the linear response of the system interacting with the classical form of
the light. Today we have access to a variety of techniques for producing quantum light, 2324
entangled coherent states,?> and E2P states from spontaneous parametric down-conversion

28-30

(SPDC) 2527 widely used in quantum information, data encryption and quantum com-

munication. 3132

In recent experiments?!:22:33

utilizing the SPDC technique, the phenomenon of entangled
two-photon absorption (E2PA) interestingly showed linear rather than quadratic dependence
of the absorption rate on excitation intensity which was dominant at low intensity. Indeed,
the non-classical approaches involving two or more entangled photons provide exceptional
efficiency over conventional incoherent light sources. This motivates the present work.

In this paper we seek to understand the underlying mechanism of RET for a system
consisting of a single excited donor and a pair of uncoupled acceptors, with RET involving
an entangled virtual pair of photons. The main goal here is to explore if the quantum state
of light can give us better control/enhancement for the RET rate. This work thus bridges
between the two fields of quantum optics and resonance energy migration in photoactive

materials, and a goal of our analysis is to develop the theory of RET in arbitrary media and

going beyond the electric dipole approximation.



We assume that the source of entangled photons is a biexciton cascade3* 36 that takes
place in a single particle quantum dot (QD). This provides us with a table-top source of
triggered entangled virtual photon pairs, as it can produce no more than two photons per
excitation cycle.?* Indeed, using pulsed excitation, the two emitted photons are ”clocked”

with one appearing shortly after the other.3”%° And the entangled state in this case is both

le e k
o rateion) . NP

Figure 1: The schematic generation of a two-photon state from the excited cascade of a
three-level donor system. Initially the system is in excited state |e), and through the se-
quential emissions, a photon pair is generated with frequency anti-correlation due to energy
conservation.

correlated in time and anti-correlated in frequency.

In general, for any frequencies w; and ws, if the cross frequency correlation function
satisfies g(f)(r,w) = 1, the bipartite light beam is factorable; otherwise, the light beam
has some frequency correlations between parts. In a bipartite two-photon state with total
energy of h(wy + we) = Ey,, frequency anti-correlation means that if there is one photon
in the wi-frequency mode in the first partite, there is a higher probability to find the other
photon in (Ej, — w)-frequency mode in the second partite. We employ this concept in our
method for the cascade emission from the three level QD source (see Fig. 1) with a small
width «, and a large width 5. The entangled state which is produced by this emission
process involves a single particle donor.

We assume that RET involves absorption of the two photons by a pair of uncoupled

particles (see Fig. 2) taken to be two-level systems (ground and excited states |g;) and |e;),
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Figure 2: Schematic of the two-acceptor interacting with E2P-model. There is no interaction
between the two acceptors, and the frequencies of the excited states are wy, wy respectively.
The central frequencies of the two incident beams, w, and wg, are far from resonance with
the single-particle but their sum is almost equal to the sum of the excitation energy of the
acceptors i.e., § = wy + wg — w; —ws = 0.

i = 1,2). Generally the acceptors are not identical with corresponding excitation energies
hw;, and spontaneous emission rates ;. We assume that the mean excitation time for each
particle is much shorter than the lifetimes of the two excited acceptors so that we can
consider that the two excited states have infinite lifetimes (7,2 ~ 0) and maintain their
excitation forever. Under the rotating-wave approximation the Hamiltonian of the system

can be written as

H = Ho+ Vipt

= hwibib] + hwsbobh + 1 > Y " wiata) + Vi

A=12 1

where b; = |g;) (e;| and the annihilation operators a; are time-independent. Here [a}, al’\,,T] =



dxn 0y and the interaction potential, Vi, is defined as
Vit Zuz o) [ B (R0 + B (R 0) (2)

Here p; is the electric dipole transition of acceptor i while E) 4+ E(1 is the emitted induced

12,42

electric field generally written as a mode expansion, arising from donor at the position

of the acceptor R; (where donor is placed at rp, the acceptor i is at ra,, and R; =r4, —rp),

EDR;,t) =i Z Zel d ik Ri—wit) (3)

A=1,2

hw
In Eq. 3, e = L e™ and the two e™ (polarization vectors) are conventional unit
! 2€0V ! !

vectors for left and right hand circularly polarized (LCP and RCP) waves, perpendicular to

the wave vector, k; = w;/c and V' is an arbitrary quantization volume. Then the field-matter

interaction involves a coupling term of the form

- _ ! 1198 12N N ik Ri—wit) _ e i(k; Ri—wyt)
gz(wl) - A Z <61|:U’i |gz> € € : = Szle ! ! (4)
A=1,2
w
where & = —i L« p,fe.e()‘) is a slowly varying function of the virtual photon frequency

2h€ov

transferring energy from donor to the acceptors. For the sake of simplicity, we assume a single
polarization, so the creation/annihilation operators depend only on the frequency a(w;) =

and the interaction potential is given by
‘/z‘nt = hbj{ Z 51 (wl)al + hb; Z Eg(wl)al + H.c.. (5)
l !

We proceed by defining the initial state of the donor as py = |¢) (@] (Pokk’ q¢ = (L, 14| po |1, 1g7))
and the initial state of the acceptors as |g1g2) (g1g2|. Note that the initial state of the donor
can be defined as the pure two-photon state; |¢) = >, 74 |1k, 14) or a mixed state in its

spectral decomposition form. The characteristics of the whole system are then determined



by [9192) {(g192] ® po and a unitary evolution super operator U(t), since we assume the two
acceptors have infinite excited state lifetimes. This informs us about the dynamics of the
system over time using the density matrix of the entire system at any time ¢ denoted by

pt) =U(t)|9192) (9192] ® po-

Generally a pure two-photon state in Hilbert space is represented by

|I1,donor) = Zr](wk,wq) 11w, ;1 wy, 5) (6)
k,q

The symbol |14, 1,) represents the tensor product |1x) ® |1,) of two single photon states in
frequency mode wy(q) of subsystem «(/3) with the normalized coefficient of n(wk, wy) = Mg
We then define the donor (emitter) as a three-level particle generating a photon pair
through the cascade process (see Fig. 2). In this process, the donor is initially excited at
t = 0 to the top level |e) with the energy h(w, + wg) and width ~,. The first photon is
radiated after the transition from |e) to the intermediate state |m) with the frequency w,
and a Lorentzian distribution in frequency in which its width is |y, —ys|. For 7, > v there
will be some population accumulation, but if 7, < 73, the state |m) has a short lifetime
and another photon is quickly emitted. At a given time ¢, the state after these emissions is

given by*3

|I1,Cas) = Z Mo |1k, i 1g, 8)
k,
g (7)

Cas N {1 . e*"}/ﬂtﬁ»i(wq*UJ@)t 1 — efi(waerﬁfwkqu)tf'yat }
n = ; ; - X
ka (Wr — Wa) + (Ve — 78) Wq — wg + 173 —(Wo + W — Wi — wy) + 174

In the above expression, N is the normalization of the two-photon state defined as N =

2631/ 2. W

VT a4 pssociated with the spontaneous emission rate yo(5 = —oB)7a(B) 43 Hepe
V 6meghcd

do = p™*> and dg = p™9*# corresponds to the transition dipole between |e) — |m) and

|m) — |g) respectively.

Note that Eq. 7 indicates that the state of the entangled photons cannot be factorized



into two separable parts. The first term in the bracket represents the general single photon
emission process and the second term corresponds to the frequency anti-correlated (of the
second) emission. The (anti-)correlation term comes from energy conservation, since the
total energy hi(wy + w,) of a photon pair should be close to fi(w, + wg).

Classically, there should be four possible ways of passing the two-photon energy from a
single donor to two acceptors: two pathways corresponding to which photon is absorbed first,
and two pairings corresponding to which acceptor absorbs which photon. Indeed we have
a temporally entangled field from the cascade state with four contributions from the joint
excitation amplitude. However with the entangled input field, a time ordering is imposed
at the emitter and two of the interfering pathways in each acceptor-field pairing have zero
amplitude.?® Later we use the conclusion of this discussion to obtain the correct expression
for the probability transition amplitude of the system with entangled photons.

Given the above expression for the field states, the initial and final states of the system

are described as

) o an,q |9192) |1k, 1q) |
® ®)

) o [erez) [0) .

This means both acceptors are initially in the ground state, |g1¢2), and the field is initially
in a pure two-photon state (or it can be a mixed state) >, 7k |1x, 1g)-
From second-order perturbation theory, the state of the acceptor after two interaction

events (at times t; < t5) is obtained from
t to
U016 x Yy [ dea [ daVi ) VE(0) 0192 101, )
v 0 0

The donor-field coupling in the interaction picture, Vi, (t) = etV (t)e~ 0! can be sim-

plified using the Baker-Campbell-Hausdorff formula. The joint-excitation amplitude is then



given by 434

M (wy,wa,t) = {{ere2] (01} U () @),

= an,q (e162,0[ U (1) [11, 145 9192)

k.q

(10)

Assuming the interactions between entangled field and two acceptors are weak, the leading

term from the evolution operator Eq. 9 (the second term of Dyson’s series) is presented as

(ereal UD(E) |g1g2) = e "N " a0 Ry, (11)

k,q

Suppose we have a continuous frequency distribution of the emitted field, so that we can

V. o\2
make the replacement )=, <> 2 J2f <(2—)3> wipw? dwidwyd,dQ,. Then we arrive at
e

(erea| UD (1) |g1g2) = //dwkdwq wkw 2a(wy)a (wq)qu] (12)

The response function of the uncoupled acceptors to the incoming field Ry, is defined as the

product of two individual single-photon single-particle response functions
1 — ei(wl—wk)t 1 — ei(wz—wq)t

Rig = E(wi)€ il Rithe.Ra) x 13
ke = E1(wr)E2(wq)e P P (13)

If we ignore the propagation length from donor to acceptor by setting z; ~ zo ~ 0, it
then leads to the approximation & (w;) ~ &;(w;). (Later in this derivation we will include for
the propagation length explicitly.)

Imposing the time ordering ¢, > ¢, the resulting expression for the total joint-excitation

amplitude becomes*®

M(wlv w2, t) - Maﬁ 12 + Maﬁ 21

= Vo [ [ o eeatn)oten) R s + )



where Mg 12 is defined as the probability amplitude that acceptor 1 interacts with virtual
photon « first (at time ¢;), and acceptor 2 absorbs virtual photon 5 after that (at time
ts). This time-ordered excitation amplitude is closely related to the two-photon correlation
amplitude.

Furthermore, the time dependent two-photon excitation probability due to quantum en-
tanglement is defined as the projection (measurement) of the density matrix of the whole

system at any time t; p = U [g1g2) (9192 @ po onto |eres) (ereal,

P =Tr (eres] pleres) = Tr {erea| (U |g1g2) (g19a| po) lerea) = |[M (w1, ws, t)? (15)

The "Tr” stands for the trace operation over the field variable. Substituting the response
function Eq. 13, into Eq. 14, and employing the residue theorem to integrate over the fre-
quencies wy and w,, the total transition probability amplitude can be determined (more
details in SI). However for two-photon cascade state introduced in Eq. 7, if 7, < 75 the

1

decaying terms related to e~7! vanish at a short time ¢ ~ Y5 and the only remaining term

at longer time is

|I1,Cas) =~ (16)

N { 1— efi(wa+w57wkqu)tf’yat }
(Wk — wa) +i(Ya = 78) | (Wa +ws — wi — wy) — 174

Using Eq. 13 and Eq. 14 and some rearrangement, the transition probability amplitude reads

as follows

1 1 1 — e~ (atid)t
MCQS(WI,WQ,t) = _A< . + ‘ > { . }
Wa1 + Z(’yﬂ - /Yoc) Wa2 + @(7,3 - ’ya) 0 — Yo

1 1 1 — e~ (ratid)t
~ —A( — + - > { - }
Wal 178 Waz + 178 0 — 1Y

4V 8V \/Va
where A = N ——wiwi& (w;)E(ws) = #w%w%& (w1)&(we) and w;; = w; — w;. The
T

m2cb

(17)

detuning for two-entangled virtual photon absorption where none of the two photons are

in resonance with the two acceptors is defined by ¢ = w, + wg — w1 — wy. Note that in



the resonance condition the sum of their two energies almost matches the sum of the two
acceptor’s excitation energies; w, +wp ~ wi +ws (i.e. § & 0). It then follows from the above

expression that the transition probability is given by

(Wa1 + wa2)? + 47% 1 — e (atid)t 2

PCast - MCaswawat 2= A2 ; 18
) = Mewlonion OF = N g o 77D 5 -7 .
In the case where v, < 9, Eq. 18 is recast as

Wa1 + Wa2)? + 473 in?(Est/2h

(war +78) w2z +73)  (Es/2R)?

where Es = Euptws — Bojtw, = ho. The above expression shows how the transition
probability varies with line-shape parameter ¢ and time. At large enough time 7 (7 >
27h/Es), the total probability of transition is a linear function of time and using Fermi’s

Golden rule accordingly (more details in SI), we can determine the rate as

o Poas(n) (Wa1 + wa2)? + 473
w¢ = lim — zzmw g ppop §)|A|2><5(E5)
al ’7,8 a2 75 (20)

WES = Kpop|€1(wn)Ea(ws) *0( Es)

Note that §(E) stands for the Dirac delta function in this formula, and is not to be
confused with the line-shape parameter defined above. The E2P coefficient, Kgop, is defined
as:

E2P = T 3 X Wiy X a7,
36 2 o (W21 +75)(W2s +73)

Yo KO (21)

The above expression for the energy transfer rate is one of the main accomplishments of
this work. This shows that the rate of the E2P-RET process functions in many respects like
the usual one-photon RET rate (see also Eq. 20). In particular, we see that the rate depends

on the product of decay rates y37,, which is related to the rate at which the two photons are

10



emitted. Also, in the limit where w,; and w2 are much greater than 5 we see an inverse
dependence on these frequency differences. This inverse dependence means inhibition of the
rate as the transitions are detuned from resonance, as makes sense. Finally note that the
volume-dependent terms cancel in the overall rate expression, as is physically required. A
discussion of what it means to take the time ¢ long enough compared with the lifetime of
the two transitions, t > ’yﬁ_lﬁ;l can be found in the SI.

RET rate calculations for separated two photons (S2P) may exemplify further details on
the features and benefits of using E2P. If we follow the same procedure as above, we are
able to derive the same type of expression for the RET rate with two separated photon wave
packets of mean frequencies w, and wg, and the corresponding spectral widths 7, and ~yz. For
two identical acceptors (w12 ~ wp), the resulting expression for S2P-transition probability

(See SI for more details) is

1 — e_VQt_iWOLOt 1 _ e_"/ﬁt_iwﬁ()t 2

7311((,00,t) = |M11(W0,t)|2 ~ |A|2 X (22)

X :
—Wa0 t Ya —wpgo + 1Y

We numerically calculated the S2P-RET rate in the resonance condition and plotted the
result in order to compare with the corresponding E2P-RET rate based on Eq. 18 (see Fig. 3).
We performed our calculations using parameters in the same range as polarization-entangled
photon pairs from the biexciton cascade of a single InAs QD embedded in a GaAs/AlAs
planar microcavity. %47 In those experiments the pair entangled photon emissions occur at
1.398 eV and 1.42 eV. The graphs in Fig. 3 show us that the rate from E2P-RET is in general
more than three orders of magnitude higher than the rate from S2P-RET. According to the
E2P rate graph, the rate has a strong inverse dependence on both 5 and wyo when wqg is
close to zero. However by increasing the detuning excitation energy wqg, s can effectively
control the rate. On the other hand the S2P-RET rate is weakly dependent on ~y3 for a wide
range of w,o values. These differences arise from the quite different denominators in Eq. 18

and the corresponding equation for S2P-RET (see Eq. S15).

11
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Figure 3: Contour-plot of rate for E2P-RET (left) and S2P-RET (right) for identical acceptors
in resonance condition. In this set of calculations 7, = 0.005 eV and 0.05 < vz < 0.35 €V,
and wap = 0 — wgo.

Note that in the case of S2P-RET, the transition probability is not an explicit function
of the two-photon two acceptor detuning é = w, + wg — w1 — we, while it is for E2P-RET.
This plays an important role in determining the differences between E2P-RET and S2P-
RET, and it reflects the crucial influence of the frequency anticorrelation that is built into
entanglement.

In Eq. 13 and thereafter, we ignored the propagation length in our derivation. However,
in principal the distance dependence of RET in the dipole approximation regime, is contained
in matrix elements of the electric dipole-dipole coupling tensor, (g(w, ,Tp, T4, ) 2% that is
hidden in the "A 7 coefficient of Eq. 17.

Recalling that u“™“=(rp), u™9“ (rp) and p?°(r,) are transition dipoles of the donor and
acceptors respectively, we revise the transition amplitude Eq. 17 to a more comprehensive

expression for E2P-RET,

>
wiws [p )

MCas (Wl, W2, t) — N e e (rD> (wOH Ip, rAl )luge’wl (rAl)j|

m2c6

<
NI (rp) © (ws, rp, T (e % ( ) ‘
[H (rp) © (wg,rp,Ta,)p ( A2)} Wal 178 Wa2 + 173

Although the distance and orientation dependence of the energy transfer rate are nicely

12

1 1 1 — e~ (atid)t
+ R
0 — 1Y

|

(23)



included in the above equation, the time-domain electrodynamics (TED)-RET formula-

49.50 s more convenient for a wide spectrum of applications in inhomogeneous absorbing

tion
and dispersive media. Employing this scheme in the dipole approximation, the transition
amplitude can be formulated based on the induced field emerging from donor at the position

of the two acceptors,’!

eAl .]E)D(I‘A1 s wa)}
pex(wa)

Meas(wr,wa, t) = Nw_%% (™% (e p) 9 (T 4, )

ED(rAz ) wﬁ) }
Pex(wp)

1 1 1 — e~ (ratid)t
X ( — + . > { ‘ }
Wal + 178 Wa2 + 7] o — 1o

Here, E”(r4,,wa () (i=1,2) is the induced electric field mode with angular frequency

(24)

Wa(py and unit polarization vector e4, and at the position of acceptor ry,. We proceed by
using the above concept to obtain a general expression for the E2P-RET rate in a manner

similar to Eq. 20;

eAl.ED(rAl,wa) eAQ.ED(rAQ,w[g) 2
Pex (wa> Pex (wﬂ)

Wi = Kpsp|TT? 0(Es) (25)

where I = p®m™we 9o« m9ws 1992 The above expression is another major accomplishment
in this work which shows a fourth power dependence (compared with single photon energy
transfer) of the rate on the induced electric fields by the donor. This expression allows us
to calculate the enhanced E2P-RET rate in arbitrary media, which is more convenient for
practical implementation. We also note that the dependence of the energy transfer rate on
polarization properties of the donor and acceptors in included in this formula.

In a regime where the size of the donor and acceptor are as big as the distance between
them, we should go beyond the point dipole approximation by including the effect of higher

order multipoles. In that case, the E2P-RET rate is calculated according to the total induced

13



field in the system (more details in SI) using the following expression,

2
Cas Total
WT :K]_:,’gpg (rAl,rD,wa)

2
€7 14, v, 5)| O(E) (26)

The proposed theory provides a framework for simulation that has significant computational
advantages compared to calculating the coupling factor utilizing dyadic Greens functions.

In conclusion, we developed a new theory for the resonance energy transfer between a
donor and a pair of uncoupled acceptor particles via entangled photons. The underlying
mechanism is uncovered through the joint excitation of acceptors using a temporally entan-
gled field. The calculated result shows more than a three order of magnitude enhancement in
the E2P-RET rate compared with the S2P case for parameters that are relevant to biexciton
sources. Empowered with the quantum description of light, our theory provides a way to
control the E2P-RET phenomena through the effective coefficient Kgop. This coefficient
emphasizes the importance of the emission rate parameters of the donor and there was also
an important effect arising from detuning of the emitted photons energy relative to the ex-
citation energies of the acceptors. Furthermore we have extended our theory to include for
the effect of donor-acceptor separation, and the influence of inhomogeneous, dispersive and
absorptive materials with any space-dependent, frequency-dependent dielectric function and
with any size of donor and acceptor.

Since SPDC is a very common method for producing entangled photons in experimental
studies, it will also be important to examine energy transfer associated with SPDC sources
and comparing it with the cascade source of the present study. The theoretical results of this
work will lead the way to a new platform for exploring exciton and biexciton transport in cou-
pled plasmonic-semiconductor nanostructures, with potential applications in spectroscopy,

nanophotonics devices, biosensing and quantum information.
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2 Supporting Information

Details of theoretical derivations can be found here.
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General RET Rate Calculation

The total transition probability amplitude using Eq.15 in main text reads as follows

4V & & 1 — e~ (ptiwg2)t | _ o= (yatid)t
Men(or,m 1) = NSl { < } + (14 2)S1)
w2 W = 6) —i(s —7a) L W — i3 5 —

For two identical acceptors (w; = ws = wyp), the total transition probability is therefore

1 — e~ (stiwso)t 1 _ g=(vatid)t ?

4|AP”

S
P (52)

PCas (t) =

wpo — 7:7,3 o — Vo

4V2
where A = N ——wiwi& (w1)&€(ws) - If the resonance condition (§ ~ 0) is met, the transition
m2c

2} (S3)

Although the above expression gives us some insight on the characteristic properties of

probability simplifies to

e 5t sin?(wgot /2) 1 1 — et N 1 — e et

(Who +73)%/4 (Wi +73) |wso — 178 o

Pas(t) = |A? {

time-dependent transition probability and associated parameters, it is a very complicated
expression if we wish to calculate the rate of energy transfer initiated by entangled photons.

Using concepts that arise in deriving Fermi’s Golden rule, a general formula for determining
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the RET rate can be developed in the limit of large 7 and § — 0,

W = fim Leas(™) (S4)

T—00 T

where Es = E,, 1., — Fujtw, = 0. In the main text with some assumptions, we give an
analytical expression for the RET rate that results from this analysis.

For the two-photon cascade state introduced in the main text, if 7, < 5 the decaying
terms related to e~ 7%! vanish at short time ¢ ~ 751, and if the spectral width ~, is much
smaller than the two-photon two-acceptor’s detuning ¢, the transition probability is recast

as

(Wa1 + wa2)® + 473 y sin?(5t/2)
(war +78) (Was +73)  (6/2)

(Wa1 + wa2)? + 475 " sin?(Est /2h)
(war +78) (wae +73)  (Es/20)?

PCaS(t) = |A|2

= |A]? Vo K 0

Rearranging Eq. S5, we see for large enough ¢ = 7 and in the resonance condition § ~ 0,

F(0) — oo which means F' behaves a like a delta function.

Y 1 (Es/2h)? (Wat + Wa2)? + 473 T
has the property that
+oo
/ F(Es)dE; = 2xh (S7)
From this it follows that
T—00

Thus in this limit, the total probability of transition is a linear function of time and using
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Fermi’s Golden rule accordingly, we can determine the rate as

Prys Wal 4+ Waz)? + 472
W — i LCas(T) _ o g (e +war)” + 475

A? x §(E S9
L AT L B (59

Very Long Time Transition Probability and Rate

For time t long compared to the lifetime of the two transitions, t > *ygl,’yoj ! the two-photon
wave-packet given by Eq.7 in the main text is time-independent.*3°23 However, there still
exist significant anti-correlations between the emitted fields. As we mentioned earlier, in
order to produce a two-entangled photon wavepacket, the excited state’s life time should be
much longer than the spontaneous emission rates of the intermediate state |m); i.e. v > 7,.
This leads to the second emission occurring soon after the first one, leading to following state
of light,

N
[—(Wa + wp — Wi — W) + 170 (wg — wp +i7p)

|II7 Ca5>t—>oo = Z

k,q

|1k, 1g) (S10)

Using the above expression for the quantum state of light and in the same manner as discussed
in the main text, we can obtain the time-independent transition amplitude and the total

transition probability as

Mt—)oo (wla WQ) =

42 E(w)Es(w 1 1
N 5 Gw%wg 1(5 1) _2( 2){ — + - }
mec — Wa Wp2 — ¥y W1 — 198
AP (wp1 + wp2)? + 473
(02+72) (Wi +75) (Wi +73)

(S11)
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When the resonance condition is satisfied (§ ~ 0), the transition probability is then given by

1
PR o K E(w)Ea(w)? At st > 1 312
Cas Sty E2r X |E1(w1)Ea(wa)] Yat, vpt > (S12)
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It should be noted that the Fermi’s golden rule is valid when the initial state has not been
significantly depleted by transferring into the final states. This is related to the population
accumulation of the final state, and in the large time limit it leads to a finite probability for
populating the excited states of the acceptors. It therefore makes sense that the probability
in Eq. S12 involves the same dependence on donor/acceptor frequency differences as the rate

coefficient in Eq. 21 (in main text).

S2P-transition Probability

Calculating the RET rate for two separated photons can give us more insight into the features
and benefits of using E2P. If we follow the same procedure as above, we are able to derive
the same type of expression for the RET rate with two separated photon wave packets of
mean frequencies w, and wg, and the corresponding spectral widths 7, and 3. In this case
neither of the two photons are in resonance with the two acceptors but again the sum of their
two energies almost matches the sum of the emitted energy from donors; w, +wg = wy + ws.
Here we compare the rate of E2P-RET with two virtual photons passing energy to two
non-interacting acceptors. We assume that the two separate events happen almost at the
same time but otherwise there is no correlation between the two-photons. This should not
be mistaken with two-photon energy transfer by a pair of donors and acceptors, i.e. this is
not comparable with the two-photon absorption/emission process.® ! However each photon
has a chance to interact with either acceptor 1 or 2 in our derivation. We assume the donor
particle that has two different excited states, emitting two unentangled photons followed by
absorption via two acceptors. The near-simultaneous arrival of the two unentangled photons
is not crucial in this derivation since we also assume that the acceptors have infinite lifetime.
(Note: if we include for decay of the acceptors into the account then these two events need
to occur very close in time as otherwise by the time a photon is received by the second

acceptor, the first acceptor can be depleted.)
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To construct nonentangled photons with the same mean energy and the same single
photon spectrum, we define the state of the system as two quasimonochromatic uncorrelated
photons emitted by two uncorrelated particles excited at the same time earlier and arriving

at the acceptor’s location at ¢t = 0 as**

1 _ 6_’Yozt_7;(wa_wk)t 1 _ e—’ygt—i(u)ﬁ—wq)t

9 = S nlen) {5 108 S { T ) s

Wk(q)

2h€0V

We also have the option of choosing one of two special cases that will allow for a quantitative

where ga(8)(Wik(q) = Ha(8) and fi4(g) is the transition dipole moment of each particle.

evaluation of the role of correlations: the donor emits correlated but separable photons with

the density matrix: p; = Zk,q Po:kk.qq | 1ks 1g) |1k, 14) or we have a fully factorized state with

p2 = ( Sy o 116) 118) ) @ (S Pt 1) 1) )5

Based on Eq. S13 the probability amplitude can be determined through

1 — 677at7iwalt 1 _ e*’}/f}t*inQt

Mu(wl,wg,t) :A{ +1 (—)2} (Sl4)

. X .
—Wal + 1Yo —wp2 + 173

And for two identical acceptors (w12 &~ wp), we can simplify the transition probability

equation as

1— effyatfiwaot 1 — ef'ylgtfiwmt 2
Pn((,do,t) = |M11(W0,t>|2 =~ |A’2 X - X - (815)
—Wao + 10 —Wpo + 18

Distance-dependence of E2P-RET Process

In the first part of the derivation in the main text, we ignored the propagation length.

However, in principal the distance dependence in RET in the dipole approximation regime
<

comes from matrix elements of the electric dipole-dipole coupling tensor, 6 (w,,rp,r4,)*?8

hidden in the "A 7 coefficient in Eq. 17 in main text.
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<
Generally, © (w,rp,r4) in vacuum is defined as

I ic? c

(o 3eme0.) (i~ gm) ~ (o =€) | (510

S) (W,TD,TA) =

s w3ein/c
4depc?

where R = |R| = |ra — rp| is the amplitude of the spatial displacement vector between the
donor and the acceptor, e, stands for the ith component of the unit vector of R (eg = R/R)
and 0 denotes the Kronecker delta.

Setting u™“(rp), p™9“s(rp) and u9¢(r4,) as the transition dipoles of the donor during
the cascade process and also of the acceptors respectively, we revise the transition amplitude

to a more comprehensive expression when the process involves E2P,

4V? —
Meas(wr,wa, t) = NWwai [Mem’w“ (rp) © (Wa,Tp, ra, )" (rAl)}
<=
[Iumg,uw (rD) © (wg, I'p, rAz):uge’CUZ (rA2>} (817)
{ 1 (1 — e~ (ptiws)t 1 _ 6(’Yo¢+i6)t) ( 2)}
X - - — - + (1 <
waz — 0 — (V8 — Ya) wge — i 0 — 17,

The superscripts e, m and g represent the excited, intermediate, and ground states respec-
tively.

Although the distance and orientation dependence are nicely included in the above equa-
tion, it is more convenient and more general to use the time-domain electrodynamics res-

onance energy transfer (TED-RET) formulation %5

which enables a wide spectrum of ap-
plications, particularly in inhomogeneous absorbing and dispersive media using a real-time
electrodynamics approach. In this scheme the donor is assumed to be a single radiating par-
ticle positioned at rp whose size is much smaller than the distance between the donor and
the acceptor. Thus we employ the point-dipole approximation; P, (r,t) = p.,(t)é(r —rp),
in which the external polarization P., generated by the donor in a dielectric medium is

defined by p,,(t) (or its temporal Fourier transform p,,(w)). Furthermore, the transition

matrix element at angular frequency w, is calculated from the electric field E”(ry) at the
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position of the acceptor (r4) originating from the donor as follows

<6> eA.ED(rA,w)

Pea (W) (518)

M(rp,ra,w) = p(rp) © (rp, ra, W)’ (ra) = —p“(ra)p’(rp)

Employing the above equation, the magnitude of transition dipole of the donor (acceptors)
and p,,(w) can be obtained via computational electromagnetic software based on the FDTD
method. The normalization factor p..(w) is the amplitude in the frequency domain of the
Hertzian dipole p,,. Dividing by this factor and then multiplying by p?(rp), one obtains
the correct field strength generated by the donor.

Plugging the right hand side of Eq. S18 in Eq. S17, the transition amplitude can be

calculated based on the induced field from donor at the position of the two acceptors,®!

4V2 e .ED(I'A W )
M as ,wa, t) = N— 2,21 emwa ge,w1 1 19 Wa
Cas(Wr, w2, 1) w1 [ (rp ) (4, ) o) ]
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Here, EP (r4,, wa /) (i=1,2) is the induced electric field mode with angular frequency w3
and unit polarization vector e4, and at the position of acceptor ry,. The dipole moments
p9%i(r 4,) represent an average over random orientations.®! If we just follow the steps that
we used to obtain Eq. S9, the general expression for the rate of resonance energy transfer is

given by

eAl.ED(rAl,wa) eAQ.ED(I‘AQ,W5) 2
Pex (wa> Pex (wﬂ)

WE = KpyplIIJ? 0(Ej) (S20)

Where H = uem=w&ugevwlumg7wﬁﬂge,wz'
When the optical transition in donor and/or acceptor is dipole forbidden, or the size

of the donor and/or the acceptor is comparable with distance between them, the dipole
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approximation is not valid anymore and the effect of higher order multipoles needs to be
included. In that case, the total electric field in the system is the sum of the E-field of
the electric dipole (EFP), the E-field of the magnetic dipole (EM?), and the E-field of
the electric quadrupole (EF?), while the total magnetic field is the sum of the M-field of
the electric dipole (B¥P), the M-field of the magnetic dipole (B™”), and the M-field of
the electric quadrupole (BEQ). Including for these effects, the transition matrix elements
for RET in terms of interactions between acceptor transition multipoles (electric dipole p,
magnetic dipole m, and electric quadrupole 6) and the corresponding electromagnetic fields

generated by the donor transition multipoles are given by:5°

ol (x4, rp,w) = E(ra,rp,w) + E™(ra,tp,w) + EUra, Tp,w), (S21a)
E(ra,tp,w) = — e - [ Hp gEp . ™Mb gup b EEQ] (S21b)
n A p(w) m(w) q(w) ’
E™(ra,rp,w) = —mFeYy - {”—%eBED + m—gDeBMD + q—gDeBEQ] (S21c)
C 4 p(w) m(w) q(w) ’
Elrg,rp,w) = —¢7% - { 1o GpED + m—%eVEMD + Q—%EVEEQ} (S21d)
C A p(w) m(w) q(w) ’

where p(w), m(w) and ¢(w) are the amplitude of the physical multipoles used to calculate
the fields generated by the electric dipole (p), magnetic dipole (m) and electric quadrupole
(6), respectively. These normalization factors ensure that the fields have the correct mag-
nitudes corresponding to the donor transition multipole moments, as well as to signify the
approximation of transition multipoles by physical multipoles. Eq. S21 facilitates the study
of resonance energy transfer in inhomogeneous, absorbing, and dispersive media for the cases
where the sizes of the donor and the acceptor are comparable to the distance between them.
Utilizing Eq. S21 the generalized form of the RET rate is calculated using the following

expression,

2

2
WTCas = Kpap gTotal (rA1 I'D, wOé) ’gTOtal(rAza I'p, W5) 5(E5) (822)

S29



The proposed theory provides a framework for simulation that has significant computational

advantages compared to calculating the coupling factor utilizing dyadic Greens functions.
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