

1 **Cell adhesiveness serves as a biophysical marker for metastatic potential**
2

3 Pranjali Beri¹, Anna Popravko¹, Benjamin Yeoman^{1,4}, Aditya Kumar¹, Kevin Chen¹, Enio
4 Hodzic¹, Alyssa Chiang¹, Afsheen Banisadr², Jesse K. Placone^{1†}, Hannah Carter^{3,4},
5 Stephanie I. Fraley^{1,4}, Parag Katira^{5,6}, Adam J. Engler^{1,2,7‡}

6
7 ¹Department of Bioengineering, ²Biomedical Sciences Program, ³Department of
8 Medicine/Division of Medical Genetics, ⁴Moores Cancer Center, University of California,
9 San Diego; La Jolla, CA 92093 USA

10 ⁵Department of Mechanical Engineering and ⁶Computational Sciences Research
11 Center, San Diego State University; San Diego, CA 92182 USA

12 ⁷Sanford Consortium for Regenerative Medicine; La Jolla, CA 92037 USA

13 [‡]Corresponding Author: aengler@ucsd.edu

14 Phone: 858-246-0678

15 Fax: 858-534-5722

16 [†]Current Affiliation: Department of Physics and Engineering, West Chester University;
17 West Chester, PA 19383 USA

18
19 **MANUSCRIPT INFORMATION**

20 *Abstract Count:* 239 words

21 *Main Body Count:* 5,475 words (excluding abstract, references, and figure legends)

22 *Figure Count:* 5

23 *Supplemental Figure Count:* 8

24 *Supplemental Table Count:* 2

25 *References:* 53

26 *Classification:* Biophysical Technologies, Breast Cancer, Lung Cancer

27 *Keywords:* Epithelial Cancer, Migration, Shear Stress, Fluid Flow, Heterogeneity

28
29 **Running Title**

30 Adhesion Strength as a Marker for Metastatic Potential

31
32 **Funding**

33 A.J.E. acknowledges grant support from the National Institutes of Health
34 (R01CA206880 and R21CA217735) and National Science Foundation (1763139). P.K.
35 acknowledges grant support from the National Science Foundation (1763132) and the
36 Army Research Office (W911NF-17-1-0413). S.I.F. acknowledges grant support from
37 the Faculty Early Career Development Program (CAREER) Awards (1651855) and
38 American Cancer Society Institutional Research Grant (15-172-45-IRG) provided
39 through the Moores Cancer Center at the University of California San Diego. P.B., A.B.,
40 and A.K. were supported by the National Science Foundation GRFP. National Institutes
41 of Health fellowship awards also supported A.K. (T32AR060712) and J.K.P
42 (F32HL126406) as well as the ARCS/Roche Foundation Scholar Award Program in the
43 Life Science (A.K.).

44
45 **Disclosure of Potential Conflicts of Interest**

46 No potential conflicts of interest were disclosed.

47 **Abstract**

48
49 Tumors are heterogeneous and comprised of cells with different dissemination abilities.
50 Despite significant effort, there is no universal biological marker that serves as a metric
51 for metastatic potential of solid tumors. Common to disseminating cells from such
52 tumors, however, is the need to modulate their adhesion as they detach from the tumor
53 and migrate through stroma to intravasate. Adhesion strength is heterogeneous even
54 amongst cancer cells within a given population, and using a parallel plate flow chamber,
55 we separated and sorted these populations into weakly and strongly adherent groups;
56 when cultured under stromal conditions, this adhesion phenotype was stable over
57 multiple days, sorting cycles, and common across all epithelial tumor lines investigated.
58 Weakly adherent cells displayed increased migration in both 2D and 3D migration
59 assays; this was maintained for several days in culture. Subpopulations did not show
60 differences in expression of proteins involved in the focal adhesion complex but did
61 exhibit intrinsic focal adhesion assembly as well as contractile differences that resulted
62 from differential expression of genes involved in microtubules, cytoskeleton linkages,
63 and motor activity. In human breast tumors, expression of genes associated with the
64 weakly adherent population resulted in worse progression-free and disease-free
65 intervals. These data suggest that adhesion strength could potentially serve as a stable
66 marker for migration and metastatic potential within a given tumor population and that
67 the fraction of weakly adherent cells present within a tumor could act as a physical
68 marker for metastatic potential.

69

70

71

72 **Significance**

73

74 Cancer cells exhibit heterogeneity in adhesivity which can be used to predict metastatic
75 potential.

76 **Introduction**

77 The high mortality rate associated with cancer is due to metastasis from a primary
78 tumor to a distal site (1, 2). Patient outcomes typically scale with rate of cell
79 dissemination from the tumor, resulting in lower five-year survival rates for aggressive
80 tumors such as invasive ductal carcinoma (1). However, determining cell dissemination
81 rate from a tumor is difficult due to heterogeneity, *i.e.* cells in the same tumor have
82 different propensities for forming secondary metastases (3-5). Furthermore, there are
83 no universal biochemical markers that predict metastatic potential across solid tumors
84 (4, 6); next generation assays that use these biomarkers typically only surveil cells post-
85 intravasation.

86 Biophysical markers, such as cell deformability, are an emerging alternative to assess
87 metastatic potential (7-12). Assays based on these metrics focus largely on
88 characterizing the physical properties of already circulating cells rather than
89 understanding how cancer cells physically interact with and adhere to the extracellular
90 matrix (ECM) at the onset of invasion. Given that all cancer cells must interact with the
91 ECM to initiate metastasis, understanding variations in these interactions can serve as
92 an early indicator of metastatic ability. For optimal cell migration into adjacent
93 parenchyma, cells must turnover their focal adhesions to move through the tissue
94 effectively; extremely unstable or stable adhesion can arrest migration as the cell can
95 never establish contractile forces or unbind and retract rear portions of the cell (13).
96 Thus, migration speed is a function of the strength of attachment and is maximized
97 when migrating cells can cycle their adhesions (13, 14). Indeed, invasive cancer cells
98 have more dynamic focal adhesions than their non-invasive counterparts (15), and
99 decreased adhesion strength corresponds to increased metastatic potential (16). As a
100 result, the adhesion of cancer cells to ECM proteins is becoming an accepted metric for
101 metastatic potential (17, 18).

102
103 Many assays have been developed to demonstrate how adhesion differs in metastatic
104 cells compared to their non-metastatic counterparts (17, 19-21). However, such assays
105 are either low throughput or not quantitative. It is also difficult to assess adhesive
106 heterogeneity within a single cancer line using these methods (22). We have previously
107 demonstrated that metastatic breast cancer cells display lower cell-ECM adhesion
108 strength than their non-metastatic counterparts using a spinning-disk shear assay (23,
109 24), especially when cells are exposed to an environment whose low cation
110 concentration mirrors stroma (25, 26). We also observed an inherent heterogeneity in
111 adhesion strength in multiple lineages including breast, prostate, and lung cancer cell
112 lines (23). Given this information, we developed a parallel plate flow chamber to isolate
113 distinct fractions of cells from a heterogeneous population. Cells were isolated by
114 applying a uniform shear stress to the cell population in the presence of stromal
115 concentrations of Mg and Ca cations (25, 26). Within a given tumor line, we observed
116 significant adhesion heterogeneity and found that the more weakly adherent fraction
117 displays increased migration in both 2D and 3D. This is due to the increased
118 contractility and focal adhesion disassembly present in weakly adherent cells, resulting
119 from transcriptomic expression differences in cytoskeletal components. Together, these
120 data suggest that intrinsic differences in adhesion strength of cells within a population
121

122 can act as markers of intratumoral heterogeneity in metastatic potential and be
123 exploited to biophysically fractionate subpopulations.

124

125 **Materials and Methods**

126 **Cell Culture:** MDA-MB231 and MCF7 cells were cultured in DMEM, 10% Fetal Bovine
127 Serum (FBS), and 1% antibiotic/antimycotic; MCF10A and MCF10AT cells were
128 cultured in DMEM/F-12, 5% horse serum, 1% penicillin/streptomycin (Pen/Strep), 0.5
129 µg/ml Hydrocortisone, 20 ng/ml hEGF, 10 µg/ml Insulin, 100 ng/ml Cholera toxin; NCI-
130 H1299 cells were cultured in RPMI, 10% FBS, and 1% Pen/Strep. Products were
131 purchased from Life Technologies. All cells were obtained from ATCC (authenticated by
132 morphology, growth curve, and isoenzyme analysis), verified mycoplasma free via PCR,
133 and were not used beyond passage 10.

134

135 **Parallel plate shear assay:** Glass plates (Brain Research Laboratories, Waban MA)
136 were sonicated in 70% ethanol and water. Plates were coated with fibronectin at 2
137 µg/cm² for 60 minutes and then blocked with 5% bovine serum albumin for 2 hours at
138 37°C. Plates are then seeded with cells at a density of 5000 cells/cm² and incubated
139 overnight. Components of the parallel plate shear assay (polysulfone base plate, 38 µm
140 thick silicone gasket (SMI), polypropylene luer fixtures (Cole Parmer), 1/8-inch inner
141 diameter tubing (Fisher Scientific)) were assembled and the glass plate was clamped to
142 the base plate containing the inlet and outlet. The inlet tubing was connected to a
143 syringe pump. Shear stress, τ , was calculated using the following equation:

$$144 \quad \tau = \frac{6\mu Q}{wh^2} \quad (1)$$

145 Where μ is viscosity of the fluid, Q is volumetric flow rate, w is the width of the chamber,
146 and h is the height of the chamber.

147

148 **Isolating weakly (WA) and strongly (SA) adherent cells:** To test adhesion stability of WA
149 and SA fractions of the population, we first determined an intermediate shear stress to
150 detach roughly 40% of cells (~170 dynes/cm² for MDA-MB231 cells). Phosphate-
151 buffered saline without magnesium and calcium and with 4.5 g/L of dextrose was used
152 to shear cells. Cells were subjected to the intermediate shear stress for 3 minutes to
153 isolate WA cells in the flow-through, which was collected at the outlet. 0.25% Trypsin-
154 EDTA was added to the device to isolate SA cells. Once cells detached, media was
155 pushed through the device to neutralize the trypsin and remove the SA cells. Both
156 populations were then seeded.

157

158 To perform the adhesion stability re-mixed population assay, WA and SA cells were
159 isolated at day 0, cultured separately for 24 hours, re-mixed and seeded onto a plate
160 overnight, then re-isolated at 48 hours after the initial isolation.

161

162 To isolate the weakest and strongest 2% of the MDA-MB231 cell population for
163 migration assays, the seeded plate was subjected to a low shear stress (28 dynes/cm²)
164 for 3 minutes to isolate WA cells in the flow through from the outlet. The shear stress
165 was then increased to a high shear stress (510 dynes/cm²) for 2 minutes to eliminate
166 intermediate cell fractions. The remaining steps to isolate SA cells are listed above. The
167 weakest MCF10A and MCF10AT cells were isolated using 170 and 130 dynes/cm² of

168 shear stress respectively; the strongest were isolated using 1275 and 595 dynes/cm²
169 respectively.

170
171 **Co-culture assay:** MDA-MB231 and MCF10A cells were trypsinized and resuspended in
172 25 μ M of CellTracker fluorescent probes (Molecular Probes, Life Technologies) in
173 serum-free DMEM: MDA-MB231 in Green CMFDA and MCF10A in Orange CMRA.
174 Cell-dye solutions were incubated at room temperature (RT) for 20 minutes. The cells
175 were then centrifuged and resuspended in MDA-MB231 media. Cells were mixed 50:50
176 and seeded such that the final seeding density was 5000 cells/cm², then incubated
177 overnight.

178
179 Upon isolation of WA and SA cells, both fractions were seeded, incubated overnight,
180 then fixed the following day with 3.7% formaldehyde for 10 minutes. Cells were imaged
181 using a Nikon Eclipse Ti-S microscope at 10X magnification with FITC and Texas Red
182 and counted by color.

183
184 **Measuring percent detachment versus metastatic capability:** MDA-MB231, MCF7,
185 MCF10A, and MCF10AT cells were subjected to 250 dynes/cm² of shear. The detached
186 and adherent fractions were isolated as described and counted to calculate the fraction
187 of cells detached.

188
189 **Immunofluorescence staining and focal adhesion (FA) analysis:** Fixed cells were
190 incubated for 10 minutes at RT with CellMask Deep Red plasma membrane stain
191 (1:1000, Thermo Fisher) in 1 mM MgCl₂ solution, followed by incubation for 1 hour at RT
192 with blocking solution of 10% goat serum, 0.1% saponin, 1% bovine serum albumin,
193 0.03 M glycine in 1 mM MgCl₂ solution. Primary paxillin antibody (1:250; ab32084,
194 Abcam) in blocking solution was applied overnight at 4°C. Then, a secondary Alexa
195 Fluor 488-conjugated antibody (1:2000, Invitrogen) in blocking solution was applied for
196 1 hour at RT, followed by Hoechst 33342 (1:2000, Invitrogen) in DI water for 10 min at
197 RT. The cells were subsequently mounted with Fluoromount-G (Southern Biotech). The
198 samples were imaged with a Zeiss LSM 780 confocal microscope (Zeiss) with a 63x oil-
199 immersion objective. A custom-written ImageJ program was used to quantify cell area
200 and FA number and size. All FA metrics were computed across the entire cell to avoid
201 regional biases.

202
203 **Traction Force Microscopy (TFM):** Cell tractions were measured as described and
204 calculated using a custom Matlab routine (27). 2% v/v of 0.2 μ m diameter 580/605
205 FluoSpheres microspheres (Invitrogen) were added to the prepolymer solution,
206 comprised of 5% acrylamide, 0.06% bis-acrylamide, 1% ammonium persulfate (Fisher),
207 and 0.1% v/v of N,N,N',N'-Tetramethylethylenediamine (VWR International). Gels were
208 prepared in 12 well glass bottom plates (Cellvis), which were precleaned in a UV/Ozone
209 cleaner (ProCleaner™ Plus, Bioforce Nanosciences) and methacrylated to ensure
210 binding of the gel. Collagen was bound to the surface by adding 0.2 mg/ml sulfo-
211 SANPAH and activating with UV light (wavelength 350 nm) for 10 minutes followed by
212 incubation with 0.15 mg/ml type I collagen. Isolated cells were seeded at ~15,000
213 cells/cm² on the gels and allowed to adhere for 3 hrs. Brightfield images were taken of

214 each cell prior to obtaining microsphere displacements at 60x. Bead reference positions
215 were then re-obtained after removing the cells with a 10% v/v Triton X solution for 10
216 minutes. Strain energy was determined from the traction stress map and normalized to
217 cell area.

218

219 *Western blotting:* Weakly and strongly adherent cells were isolated and plated in
220 fibronectin-coated 12-well plates for 3 hours. Cells were lysed with mRIPA
221 supplemented with phosphatase and protease inhibitors as described (28). Protein
222 concentration was measured using a BCA assay. 5 µg protein was mixed with 50 mM
223 DTT, Loading Buffer, and mRIPA, heated at 95°C for 5 minutes, and loaded into a Bolt
224 4-12% Bis-Tris Plus gel (Invitrogen) and then run with MES running buffer for 30 min at
225 200 V. Protein was transferred to a nitrocellulose membrane using an iBlot Cell Transfer
226 Stack (Invitrogen). Membrane was blocked with 5% SeaBlock for 1 hour at RT then
227 incubated overnight at 4°C with anti-paxillin (Abcam, ab32084), anti-pFAK (Y397)
228 (Abcam, ab81298), anti-FAK (Origene, TA506161), anti-Actin (Abcam, ab8226), and
229 anti-GAPDH (Abcam, ab8245). The membrane was then incubated for 2 hours at RT
230 with AlexaFluor 680 donkey anti-mouse (Life Technologies, A32788) and AlexaFluor
231 790 donkey anti-rabbit (Life Technologies, A11374) antibodies. The membrane was
232 imaged using a Li-Cor Odyssey CLx and analyzed using Image Studio Lite (Li-Cor).

233

234 *2D migration assays on collagen gels:* 2.4 mg/mL Type I collagen gels were prepared
235 by mixing collagen (Corning) with PBS, DI water, and 1 M NaOH and adjusted to pH
236 7.0. Gels were added to a 12-well plates and cured at 37°C for 30 minutes. The weakest
237 and strongest 2% of the cell population were seeded onto the gels and incubated
238 overnight. The cells were imaged with a Nikon Eclipse Ti-S microscope equipped with a
239 temperature- and CO₂-controlled stage. Cells were imaged at 10X in brightfield every 15
240 minutes for 24 hours. The migration data was analyzed via Fiji. The positions were
241 normalized to the starting point and analyzed via a custom MATLAB script to compute
242 instantaneous speed and cell displacement. Cells that divided or did not remain in the
243 frame for 24 hours were not tracked. Cells that interacted with other cells for more than
244 2 hours were not tracked, as cell-cell interactions artificially slowed cell speed. For
245 MDA-MB231 cell migration under drug treatment, cells were treated with either 0.2
246 µg/mL nocodazole (Cayman Chemical) or 0.5 µg/mL paclitaxel (LC Laboratories). Cells
247 were imaged the following day for 24 hours and tracked as stated above.

248

249 *2D migration assays on polyacrylamide gels of varying stiffness:* Polyacrylamide gels of
250 low and high stiffness were prepared as described in the TFM methods section, without
251 fluorescent microbeads. The high stiffness prepolymer solution has an identical
252 composition to the gels used for TFM, while the low stiffness prepolymer solution
253 consists of 3% acrylamide and 0.06% bis-acrylamide with all other components identical
254 to the high stiffness gel. Cells were isolated, seeded, and tracked as described.

255

256 *Preparing spheroids of MDA-MB231 cells:* The weakest and strongest 2% of the MDA-
257 MB231 cell population and unselected cells were isolated and seeded in a 12-well plate
258 overnight. Cells were trypsinized and resuspended in 25 µM CellTracker fluorescent
259 probes (Molecular Probes, Life Technologies) as described above. Cells were then

260 centrifuged and resuspended in a solution of 0.25% Methocult in culture media. 2,500
261 cells (either WA or SA) were added to wells in a 96-well Corning Ultra-Low Attachment
262 Spheroid Microplate (Corning) then incubated for 48 hours.

263
264 *3D migration assay in collagen gels:* Collagen gels were prepared as described above.
265 Spheroids were embedded in a collagen gel solution and added to a 24-well plate.
266 Media was added to the top of the gel, and a time 0 image was captured at 10X
267 magnification with brightfield to obtain initial radius. Embedded spheroids were
268 incubated for 24 hours, after which they were fixed with 3.7% formaldehyde in solution
269 A for 20 minutes. Spheroids were imaged with a Zeiss LSM 780 Confocal Microscope at
270 10X magnification with the FITC and Texas Red channel. Z-stack images were acquired
271 at 30 μ m intervals from the bottom to the top of the spheroid. Maximum intensity
272 projection images were generated and input into a custom Python script to analyze
273 invasive index of spheroid and maximum displacement of cells in the spheroid. Invasive
274 index is defined as:

275
$$I = \frac{r_{final}}{r_{initial}}$$
 (2)

276 Where $r_{initial}$ is the radius at time t = 0 hours of the spheroid and r_{final} is the radius at time
277 t = 24 hours.

278
279 *RNA sequencing:* RNA from WA and SA cells was purified using Qiagen RNeasy Mini
280 Kit (Qiagen, 74104). RNA quality was assessed using TapeStation (Agilent), RNA
281 libraries were prepared using the Illumina TruSeq Stranded RNA, High Throughput
282 Library Prep Kit and sequenced using the Illumina HiSeq 4000 system to generate 50
283 bp single-end reads. Data was analyzed by Rosalind (<https://rosalind.onramp.bio/>), with
284 a HyperScale architecture developed by OnRamp BioInformatics, Inc. (San Diego, CA).
285 Reads were trimmed using cutadapt (29). Quality scores were assessed using FastQC
286 (30). Reads were aligned to the Homo sapiens genome build hg19 using STAR (31).
287 Individual sample reads were quantified using HTseq (32) and normalized via Relative
288 Log Expression (RLE) using DESeq2 R library (33). Read Distribution percentages,
289 heatmaps, and sample plots were generated as part of the QC step using RSeQC (34).
290 DEseq2 was also used to calculate fold changes and p-values. Clustering for the
291 differentially expressed gene heatmap was done using the Partitioning Around Medoids
292 method with the fpc R library (35). Functional enrichment analysis of pathways, gene
293 ontology, domain structure and other ontologies was performed using HOMER (36).
294 Enrichment was calculated relative to a set of background genes relevant for the
295 experiment.

296
297 *Quantitative PCR:* RNA from WA and SA cells was purified using Qiagen RNeasy Mini
298 Kit and reverse transcribed using SuperScript III Reverse Transcriptase (ThermoFisher
299 Scientific, 18080093). Quantitative PCR was performed (45 cycles, 95°C for 15 seconds
300 followed by 60°C for 1 min) using a 7900HT Fast Real-Time PCR System (Thermo
301 Scientific, 4329001) with the primers listed (Supplemental Table S1), and iQ SYBR
302 Green Supermix (Bio-Rad Laboratories, 1708880). Target genes were normalized to
303 GAPDH and mRNA quantity was calculated based on a standard curve generated from
304 a fibronectin plasmid.

305

306 **TCGA Dataset Analysis:** The TCGA raw data were downloaded from NIH NCI GDC
307 Data portal directly. Corresponding clinical metadata were obtained from a previous
308 publication (37). Only the breast cancer (BRCA) patients with reported negative
309 histological staining for the three markers (Her2, ER, PR) and American Joint
310 Committee on Cancer (AJCC) pathology stages below stage IV were included in our
311 analysis cohort. Patient data were analyzed to determine correlation between gene
312 expression corresponding to weakly adherent or strongly adherent phenotypes and 5-
313 year survival. Patient data were analyzed by normalizing patient gene expression to z-
314 transformed scores with respect to the differentially expressed genes between the
315 weakly adherent and strongly adherent sub-populations. The z-scores were then
316 summed for every patient, and z-score sum-based quantiles were mapped to Strongly
317 Adherent (SA) and Weakly Adherent (WA) categories based on mean gene expression
318 levels. The Kaplan-Meier method was used to create survival plots comparing the 20%
319 of individuals with the lowest score to the 20% with the highest score. The log-rank test
320 was used to determine significance of survival differences between groups. Survival
321 analyses use the Lifelines python library (<https://lifelines.readthedocs.io/en/latest/>).
322 Relevant scripts for the analysis of TCGA data are available
323 at: <https://github.com/kec162ucsd/Tumor-Heterogeneity-Adhesion-Strength/>
324

325 **Statistics:** 2D migration assays, 3D spheroid migration assays, and focal adhesion
326 disassembly plots were analyzed using a one-way ANOVA with Tukey test for multiple
327 comparisons. Adhesion stability re-mixed population assay was analyzed with a two-
328 way ANOVA, with Sidak multiple comparison test. All other comparisons were
329 performed using two-tailed unpaired t-test unless otherwise indicated. For all analyses,
330 *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Data expressed as box-and-whisker plots
331 show all points with the whisker ends corresponding to minimum and maximum values.
332 All other values are expressed as mean +/- standard deviation. Statistical analyses were
333 performed using Prism software.
334

335 **Data Availability:** Data generated in this study was deposited to NCBI under GEO
336 GSE135515. We do not impose any restrictions on data availability.
337

338 **Results**

339 *Strongly and weakly adherent phenotypes are maintained post sort*

340 We fabricated a parallel plate flow chamber that exposes cells to discrete, uniform shear
341 stresses in order to isolate fractions of cells based on adhesion strength and study
342 those cells within a heterogeneous population (Figure S1). To ensure that the
343 application of shear did not change the adhesive heterogeneity of the population, we
344 isolated weakly and strongly adherent fractions of MDA-MB231 cells from a parental cell
345 population by exposing the cell to a shear of 170 dynes/cm² and stratifying the
346 populations depending on whether they were found in the flow-through or still attached
347 to the device. After sorting, cells were cultured separately, re-mixed, seeded into the
348 device, and subsequently sheared. We found no significant changes between the
349 percent of weakly and strongly adherent cells when tracking cells between days 0 and 2
350 (Figure 1A), indicating that the parallel plate shear device assesses, but does not alter,
351 the inherent adhesion heterogeneity of the population.

352
353 We next wanted to determine if the adhesion phenotype is stably maintained post-
354 isolation. We isolated both fractions from MDA-MB231 cells, cultured them separately in
355 either normal or reduced cation media, and then repeated the isolation on the separated
356 fractions. We found that strongly adherent cells maintained their adherent phenotype 14
357 days post-isolation, regardless of culture conditions. Weakly adherent cells did not
358 maintain their adhesion phenotype in normal culture media as cells reverted back to
359 their distribution in the parental population; if the selection pressure of low stromal-like
360 cation concentrations was maintained post-isolation, weakly adherent cells were
361 enriched to >70% of the population 6 days post-isolation (Figure 1B).
362

363 *Parallel plate flow chamber can distinguish between weakly adherent and strongly*
364 *adherent cell lines.*

365 To test the ability of the flow chamber to select for cells known to have a weaker
366 adhesion strength as a result their higher metastatic potential, MDA-MB231 (metastatic
367 breast cancer line) and MCF10A (non-malignant breast cell line) cells were seeded in a
368 50:50 mixture and exposed to a shear stress that should detach the MDA-MB231 cells
369 but not the MCF10A cells (170 dynes/cm² based on population adhesion assays (23)).
370 The fraction of cells that detached contained 41.7% of the total number of MDA-MB231
371 cells, while only 0.7% of the total number of MCF10A cells were present in the detached
372 fraction (Figure 1C), consistent with 10-fold higher adhesion strength of MCF10A vs.
373 MDA-MB231 cells in the absence of cations (23) and suggesting that this assay could
374 distinguish metastatic cells from non-cancerous cells.
375

376 In order to link quantitative adhesiveness to metastatic potential, we exposed four cell
377 lines of varying metastatic potential (high metastatic capability: MDA-MB231; low
378 metastatic capability: MCF7 and MCF10A; and H-Ras transformed: MCF10AT, which
379 give rise to invasive carcinomas *in vivo* (38)) to 250 dynes/cm² of shear stress and
380 counted the fraction of detached cells. As expected, cells with greater tumorigenic
381 and/or metastatic potential had significantly greater detachment at the same shear
382 stress in comparison to cells with lower tumorigenic and/or metastatic potential (Figure
383 1D).
384

385 *Weakly adherent cells display greater migratory propensity than strongly adherent cells.*
386 To assess migration differences in adhesion sorted populations, we isolated the ~2%
387 most weakly and most strongly adherent cells of the MDA-MB231 population using 28
388 dynes/cm² and 510 dynes/cm², respectively and seeded them onto type-I collagen gels.
389 Over 24 hours post-plating, we found that weakly adherent cells displayed significantly
390 higher average speed than the strongly adherent or unselected (non-sheared) cells
391 (Figure 2A). Weakly adherent cells also displayed increased total cell displacement than
392 the strongly adherent or unselected cells (Figure 2B, Figure S2). Since the adhesion
393 phenotype appears stable, we investigated if migratory differences were stable. Weakly
394 and strongly adherent cells along with unselected population were imaged post
395 selection, and then re-imaged 2 days later. No significant differences for any population
396 were observed post selection or later while the weakly adherent fraction maintained its
397 increased migratory propensity (Figure 2C). The two populations did not exhibit

398 differential proliferation during migration assessments (Figure 2D), suggesting that
399 higher migration speeds for weakly adherent cells were not the result of proliferation
400 differences. In addition to sorting a metastatic population, we further demonstrated
401 sorting fidelity by directly comparing the ~2% most weakly and strongly adherent of
402 MCF10A and isogenic H-Ras transformed MCF10AT cells. Post-sort on collagen gels,
403 we observed that the weakly adherent fraction of MCF10AT cells had increased
404 migration speed and displacement relative to its strongly adherent counterpart, while
405 MCF10A cell fractions did not show differences (Figure S3). These data suggest that
406 heterogeneity in migratory phenotype as a result of selection by adhesion strength is
407 only present in more aggressive cells with increased tumorigenic capability.
408

409 Migration can often be affected by matrix properties, and so we sought to determine if
410 migration differences are intrinsic and therefore persist regardless of environmental
411 changes that could reduce substrate adhesion. Weakly and strongly adherent MDA-
412 MB231 cells were plated on polyacrylamide gels of low (300 Pa) and high stiffness (1.8
413 kPa) and migration observed for 24 hours. Weakly adherent cells were more migratory
414 than the strongly adherent cells independent of substrate stiffness. However, average
415 speed scaled with substrate stiffness gel for both cell fractions, which indicates that both
416 fractions are mechanically sensitive (Figure S4). These results indicate that there are
417 cell intrinsic differences independent of environmental changes that could potentially
418 alter substrate adhesion.
419

420 Assays thus far show behaviors in 2D rather than 3D, so we next assessed the outward
421 migration from spheroids containing weakly adherent, strongly adherent or unselected
422 cells (Figure 2E, F). There was no significant difference in maximum cell displacement
423 (Figure 2G), but the leading edge of weakly adherent cells, i.e. the distance at which the
424 signal is higher than background (Figure S5), migrated further than strongly adherent
425 and unselected cells, indicated by the significantly higher ratio of final radius to initial
426 radius (Figure 2F, H). Consistent with 2D migration, these 3D spheroid data bolster the
427 concept that the fraction of tumor cells with the weakest adhesion most represents
428 those with the highest metastatic potential.
429

430 All the cells examined thus far are mammary epithelial, so we next explored whether
431 cells from other epithelial tumors would exhibit the same cation dependent adhesion
432 sorting and migration phenotype. Weakly and strongly adherent NCI-H1299 metastatic
433 lung cancer cells were isolated and their migration analyzed. As with the metastatic
434 mammary tumor line, weakly adherent metastatic lung cancer cells were more migratory
435 than their strongly adherent counterparts (Figure S6), suggesting that this behavior may
436 be universal across epithelial tumors.
437

438 *Weakly adherent cells have more labile focal adhesions and are more contractile*
439 Migratory differences between weakly and strongly adherent cells did not result from
440 expression differences in focal adhesion proteins, e.g. pFAK, FAK, paxillin, or actin
441 (Figure 3A). However, we previously found that metastatic cells preferentially
442 disassemble their focal adhesions relative to non-metastatic cells when exposed to low
443 cation conditions (23). Consistent with this, we found that the strongly adherent

444 subpopulation of MDA-MB231 cells did not fully disassemble focal adhesions after
445 removal of cations. Conversely, weakly adherent cells disassembled their focal
446 adhesions in the absence of cations on fibronectin (Figure 3B-D) or on type I collagen-
447 coated substrates (Figure S7). These data suggest that weak adhesion could be driven
448 by differential sensitivity to cations and could therefore enhance migration. Similarly,
449 cancer cells that exhibit increased contractility are also more migratory than their less
450 contractile counterparts (39, 40). To ascertain if adhesive state is coupled with
451 contractility differences, traction force microscopy was performed on cells post-sort.
452 Weakly adherent cells were significantly more contractile than their strongly adherent
453 counterparts (Figure 3E-F), suggesting that weakly adherent cells represent a more
454 aggressive fraction of the population.

455

456 *Intrinsic transcriptional variation in microtubule proteins contributes to increased*
457 *migration of weakly adherent cells.*

458 Given that populations sorted at the less restrictive 170 dynes/cm² still remain stable
459 with over 1-2 weeks in culture, and cells sorted at the more restrictive 28 dynes/cm²
460 show cell intrinsic migration differences independent of environmental changes that are
461 stable for days in culture, we next interrogated transcriptional differences underlying
462 weakly and strongly adherent phenotypes sorted at 28 dynes/cm². Stability appears in
463 part because individual populations do not out compete each other, i.e. cell proliferation
464 rates appear similar (Figure S8). With stable sorting and expansion, we sought to
465 assess differences through post-sort RNA sequencing. Analyses revealed 500
466 differentially expressed genes between the sub-populations (Figure 4A); replicates
467 clustered by sub-population when comparing differentially expressed genes (Figure 4B).
468 Analysis of genes upregulated in weakly adherent cells demonstrated significant
469 enrichment of gene ontology terms involved in microtubule and cytoskeletal
470 organization and binding (Figure 4C). Genes in these categories with the most
471 significant expression differences are involved in cytoskeletal components, specifically
472 microtubule-associated proteins. For example, GAS2L3 has been implicated in linking
473 microtubules and actin and results in increased focal adhesion turnover and migration;
474 SYNE2 is also essential for nuclear-cytoskeletal mechano-transduction in invasion and
475 cell contraction (41-43). Components linking the cytoskeleton to the nuclear or plasma
476 membranes were also implicated, e.g. AKAP9, which regulates microtubule movement
477 and is highly expressed in highly metastatic cells (44, 45) (Figure 4D). There was also
478 significant enrichment in the expression of motor proteins, specifically those involved in
479 vesicular transport along microtubules (KIF14, DYNC1H1) as well as in cytoskeletal
480 contraction (MYO9A) (Figure 4C-D). KIF14, in particular, is a potent oncogene that is
481 highly expressed in several cancers, particularly breast cancer, and is linked to
482 improved invasiveness and dynamically changing focal adhesions (46, 47). Changes
483 detected through RNA sequencing were validated by qPCR, which confirmed increased
484 expression in weakly adherent cells (Figure 4E).

485

486 To functionally confirm a link between the upregulated microtubule components in the
487 weakly adherent cells and their subsequent increased migration, we exposed both
488 weakly and strongly adherent cells to either nocodazole or paclitaxel to disassemble or
489 cap microtubules, respectively. When tracking migration, untreated weakly adherent

490 cells had increased average speed compared to untreated strongly adherent cells.
491 However when treated with either microtubule-targeting drugs, the weakly adherent
492 cells exhibited a significant decrease in average speed, while the strongly adherent cells
493 were unaffected (Figure 4F). These data suggest that inhibiting the microtubule
494 cytoskeleton preferentially impacts the weakly adherent fraction and points to
495 microtubule-affecting agents as potent therapeutic targets.
496

497 Finally, we investigated whether differentially expressed genes linked to the highlighted
498 microtubule, cytoskeletal, and microtubule-binding protein ontology terms played a role
499 in human cancer progression. We narrowed the list of genes down to those linked to our
500 highlighted GO terms in Figure 4C, resulting in 100 genes (Supplemental Table 2).
501 Using this gene set, we then analyzed The Cancer Genome Atlas (TCGA) breast
502 cancer dataset and restricted our analysis to triple-negative breast cancer (TNBC)
503 patients with tumors that ranged from Stage I to III. We then compared patients that had
504 gene expression scores that aligned with the strongly and weakly adherent cells. We
505 observed that patients with gene expression profiles similar to the weakly adherent cells
506 had decreased progression-free intervals (Figure 5A) and disease-free intervals (Figure
507 5B) compared to patients with gene expression profiles similar to the strongly adherent
508 cells. These data suggest that increased expression of genes associated with
509 microtubule and microtubule-binding proteins, as present in the weakly adherent
510 fraction, could define an “adhesive signature” that results in an increase in metastatic
511 potential and promotes human breast tumor progression.
512

513 **Discussion**

514 Due to the highly heterogeneous nature of tumor cells, both within a given tumor as well
515 as across tumors from different patients, it is difficult to assess tumor aggressiveness
516 and the likelihood of metastasis. In addition, there are no universal biochemical markers
517 that can be utilized to determine metastatic potential. The emergence of biophysical
518 markers is a new approach to identifying the most aggressive subpopulations of the
519 tumor population. Common cell-ECM interactions of early dissemination of cancer cells
520 of different tumor origins and subsequent ECM deformation reflect the importance of
521 identifying biophysical markers as metrics for metastatic potential (1, 2). To accomplish
522 this, we utilized a parallel plate flow chamber to study the correlation between
523 decreased adhesion strength of cells to ECM proteins and their subsequent metastatic
524 potential. In conjunction with our previous studies (23), we showed that metastatic
525 cancer cells are significantly less adherent than their non-metastatic counterparts. This
526 is demonstrated by the ability to select for MDA-MB231 cells over MCF10A cells from a
527 mixed population. We also found that weak adhesion can serve as a potential marker
528 for metastatic potential, which was demonstrated by the greater percent detachments of
529 MDA-MB231 and MCF10AT cells in comparison to MCF7 and MCF10A cells at the
530 same shear stress.
531

532 This study also identified heterogeneity in adhesion strength of cells within a metastatic
533 cancer cell population, especially under stromal-like cation conditions, which may be
534 linked to heterogeneity in metastatic potential of cells within a tumor population and/or
535 circulating tumor cells. This notion is supported by our observations that weakly

536 adherent MDA-MB231 cells exhibited increased migration in comparison to their
537 strongly adherent counterparts. These differences in migration exist in both 2D and 3D
538 environments, which indicates that the weakly adherent subpopulation represents the
539 cells that are more likely to leave the primary tumor and establish secondary
540 metastases (48-50). The stability of this increased migratory propensity for multiple days
541 post-sorting further demonstrates the intrinsic nature of this phenotype. In addition,
542 recapitulating this phenotype in metastatic lung cancer cells suggests that adhesion
543 strength is broadly involved in the more migratory subpopulations within tumors from
544 multiple epithelial backgrounds.

545
546 The ability to select this more migratory subpopulation of the cell line stems from
547 differences in focal adhesion disassembly between the weakly adherent and strongly
548 adherent cells. Faster focal adhesion disassembly of weakly adherent cells is
549 consistent with previous findings that link quicker focal adhesion disassembly to more
550 migratory cell lines (15, 51, 52). In addition, weakly adherent cells are more contractile
551 than their strongly adherent counterparts, where increased contractility has also been
552 linked to increased migration and more aggressive cancers (39, 40). Differences in
553 migration, focal adhesion assembly, and contractility can be tied to inherent
554 transcriptomic differences between weakly and strongly adherent cells; genes linked to
555 the cytoskeleton, specifically to microtubules, as well as motor proteins involved in
556 vesicular transport and contraction showed significant differential expression. When we
557 compared human breast cancer patients with gene expression signatures that
558 resembled the weakly and strongly adherent cells for our genes of interest, we observed
559 decreased progression-free and disease-free intervals, implying that tumors resembling
560 the weakly adherent fraction are more aggressive. Several standard cancer therapy
561 drugs (nocodazole, taxols, etc.) target microtubules in order to reduce the growth and
562 spread of aggressive tumors, indicating that differences in microtubules and the
563 cytoskeleton could explain the heterogeneity of tumor cell populations. We confirmed
564 these findings by treating weakly adherent cells to nocodazole and paclitaxel and found
565 that their migration speed reduced to that of the strongly adherent cells, whose speed
566 was unaffected by both drugs. Therefore, targeting the cytoskeleton is potentially an
567 important method of restricting the motility of highly aggressive subpopulations early in
568 tumor development and suppressing the migratory populations that we observe (53).
569

570 This study reveals a strategy to identify distinct subpopulations via shear separation that
571 can be implemented to study the dissemination of cells from a variety of epithelial
572 cancers. Comparing weakly adherent cell populations across multiple metastatic cell
573 lines of various tumor origins could enable the identification of similarities amongst the
574 most aggressive subpopulation in an effort to identify more universal targeted
575 treatments. Lastly, this shear assay can be adapted to study diseases with a similar
576 adhesion component, highlighting the versatility of this technique.
577

578 **Acknowledgements**

579 The authors thank Drs. Jing Yang and Eugene Yeo (UCSD) as well as Cian O'Leary
580 (RSCI) for helpful discussions and the UCSD Campus Research Machine Shop for

581 assistance in device fabrication. The results shown here are in part based upon data
582 generated by the TCGA Research Network: <https://www.cancer.gov/tcga>.

583 **References**

584

585 1. P. S. Steeg, Targeting metastasis. *Nature Reviews Cancer* **16**, 201-218 (2016).

586 2. S. R. L., M. K. D., J. Ahmedin, Cancer statistics, 2018. *CA: A Cancer Journal for*
587 *Clinicians* **68**, 7-30 (2018).

588 3. E. Quintana *et al.*, Efficient tumour formation by single human melanoma cells. *Nature*
589 **456**, 593 (2008).

590 4. K. Polyak, Heterogeneity in breast cancer. *The Journal of Clinical Investigation* **121**,
591 3786-3788 (2011).

592 5. X.-x. Sun, Q. Yu, Intra-tumor heterogeneity of cancer cells and its implications for cancer
593 treatment. *Acta Pharmacologica Sinica* **36**, 1219 (2015).

594 6. Y. Liu *et al.*, Lack of correlation of stem cell markers in breast cancer stem cells. *British*
595 *Journal Of Cancer* **110**, 2063 (2014).

596 7. C. Alibert, B. Goud, J. B. Manneville, Are cancer cells really softer than normal cells?
597 *Biology of the Cell* **109**, 167-189 (2017).

598 8. J. S. Dudani, D. R. Gossett, H. T. K. Tse, D. Di Carlo, Pinched-flow hydrodynamic
599 stretching of single-cells. *Lab on a Chip* **13**, 3728-3734 (2013).

600 9. D. R. Gossett *et al.*, Hydrodynamic stretching of single cells for large population
601 mechanical phenotyping. *Proceedings of the National Academy of Sciences of the United*
602 *States of America* **109**, 7630-7635 (2012).

603 10. D. P. Qi *et al.*, Screening cell mechanotype by parallel microfiltration. *Scientific Reports*
604 **5**, (2015).

605 11. K. D. Nyberg *et al.*, The physical origins of transit time measurements for rapid, single
606 cell mechanotyping. *Lab on a Chip* **16**, 3330-3339 (2016).

607 12. P. Beri *et al.*, Biomaterials to model and measure epithelial cancers. *Nature Reviews*
608 *Materials*, (2018).

609 13. A. J. Ridley *et al.*, Cell migration: integrating signals from front to back. *Science* **302**,
610 1704-1709 (2003).

611 14. P. DiMilla, J. Stone, J. Quinn, S. Albelda, D. Lauffenburger, Maximal migration of
612 human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate
613 attachment strength. *The Journal of Cell Biology* **122**, 729-737 (1993).

614 15. K. Bijian *et al.*, Targeting focal adhesion turnover in invasive breast cancer cells by the
615 purine derivative reversine. *British Journal of Cancer* **109**, 2810-2818 (2013).

616 16. I. Indra *et al.*, An in vitro correlation of mechanical forces and metastatic capacity.
617 *Physical Biology* **8**, (2011).

618 17. N. E. Reticker-Flynn *et al.*, A combinatorial extracellular matrix platform identifies cell-
619 extracellular matrix interactions that correlate with metastasis. *Nature Communications* **3**,
620 1122 (2012).

621 18. C. M. Yates, H. M. McGettrick, G. B. Nash, G. E. Rainger, in *Metastasis Research*
622 *Protocols*, M. Dwek, U. Schumacher, S. A. Brooks, Eds. (Springer New York, New
623 York, NY, 2014), pp. 57-75.

624 19. C. P. Palmer *et al.*, Single cell adhesion measuring apparatus (SCAMA): application to
625 cancer cell lines of different metastatic potential and voltage-gated Na⁺ channel
626 expression. *European Biophysics Journal* **37**, 359-368 (2008).

627 20. A. J. Garcia, N. D. Gallant, Stick and grip. *Cell Biochemistry and Biophysics* **39**, 61-73
628 (2003).

629 21. M. Veiseh *et al.*, Cellular heterogeneity profiling by hyaluronan probes reveals an
630 invasive but slow-growing breast tumor subset. *Proceedings of the National Academy of
631 Sciences* **111**, E1731-E1739 (2014).

632 22. Piyush B. Gupta *et al.*, Stochastic State Transitions Give Rise to Phenotypic Equilibrium
633 in Populations of Cancer Cells. *Cell* **146**, 633-644 (2011).

634 23. A. Fuhrmann, A. Banisadr, P. Beri, T. D. Tlsty, A. J. Engler, Metastatic State of Cancer
635 Cells May Be Indicated by Adhesion Strength. *Biophysical Journal* **112**, 736-745 (2017).

636 24. A. Fuhrmann, J. Li, S. Chien, A. J. Engler, Cation Type Specific Cell Remodeling
637 Regulates Attachment Strength. *PLOS ONE* **9**, e102424 (2014).

638 25. M. H. Seltzer, F. E. Rosato, M. J. Fletcher, Serum and tissue magnesium levels in human
639 breast carcinoma. *J Surg Res* **10**, 159-162 (1970).

640 26. M. H. Seltzer, F. E. Rosato, M. J. Fletcher, Serum and tissue calcium in human breast
641 carcinoma. *Cancer Res* **30**, 615-616 (1970).

642 27. V. Lo Sardo *et al.*, Unveiling the Role of the Most Impactful Cardiovascular Risk Locus
643 through Haplotype Editing. *Cell* **175**, 1796-1810.e1720 (2018).

644 28. A. Kumar *et al.*, Mechanical activation of noncoding-RNA-mediated regulation of
645 disease-associated phenotypes in human cardiomyocytes. *Nature Biomedical Engineering*
646 **3**, 137-146 (2019).

647 29. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads.
648 *2011* **17**, 3 (2011).

649 30. S. Andrews. (2010).

650 31. A. Dobin *et al.*, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21
651 (2012).

652 32. S. Anders, P. T. Pyl, W. Huber, HTSeq—a Python framework to work with high-
653 throughput sequencing data. *Bioinformatics* **31**, 166-169 (2014).

654 33. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
655 RNA-seq data with DESeq2. *Genome Biology* **15**, 550 (2014).

656 34. L. Wang, S. Wang, W. Li, RSeQC: quality control of RNA-seq experiments.
657 *Bioinformatics* **28**, 2184-2185 (2012).

658 35. C. Hennig.

659 36. S. Heinz *et al.*, Simple Combinations of Lineage-Determining Transcription Factors
660 Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities.
661 *Molecular Cell* **38**, 576-589 (2010).

662 37. J. Liu *et al.*, An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-
663 Quality Survival Outcome Analytics. *Cell* **173**, 400-416.e411 (2018).

664 38. H. G. H., W. S. R., MCF-10AT: A Model for Human Breast Cancer Development. *The
665 Breast Journal* **5**, 122-129 (1999).

666 39. C. T. Mierke *et al.*, Vinculin facilitates cell invasion into three-dimensional collagen
667 matrices. *The Journal of biological chemistry* **285**, 13121-13130 (2010).

668 40. C. M. Kraning-Rush, J. P. Califano, C. A. Reinhart-King, Cellular traction stresses
669 increase with increasing metastatic potential. *PloS one* **7**, e32572-e32572 (2012).

670 41. M. J. Stroud, R. A. Kammerer, C. Ballestrem, Characterization of G2L3 (GAS2-like 3), a
671 new microtubule- and actin-binding protein related to spectraplakins. *The Journal of
672 biological chemistry* **286**, 24987-24995 (2011).

673 42. P. Friedl, K. Wolf, J. Lammerding, Nuclear mechanics during cell migration. *Current
674 Opinion in Cell Biology* **23**, 55-64 (2011).

675 43. A. Jayo *et al.*, Fascin Regulates Nuclear Movement and Deformation in Migrating Cells.
676 *Developmental Cell* **38**, 371-383 (2016).

677 44. N. Kumar, S. Gupta, S. Dabral, S. Singh, S. Sehrawat, Role of exchange protein directly
678 activated by cAMP (EPAC1) in breast cancer cell migration and apoptosis. *Molecular*
679 *and Cellular Biochemistry* **430**, 115-125 (2017).

680 45. M.-H. Yang *et al.*, MALAT1 promotes colorectal cancer cell
681 proliferation/migration/invasion via PRKA kinase anchor protein 9. *Biochimica et*
682 *Biophysica Acta (BBA) - Molecular Basis of Disease* **1852**, 166-174 (2015).

683 46. S. M. Ahmed *et al.*, KIF14 negatively regulates Rap1a–Radil signaling during breast
684 cancer progression. *The Journal of Cell Biology* **199**, 951-967 (2012).

685 47. B. L. Thériault *et al.*, Transcriptional and Epigenetic Regulation of KIF14
686 Overexpression in Ovarian Cancer. *PLOS ONE* **9**, e91540 (2014).

687 48. L. Mi *et al.*, The metastatic suppressor NDRG1 inhibits EMT, migration and invasion
688 through interaction and promotion of caveolin-1 ubiquitylation in human colorectal
689 cancer cells. *Oncogene* **36**, 4323 (2017).

690 49. J. Hu, A. S. Verkman, Increased migration and metastatic potential of tumor cells
691 expressing aquaporin water channels. *The FASEB Journal* **20**, 1892-1894 (2006).

692 50. J. K. Slack *et al.*, Alterations in the focal adhesion kinase/Src signal transduction pathway
693 correlate with increased migratory capacity of prostate carcinoma cells. *Oncogene* **20**,
694 1152 (2001).

695 51. M. C. Frame, V. J. Fincham, N. O. Carragher, J. A. Wyke, v-SRC'S hold over actin and
696 cell adhesions. *Nature Reviews Molecular Cell Biology* **3**, 233 (2002).

697 52. G. W. McLean *et al.*, The role of focal-adhesion kinase in cancer — a new therapeutic
698 opportunity. *Nature Reviews Cancer* **5**, 505 (2005).

699 53. R. Feng *et al.*, Targeting the Microtubular Network as a New Antimyeloma Strategy.
700 *Molecular Cancer Therapeutics* **10**, 1886-1896 (2011).

701

702 **Figure Legends**
703

704 **Figure 1: Low Cation PPFC Accurately and Precisely Sorts Cancer Cell**
705 **Populations that are Stable Long-term.** (A) MDA-MB231 populations were sorted at
706 day 0, remixed, and then resorted at day 2. Differences between weakly and strongly
707 adherent populations were assessed by two-tailed unpaired t-test (n=3). (B) Adherent
708 cells post-sort were cultured in high cations for 3, 6, 11, and 14 days and resorted. Cells
709 that detached were cultured in high cations or low cations mirroring stroma prior to re-
710 sorting. Differences between weakly and strongly adherent populations as a function of
711 culture time and condition were assessed by two-way ANOVA with Tukey test for
712 multiple comparisons (n=3). For time and condition, ANOVA showed ***p<0.001 and
713 ****p<0.0001, respectively as indicated at the corner of the plot. Individual comparisons
714 to their counterpart cation conditions are indicated in the plot with $^{\dagger}p<0.1$, and $*p<0.05$.
715 (C) Images of cells from the flow-through (detached) and remaining on the plate
716 (adherent) after exposure to shear along with quantification of the percentage of cells
717 that detached relative to plated cells from each line. n=3. ***p<0.001 for two-tailed
718 unpaired t-test between lines. (D) Plot showing the fraction of detached cells from MDA-
719 MB231, MCF7, and MCF10A and their H-Ras transformed counterparts MCF10AT after
720 exposure to 250 dynes/cm² of shear stress.
721

722 **Figure 2: Sorted Populations of Single cells and Spheroids Exhibit and Sustain**
723 **Different Migration Patterns.** (A) Average speed and (B) total displacement is plotted
724 for MDA-MB231 cells sorted by the indicated shear stress and allowed to migrate on
725 collagen gels for 24 hours. Percentages in panel A reflect the portion of each population
726 that detaches or remains adherent at a given stress. n=3 biological replicates for the
727 number of cells per condition inset in the bars in panel B. (C) Average speed was
728 measured after initial isolation and after 2 days. n=3 biological replicates. (D) Plot
729 showing the percentage of dividing cells on a collagen gel over 24 hours for cells
730 selected by the indicated shear stress. n=3 biological replicates. (E) Schematic of tumor
731 spheroid formation (top) and subsequent dissemination (bottom) in a collagen gel. (F)
732 Brightfield images at the time of spheroid embedding in a collagen gel and fluorescent
733 image 24 hours later. Dashed line indicates the average radius of disseminating cells.
734 Plots of (G) maximum and (H) normalized average outward radial migration of cells
735 selected by indicated shear (see Supplemental Figure 5 for radius measurements).
736 One-way ANOVA with Tukey test for multiple comparisons was used to indicate
737 significance where $*p<0.05$, $^{**}p<0.01$, $^{***}p<0.001$, $^{****}p<0.0001$, and N.S. = not
738 significant.
739

740 **Figure 3: Adherent Phenotypes within a Cancer Line Result from Intrinsic**
741 **Adhesion Stability and Contractility Differences.** (A) Comparison of the expression
742 of common focal adhesion proteins in strongly adherent (SA) and weakly adherent (WA)
743 cells. (B) Representative images of focal adhesions in SA and WA cells when subjected
744 to with or without cation conditions. (C) Focal adhesion density and (D) total area per
745 cell area is plotted for the indicated sorting and cation conditions. n=3 biological
746 replicates and >50 cells/condition. One-way ANOVA, with Tukey's multiple comparison
747 test was performed for the indicated comparisons with $^{**}p<0.01$, $^{***}p<0.001$, and

748 ****p<0.0001. **(E)** Brightfield and traction stress plots for cells from the indicated shear
749 conditions. Scale bar is 10 microns. **(F)** Plot of normalized strain energy for WA and SA
750 cells. n=3 biological replicates and >30 cells/condition. A two-tailed unpaired t-test
751 between lines indicated **p<0.01, ***p<0.001, and ****p<0.0001.
752

753 **Figure 4: RNA-seq Identifies Intrinsic Patterns that Indicate Structural rather than**
754 **Expression Changes in Adhesion. (A)** Differences in gene expression between
755 weakly and strongly adherent MDA-MB231 cells. **(B)** Hierarchical clustering of
756 differentially expressed genes between weakly and strongly adherent cells. Vertical bars
757 indicate clustering of genes that are upregulated in strongly adherent cells and weakly
758 adherent cells. **(C)** Genes ontology terms that are upregulated in the weakly adherent
759 subpopulation. Cytoskeletal and microtubule gene ontology terms, as well as proteins
760 that bind to these components, were significantly upregulated in weakly adherent cells.
761 **(D)** Expressions of genes upregulated in Cytoskeleton and Motor Activity, normalized to
762 strongly adherent subpopulation. **(E)** Validation of RNA seq gene expression differences
763 via qPCR for select genes. *p<0.05 and **p<0.01 for two-tailed unpaired t-test between
764 weakly and strongly adherent cells. **(F)** Average speed of weakly and strongly adherent
765 cells when treated with microtubule-targeting drugs. At identical concentrations of
766 nocodazole (0.2 ug/mL) and paclitaxel (0.5 ug/mL), weakly adherent cells displayed a
767 significant decrease in migration speed, while the strongly adherent cells demonstrated
768 no change. One-way ANOVA, with Tukey's multiple comparison test was performed for
769 the indicated comparisons with **p<0.01, ***p<0.001, and ****p<0.0001.
770

771 **Figure 5: Expression of microtubule-associated genes resembling weakly**
772 **adherent fraction predicts poor outcome in breast cancer patients. (A)**
773 Progression-free interval and **(B)** disease-free interval of TNBC patients with Stage I-III
774 tumors. Patients with gene expression that resembled strongly adherent and weakly
775 adherent cells were compared. Genes were restricted to those associated with
776 highlighted GO terms in Figure 4C, resulting in a cohort of 100 genes.

Figure 1

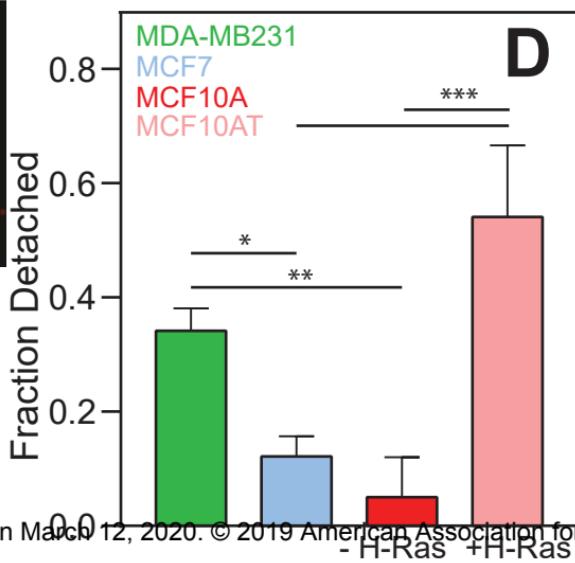
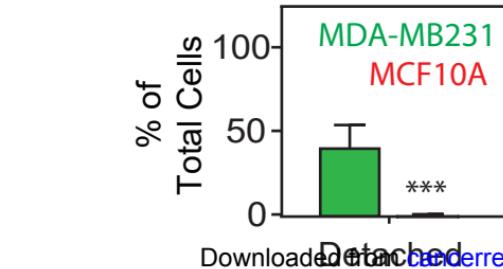
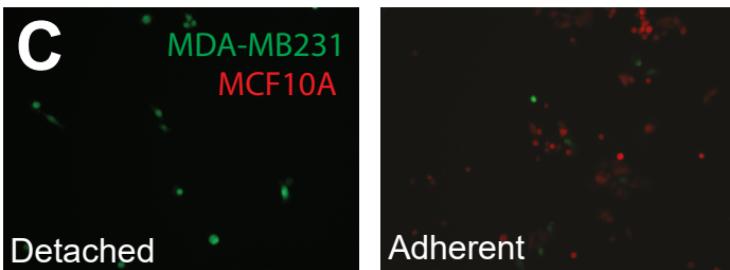
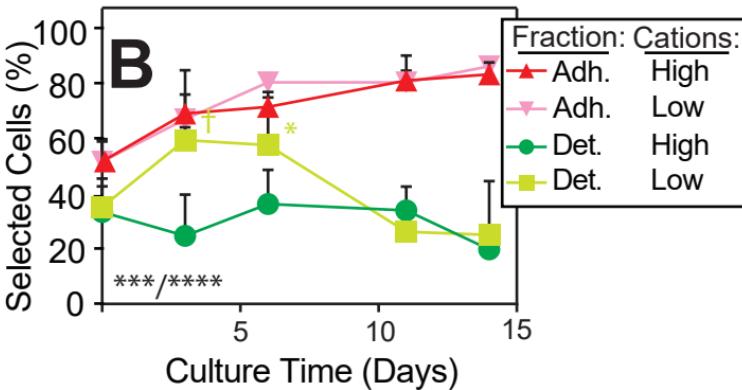
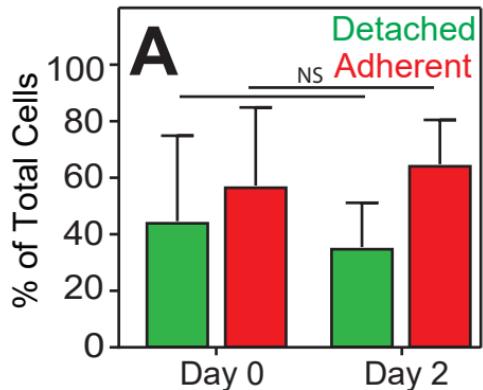






Figure 2

MDA-MB231 breast cancer

Author Manuscript Published OnlineFirst on December 19, 2019; DOI: 10.1158/0008-5472.CAN-19-0340

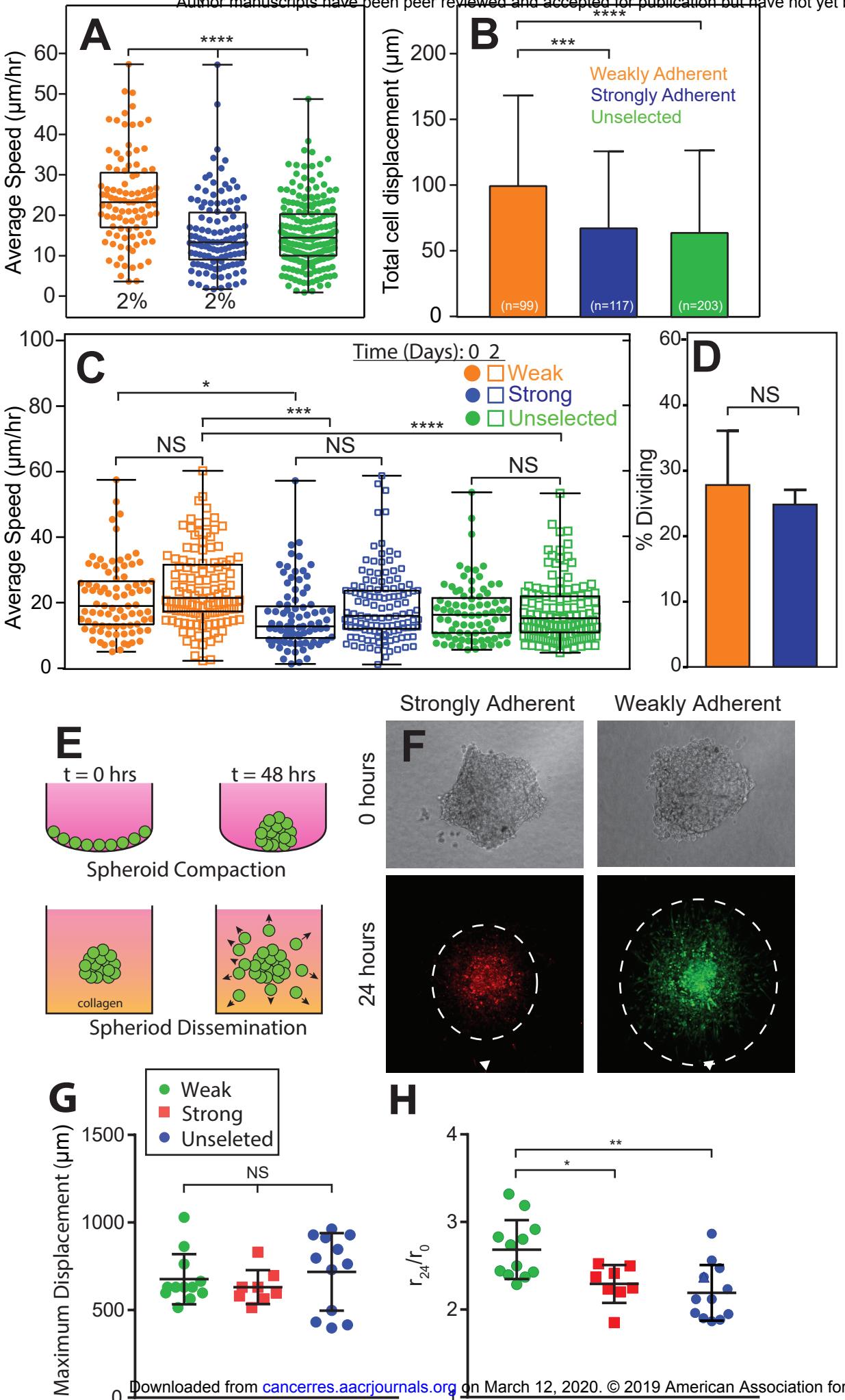


Figure 3

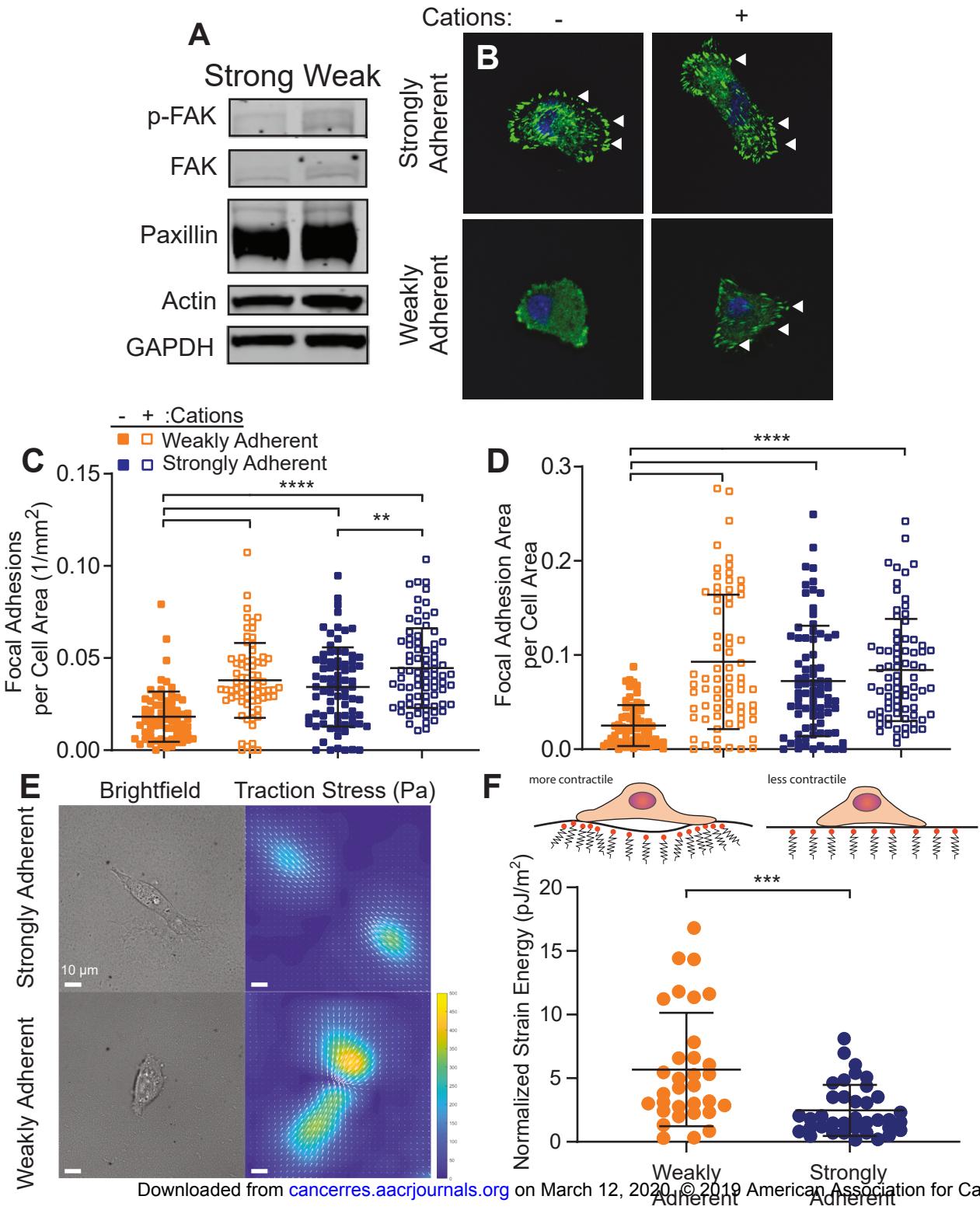
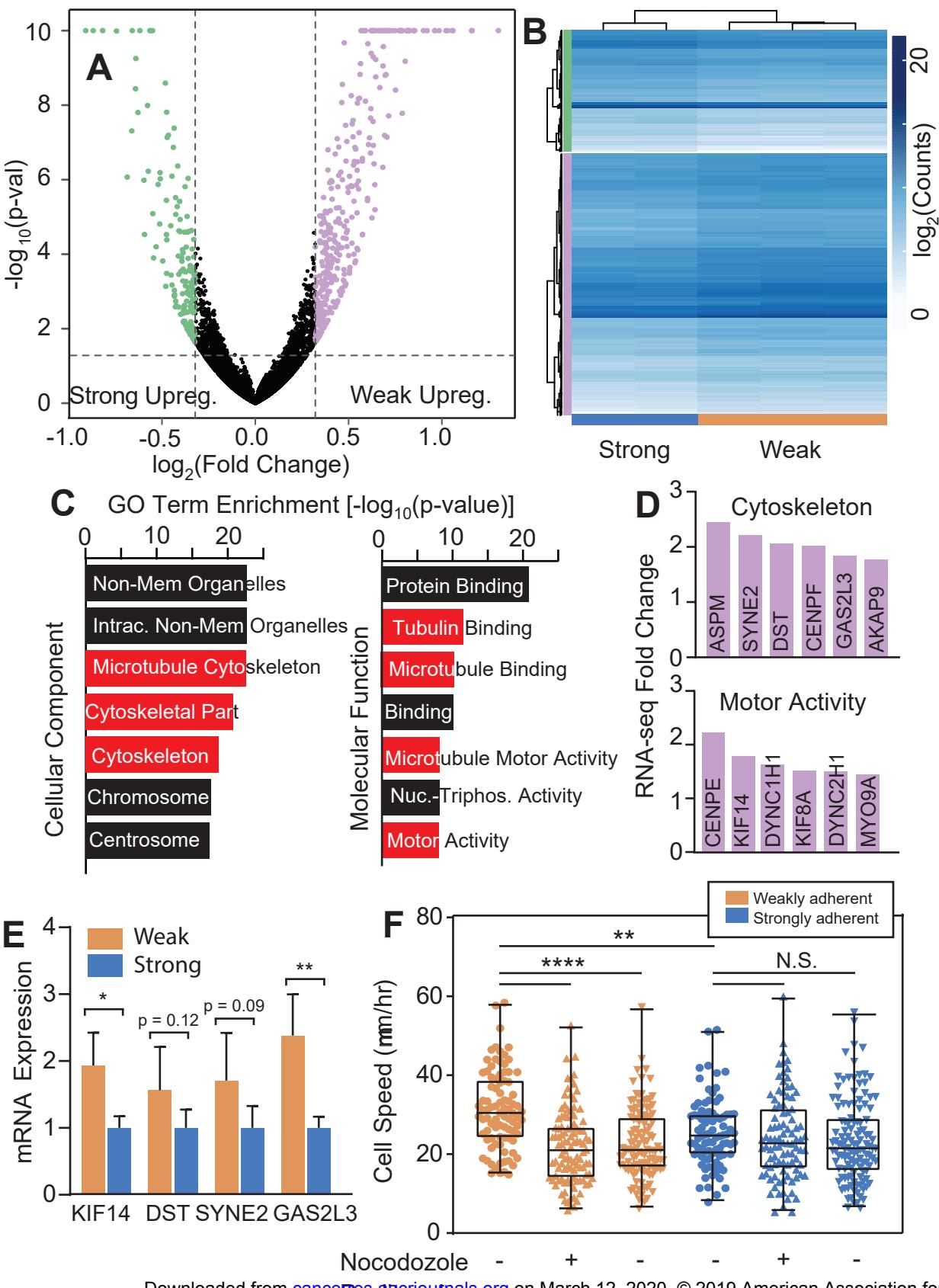
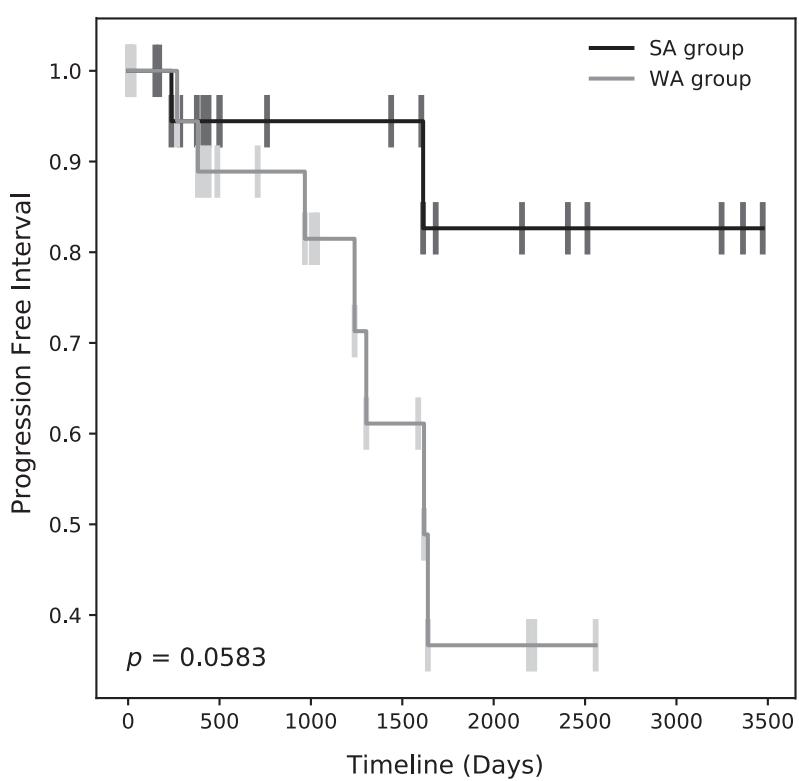
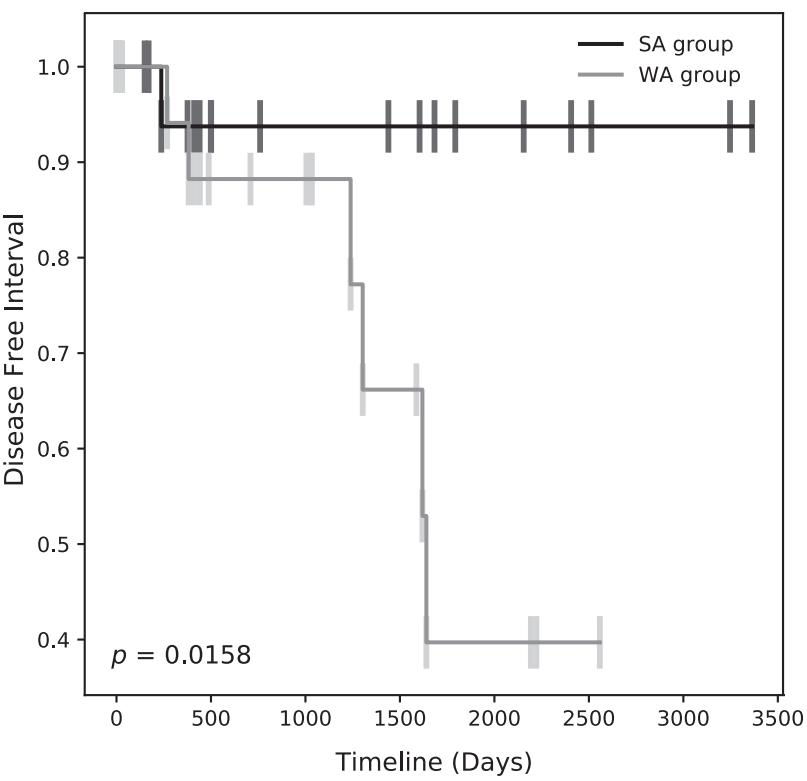





Figure 4

Figure 5

Author Manuscript Published OnlineFirst on December 19, 2019; DOI: 10.1158/0008-5472.CAN-19-1794
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

A**B**

Cancer Research

The Journal of Cancer Research (1916-1930) | The American Journal of Cancer (1931-1940)

Cell adhesiveness serves as a biophysical marker for metastatic potential

Pranjali Beri, Anna Popravko, Benjamin Yeoman, et al.

Cancer Res Published OnlineFirst December 19, 2019.

Updated version	Access the most recent version of this article at: doi: 10.1158/0008-5472.CAN-19-1794
Supplementary Material	Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2019/12/19/0008-5472.CAN-19-1794.DC1
Author Manuscript	Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org .
Permissions	To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/early/2019/12/19/0008-5472.CAN-19-1794 . Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.