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We study the interplay of competing interactions in spin—% triangular Heisenberg model through tuning the
first- (J;), second- (J»), and third-neighbor (J3) couplings. Based on a large-scale density-matrix renormalization
group calculation, we identify a quantum phase diagram of the system and discover a gapless chiral spin-liquid
(CSL) phase in the intermediate J, and J; regime. This CSL state spontaneously breaks time-reversal symmetry
with finite scalar chiral order, and it has gapless excitations implied by a vanishing spin triplet gap and a finite
central charge on the cylinder. Moreover, the central charge grows rapidly with the cylinder circumference,
indicating emergent spinon Fermi surfaces. To understand the numerical results we propose a parton mean-field
spin-liquid state, the U (1) staggered flux state, which breaks time-reversal symmetry with chiral edge modes
by adding a Chern insulator mass to Dirac spinons in the U (1) Dirac spin liquid. This state also breaks lattice
rotational symmetries and possesses two spinon Fermi surfaces driven by nonzero J, and J3, which naturally
explains the numerical results. This realizes an example of a gapless CSL state with coexisting spinon Fermi
surfaces and chiral edge states, demonstrating the rich family of interesting quantum phases emergent from

competing interactions in triangular-lattice magnets.

DOI: 10.1103/PhysRevB.100.241111

Introduction. Quantum spin liquids (QSLs) are novel quan-
tum phases of matter, which do not exhibit any symmetry-
breaking orders even at zero temperature [1-3] but fea-
ture long-range entanglement and fractionalized excitations
[4-7]. QSLs have been studied extensively in the past few
decades, due to their important role in understanding strongly
correlated materials and potential application in topological
quantum computation [8—12]. While gapped QSLs have been
classified and characterized systematically, there is much less
understanding on gapless QSLs and how they could be real-
ized in materials. Although a gapless QSL with Dirac cones of
spinons has been shown to exist in the exactly soluble Kitaev
model [12], so far there is no definitive evidence that a Dirac
spin liquid has been realized in any magnetic materials [2,13].
A more exotic state is the gapless QSL with spinon Fermi
surfaces (SFSs) [14—16]. Such a QSL has an extensive number
of low-energy excitations, and was shown to be stabilized by
four-spin ring-exchange couplings that can arise from strong
charge fluctuations in weak Mott insulators [17-21].

Experimentally, many QSL candidate materials fall into the
family of layered spin—% magnets on the triangular lattice,
such as the organic salts [22-26] and the transition-metal
dichalcogenides [27-30]. Specific heat and thermal transport
measurements point towards the presence of extensive mobile
gapless spin excitations, which appear to be consistent with
a gapless QSL with SFSs [24,26,28]. These materials are
considered to be weak Mott insulators with strong charge
fluctuations, which may induce such gapless QSL behaviors
[17-21]. However, a direct study on the triangular Hubbard
model suggests a possible gapped chiral spin-liquid (CSL)
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phase in the intermediate U region [31]. Therefore, a clear
theoretical understanding of the mechanism to realize gapless
QSLs in these layered quasi-two-dimensional magnets is still
lacking.

Another route to QSL is through competing interactions
between different neighboring sites, such as the kagome com-
pound kapellasite [32] and J;-J,-J3 kagome model [33,34].
Recently, competing interactions have also been found es-
sential to understand possible QSLs in the triangular-lattice
rare-earth compounds [35-39] and delafossite oxides [40—43].
Indeed, a QSL phase has been found in the spin-% Ji-J, trian-
gular Heisenberg model (THM) although its nature has not
been established [44-51]. Therefore, understanding how QSL
phases emerge from competing interactions is an important
issue in order to discover new QSL materials [52-54].

In this Rapid Communication, we systematically study the
spin-% Ji1-J»-J3 THM using the density-matrix renormaliza-
tion group (DMRG) method and the parton construction. The
model Hamiltonian is given as

H:lesi~Sj+JZZS,-~Sj+J3ZSI--SJ-, (D)
(i J) ()] (G

where Ji, J»,J; are the first-, second-, and third nearest-
neighbor (NN) interactions as shown in the inset of Fig. 1(a).
We choose J; = 1.0 as the energy scale. In the coupling
range 0 < J»/J; < 0.7, 0 < J3/J; < 0.4, besides the previ-
ously found J;-J, spin liquid and different magnetic orders,
we identify another gapless CSL phase as shown in Fig. 1(a).
This CSL state spontaneously breaks time-reversal symmetry
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FIG. 1. Quantum phase diagram of spin—% Ji-J,-J3 THM. The
inset shows the model on the YC geometry. We find a 120° order,
a stripe order, a zigzag order, an incommensurate (IC) order, and
a gapless chiral spin-liquid (CSL) phase in the neighbor of the
previously found J;-J, spin-liquid (SL) phase. The colored dotted
lines are schematic phase boundaries, and the black dotted lines are
the classical phase boundaries of the 120°, stripe, and zigzag orders.
Static spin structure factors of the gapless CSL (b), the zigzag state
(c), and the incommensurate state (d) on the YC8 cylinder.

(TRS) with a finite scalar chiral order. We also observe spin
pumping upon flux insertion, similar to the charge pumping
in Laughlin-type fractional quantum Hall states, indicative of
a chiral edge mode, which is further confirmed by the entan-
glement spectrum. Finite-size scaling of the spin triplet gap on
the squarelike clusters shows a vanished spin gap. The gapless
nature is further supported by the bipartite entanglement
entropy, which exhibits a logarithmic correction of the area
law versus subsystem length, leading to a finite central charge.
The central charge grows with the cylinder circumference
consistent with a QSL with emergent SFSs. We propose a
staggered flux state in the Abrikosov-fermion representation
of spin—% operators, which explains the coexistence of the
chiral edge mode and SFSs observed in this gapless CSL.

We study the system by using DMRG with SU(2) symme-
try [55,56]. We use cylinder geometry with periodic bound-
ary conditions along the circumference direction and open
boundary conditions along the extended direction. The lattice
vectors are defined as a; = (1,0) and a, = (%, ‘/75). Two ge-
ometries named YC and XC cylinders are studied, both having
extended directions along a;. For the YC and XC cylinders,
the circumference direction is along a, and perpendicular to
aj, respectively. The cylinders are denoted as YCL,-L, and
XCL,-L, with Ly and L, being the numbers of sites along the
circumference and extended directions. We study the systems
with L, = 5-12 by keeping up to 8000 SU(2) states [equiva-
lent to about 24000 U (1) states] to obtain accurate results with
truncation error less than 1073 in most calculations.

Quantum phase diagram. We demonstrate the quantum
phase diagram in Fig. 1(a). With growing J, and J3, we find

FIG. 2. Finite scalar chiral order of the CSL state at J, = 0.3,
J; = 0.15. (a) and (b) are the scalar chiral orders measured from
the boundary to the bulk on the YC and XC cylinders. The scalar
chiral order (x) = (S; - (S2 X S3)) is defined for the three spins S;
(i =1,2,3) for each triangle, and d is the distance of the triangle
from the edge. The chiral orders of all the triangles have the same
chiral direction.

different magnetically ordered phases and QSL phases. In
Fig. 1(a), the black dotted lines denote the classical phase
boundaries of the 120°, stripe, and zigzag orders. We also
find an incommensurate (IC) magnetic order in the neighbor
of the zigzag order, consistent with previous spin-wave calcu-
lations [52]. The incommensurate order might be considered
as the zigzag order with an incommensurate modulation (see
Supplemental Material [57]). In the presence of quantum
fluctuations, we find another gapless CSL phase near the
triple point of the classical orders, which sits at the neighbor
of the J;-J, SL. By computing spin and dimer correlation
functions, we find featureless spin and dimer structure factors
that indicate the absence of spin and dimer orders in the CSL
state [57]. Next, we further characterize the nature of this CSL
state.

Spontaneous time-reversal symmetry breaking. To detect
spontaneous TRS breaking, we use a complex-valued wave
function, which has been applied in DMRG to find chiral
ground states in different systems [33,58]. If TRS is sponta-
neously broken, the system is featured by finite scalar chiral
order (x) = (S - (S2 x S3)), where S; (i = 1, 2, 3) label the
three spins on each triangle. On the YC cylinder with both
even and odd L,, we find a nonzero chiral order in the bulk
of cylinder with a large circumference, as shown in Fig. 2(a)
for J, = 0.3, J3 = 0.15. In these states, the chiral orders of all
the up and down triangles have the same sign, and the chiral
order grows more robust as the circumference increases. On
the XC cylinder shown in Fig. 2(b), the chiral order vanishes
in the bulk for small circumference but becomes stable on the
wide XC12 cylinder. Combining these results we conclude a
CSL state with spontaneous TRS breaking.

Spin triplet gap and entanglement characterization. We
calculate the spin triplet gap by obtaining the ground state (in
the § = 0 sector) on a long cylinder and then sweeping the
S = 1 sector for the middle N, columns [59], which gives the
gap of the middle N, x L, system. We find that the gap versus
1/N, shows a length dependence [57]. To estimate the gap
in the two-dimensional (2D) limit and avoid one-dimensional
(1D) physics, we extrapolate the gap data of the squarelike

241111-2



CHIRAL SPIN LIQUID WITH SPINON FERMI SURFACES ...

PHYSICAL REVIEW B 100, 241111(R) (2019)

0.5— : : - - -
[ T T T 11 T IQQQ‘bQQQI I-
(a) o 6x6 (b) s5ce24 Tx
0.4F o 7x8 2Ir Fc~10s o U
5 2 550 2 %
o B X / - 4] ] —1.05
5 03 avce18 A ™
= o I c~1.02 "\ > g
Zo02f x 1| fio 1T S
§= 7 g&’ & \ <
o L 7 ] \ [¥] 3
17) 4 | ¢ O \ -
01k // | 'YC6—12 \ \ 0.95
: e Hc~0.99 \ |
I P 11 \ \ —H0
0 AN 1 1 é- ] L9 [ 1 9
0 0.05 0.1 0.15 4 8 12 16 20
1/L 1
y X
A T 5 10
©) YC8-16 5 8 é §
§§ 8 o\\8 e g 3
3.5F A OOOOO§ - oL SS
EO Og\ g AN \\\O
o go Og 8 O\\\ ‘\\c\) 16
g O o M=1000 X oo . Y=
5 3r o M=2000 g 7 © 60 g O &
S % © M =3000 s 4
;A M=4000 | © 8 o |
| v M =6000 ‘o o~
2P -c=s \ 2 P
1
5 5] (dsS =0 ]
2 X L s L s L s 1 N 1 N 1 L 0
0 4 8 12 16 -6 -4 -2 0
I Ak /(2m/L)
X

FIG. 3. (a) Size scaling of the spin triplet gap obtained on the
squarelike clusters. (b) Entanglement entropy vs subsystem length
[, on the YC6 cylinders with different L,. (c) Entanglement entropy
on the YC8-16 cylinder by keeping different SU(2) state numbers.
The dashed lines denote the fitting of entropy following the formula
S(l,) = (¢/6)In[(L,/m)sin(l,wr /L,)] + g, giving a central charge
¢~ 1 for the YC6 cylinder and ¢ >~ 5 for the YC8-16 cylinder.
(d) Entanglement spectrum labeled by the quantum number total spin
§% = 0 and relative momentum along the y direction Ak,. A; is the
eigenvalue of the reduced density matrix. The red circles denote the
near degenerate pattern {1, 1, 2, 3, 5} of the low-lying spectrum.

clusters as shown in Fig. 3(a). The gap drops fast as a function
of 1/L, and smoothly scales to zero, suggesting gapless spin-
triplet excitations.

Furthermore, we study entanglement entropy versus sub-
system length [, by cutting the cylinder into two parts. Since
the real-valued wave function is a superposition of the two
chiral states with opposite chiralities, it has a higher en-
tanglement entropy and is harder to converge to; thus we
also use a complex-valued wave function to compute the
entanglement entropy. As shown in Fig. 3(b) for J, = 0.3,
J3 = 0.15 on the YC6 cylinder, the entropy shows a loga-
rithmic correction of the area law and follows the behavior
S(l) = (¢/6)In[(L, /) sin(l, /L,)] + g [60], where S(I,) is
the bipartite entanglement entropy, c is the central charge,
and g is a nonuniversal constant. The YC6 cylinders with
different L, give a consistent central charge ¢ >~ 1. For the
YCS8 cylinder, we choose L, = 16 (the entropy for larger
L, is much harder to converge and we show the results
for L, =24 in the Supplemental Material [57], which are
consistent with the fitted central charge ¢ =5). As shown
in Fig. 3(c), the entropy continues to grow with a kept state
number and converges very well by keeping 6000 SU(2)
states, giving a large central charge of ¢ 2~ 5. The finite central

charge supports the gapless nature of the CSL state. Once
a 2D quantum state is confined to a 1D cylinder, the finite
circumference quantizes the momentum around the cylinder.
The central charge of the 1D cylinder needs to sum over
contributions from all quantized momenta. Taking the U(1)
Dirac spin liquid as an example, the cylinder central charge
¢ =2 — 1 = 1 if the quantized momenta for each spin species
only cross one Dirac cone, where the extra —1 accounts for the
U (1) gauge field fluctuations which gaps out the total spinon
density fluctuation [57,61]. Similarly ¢ < 3 if the quantized
momenta cross two Dirac cones (for each spin species), which
is an upper bound for the central charge on a cylinder of
any L,. The large central charge we found from DMRG is
therefore inconsistent with the U(1) Dirac spin liquid on
a triangular lattice [44,45,50], but provides strong evidence
supporting emergent SFSs [14,15,18,19]. Now that each pair
of crossings (one right mover and one left mover) between the
quantized momenta and the SFSs contributes a unit of central
charge, the total central charge of SFSs generally grows with
L,, with an upper bound of ¢ < N,, — 1, where 2N,, is the total
number of crossings [57].

For gapped CSL states, the entanglement spectrum has a
one-to-one correspondence with the physical edge spectrum
[62]. Interestingly, for this gapless CSL state the entanglement
spectrum also shows a quasidegenerate group of levels with
the counting {1, 1, 2, 3,5, ...} agreeing with chiral SU(2),;
conformal field theory [63], as shown in Fig. 3(d). This
may be an example of such states for an interacting system,
which demonstrates similar edge physics as the noninteracting
p + ip chiral superconductor with a gapless bulk spectrum
[64,65].

The staggered flux state. To understand the DMRG results,
we propose a staggered flux state, whose mean-field ansatz is
constructed in the Abrikosov-fermion representation of spin-%
operators [66]

1 fix Sy
Si = -Tr(y/ Yo", vi=|": i ] @
4 fm _fm
The Heisenberg Hamiltonian H =3, J;;S; - S; is decou-
pled into the mean-field form as
1 5 1 ¥
HMF = g ZJ,-jTr(wi uijwj + HC) + g ZJ,']'TI'(MUMU),
ij ij

with the mean-field amplitude w;; = (Y;¥/]) = uf;. In the
U (1) QSL states all spinon pairing terms will vanish and thus

—Xj 0
ij= ) 3
o < 0 Xij) @

where x;; = >, ( flTa fi«) = Xji- Then the mean-field ansatz
can be simplified as

J . J
Hyw = 3 2 Y (=Tiflufia+ He) +5 2 (il
i)« o

where the mean-field ground state is at half filling due
to the single-occupancy constraint on the parton Hilbert
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FIG. 4. Mean-field ansatz of the staggered flux state with up to
third NN mean-field amplitudes. (a) Spinon dispersion. (b) Edge
spectrum on a cylinder geometry. (c) and (d) show how the 1D chan-
nels with quantized momentum k, = 27”2’ I, € Z cross the spinon
Fermi surfaces (SFSs) on finite YC cylinders with L, = 6, 8. The
dotted rectangle is the reduced Brillouin zone due to the doubling of
unit cell in the mean-field ansatz. Pink and blue circles denote hole-
and particlelike SFSs, respectively.

space

3 fifiu=1. Vi @)
a=1,{

We consider a U(1) spin liquid known as the staggered
flux state [67—69], where fermionic spinons transform under
translations as follows,

T + T
fr,a - (_)rlfrlJraz,w fr,a - fr+a1,a- (5)

Although the mean-field ansatz doubles the unit cell (along
the a, direction), the projected wave function preserves the
lattice translation symmetries by a ».

Since the spin model has couplings up to the third NN
sites, we consider the symmetry-allowed mean-field ansatz
with hopping terms up to the third NN, which are shown
in the Supplemental Material [57]. The NN hopping ansatz
reduces to the w-flux U(1) QSL state [50] in the case of
@1 = ¢ =1 /2 (¢1, ¢, are the phases of the NN hoppings),
with a pair of Dirac spinons at half filling for each spin
species. The second and third NN hoppings can open up a
direct gap at each Dirac cone, leading to a Chern number
C = %1 of the lower spinon band and the chiral edge states
shown in Fig. 4(b). Meanwhile the third NN hoppings can
break the degeneracy of two Dirac cones, giving rise to one
particlelike SFS around one Dirac point [blue in Figs. 4(c)

and 4(d)] and a holelike SFS around the other Dirac point
[pink in Figs. 4(c) and 4(d)]. Due to the single-occupancy
constraint Eq. (4), the particlelike SFS and holelike SFS are
perfectly compensated at half filling. Choosing mean-field
parameters as x = 1.0, ¢1 = ¢, =71/2, A = 1.0, ¢ = ¢ =
03 =0, p=3.0, yy =y =y3 =m/2 [57], the mean-field
dispersion and edge spectrum of fermionic spinons are shown
in Figs. 4(a) and 4(b).

For further comparison with DMRG, we follow the YC
cylinder geometry with quantized momentum k, = 2wl /L,
along the b, direction. In Figs. 4(c) and 4(d) we depict how the
1D channels with quantized momenta k, = 2ml,/L, intersect
with the two SFSs in the reduced Brillouin zone of the stag-
gered flux state. On the YC6 cylinder, as shown in Fig. 4(c),
there are NV, = 2 x 2 = 4 pairs of gapless 1D modes crossing
the SFSs (counting both spin species), constraining the central
charge to be ¢ < N, — 1 = 3. On the YC8 cylinder, as shown
in Fig. 4(d), there are N,, =2 x 4 = 8§ pairs of gapless 1D
modes crossing the SFSs, restricting the central charge as
¢ <N, — 1 =717. This is consistent with the observed ¢ ~ 1
on YC6-24 cylinder [Fig. 3(b)] and ¢ &~ 5 on YC8-16 cylinder
[Fig. 3(c)]. Note that the number N,, — 1 only bound the actual
central charge from above, since symmetric backscatterings
between these gapless 1D channels can further reduce the total
central charge from N, — 1 [57].

Discussion. The spin structure factor of the gapless CSL
phase in Fig. 1(b) resembles that of the U(1) Dirac spin
liquid [45]. Specifically, it exhibits high intensities on the
edge and at the corner of the hexagonal Brillouin zone, which
are associated with fermion bilinears and monopoles, respec-
tively, in the U (1) Dirac spin liquid [70,71]. This suggests
the proximity of the gapless CSL to the U (1) Dirac state,
which is indeed the case for the proposed staggered flux
state. We have also studied the phase transition from the
Ji-J> SL phase to the gapless CSL phase. The ground-state
energy versus couplings is very smooth, suggesting a possible
continuous phase transition [57]. Interestingly, in the J;-J»
SL entanglement entropy also shows a logarithmic correction
of the area law, which leads to a finite central charge [57].
Another insight for its ground state could be a gapless spin
liquid with SFSs but preserving TRS, which we leave for
future work.

Summary. We have studied the spin-% Ji1-J»-J3 THM by ex-
tensive DMRG calculations. We identify a CSL state sponta-
neously breaking TRS, featuring a chiral edge mode and spin
pumping upon flux insertion. The vanishing spin triplet gap
and finite central charge reveal the gapless nature of this state.
The central charge which grows with system circumference
further indicates emergent SFSs. While the competing J;, J3
couplings lead to a gapped CSL on a kagome lattice [34,72],
they induce a gapless CSL on a triangular lattice. On the
mean-field level we propose a staggered flux state driven by
the J,, J3 couplings, which breaks TRS and forms SFS, pro-
viding a theoretical understanding for such a gapless phase.
The discovery of this gapless CSL reveals the possibility for
the coexistence of chiral edge modes and SFSs in a gapless
QSL, emergent from competing interactions in a frustrated
two-dimensional magnet.

Note added. Recently, we became aware of an article by
Hu et al. [73], who studied the J;-J, spin liquid. Compared
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to their work, our work focuses on the Ji-J,-J3 model
and found a staggered flux state driven by further-neighbor
interactions.
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