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a b s t r a c t

We discuss quantum Hall effects in a gapped insulator on a
periodic two-dimensional lattice. We derive a universal relation
among the quantized Hall conductivity, and charge and flux
densities per physical unit cell. This follows from the magnetic
translation symmetry and the large gauge invariance, and holds
for a very general class of interacting many-body systems. It
can be understood as a combination of Laughlin’s gauge in-
variance argument and Lieb–Schultz–Mattis-type theorem. A
variety of complementary arguments, based on a cut-and-glue
procedure, the many-body electric polarization, and a fraction-
alization algebra of magnetic translation symmetry, are given.
Our universal relation is applied to several examples to show
nontrivial constraints. In particular, a gapped ground state at a
fractional charge filling per physical unit cell must have either a
nonvanishing Hall conductivity or anyon excitations, excluding a
trivial Mott insulator.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Quantum Hall effects (QHE) of 2-dimensional electron gas (2DEG) [1,2] exemplify the first class
of topological phases [3], characterized by their quantized bulk response functions and gapless edge
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excitations. In fact, QHE has been a source of many concepts that have become essential in more
general quantum many-body problems. One of the important directions in quantum many-body
theory is to find a general constraint based on symmetries of the system. Such a constraint would
be a guiding principle in classifying a wide variety of systems, and sometimes in designing systems
with a desired property. QHE has been also instrumental in developing this type of approach.
Laughlin’s gauge argument for the quantization of the Hall conductance is a beautiful example,
which inspired many other developments.

The Hall conductivity may also be constrained by other symmetries. This is evident in the Hall
effect of 2DEG in a free 2-dimensional space, where the Hall conductivity σxy is fully determined
by filling factor ν, the ratio of electron number density ρ̄ and flux density B/Φ0:

σ 2DEG
xy = ν

e2

h
, ν =

ρ̄

B/Φ0
=

hρ̄
eB
. (1)

Guaranteed by Galilean invariance, this powerful relation remains valid in the presence of interac-
tions, applying to both integer and fractional QHEs in the free space.

QHE on a periodic lattice is a more difficult problem. Despite the complicated nature of the
spectrum [4], the Hall conductance is topologically quantized [5–8]. This observation led to the
foundation of topological quantum many-body physics, and has also received renewed interest
recently [9–12]. The absence of the Galilean invariance in the lattice implies the breakdown of the
simple relation (1). Nevertheless, the periodic lattice has a discrete translation symmetry. Therefore,
we can ask a natural question: is there a relation similar to (1) for QHEs in a periodic crystal? More
specifically, given the electron density and magnetic field, to what extent can we determine the Hall
conductivity for QHEs on a discrete lattice? In fact, the Lieb–Schultz–Mattis (LSM) theorem [13]
and its generalizations [14–16], which are a filling-enforced constraint [17] on quantum many-
body systems, may be also be understood as a remnant of Galilean invariance on a discrete lattice.
Therefore it would be natural to expect a generalization of Eq. (1) to lattice systems.

In this paper, we demonstrate that this is indeed the case by deriving a universal relation be-
tween the quantized Hall conductivity and filling (particle number per unit cell), which generalizes
Eq. (1). In quantum mechanics, a magnetic field must be represented in terms of vector potential. As
a consequence, the original, physical translation symmetry is lost in the Hamiltonian in the presence
of the magnetic field. This is the case even in the free space. Nevertheless, there is a remnant of
the translation symmetry that is called a magnetic translation symmetry [18,19]. Laughlin’s gauge
argument and (generalized) LSM theorem are both consequences of large gauge invariance. The
former constrains the Hall conductivity based on just the gauge invariance and the energy spectrum
of the system. The latter constrains the energy spectrum of the system based on the ‘‘filling’’ or
the particle density, in the presence of the discrete lattice translation symmetry. Our result is a
combination of these two fundamental constraints in quantum many-body problem, relating the
quantized Hall conductivity and the particle density. We will give the universal relation (25) first
for the integer QHE case, and then later the corresponding result (26) for the fractional QHE. As
is the case with the Laughlin’s argument and the LSM theorem, our argument is very general and
applies to a wide range of interacting systems of either bosons or fermions. While some formulae
corresponding to a part of our results were reported earlier [20–22], our perspective based on the
LSM-type theorems elucidates the deep physical meaning of the universal relations. In fact, we will
present several applications which demonstrate their surprising power.

The article is organized as follows. We set up the problem and summarize main results in
Section 2. In Section 3, as a preparation, the flux insertion process and the associated momentum
counting argument are introduced. Then we prove the filling-enforced constraint on the quantized
Hall conductivity for integer QHEs with a ‘‘cut and glue’’ argument, based on gapless edge states in
Section 4. In Section 5, we review the many-body polarization as formulated by Resta and Sorella.
Then the many-body polarization is applied to derive the filling-enforced constraint for IQHEs
without relying on the ‘‘cut and glue’’ procedure, in Section 6. The filling-enforced constraint on the
quantized Hall conductivity is then generalized for FQHEs in Section 7. An alternative perspective
based on a fractionalization algebra of magnetic translation symmetry is discussed in Section 8. In
Section 9, generalization of our results to non-symmorphic lattices is discussed. Applications of our
filling-enforced constraints to various systems of interest are discussed in Section 10 before the
concluding remarks in Section 11.
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2. Setup and main results

We consider a quantum many-particle system on a periodic two-dimensional potential/lattice
in a background magnetic field, with the magnetic flux

φ =
p
q
, (2)

in the unit of flux quantum Φ0 = h/e per unit cell, where p and q are mutually prime integers.
In the following, we set h̄ = e = 1 so that Φ0 = 2π . We denote the primitive Bravais vectors of
the lattice as a⃗1,2, and corresponding translation operators as T1,2. The continuum version of the
Hamiltonian reads

H =

∫
dr⃗

1
2m
ψ†(r⃗)

[(
− i ∇⃗ − A⃗(r⃗)

)2
+ V (r⃗)

]
ψ(r⃗) (3)

+

∫
dr⃗

∫
dr⃗ ′ U(r⃗, r⃗ ′)ρ(r⃗)ρ(r⃗ ′),

where ρ ≡ ψ†ψ is the particle number density, and V and U are invariant under T1,2. It is also
convenient to introduce the reciprocal vectors g⃗1,2 which satisfy

a⃗α · g⃗β = δαβ . (4)

While there is a degree of freedom in gauge choice, in this paper we choose the Landau gauge

A⃗(r⃗) = 2πφr1g⃗2, (5)

where

rα = g⃗α · r⃗, (6)

for α = 1, 2. Because of the position dependence of the vector potential, the Hamiltonian is
not invariant under the translation T1. Nevertheless, one can define a set of magnetic translation
operators T̃1,2, which supplement the primitive translations by appropriate gauge transformations
and leave the Hamiltonian invariant [18,19]. For the Landau gauge (5), we choose

T̃1 = exp
(
2π iφ

∫
dr⃗ r2ρ(r⃗)

)
T1, (7)

T̃2 = T2. (8)

These magnetic translation operators satisfy the commutation relation

T̃1T̃2 = e2π iφN̂ T̃2T̃1, (9)

where

N̂ =

∫
dr⃗ ρ̂(r⃗) (10)

is the total charge (in unit of the elementary charge e) of the system. This ‘‘magnetic translation
algebra’’ may be regarded as a defining feature of the system in the presence of the magnetic field.
The magnetic translation algebra can be also defined for a lattice model under a uniform magnetic
field. Our analysis in the following also applies to such lattice models as well.

In particular, it is helpful to consider a system on the square lattice with a uniform magnetic
field, as a simplest example, for the sake of illustrating the problem. For the square lattice with
only the nearest-neighbor hoppings, the vector potential on the lattice in the Landau gauge reads

A1(r⃗) = 0,
A2(r⃗) = 2πφr1,

(11)
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where r⃗ = (r1, r2)T ∈ Z2 refers to the location of the lattice site. The vector potential enters the
hopping term in the Hamiltonian as

−tr⃗+e⃗1,r⃗e
iA1(r⃗)c†(r⃗ + e⃗1)c(r⃗)

− tr⃗+e⃗2,r⃗e
iA2(r⃗)c†(r⃗ + e⃗2)c(r⃗) + H.c. (12)

where e⃗1 = (1, 0)T and e⃗2 = (0, 1)T . The primitive translations T1,2 are just the lattice translations
by e⃗1,2. The magnetic translation operators on the square lattice are then

T̃1 = exp

⎛⎝2π iφ
∑
r⃗∈Z2

r2n(r⃗)

⎞⎠T1, (13)

T̃2 = T2, (14)

where n(r⃗) is the particle number operator at the site r⃗ . They satisfy the same magnetic translation
algebra (9).

The non-commutativity of magnetic translation operators T̃1 and T̃2 prevents us from using
the common techniques such as Fourier transforming to the momentum space. Thus it is often
convenient to use the commuting set of magnetic translation operators, say

(
T̃1

)q
and T̃2. This

corresponds to considering a ‘‘magnetic unit cell’’, which is q times larger than the original, physical
unit cell. Throughout this paper, ‘‘unit cell’’ (without ‘‘magnetic’’ in its front) refers to the original
unit cell and not to the magnetic unit cell.

Now let us consider a system defined on a torus. We consider a system consisting of L1 × L2 unit
cells, namely 0 ≤ rα < Lα , where rα = g⃗α · r⃗ . The uniformity of the magnetic field including on the
boundaries requires the generalized periodic boundary conditions

ψ(r⃗) =

(
T̃α

)Lα
ψ(r⃗). (15)

For the Landau gauge (5), it is explicitly given as

ψ(r⃗) = e2π iφL1r2ψ(r⃗ + L1a⃗1), (16)

ψ(r⃗) = ψ(r⃗ + L2a⃗2). (17)

The consistency of the relation between ψ(0⃗) and ψ(L1a⃗1+L2a⃗2), which can be obtained by applying
(T̃1)L1 and (T̃2)L2 in two different orders, requires

φL1L2 ∈ Z. (18)

This is equivalent to the condition that the total magnetic flux piercing the system is an integral
multiple of the flux quantum Φ0. Therefore, L1L2 must be an integral multiple of q. Likewise, in a
closed system, the total particle number

N = ρ̄L1L2, (19)

where ρ̄ is the average number of particles per unit cell, must be an integer. If

ρ̄ =
p′

q′
, (20)

where p′ and q′ are mutually coprimes, L1L2 must contain the factor q′ as well as q.
At this point, there is a freedom in assigning the factor q to L1 and L2. It is possible to choose L1

as an integral multiple of q and L2 as a coprime with q, or vice versa. However, the choice of L1 and
L2 is further restricted by the requirement of (magnetic) translation symmetry.

In the Landau gauge (5), the magnetic translation operator T̃2 in the 2-direction is identical to
the original lattice translation operator T2, as in Eq. (8). It thus appears that the system is always
invariant under T̃2 = T2. However, for a generic choice of L1, the generalized periodic boundary
condition (16) required for the torus breaks the translation invariance under T2. For the system on
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the torus to be invariant under T̃2 = T2, the phase factor e2π iφL1r2 must be invariant under r2 → r2+1
This requires φL1 ∈ Z, namely

L1 = ql1, (21)

where l1 is an integer.
On the other hand, the magnetic translation operator T̃1, Eq. (7), in the present Landau gauge

can be written as

T̃1 = (U2)
φL2 T1, (22)

where

Uα = exp
(
2π i
Lα

∫
dr⃗ rαρ̂(r⃗)

)
, (23)

for α = 1, 2. On the torus with the (generalized) boundary condition, U2 is nothing but the
‘‘fundamental’’ large gauge transformation along the 2-direction. An integer power of U2 is also
a large gauge transformation on the torus, as well. However, a fractional power of U2 is not a well-
defined large gauge transformation on the torus. The Hamiltonian on the torus is invariant under
the magnetic translation T̃1 only if (U2)

φL2 is a large gauge transformation, namely only if

φL2 ∈ Z. (24)

This requires L2 to be an integral multiple of q. In this sense, with the Landau gauge (5), the
Hamiltonian on the torus has the magnetic translation invariance under T̃1, only when L2 is an
integral multiple of q. We note that, even when L2 is not an integral multiple of q, the system on
the torus of the size L1 × L2 is also perfectly well-defined with uniform flux with the generalized
periodic boundary conditions (16) and (17).

The major results of this paper are summarized in the following theorems.

Theorem 1 (Filling-enforced Constraint on σxy for IQHE). In a generic two-dimensional (2d) system of
bosons and/or fermions preserving magnetic translation symmetry (9) and U(1) charge conservation, if
it has a unique gapped ground state on torus, its Hall conductivity must satisfy the following condition:

σ̃xy · φ = ρ̄ mod 1, (25)

where σ̃xy = σxy · h/e2 is the Hall conductivity in the unit of e2/h, and ρ̄ is the number of particles (or
the charge in unit of fundamental charge e) per unit cell.

This theorem is the lattice analog of (1) for 2DEG in continuum.
Furthermore, it can be extended to Fractional Quantum Hall effects (FQHEs) with topologically

degenerate ground states, as follows:

Theorem 2 (Filling-enforced Constraint on σxy for FQHE). In a generic gapped two-dimensional (2d)
system of bosons and/or fermions preserving magnetic translation symmetry (9) and U(1) charge
conservation, its Hall conductivity σ̃xy in unit of e2/h must satisfy the following condition

ρ̄ = σ̃xy · φ +
θF ,a

2π
mod 1. (26)

where θF ,a is mutual statistical angle between fluxon (F) and background anyon (a) [23,24] in each unit
cell. When there are n degenerate ground states,

n
θF ,a

2π
∈ Z. (27)

The non-interacting fermion version of Theorem 1 is known as the Diophantine equation [20]. It
was generalized to many-body systems by Avron and Yaffe [21] and studied further in Ref. [22]. The
many-body version of the Diophantine equation in Ref. [21] corresponds to the above theorems at
a fixed system size and number of particles, with a given number of degenerate ground states.
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However, we believe that the theorem stated as above in terms of φ and ρ̄ is useful in many
ways. For example, it reveals a deep connection to the LSM-type theorems, leading to natural
generalizations such as Theorem 3 for non-symmorphic lattices in Section 9. Furthermore, it gives
rise to powerful applications, in particular the one showing the stability of gapless phases in π-flux
systems, as we will discuss in Section 10. The relation to the statistical angle θF ,a is also a novel
perspective introduced in this paper.

Clearly, Theorem 1 is simply a special case without bulk anyons, of the latter more general
Theorem 2. When φ = 0 magnetic translation (9) reduces to usual lattice translations, and (26)
reduces to the well-known fact that a gapped 2d phase with fractional filling per unit cell necessarily
leads to topological order if translations T1,2 are preserved [25,16,26,27]. As will be shown later,
because the magnetic translation symmetry determines only the fractional part of φ, the background
anyon a per unit cell has the following ambiguity: When we increase the flux density φ by ∆φ = 1,
there is one extra ‘‘anti-fluxon’’ per unit cell:

φ → φ + 1, a → a − F (28)

It then follows that θF .a → θF ,a−θF ,F under this transformation. The consistency of the Theorem (26)
with this transformation leads to the identity

e i θF ,F = e2π i σ̃xy . (29)

This is actually a well known result [27] that Hall conductivity equals the mutual statistical angle
of two fluxons in unit of 2π .

The theorem (26) can be proved for both Abelian and non-Abelian topological orders, under
the assumption of symmetry fractionalization (i.e. we are limited to the situations that magnetic
translation symmetry does not change anyon types). Note that even in non-Abelian cases, back-
ground anyon a per unit cell must be an Abelian anyon to be compatible to translational symmetry
operation in topological orders [24,27]. Meanwhile, the fluxon must also obey Abelian statistics even
in non-Abelian FQH states [27].

3. Flux insertion

3.1. Large gauge invariance and momentum counting

Suppose that the system is in a ground state initially at t = 0. Let us define the ‘‘flux insertion
operators’’ Fα(Φ), where α = 1, 2, in the following way. They represent the time evolution
operators for a process of adiabatic insertion of flux Φ through the ‘‘hole’’ encircled by a loop in α
direction, where the periodic boundary condition is imposed. It should be noted that, this flux is an
Aharonov–Bohm flux which does not directly touch the particles on the two-dimensional system,
and should be distinguished from the magnetic flux (φΦ0 per unit cell) which is piercing through
the system (and ‘‘perpendicular’’ to the two-dimensional plane).

For example, we choose the time evolution of the Hamiltonian as

Hα(Φ, t) = Hα(Aα =
Φ

Lα

t
T
), (30)

for a large enough time T . Then

Fα(Φ) ≡ T exp
(

−i
∫ T

0
dt Hα(Φ, t)

)
, (31)

where T denotes the time ordering. After the flux insertion process Fα(Φ), the Hamiltonian
becomes H(Φ) which contains the flux Φ .

On the other hand, the large gauge transformation is characterized by the identity

Hα(Φ0) = UαHα(0) (Uα)−1 . (32)
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Thus, if we consider the insertion of unit flux quantum Φ0 by Fα(Φ0), the inserted flux can be
eliminated precisely by the large gauge transformation (23). It is thus convenient to consider the
combined operation

F̃α(Φ0) ≡ (Uα)−1 Fα(Φ0), (33)

of the insertion of the unit flux quantum Φ0 and the large gauge transformation. This is the operator
which has been used in various contexts [15,28,29]. After this process, we get back to the original
Hamiltonian Hα(0). However, in general, the final state F̃α(Φ0)|ΨI⟩ after the evolution is different
from the initial state |ΨI⟩.

To see this, it is useful to invoke the ‘‘momentum counting’’ argument [13–15]. As in Section 2,
let us consider the system consists of L1 × L2 unit cells. In general, we have

TαUαTα−1U−1
α = e−

2π i
Lα

∫
dr⃗ ρ(r⃗)

= e−2π i ρ̄Lᾱ , (34)

where 1̄ = 2 and 2̄ = 1. In our setup with the Landau gauge (5), T̃2 = T2 commutes with
the Hamiltonian, when the periodic boundary condition is imposed in 2-direction. Thus the total
momentum P2 in 2-direction defined by

T2 = eiP2 (35)

is a good quantum number, modulo 2π .
On the other hand, since the introduction of the uniform vector potential corresponding to flux

insertion in the hole does not break the translation symmetry,

[T2,F2(Φ)] = 0. (36)

Combining this and Eq. (34) for α = 2 with the definition (33), we find

T2F̃2(Φ0) = F̃2(Φ0)T2e2π i ρ̄L1 . (37)

Eq. (37) implies that the momentum P2 of the final state differs from that of the initial state by

∆P2 ≡ 2πρ̄L1 mod 2π. (38)

If ρ̄L1 is not an integer, the final state F̃α(Φ0)|ΨI⟩ must be orthogonal to the initial state |ΨI⟩.
We note that, up to this point, we do not need an assumption of adiabaticity of the flux insertion

process. The present result is valid however fast the flux is inserted, and whether the system has
an excitation gap or not. Moreover, we assumed the periodic boundary condition in the 2-direction,
but not in the 1-direction at this point. Thus the momentum counting (38) is also valid when the
open boundary condition is imposed in the 1-direction, for example.

In the application to QHE, a system with open boundaries generally has gapless edge states, even
when there is a non-vanishing excitation gap in the bulk. The flux insertion/momentum counting
argument can still be useful in the presence of the gapless edge states, as we will discuss later in
Section 4.

3.2. Momentum counting on a torus

In fact, it is often convenient to consider gapped system without edge states. For this, we impose
the periodic boundary conditions in both directions, or equivalently consider the system on a torus
of the size L1 × L2. This introduces several subtleties. First, to make the system well-defined on
the torus, the total magnetic flux piercing the system must be an integral multiple of the unit flux
quantum, as in Eq. (18). It follows that L1L2 must be an integral multiple of q.

As we have discussed in Section 2, there is some freedom in choosing L1 and L2. Since the
translation invariance under T2 is essential for the momentum counting argument, on the torus
we have to choose L1 to be an integral multiple of q, as in Eq. (21). Under this condition, Eq. (34)
for α = 2 reads

T2U2T2−1U−1
2 = e−

2π i
L2

∫
dr⃗ ρ(r⃗)

= e−2π i ρ̄ql1 , (39)
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and thus the momentum gain due to the flux insertion (and large gauge transformation) F̃2(Φ0) is

∆P2 ≡ 2πρ̄L1 mod 2π ≡ 2πρ̄ql1 mod 2π. (40)

l1 can be any integer, and we choose it as a coprime with q′.
In the presence of the gap, we may require flux insertion process F to be adiabatic, assuming

that the gap never closes during the flux insertion [15]. Under this condition, if the initial state |ΨI⟩

is taken as a ground state |Ψ0⟩, which is also an eigenstate of T2, the final state F̃2(Φ0)|Ψ0⟩ must
also be a ground state. Then, if ρ̄q is not an integer, there must be multiple degenerate ground
states, or gapless excitations. This is the generalized LSM theorem applied to a system under uniform
magnetic field (φ = p/q flux per unit cell). The statements of the standard LSM theorem apply, by
replacing ρ̄ by ρ̄q. Namely, under the magnetic field, the particle number per magnetic unit cell,
which is q times larger than the original unit cell, is the relevant parameter for the generalized LSM
theorem. In particular, if we assume a unique ground state with a gap on the torus,

ρ̄q ∈ Z ⇔ ρ̄φ = 0 mod 1, (41)

or equivalently q/q′
∈ Z. This corresponds to the integer number of particles per magnetic unit cell.

In the limit of non-interacting electrons, Eq. (41) allows the Fermi level to lie in a band gap between
bands defined on the magnetic Brillouin zone. However Eq. (41) holds in more general interacting
systems, as long as the system is gapped with the unique ground state on a torus.

At this point, the LSM theorem gives no constraint when ρ̄q ∈ Z, even if ρ̄ is fractional.
Nevertheless, in the following, we will go beyond the LSM theorem and show that a different type
of general constraint arises even when ρ̄q ∈ Z.

3.3. Flux insertion and effective symmetries

We have seen that the adiabatic insertion of the unit flux quantum Fα(Φ0) and the fundamental
large gauge transformation Uα have a similar effect of introducing the unit flux quantum Φ0 in the
‘‘hole’’ of the torus. However, they are quite different operators (and thus F̃α(Φ0) ̸= 1). In fact,
Fα correspond to application of an electric field in α-direction, while Uα does not. Physically, the
applied electric field can accelerate particles. Thus, the flux insertion process generally changes the
energy of a given initial state. As a consequence, the analog of Eq. (32), generally does not hold for
Fα(Φ), even for Φ = Φ0. Nevertheless, when the system is gapped, the adiabaticity of Fα implies
that

Hα(Φ0) ∼ Fα(Φ0)Hα(0) (Fα(Φ0))−1 , (42)

holds, when restricted onto the ground-state subspace of the entire Hilbert space. (This holds because
the initial and final states are both ground state(s) of the physically equivalent Hamiltonian and thus
have the same eigenvalue.) It also follows that

[F̃α(Φ0),H(0)] ∼ 0, (43)

in the ground-state subspace. In this sense, F̃α(Φ0) effectively acts as a symmetry generator, as far
as the ground states are concerned.

Furthermore, one can certainly consider an adiabatic flux insertion, Fα(Φ), for any Φ which is
not necessarily an integer multiple of the unit flux quantum Φ0. Let us consider a finite-size system
of L1 × L2 unit cells on a torus with the flux (2) per unit cell, in the Landau gauge (5) (or its lattice
version). Let us choose L1 to be an integral multiple of q, as in Eq. (21), so that the system retains
the translation symmetry T2,

In order to derive strongest possible restrictions, we choose L2 to be a coprime with q. As we
remarked in Section 2, this choice is allowed as L1 is already chosen to be an integral multiple of
q. A drawback of this choice of L2 is that, the magnetic translation operator T̃1 is in fact not well-
defined because φL2 is not an integer, as we have discussed in Eq. (22). Nevertheless, here we can
use the adiabatic flux insertion, instead of the large gauge transformation, to define an analog of
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the magnetic translation operator. The adiabatic flux insertion F2(φL2Φ0) exactly compensates the
change in the vector potential induced by the primitive translation T1. Therefore,

˜̃T1 ≡ F2(φL2Φ0)T1 (44)

maps a ground state of the original Hamiltonian H(0) to a ground state of the same Hamiltonian,
and thus can be regarded as another ‘‘effective symmetry generator’’ in the same sense as Eq. (43).
This may be regarded as a remnant of the magnetic translation symmetry on the torus, although
the magnetic translation operator T̃1 in the standard sense is ill-defined in this setup.

As discussed earlier, φL2 not being an integer does not prevent adiabatically inserting the
‘‘fractional flux’’ φL2Φ0, while the large gauge transformation is ill-defined for a fractional flux. From
the commutation relations (62) and (34), we find

˜̃T1U1 = U1
˜̃T1e2π i L2(φσ̃xy−ρ̄). (45)

This operator ˜̃T1 will prove useful, as we will demonstrate later in Section 6.2.

4. Filling-enforced constraint on σxy : a ‘‘cut and glue’’ proof using edge states

In the following we give a heuristic proof of the main theorem (25) for integer QHEs. This is
based on a ‘‘cut and glue’’ procedure, by examining how the gapless edge states which appears
upon cutting the system, respond to flux insertion. It can be straightforwardly generalized to
non-symmorphic lattices, leading to a stronger condition (98).

We first consider the system on a torus of size L1 × L2, as discussed in the previous section. To
represent the uniform magnetic field, we adopt the Landau gauge (5). Here we choose L1 = ql1, l1 =

n1q+1, and L2 = n2q with n1,2 ∈ Z. With this choice, we satisfy the requirement (18). Furthermore,
the magnetic translation operators T̃1,2 are well-defined and commute with the Hamiltonian, as both
conditions (21) and (24) are satisfied.

As illustrated in Fig. 1, this torus can be cut into q cylinders of the size l1 × L2, where L2 = n2q.
We choose l1 to be mutually prime with q′ and n2 = 0 mod q′ so that each cylinder can have
an integer total number of elementary particles, while keeping the fractional number ρ̄ = p′/q′

of particle per unit cell. While this is not the only possible choice of the system size, it turns out
to be convenient as we will see in the following. When n1,2 are large enough, each cylinder can
be treated as a macroscopic system. We emphasize that, although these q cylinders are physically
identical to each other, the corresponding Hamiltonians are not identical. This can be seen by going
back to the torus before it was cut into cylinders and recalling the Landau gauge (5) or its lattice
version such as Eq. (11). The Hamiltonians for two different cylinders are related by the magnetic

translation operator
(
T̃1

)l1
or its integer powers, not the simple translation.

In this Section, we assume that the system on the torus has a non-vanishing gap and has a
unique ground state. This means that here we consider an Integer Quantum Hall state, since a
Fractional Quantum Hall state must have topologically degenerate ground states on a torus [30].
We will discuss Fractional Quantum Hall states later.

First we adiabatically insert a unit flux quantum Φ0 through each cylinder (red arrow in Fig. 1).
Although each cylinder which appears after the cut does not have a translation invariance in the
1-direction, we can still apply the momentum counting argument in the 2-direction as discussed in
Section 3.1. As a result, for each cylinder, we find that the momentum in the 2-direction acquires
the shift (38) where L1 is replaced by the width of the cylinder l1, namely

∆P2 = 2πρ̄l1. (46)

Because of our choice of l1 so that it is a coprime with q′, this is nontrivial modulo 2π and thus
the initial state and the final state after the flux insertion F̃(Φ0) must be orthogonal. Following the
logic of Refs. [13,15], this leaves us two possibilities: (i) there are (at least) two (quasi-)degenerate
ground states below the gap, or (ii) there are gapless excitations.

Our assumption that the system has a non-vanishing gap with a unique ground state on the
torus then implies the presence of gapless edge states on the cylinder.
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Fig. 1. (Color online) An illustration of the flux insertion and cut-and-glue procedure. Red arrow of dotted dash line
denotes inserting 2π flux adiabatically through the torus.

Fig. 2. (Color online) An intuitive picture for generalized Luttinger’s theorem (48).

Thus, under the assumption of a unique gapped ground state on a torus, fractional filling with
respect to the original, physical unit cell ρ̄ ̸∈ Z necessarily implies gapless edge states in each
cylinder. Upon adiabatic insertion of one flux quantum, a momentum shift (46) is acquired via
level crossings on the two edges of each cylinder. By denoting the momentum transfer through
the left(right) edge of nth cylinder (see Fig. 1) as ∆P (n)

2,L(R), we have

∆P (n)
2,L +∆P (n)

2,R ≡ ∆P2 = 2πρ̄l1 mod 2π, (47)
n = 1, 2, . . . , q.

As illustrated in Fig. 2, the momentum transfer for each edge is always proportional to charge
density ρn,L/R (in unit of e) on each edge:

∆P (n)
2,L(R) = 2πρn,L(R), ∀ n. (48)

This can be viewed as a generalization of Luttinger’s theorem to interacting systems. In Appendix A,
we proved this generalized Luttinger’s theorem in the chiral boson description of edge states where
the gapped bulk is captured by an Abelian Chern–Simons theory [31].

On the other hand, the (n + 1)th cylinder is related to the nth cylinder by magnetic translation
(T̃1)l1 , which is a combination of pure translation T l1

1 and large gauge transformation Uφl1L22 .
Therefore the (n + 1)th cylinder can be viewed as translating nth cylinder by l1 = n1q + 1

unit cells along a⃗1 direction, and then applying large gauge transformation (U2)φl1L2 = (U2)pn2 l1 flux
quanta through it. Due to the well-known chiral anomaly [32] in 1 + 1-D, the chiral edge states
of QHEs are not invariant under large gauge transformations [31]. As shown in Appendix A, a large
gauge transformation (U2)φl1L2 can change the charge density of edge states by ∓φl1σxy for left(right)
edges, where σxy ∈ Z is the integer Hall conductance of the bulk. This leads to the following relation
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on the charge density on the edges:

ρn+1,L = ρn,L − σxyφl1,

ρn+1,R = ρn,R + σxyφl1. (49)

Now let us glue the right edge of nth and the left edge of (n + 1)th cylinder together preserving
translation T2, and the entity of these two cylinders becomes a larger cylinder of size 2l1 × L2. With
a bulk excitation gap, such a gluing procedure will not change the charge density beyond a finite
correlation length and hence the charge densities on two edges of the large cylinder are ρn,L and
ρn+1,R. Repeating the flux insertion argument for this large cylinder yields

2π (ρn,L + ρn+1,R) = 2∆P2 = 4πρ̄l1 mod 2π. (50)

Combining (50) with (47)–(49) we obtain

2πσxyφl1 = 2πρ̄l1 mod 2π

A unique gapped ground state implies an integer σxy ∈ Zwithout fractionally charged quasiparticles.
By choosing l1 = n1q + 1 and n1 = 0 mod q′ for rational flux φ = p/q and commensurate filling
ρ̄ = p′/q′, clearly this leads to theorem (25).

5. Many-body electric polarization

5.1. Defining the many-body polarization as a bulk quantity

The argument in the previous section suggests the universal constraint based on the transport
of electrons between the edge states. However, there is a subtlety in the ‘‘cut and glue’’ procedure,
namely in the relation between the torus without cuts and the cylinders obtained with the
cuts. In addition, the existence of the gapless edge state makes the argument somewhat tricky.
However, when the system is gapless, the flux insertion process cannot be adiabatic in the strict
sense. Although the momentum counting part of the argument does not actually depend on the
adiabaticity, it is difficult to control the final state in the absence of the gap.

In fact, the same problem exists in the celebrated Laughlin’s gauge invariance argument for the
quantization of Hall conductance, as it depends on a cylinder geometry and accompanying gapless
edge states. While it may be still possible to define an adiabatic process in a finite-size system,
where generically there is a non-vanishing gap, it is theoretically desirable to invoke an adiabatic
argument for a gapped system. For this, it is advantageous to close the argument entirely within
the system with periodic boundary conditions, namely on a torus. With the periodic boundary
conditions, there is no gapless edge states. The lack of edge states then appears to imply that
we cannot define the charge transport. Fortunately, this is not quite the case. In fact, there have
been developments over several decades on how to define the electric polarization with periodic
boundary conditions. This led to a beautiful formulation of electric polarization of free electron
systems in terms of geometric phases. The theory is further generalized to interacting many-body
systems. What we would like to point out here is that the theory of polarization in many-body
systems is closely related to large gauge invariance, and that we can derive useful identities based
on the relation.

Polarization vector P⃗ is roughly defined as electric dipole moment per unit volume. On average,
thus,

¯⃗P ∼
1
V

(∫
dr⃗ r⃗ρ(r⃗)

)
+ P⃗0, (51)

where P⃗0 is the contribution from the immobile background (‘‘ions’’) and V is the volume of the
system. If the system is periodic with Bravais vectors a⃗α , the bulk of the system is invariant under
the translation r⃗ → r⃗ + a⃗α (α = 1, 2). With the naive definition of the polarization (51), however, it
is not invariant under the translation. This means that the polarization vector has some ambiguity
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in the presence of periodic boundary conditions. On the other hand, the change of P⃗ during a given
process should be uniquely defined. In fact,

j⃗ =
∂ P⃗
∂t

(52)

is the current density, which is a well-defined physical quantity even with the periodic boundary
conditions. This suggests that it is possible to study polarization even with the periodic boundary
conditions. In fact this has been a subject of intense studies over several decades [33,34]. Here we
summarize the theory of polarization in many-body interacting systems with periodic boundary
conditions developed by Resta and Sorella [35]. Furthermore, we point out its relation to the large
gauge invariance, and discuss the consequences.

As in the previous Section, let us consider a system consisting of L1 × L2 unit cells on a torus.
We define the ‘‘total polarization’’ in α-direction as

Pα ≡
1
Lα

·

(∫
dr⃗ · rαρ(r⃗)

)
, (53)

where rα is defined in Eq. (6). Comparing with Eq. (51), ¯⃗P and P⃗ are related as

Pα = Lᾱ g⃗α ·
¯⃗P + const., (54)

for α = 1, 2. This is naturally related to the total current flowing in each direction:

Iα = e
∂Pα
∂t

. (55)

One can easily see that P1 is invariant under T2. On the other hand, under T1, we find the change
in

∆P1 = [T1,P1] =
1
L1

∫
dr⃗ g⃗1 · a⃗1ρ(r⃗) =

N
L1

= ρ̄L2, (56)

where r⃗ refers to the lattice sites and nr⃗ is the particle number operator at the site r⃗ . Therefore, the
total polarization P1 would be only well-defined modulo ρ̄L2 = p′L2/q′.

Resta and Sorella [35] discussed the electric polarization in general interacting many-body
systems. They introduced an exponential of the total polarization operator (53) as

Uα = e2π iPα . (57)

They considered its ground-state expectation value

zα ≡ ⟨Uα⟩, (58)

and then argued that the total polarization P̄α of the ground state can be defined as

zα = |zα| e2π iP̄α . (59)

This would determine P̄α modulo integer. P̄α would be ill-defined if the expectation value zα
vanishes. Resta and Sorella argued that the vanishing of zα (in the thermodynamic limit) implies
that the system is conductor in which the polarization is ill-defined. According to them, on the other
hand, |zα| should approach 1 in insulators so that the polarization Pα has vanishing fluctuations and
takes the definite value P̄α (see also Refs. [36,37]). In this paper we assume that this statement holds
in insulators including Quantum Hall states.

In fact, the operator (57) is nothing but the fundamental large gauge transformation operator
(or equivalently the LSM twist operator)) (23), as pointed out in Ref. [38]. However, so far the
large gauge invariance has not been exploited in the context of the Resta–Sorella theory of many-
body polarization. The large gauge invariance based on Uα has been quite useful in deriving
various universal constraints on quantum many-body problem. It is one of the goals of the present
paper to develop new applications of the large gauge invariance in the context of the many-body
polarization. In later Sections, we shall demonstrate that it is indeed fruitful.
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5.2. Many-body polarization in degenerate ground states

In the presence of the ground-state degeneracy, we have to be careful with the Resta–Sorella
definition of the polarization. In particular, when the ground-state degeneracy is required by the
LSM theorem, the translation operator Tα and the large gauge transformation Uα do not commute
(see for example Eq. (39)). It immediately follows that, in a translationally invariant ground state
(eigenstate of the translation operator), the expectation value (58) vanishes. This is due to a
kinematical reason, and does not mean that the system is conductor. Aligia and Ortiz [39] proposed
to use the expectation value of (Uα)n, when the ground states are required to be n-fold degenerate
by the LSM theorem. It has a non-vanishing expectation value in the translationally invariant
ground state, from which one can define the polarization modulo 1/n. While their proposal is
interesting and valid, it would lead to a weaker constraint in our application. Thus we attempt
to utilize the expectation value of Uα itself even in the presence of the ground-state degeneracy.
A physical way to understand the degeneracy is as follows. The ground-state degeneracy can be
attributed to the formation of ‘‘charge-density wave’’ along the α-direction. In two (and higher)
dimensions, the ground-state degeneracy can be actually a topological degeneracy without any local
order parameter. However, even in such a case, regarding the system as a one-dimensional system
along the α-direction, the ground-state degeneracy can be attributed to the charge-density wave
formation. This has been known for example in quantum Hall states [40,41].

The translationally invariant ground states are given by linear superpositions (Fourier trans-
forms) of the ‘‘physical’’ charge-density wave ground states. Each of the physical charge-density
wave ground state would have a definite total polarization, and is related to the other charge-
density wave ground states by the lattice translation Tα . This implies that, each of these states has a
non-vanishing expectation value ⟨Uα⟩, which determines the total polarization via Eqs. (58) and (59).
Furthermore, in each of these states, following Refs. [35–37], we assume that the fluctuation of the
total polarization Pα asymptotically vanishes in the thermodynamic limit.

6. Integer Quantum Hall effect

6.1. Quantization of Hall conductance

Now let us discuss a simple application of the many-body polarization and the large gauge
invariance. When a magnetic field perpendicular to the xy-plane is applied, we expect Hall effect,
which is characterized by a non-vanishing Hall conductivity σxy. In a quantum system, under certain
conditions, σxy is quantized to integral (rational) multiples of e2/h. This is the celebrated Integer
(Fractional) Quantum Hall Effect.

Laughlin demonstrated [42] that the large gauge invariance leads to the quantization of σxy in
IQHE. This argument was later extended to FQHE [30]. However, the original argument involves
open boundary conditions, which accompany gapless edge states. This complicates theoretical
analysis, in particular the use of the adiabatic process. An alternative approach based on generalized
periodic boundary condition is later developed by Niu, Thouless, and Wu [7]. While this approach
resolves some of the subtleties of the Laughlin’s argument, the appealing simplicity and physical
intuition of the argument is lost to some extent. Here, we show that, by considering torus (rectangle
with periodic boundary conditions) without edge states, Laughlin’s gauge invariance argument can
be more directly rephrased in a theoretically better controlled way.

Discussion of IQHE/FQHE is also instructive in introducing a few operators which will be useful
in later discussion. While we are mostly interested in periodic systems (which are invariant
under discrete translations) in this paper, we allow more general systems without any translation
symmetry, which may contain impurities (random potentials). We just assume that the total
number of particles is conserved, the particles couple to the external (electromagnetic) U(1) gauge
field, and the system has a gap above the ground state.

Now we consider the adiabatic insertion of the magnetic flux Φ in the ‘‘hole’’ of the torus
encircled by the curve in 2-direction, over the period of time T . This induces the total ‘‘voltage
drop’’ in 2-direction (integration of the electric field E2)

∆V2 =
Φ

T
(60)
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during the process. As a consequence, an electric current

I1 = σxy∆V2 = σxy
Φ

T
, (61)

is induced. With Eqs. (55) and (23), we find

F2(Φ)U1 = U1F2(Φ)e2π i
Φσxy

e . (62)

In particular, following Laughlin’s original argument, if we choose the inserted flux as Φ = Φ0 (unit
flux quantum),

F2(Φ0)U1 = U1F2(Φ0)e2π i
Φ0σxy

e = U1F2(Φ0)e2π i σ̃xy . (63)

On the other hand, the large gauge transformations in two directions obviously commute:

U1U2 = U2U1. (64)

It thus follows that

F̃2(Φ0)U1 = U1F̃2(Φ0)e2π i σ̃xy . (65)

As we have discussed, F̃y(Φ0) maps a ground state to a ground state.
Resta and Sorella argued that, insulators can be characterized by the well-definedness of the

electric polarization. Mathematically, an insulator is characterized by a non-vanishing ground-state
expectation value ⟨Uα⟩ in the thermodynamic limit, so that the electric polarization can be defined
by its argument (modulo the uncertainty). Let us assume that the system is in a Quantum Hall state
and thus is an insulator (in the sense that the diagonal conductivity vanishes). Furthermore, we
assume that the system has a gap [43].

Following Resta–Sorella argument, for the unique ground state |Ψ0⟩,

⟨Ψ0|U1|Ψ0⟩ = z ̸= 0. (66)

From the preceding analysis, F̃2(Φ0)|Ψ0⟩ ∼ |Ψ0⟩ (up to a phase factor), and thus

⟨Ψ0|
(
F̃2(Φ0)

)−1
U1F̃2(Φ0)|Ψ0⟩ = z ̸= 0. (67)

Comparing these with Eq. (65), we find Φ0
e σxy ∈ Z, namely the quantization of the Hall conductivity

σxy =
e2

h
× integer. (68)

We note that, in this derivation, translation invariance is not used and therefore the result is
applicable to general, non-periodic systems.

While this is just an alternative formulation of Laughlin’s gauge argument, it is interesting that
the same conclusion can be derived for a system on a torus without edge states, using Resta–Sorella
many-body polarization operator. As we will show in the following, the present approach also has
several non-trivial generalizations.

6.2. IQHE in a periodic system

Now let us re-derive the main result (25) for IQHE in a periodic system, based on the many-body
polarization. All the arguments in Section 6.1 still apply, and thus we have the quantization of the
Hall conductance (68) holds. Moreover, we consider the system on a torus of L1 × L2 unit cells, with
L1 = ql1 and L2 being a coprime with q. The system then has the translation symmetry T2, and the
effective ‘‘translation’’ symmetry ˜̃T1 as defined in Eq. (44).

As in Section 6.1, we assume that the system is a gapped insulator and has a unique ground state.
Then, the ground state has a non-vanishing expectation value of U1, and the ground state is mapped
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to itself by ˜̃T1. Thus we immediately find that the phase factor in the commutation relation (45) must
be unity. This implies

L2
(
φσ̃xy − ρ̄

)
∈ Z. (69)

Since this holds for any L2 which is coprime with q, with Eqs. (2), (20), and (41), we find the
filling-enforced constraint on the quantized Hall conductivity for IQHE (Theorem 1).

6.3. Fluxon stitching picture

We can formulate the flux insertion/large gauge transformation in a different, more ‘‘local’’
manner, by inserting a flux tube of unit flux quantumΦ0 orthogonal to the two-dimensional system,
and then dragging it across the system [44]. After ‘‘stitching’’ the system by dragging the flux
tube along a fundamental cycle of the torus, the ‘‘hole’’ of the torus corresponding to the other
fundamental cycle acquires the unit flux quantum Φ0. Thus we can expect that this process is
topologically equivalent to the adiabatic insertion of the unit flux quantum Fα introduced earlier.

More precisely, this process can be defined as follows. First we define the operator fα(r⃗) which
corresponds to an ‘‘adiabatic’’ increase of vector potential in α direction by Φ0/lα , over the local
region of l1×l2 unit cells located at r⃗ . When we apply fα(r⃗) to a ground state (vacuum) |Ψ0⟩, fα(r⃗)|Ψ0⟩,
a flux tube with the unit flux quantum Φ0 piercing through two-dimensional system is created on
one side of r⃗ , and another one with −Φ0 is created on the side of r⃗ . The adiabatic increase of
the vector potential induces an electric field, which generates Hall current. As a result, the charge
±σ̃xy is induced where the flux tubes go through the system. We call the composite object of the
charge and the flux tube as a ‘‘fluxon’’. Thus fα(r⃗) can be regarded as a creation operator of the
fluxon–antifluxon pair. In fact, because fα(r⃗) creates an excited state with a fluxon–antifluxon pair,
this process is actually non-adiabatic. However, we assume that, by increasing the vector potential
sufficiently slowly, it does not create any excitation other than those required topologically, and is
‘‘adiabatic’’ in a generalized sense. Now, by further applying fα(r⃗ − lᾱ e⃗ᾱ), we can move the fluxon
by −lᾱ e⃗ᾱ . Thus, the consecutive product

Fα(r⃗) ≡

0∏
j=Lᾱ/lᾱ

fα(r⃗ − jlᾱ), (70)

when acted on the ground state |Ψ0⟩, creates a fluxon–antifluxon pair, drags the fluxon along the
fundamental cycle of the torus in ᾱ-direction, and pair-annihilate the fluxon and antifluxon. Thus
the resulting state should be a ground state (vacuum), as long as the process is ‘‘adiabatic’’ in
the extended sense discussed above. However, it should be also noted that Fα(r⃗) leaves a string
of modified vector potential behind the path, and thus the Hamiltonian after the process is not
identical to the initial one. As in the case of Fα , this modified vector potential can be eliminated by
a large gauge transformation, but it has to be squeezed onto the affected region. Namely, we define

Uα(r⃗) = exp
(
i
∫

dr⃗ ′ θr⃗ (r⃗ ′)ρ(r⃗ ′)
)
, (71)

where

θ (r⃗ ′) =

⎧⎪⎨⎪⎩
0 r ′

α < rα
2π r ′α−rα

lα
rα ≤ r ′

α < rα + lα
2π rα + lα < r ′

α.

(72)

Then

F̃α(r⃗) ≡ Uα(r⃗)Fα(r⃗) (73)

maps a ground state of the original Hamiltonian to a ground state of the same Hamiltonian.
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Similarly to Eq. (34),

TαUα(r⃗)Tα−1Uα(r⃗)
−1

= e−
2π i
lα

∫
rα<r′α≤rα+lα

dr⃗ ′ ρ(r⃗ ′)
. (74)

The integral in the exponent gives the total particle number within the strip rα < r ′
α ≤ rα + lα . It

is not a conserved quantity like the total particle number in the entire system. However, assuming
an incompressible liquid state, the particle number within the strip has only small fluctuations if
Lᾱ is sufficiently larger than the correlation length of the pair correlation function (density–density
correlation function). Thus it may be replaced as∫

rα<r ′α≤rα+lα
dr⃗ ′ ρ(r⃗ ′) ∼ ρ̄lαLᾱ. (75)

Within this assumption,

TαUα(r⃗)Tα−1Uα(r⃗)
−1

∼ e−2π i ρ̄Lᾱ . (76)

Thus we expect

TαF̃α(r⃗)Tα−1
∼ F̃α(r⃗)e−2π i ρ̄Lᾱ , (77)

when acting on the ground-state subspace.
Let us consider the system on a torus consisting of L1 × L2 unit cells, with the Landau gauge (5).

As in Section 3.3, we take L1 to be an integral multiple of q, and L2 to be a coprime with q. Here
we consider the ‘‘fluxon stitching’’ in 2-direction, F1(r⃗0), with the starting point r⃗0. In the present
setup with the Landau gauge (5), the system is not invariant under T1, and it is even impossible
to define the magnetic translation operator in 1-direction. Nevertheless, as we have discussed in
Section 6.2, we can define an effective symmetry generator (44) on the ground-state subspace.
Similar to Eq. (62),

F2(ϕΦ0)U1(r⃗) = U1(r⃗)F2(ϕΦ0)e2π iϕσ̃xy . (78)

Combining Eqs. (77) and (78) with ϕ = φL2, we find( ˜̃T1
)−1[

F̃1(r⃗)
]−1 ˜̃T1F̃1(r⃗) ∼ e2π iL2(φσ̃xy−ρ̄) ∼ 1 (79)

Now, both F̃1 and ˜̃T1 maps the ground state to the ground state. Because of the uniqueness of
the ground state (which was assumed), the phase factor appearing above should be unity. Thus
we recover Theorem 1, using the fluxon stitching picture. We will see that this formulation also
provides a useful insight for Fractional Quantum Hall effect.

7. Fractional Quantum Hall effects

7.1. Fractional quantization of the Hall conductivity

A FQHE must accompany a topological ground-state degeneracy on a torus [30]. As we have
discussed in Section 5.2, we can choose ‘‘charge-density wave’’ ground state with respect to the
direction under consideration, so that the total polarization of the ground in that direction is well-
defined (expectation value of U1 does not vanish). In fact, in our setup with the Landau gauge (5),
the system does not have the one-site translation symmetry T1 in 1-direction. Thus we can expect
that a charge-density wave ground state in 1-direction is automatically chosen as the ground state
of a generic finite-size system.

The commutation relation (65) then implies that, application of F̃2(Φ0) changes the expectation
value of U1 by the phase factor e2π i σ̃xy . In other words, the total polarization P̄1 is changed by σ̃xy.
This implies that, if σ̃xy is fractional and the system has a gap, then the new ground state obtained by
the adiabatic process F̃2(Φ0) is different from the initial ground state. Thus, if the Hall conductivity
takes a fractional value and the system has a gap above the ground states,

σ̃xy =
p̃
q̃

(80)
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for coprimes p̃ and q̃, there must be q̃ degenerate, independent ground states. Namely, if there
are (only) n degenerate ground states below the gap, the Hall conductivity is quantized in unit of
(1/n)(e2/h). In other words, the ground state degeneracy n must be an integral multiple of q̃.

This is the ‘‘non-edge’’ version of the argument by Tao and Wu [30]. The present argument has
the advantage particularly in the fact that the ground-state degeneracy is better defined in the
absence of the gapless edge states.

7.2. FQHE in a periodic system

Now let us consider a many-particle system in a periodic potential or on a periodic lattice, with
the total particle number conserved. As we have discussed in Section 3.2, under the magnetic field,
the particle number per the magnetic unit cell, ρ̄q is the relevant parameter for the LSM theorem.
That is, if

qρ̄ =
p′′

q′′
, (81)

is fractional with mutually coprime p′′ and q′′, the system must be either gapless or has q′′-fold
ground-state degeneracy.

Similarly to the case of the IQHE, we can obtain a stronger constraint based on the many-body
polarization. As in Section 6.2, we consider the system on the torus of the size L1 × L2 with the
Landau gauge (5), and choose L1 to be an integral multiple of qq′ and L2 to be a coprime with q and
q′. Then Eq. (45) still holds. As in Section 7.1, we assume that the system is an insulator in Resta–
Sorella sense. That is, we can choose a complete set of the degenerate ground states, so that each of
which has a non-vanishing expectation value ⟨U1⟩ with an asymptotically vanishing fluctuation of
its argument, in the thermodynamic limit. Starting one particular ground state with a well-defined
expectation value ⟨U1⟩, Eq. (45) implies that we can generate another ground state which has the
total polarization P1 different from the original ground state by

2πL2
(
φσ̃xy − ρ̄

)
. (82)

Since the total polarization is defined modulo 2π , and we can choose L2 as any integer, we can
generate q independent ground states (including the original one) if

φσ̃xy − ρ̄ =
p

q
. (83)

This implies that the number of the degenerate ground states, n, must be an integral multiple of q.
Thus

n
(
φσ̃xy − ρ̄

)
∈ Z, (84)

or equivalently, using Eq. (81)

p
p̃
q̃

−
p′′

q′′
∈

q
n
Z. (85)

As a corollary, this relation includes the fact that the ground-state degeneracy n is an integral
multiple of both q̃ and q′′. The fact that n is an integral multiple of q′′ follows from the generalized
LSM, and that n is an integral multiple of q̃ follows from Ref. [30]. However, the present result puts
a stronger constraint in terms of the relation (84).

7.3. Fluxon stitching and braiding with background anyons

Let us now discuss the fluxon stitching picture introduced in Section 6.3, for the Fractional
Quantum Hall states. All the discussions leading to Eq. (79) remain valid. The difference arises
because the ground state is no longer unique, the phase factor appearing in Eq. (79) is not necessarily
unity. In fact, it is generally not unity, and the nontrivial phase factor is related to the ground-state
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Fig. 3. (Color online) An illustration of the fluxon excitation (denoted by red cross) and the fluxon braiding process
corresponding to Eq. (86).

degeneracy, as we have just discussed in Section 7.2. On the other hand, the fluxon stitching picture
provides an intuitive picture on the physical origin of the nontrivial phase factor.

That is, Eq. (79) can be rewritten as

e2π i ρ̄L2 ∼
(
T1

)−1
F̃1T1

(
F̃1

)−1
∼ F2F̃1

(
F2

)−1(
F̃1

)−1 (86)

where we have used short-handed notation F2 ≡ F2(φL2Φ0) and F̃1 ≡ F̃1(r⃗). The left-hand side of
this equation can be interpreted as the probability amplitude of the process of moving the fluxon
counter-clockwise along the closed loop as shown in Fig. 3. This closed loop encircles exactly one
column of the torus in Fig. 3. The adiabatic Berry phase acquired in this ‘‘fluxon braiding’’ process
is e2π i ρ̄L2 as directly computed in (77), and it holds true irrespective of integer or fractional QHEs.
On the other hand, the right hand side of (86) can be decomposed into two contributions:

F2F̃1
(
F2

)−1(
F̃1

)−1
∼[

F2U1
(
F2

)−1(
U1

)−1]
·
[
F2F1

(
F2

)−1(
F1

)−1] (87)

The 1st contribution

F2U1
(
F2

)−1(
U1

)−1
∼ e2π i σ̃xyφL2 (88)

can be understood as an Aharonov–Bohm phase, acquired when a fluxon carrying charge σ̃xy goes
around φL2 flux quanta piercing through each column of the torus in Fig. 3. This is true for both
integer and fractional QHEs.

Meanwhile, the 2nd term F2F1
(
F2

)−1(
F1

)−1 corresponds to nothing but the mutual braiding
statistics between two particles [44,26]: one is a fluxon F and the other is the ‘‘background
anyon’’ [27] contained in each column, as we will elaborate soon. In the case of Integer Quantum
Hall states, no anyon exists and this braiding phase is unity, and therefore we recover (79) and
Theorem 1. The nontrivial phase appearing in the case of a Fractional Quantum Hall state can be
understood as follows.

Quite generally in a topologically ordered system on a lattice, in the presence of translational
symmetry, the spatial arrangement of anyons in the ground state forms a translational-invariant
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Fig. 4. (Color online) The fractionalization of global symmetries into spatially local regions.

periodic structure, known as fractionalization of translation symmetries (see Section 8 for de-
tails) [23,24,45,27]. In particular one (Abelian) anyon a can be placed in each unit cell without
breaking lattice translational symmetry, which we refer to as the ‘‘background anyon’’ a. When
another anyon b travels around each unit cell counter-clockwise for once, it will acquire a braiding
phase e i θb,a in this process. Since the fluxon F goes around the array of the background anyons in
a full column, this process picks up the phase factor

F2F1
(
F2

)−1(
F1

)−1
∼ e i θF ,aL2 , (89)

due to the fractional statistics between the fluxon and the background anyons. Here θF ,a ∈ [0, 2π )
represents the mutual statistical angle between fluxon (F ) and background anyon (a) in each unit
cell. Note that although distinct anyons can be permuted by translation symmetry [46–48,27], their
mutual statistics with fluxon F should be invariant under translation so θF ,a is well-defined.

Comparing Eqs. (86), (87) and (89), we find Theorem 2. Furthermore, comparing this with
Eq. (84), we find the relation (27) between the statistical angle and the ground-state degeneracy.

In Appendix B we explicitly computed the Berry phase of the fluxon moving process in (86)
in the effective Abelian Chern–Simons field theory, therefore establishing (86)–(89) in all Abelian
topological orders. While such a field theory calculation does not apply to non-Abelian FQHEs,
an alternative argument based on symmetry fractionalization algebra proves Theorem 2 for both
Abelian and non-Abelian FQHEs, as we will show in the following section.

8. Fractionalization algebra of magnetic translation symmetry

In this Section, we discuss the problem from the viewpoint of symmetry fractionalizations [23,
24,45], which gives a modern understanding of topological order. In particular, this is useful in
describing systems with a non-Abelian topological order.

Let us consider a general gapped quantum phase (which may be topologically ordered) respect-
ing a global symmetry group SG, and assume that the symmetry transformation would not exchange
anyon types (i.e. superselection sectors) in the system. If one wants to understand how a global
symmetry element g ∈ SG transforms local excitations within finite spatial regions Da,Db far apart
from each other, one could decompose global symmetry transformation Rg on the full many-body
Hilbert space into a direct product of local symmetry actions Ωg (a),Ωg (b) . . . . For example, Ωg (a)
only acts on a region Da ∪ δDa, which is slightly larger than Da by a ribbon δDa (with a width ∼

correlation length) around the edge of Da (see Fig. 4). These local operators Ωg (a),Ωg (b) . . . . will
be called as fractionalized symmetry operators below.

The basic assumption of symmetry fractionalization is the following condition [23,24,45]:

Rg |ψ(Da,Db . . .)⟩ = eiθg ·Ωg (a) ·Ωg (b) . . . |ψ(Da,Db . . .)⟩, (90)
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where |ψ(Da,Db . . .)⟩ describes any states whose quasiparticles are only localized within regions
Da ∪Db.., including the ground state. Here eiθg is a possible U(1) phase factor due to the background
g-quantum-number outside the regions Da∪Db . . . . Importantly, θg is independent of the excitations
inside regions Da ∪ Db . . . .

Next, let us focus on one particular region, e.g. Da. To save notation we denote this region as
D (and similarly denote the ribbon area around it as δD). Physically, for onsite unitary symmetry
g , such as the U(1) charge conservation, Ωg on D ∪ δD can be obtained by the following adiabatic
process. g being onsite means that Rg =

∏
Ug (r⃗) is a direct product of onsite symmetry operations.

First, one creates a pair of g-symmetry defects in δD and adiabatically braid them around D along
δD then annihilate them (i.e., δD can be viewed as the worldline of the g-defect). Second, one
applies

∏
r⃗∈D Ug (r⃗) within the region D. The combination of these two operations well-defines the

transformation of any excited states in D, and sends the ground state back to the ground state (up
to a U(1) phase factor). One may use this combination as a construction of Ωg for onsite symmetry
g .

Note that by adiabatically creating g-symmetry defects, we mean adiabatically modifying the
Hamiltonian such that there exist a string in the real space, like a branch cut. Any term in the
Hamiltonian crossing the string is modified such that only the degrees of freedom on one side of the
string is conjugated by Rg . The end points of the string are the g-symmetry defects. After braiding
the g-symmetry-defect around δD, the final Hamiltonian is different from the original Hamiltonian
by

∏
r⃗∈D U−1

g (r⃗) conjugation, and applying
∏

r⃗∈D Ug (r⃗) would send this final Hamiltonian back to the
original Hamiltonian.

For time-reversal and spatial symmetries, such as the (magnetic) translation symmetry studied
here, similar defect-based construction of Ωg becomes difficult. For instance, the symmetry-defect
associated with translational symmetry is the dislocation, braiding which around a region involves
adding/removing physical degrees of freedom. However, conceptually one still can accept the
existence of Ωg satisfying (90) quite generally (as long as g is not changing the anyon types or
superselection sectors). In fact, Ωg for (magnetic) translational symmetries can be microscopically
constructed if one employs certain formulations such as tensor-network or parton methods [49].

Below we assume that ∀g in the magnetic translation symmetry group,Ωg exists and they satisfy
Eq. (90). Note that in order to satisfy Eq. (90),Ωg is not completely fixed. We already mentioned that
Ωg may include an overall U(1) phase when acting on all excited states. But what is more important
is that Ωg may include a nontrivial phase factor dependent on the nature of the excitation: because
the only modifiable action of Ωg is within δD, which is spatially separated with the excitations, this
dictates that the only nontrivial ambiguity is a braiding of an Abelian anyon ϵ(g) around δD [24,45].

Namely, combining Ωg with an additional ϵ(g)-anyon braiding: Ωg → Ω ′
g = ϵ(g) · Ω(g) can

give another well-defined Ω ′
g action, which still satisfy Eq. (90) (after including the effect of ϵ(g) in

other regions). Interestingly, when nontrivial symmetry fractionalization occurs, it is impossible to
avoid the anyon braiding in the ambiguity of Ωg . Precisely, the symmetry fractionalization pattern
in a gapped quantum phase is determined by the following algebra:

∀g1, g2 ∈ SG, Ωg1 ·Ωg2 = λ(g1, g2)Ωg1·g2 , (91)

where λ(g1, g2) ∈ A is an Abelian anyon and the Abelian group A is the fusion group of all Abelian
anyons in the system. Associativity dictates that:

λ(g1, g2) · λ(g1 · g2, g3) = λ(g2, g3) · λ(g1, g2 · g3). (92)

Together with the ϵ(g1), ϵ(g2), ϵ(g3) ambiguities, this indicates λ(g1, g2) ∈ H2(SG,A), i.e., λ(g1, g2)
is an element in the second cohomology group of SG with coefficient in A (with trivial group action
because we are considering the case with anyon types invariant under SG).

Let us now apply this general framework to the magnetic translation group in the presence of
global U(1) charge conservation. The fundamental Eq. (9) indicates that:

ΩT̃1
ΩT̃2

Ω−1
T̃1
Ω−1

T̃2
= λaΩU(φ), (93)

where U(φ) ≡ e2π iφN̂ is the global U(1) rotation by angle 2πφ. And λa is the braiding of certain
anyon a around δD. This anyon-a is appearing in Theorem 2. Note that ΩT̃1

and ΩT̃2
have their
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overall U(1) phases, ϵ(T̃1) and ϵ(T̃2) ambiguities, but the product on the LHS of Eq. (93) has all
these ambiguities canceled. This product and consequently the RHS, should be a completely fixed
action on the ground state and excitations in the region D.

Although the RHS of Eq. (93) is completely determined, the anyon-a and ΩU(φ) could have a
relative ambiguity. Let us recall one definition of ΩU(φ), based on U(φ)-defect construction. Because
U(1) group is continuous, this adiabatic construction can be made in a long length scale and low
energy scale so that any irrelevant anyons will not be excited. Namely, the adiabatic insertion of
a φ-flux over a large area (but within δD), which is nothing but the U(φ)-defect, should give a
well-defined state. If we use this natural definition of ΩU(φ), then a is determined as long as φ is
determined.

The subtlety is that in the global magnetic translation algebra Eq. (9), only the fractional part of
φ is well-defined. Therefore, it is perfectly fine to use φ′

= φ+1 in the global magnetic translation.
However, in the fractionalized operator ΩU(φ), adiabatically inserting a φ-flux and φ′-flux over a
large area would generally result in different defects. Clearly, U(φ′) = U(φ) + λF where F is a
particular anyon in the system which is created by adiabatically inserting 2π flux over a large area.
And λF is the braiding operation of F around δD. Consequently, because the RHS of Eq. (93) is fixed,
if φ → φ + 1, then we must have λa → λa−F where a − F is the anyon obtained by fusing a and
the antiparticle of F . This ambiguity has been discussed below Theorem 2.

Theorem 2 turns out to be just an application of Eq. (93). Let us consider an anyon F sitting
inside region D. The LHS and RHS of Eq. (93) describe two different actions on this state. Relative
to the ground state, the RHS would pick up two phase factors: the braiding phase factor θF ,a and
the phase factor obtained by ΩU(φ). But ΩU(φ) is nothing but a measurement of the charge carried
by F by φ-U(1) rotation. Because F must carry charge σ̃xy, we know that this second phase factor
is simply e2π iφσ̃xy .

Now let us look at the LHS, which magnetic translate the unit-fluxon-F around one unit cell. The
phase obtained in this process can be safely shown to be due to the charge density per unit cell:
e2π i ρ̄ . The details of the derivation can be found in Appendix C. Summarizing our results, we have
obtained Theorem 2

e2π i ρ̄
= LHS = RHS = e2π iφσ̃xy+ i θF ,a . (94)

9. Generalization to non-symmorphic lattices

Now let us generalize theorem (25) to a 2d non-symmorphic lattice with glide reflections. Among
all 17 space groups in 2d (wallpaper groups) only 4 are non-symmorphic [50]: pg and pmg with
one glide plane, pgg and p4g with two perpendicular glide planes. In a 2d system σxy is odd
under orientation-reversing glide operation, so we consider anti-unitary ‘‘magnetic glide’’ operation
g̃ = U · g · T which includes a time reversal operation T , where U is certain unitary transformation
responsible for the magnetic translation algebra (9). Specifically we focus on the following magnetic
algebra between magnetic glide g̃1 and magnetic translation T̃2

T̃2 g̃1 T̃2 (g̃1)−1
= e− iπφN̂ (95)

where N̂ =
∑

r N̂r is the total charge of the system. Choosing a Landau gauge where T̃2 = T2 is the
usual translation along a⃗2 direction, we have

g̃1 ≡ e iπφ
∑

r r2N̂r · g1 · T , (96)

(r1, r2)
g1

−→ (r1 + 1/2,−r2), (g̃1)2 = T̃1.

where r = r1a⃗1 + r2a⃗2 again denotes the center of mass position for each unit cell. It is a convenient
representation of magnetic translation (9) on a 2d non-symmorphic lattice, with φ flux quanta in
each unit cell.

Completely in parallel to theorems (25) and (26), we can obtain the following relation based on
fractionalization algebra of (95) acting on a single fluxon F :

e i ρ̄2 = e i σ̃xy
φ
2 · e i θF ,a (97)
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The difference between the above relation and (94) of the magnetic translation case can be intu-
itively understood as the following. Magnetic glide operation g̃1 can be viewed as a half of a mag-
netic translation T̃1, dividing each unit cell into two halves. With glide symmetry, the charge density
ρ̄/2 and flux density φΦ0/2 in each half of a unit cell become well defined, and so is the background
anyon a in each half of the unit cell. According to (97), we immediately prove the following theorem.

Theorem 3 (Filling-enforced Constraint for QHE on non-Symmorphic Lattices). Hall conductivity of a
gapped 2d insulator must satisfy

ρ̄ = σxy · φ +
θF ,a

π
mod 2. (98)

if it preserves magnetic algebra (95) on a non-symmorphic lattice preserving glide symmetry (96).

An immediate corollary for φ = 0 is that for a generic system preserving magnetic glide
symmetry (96), i.e. the combination of glide g1 and time reversal T (where arguments in [51]
does not apply), charge density ρ̄ per u.c. must be an even integer to achieve a non-fractionalized
featureless insulator.

10. Applications

10.1. IQHE models

Theorems 1 and 2 directly apply to integer and fractional QHEs on lattices, i.e. integer and
fractional Chern insulators. We first discuss applications of Theorem 1 to IQHEs with a unique
ground state on a torus.

The Harper–Hofstadter models [52,4] which study the motion of Bloch electrons in a magnetic
field is a simple realization of nontrivial IQHE [5]. While Theorem 1 was proved earlier in Ref. [20],
apparently its consequences has not been much appreciated. π-flux models (φ =

1
2 ) of spinless

particles at half filling (half charge per lattice site) has been studied in various cases. Theorem 1
dictates that with ρ̄ =

1
2 per unit cell, e.g. on square, triangular and kagome lattices, any unique

ground state must have an odd Hall conductance σ̃xy = 1 mod 2. In particular, σ̃xy cannot vanish
in this case, even though the time-reversal symmetry of π-flux models seems to allow σ̃xy = 0. Of
course it is still possible to have σ̃xy = 0 in the π-flux models. However, for that there must be
degenerate ground states. In other words, a trivial insulator at half filling is forbidden. Now with
our proof in the present paper, this statement also applies to interacting systems.

In honeycomb-lattice π-flux models at half filling, we have ρ̄ = 1. Then Theorem 1 requires an
even Hall conductance, provided that the ground state is unique. This is indeed the case for IQH
states of free fermions [53]. In fact, our proof is valid also for interacting bosons, and requires an
even Hall conductance for a bosonic model on the honeycomb lattice with π-flux. This is indeed
consistent with the finding of a recent work [54].

10.2. Magnetically ordered systems

Another less obvious application is magnetically ordered systems, which are invariant under the
combination of lattice translations and spin rotations. Prominent examples include the chiral spin
density wave states [55,56] in 1

2 -doped triangular lattice systems and 1
4 -doped honeycomb lattice

systems, where ρ̄ = 1/2 (mod 1) per unit cell. Their magnetic orders preserve magnetic translation

T̃1,2 = ( i n̂1,2 · σ⃗ )T1,2, n̂1 · n̂2 = 0 H⇒ {T̃1, T̃2} = 0

Microscopically the spin chirality effectively provides a π flux (φ = 1/2) per unit cell, and the
electronic ground state supports Chern bands. But due to theorem (25), we know that σxy must be
an odd integer independent of microscopic details.
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10.3. Fractional Quantum Hall states on lattice

Next we discuss the application of (26) to lattice FQHEs. Once we specify the topological order
in the bulk, anyon statistics θF ,a can only take certain discrete values and (26) can provide a strong
constraint on the Hall conductivity. As a demonstration we work out two examples explicitly:
ν = 1/2 Laughlin state and Z2 topological order (toric code). According to Theorem 2 they all
satisfy the following conditions:

ρ̄ = σ̃xyφ +
θF ,a

2π
mod 1, σ̃xy =

θF ,F

2π
mod 1. (99)

First let us consider ν = 1/2 Laughlin state which hosts quasiparticle s obeying semion statistics.
The only nontrivial mutual statistics is θs,s = π and hence there are two different situations. First
scenario corresponds to familiar chiral spin liquids [57] and fractional Chern insulators, where the
fluxon is a semion F ∼ s and hence Hall conductance is a half integer

σ̃xy =
1
2

mod 1. (100)

Without loss of generality, we consider σ̃xy = 1/2 and in this case we have

ρ̄ =
1
2
φ +

θs,a

2π
mod 1 H⇒ ρ̄ =

1
2
φ mod

1
2

(101)

In a usual lattice model with translational symmetry (φ = 0), ρ̄ =
θs,a
2π mod 1 and therefore only

half filling ρ̄ =
1
2 mod 1 and integer filling are compatible to a ν =

1
2 Laughlin state.

In the 2nd scenario the fluxon is a boson (F ∼ 1), leading to an integer Hall conductance. Since
θ1,a = 0, we have relation

ρ̄ = σ̃xyφ mod 1, σ̃xy ∈ Z. (102)

It can simply be realized in a system where charge-neutral (bosonic) particle–hole excitations form
a ν = 1/2 Laughlin state on top of charged background. In this scenario only an integer filling is
compatible.

Next we comment on toric-code-type [58] Z2 topological order. As we will show below, our result
has an interesting consequence even when there is no magnetic field and the Hall conductivity
vanishes. The Z2 topological phase has 3 types of anyons {e,m, ϵ}, which obey mutual semion
statistics θe,m = θe,ϵ = θm,ϵ = π between distinct anyons. In this theory, all anyons have a trivial
self braiding angle θa,a = 0. This implies θF ,F = 0 and thus σ̃xy ∈ Z because of Eq. (29).

ρ̄ = σ̃xyφ +
θF ,a

2π
mod 1 (103)

In a usual lattice model with φ = 0, this further leads to ρ̄ =
θF ,a
2π mod 1. This means that at

half filling, both the background anyon and the fluxon are nontrivial anyons, and they cannot be of
the same type. This is exactly the situation for Z2 spin liquids in a half-filled Mott insulator, where
F ∼ m and a ∼ e.

11. Conclusions and discussions

In this work, we have studied quantum Hall effect in two-dimensional periodic potentials or pe-
riodic lattices. We formulate and prove a universal relation among the quantized Hall conductivity,
the charge and flux densities per the physical unit cell, and the possible anyon statistics: Eq. (25)
for IQHE, Eq. (26) for FQHE, and Eq. (98) for a non-symmorphic lattice with a glide symmetry. This
serves as a strong constraint on the possible gapped insulating ground state of the system. While
our work may be regarded as a combination of the Laughlin’s gauge argument and the LSM theorem,
our result gives a stronger constraint than what can be obtained by applying each of these known
results independently. In particular, according to the standard generalization of the LSM theorem,
a featureless insulator without fractionalization would be possible even for a fractional filling
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(i.e. fractional number of particles per physical unit cell) if the number of particle per magnetic
unit cell is integer. Nevertheless, our result implies that these insulators cannot be a trivial Mott
insulator and must have a nonvanishing Hall conductivity.

Thus, our results constitute useful guides for the search of desired integer and fractional QH
states in a generic many-body system with magnetic translational symmetries. They provide strong
constraints on the possible gapped ground states at a given filling number and a given magnetic
flux density. They can be applied to Harper–Hofstadter models and certain magnetically ordered
systems.

Our result follows from large gauge invariance and magnetic translation symmetry, is applicable
to general interacting quantum many-particle systems in periodic potentials. We developed several
different approaches, which are complementary to each other: (i) a cut and glue proof relying
on edge states, presented in Section 4; (ii) a pure bulk proof based on the polarization operator,
presented in Section 6.1; (iii) arguments based on the Berry phase of moving a Φ0 fluxon around
a closed loop, presented in Sections 6.3 and 7.3; (iv) arguments based on the symmetry fractional-
ization algebra of a Φ0 fluxon, presented in Section 8. Each of these arguments may be also useful
in exploring other issues in quantum many-body problem.

In this work we have focused on insulators with a global U(1) charge conservation in two spatial
dimensions. Magnetic translations can also be defined for a discrete global symmetry. In an outlook
for the future, it will be interesting to generalize the framework to systems with other global
symmetries, in other words symmetry protected and enriched topological phases [59]. Another
direction is to generalize this work to other spatial dimensions.

As a very interesting development after the present paper appearing in arXiv, Matsugatani
et al. [60] proposed an alternative formulation of the present result in terms of many-body Chern
number, and derived stronger constraints in the presence of crystal symmetries.
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Appendix A. Charge pumping and generalized Luttinger’s theorem for edge states of Abelian
QHE

First we prove the relation (49) between charge densities on the edge of two neighboring
cylinders. Assuming the bulk has a unique ground state without topological order, its low-energy
long-wavelength physics can be captured by a multi-component Abelian Chern–Simons theory [31]

Lbulk =
ϵµνρ

4π

∑
I,J

KI,JaIµ∂νa
J
ρ −

ϵµνρ

2π
Aµ

∑
I

qI∂νaIρ (A1)

where aIµ are dynamical gauge fields describing bulk excitations. K is an integer-valued non-singular
symmetric matrix satisfying |detK| = 1, and q is an integer-valued vector called ‘‘charge vector’’.
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Gauge invariance on an open manifold leads to the following effective edge theory for the left edge
along a⃗2 ∥ ŷ-direction

LL-edge =

∑
I,J

KI,J

2π
∂tφI∂yφJ

+

∑
I

qI
A0∂yφI − Ay∂0φI

2π
(A2)

where φI (y, t) are chiral boson fields which describes low-energy dynamics of the left edge,
satisfying the current algebra

[φI (y′), ∂yφJ (y)] = 2π iK−1
I,J δ(y − y′) (A3)

The charge density on the edge is given by

ρ(y) =
1
2π

∑
I

qI∂yφI (y) (A4)

As shown in Fig. 1 the two neighboring cylinders are related by (T̃1)L1 operation, which includes a
large gauge transformation

Uφl1L22 ≡ e i 2πφL1
∑

r r2N̂r

= exp
[
i2πφL1

∫
yρ(y)dy

]
(A5)

in addition to pure lattice translations. As a result we have

ρn+1,L(y) = Uφl1L22,n ρn,L(y)U
−φl1L2
2,n

= ρn,L(y) − φl1 · σxy, σxy = qTK−1q. (A6)

where U2,n denotes an elementary large gauge transformation acting on left edge of nth cylinder.
We have used the current algebra (A3) in the derivation. Similar derivations can be made for the
right edge, where the change of charge density is opposite to the left edge.

This is the well-known chiral anomaly [32]: i.e. chiral edge modes of QHEs are not invariant
under large gauge transformations. The chiral anomaly of edge states is canceled [31] by the
anomaly of bulk Chern–Simons theory (A1), so that the entire system is still gauge invariant.

Next we prove the generalized Luttinger’s theorem (48) for the edge states of a 2d Abelian
insulator. It is straightforward to verify from current algebra (A3) that the total momentum operator
on the edge is written as

Py =

∑
I,J

KI,J

4π

∫
dy∂yφI∂yφJ (A7)

satisfying

[φI (y), Py] = i∂yφI (y) (A8)

Now let us insert a flux quantum Φ0 through the cylinder. It is implemented by large gauge
transformation U1/L2 and it is straightforward to see that

U2 Py U−1
2 = Py + 2π

∫ L2

0

dy
L2
ρ(y) (A9)

Therefore we have proved the generalized Luttinger’s theorem (48) for the edge states of a gapped
bulk.
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Appendix B. Berry phase of fluxon braiding in Abelian QHE

In this section we compute the Berry phase obtained by adiabatically dragging a Φ0 fluxon F
around a closed contour C enclosing certain anyon excitations. For any Abelian topological order,
the effective Lagrangian describing this adiabatic process is [31]

L0 =
ϵµνρ

4π

∑
I,J

KI,JaIµ∂νa
J
ρ −

∑
I

aIµ(
ϵµνρ

2π
qI∂νAρ + jµI ) (B1)

where

Aµ(r, t) = δAµ(r, t) + Āµ(r) (B2)

is the external (classical) EM vector potential. The time-independent piece Āµ(r) describes a uniform
background magnetic field of strength φΦ0 per unit cell (we have chosen the area of unit cell to
be unity for simplicity) as shown in (B6), while the time-dependent piece δAµ(r, t) is introduced to
adiabatically move a fluxon as shown in (B5).

Meanwhile aIµ are dynamical gauge fields describing bulk excitations. K is an integer-valued non-
singular symmetric matrix and q is an integer-valued vector called ‘‘charge vector’’. The conserved
U(1) charge current in 2 + 1-D is given by

Jµe =
ϵµνρ

2π

∑
I

qI∂νaIρ . (B3)

Meanwhile

jµI (r) = δµ,0j0I (r) = δµ,0

NI∑
αI=1

δ(r − rαI ). (B4)

are time-independent classical fields describing the background anyons located at {rαI |1 ≤ αI ≤

NI} in the ground state. The fractional statistics of bulk anyon excitations are encoded by the K
matrix in (B1). In the adiabatic process, flux insertion and movement will not change the original
background anyon jµI (r). Adiabatic dragging a fluxon along a closed contour C is implemented by a
time-dependent classical vector potential Aµ(r, t) satisfying

ϵ0µν∂µδAν(r, t) = 2πδ2
(
r − r0(t)

)
, (B5)

ϵ0µν∂µĀν(r) = φ. (B6)

where the fluxon located at r0(t) ∈ C goes along closed contour C once in time period 0 ≤ t ≤ T .
The Berry phase acquired in this process can be obtained as∫ T

0
dt

∫
d2rAµ(r, t)Jµe = 2π

∫
r∈C

d2rJ0e = 2πρ∈C (B7)

which is nothing but 2π times the total charge number in the area enclosed by C. This corresponds
to the l.h.s. of Eq. (86), e2π i ρ̄L2 when the contour encloses L2 unit cells in one column of the torus.

We can also obtain this Berry phase from the effective response theory for external EM vector
potential δAµ, by integrating out all bulk excitations captured by Abelian gauge fields {aIµ}. This will
lead to a Chern–Simons term of the following form∏

I

∫
DaIµ e−

∫
dtd2rL0 = e−

∫
dtd2rLeff H⇒

Leff = −
ϵµνρ

4π

∑
I,J

K−1
I,J ·

(qIAµ − 2π
ϵµαβ

∂2
∂α jβI )∂ν(qJAρ − 2π

ϵργ δ

∂2
∂γ jδJ )
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= −
σxy

4π
ϵµνρδAµ∂ν Āρ −

∑
I

qIK−1
I,J δAµj

µ

J , (B8)

σxy = qTK−1q.

where we have used relation

∂µjµ = 0 H⇒ ϵµνρ∂νdρ = jµ, dµ = −ϵµνρ
∂ν

∂2
jρ . (B9)

Note that in (B8) the Hopf term [61]

LHopf = −π
∑
I,J

ϵµνρdIµ K−1
I,J jµJ

= −π
∑
I,J

ϵµνρdIµ K−1
I,J ∂νd

J
ρ

= −π
∑
I,J

ϵµνρ j
µ

I K−1
I,J
∂ν

∂2
jρJ (B10)

vanishes for stationary background anyons jµI (r) = δµ,0j0I (r). The 1st term in (B8)

LAB = −
σxy

4π
ϵµνρ Āµ∂νδAρ (B11)

can be understood as Aharonov–Bohm phase (88) between polarization charge ϵµνρ

2π ∂νAρ near flux
core r0(t) and background flux [62]. Compared to Hopf term (B10), the 2nd term in (B8)

LF ,a = −

∑
I,J

qI K−1
I,J δAµj

µ

J

= −2π
∑
I,J

ϵµνρdIµ K−1
I,J
∂νδAρ
2π

qJ (B12)

is nothing but mutual braiding statistics (89) between fluxon (labeled by quasiparticle current
qI
ϵµνρ

2π ∂νAρ) and background anyons (quasiparticle current jµI ).
If the bulk has a unique gapped ground state (no topological order), we have |detK| = 1

and hence the 2nd term is always a multiple of 2π . Thus for Abelian topological orders, we have
established the equality between total phase factor on the l.h.s. of (86), and the sum of AB phase
(88) and anyon braiding phase (89) on the r.h.s. of (86).

Notice that in the effective field theory (B8) describing the long-wavelength response of the
system to fluxons:

Leff = −δAµ
∑
I

qIK−1
I,J

[ϵµνρ
4π

qJ Āρ + jµJ
]

(B13)

there is an apparent ambiguity on the definition of (time-independent) background vector potential
Āµ and background anyon density jµJ , since we can always redefine them in the following way

Āµ → Āµ + αµ, jµJ → jµJ − qJαµ. (B14)

without changing the effective Lagrangian (B13) at all. This is exactly the ambiguity discussed in
(28), where the background flux density increase by one flux quantum per unit cell, while the
background anyon density changes by removing one fluxon −F per unit cell.

Appendix C. Magnetically translating a unit fluxon

Our goal in this section is to establish:

ΩT̃1
(F )ΩT̃2

(F )Ω−1
T̃1

(F )Ω−1
T̃2

(F ) = e2π iρ̄, (C1)
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where ΩT̃i
(i = 1, 2) are the fractionalized magnetic translation operators acting on the region

D, and ΩT̃i
(F ) describes the action of this operator on the unit-fluxon-F located inside D. Here by

definition, the unit-fluxon-F is a long-length-scale, low-energy object which is created by adiabatically
inserting 2π magnetic flux over a large area inside D.

Let us denote the unknown phase factor ΩT̃1
(F )ΩT̃2

(F )Ω−1
T̃1

(F )Ω−1
T̃2

(F ) as η. To reach our goal, we
firstly show that the phase η from this discrete algebra can be computed by an adiabatic Berry’s
phase corresponding to transporting the unit-fluxon-F around a unit cell. Second, this adiabatic
Berry’s phase will be computed to be e2π iρ̄ .

By locality and the defining property Eq. (90), the conjugation transformation of any local
quantum operator Ô(D) acting within region D by fractionalized operators ΩT̃i

is the same as the
conjugation transformation by the global operator T̃i. Namely:

ΩT̃i
Ô(D)Ω−1

T̃i
= T̃iÔ(D)T̃−1

i , i = 1, 2. (C2)

From now on we will adopt the following notation for conjugation transformation:
T̃i Ô(D) ≡ T̃iÔ(D)T̃−1

i . (C3)

Let us denote a quantum state with one fluxon-F inside D as |F⟩. To be precise, |F⟩ also hosts
an anti-fluxon somewhere far away from D. We define ΩT̃i

|F⟩ ≡ |ΩT̃i
F⟩. Consider any two local

quantum operators Ô1, and Ô2 such that the following quantum amplitudes are nonvanishing:

⟨ΩT̃1
F |Ô1|F⟩ ̸= 0; ⟨ΩT̃2

F |Ô2|F⟩ ̸= 0. (C4)

From Eq. (C2), we then know that the relations between quantum amplitudes:

⟨ΩT̃1
F |Ô1|F⟩ = ⟨ΩT̃2

ΩT̃1
F |

T̃2 Ô1|ΩT̃2
F⟩,

⟨ΩT̃2
F |Ô2|F⟩ = ⟨ΩT̃1

ΩT̃2
F |

T̃1 Ô2|ΩT̃1
F⟩. (C5)

Because by definition, |ΩT̃1
ΩT̃2

F⟩ and |ΩT̃2
ΩT̃1

F⟩ can at most differ by a phase factor, which is just
η:

|ΩT̃1
ΩT̃2

F⟩ = η|ΩT̃2
ΩT̃1

F⟩. (C6)

Namely η can be computed as the phase of the following product:

η ∼⟨F |Ô−1
2 |ΩT̃2

F⟩ · ⟨ΩT̃2
F |

T̃2 (Ô−1
1 )|ΩT̃1

ΩT̃2
F⟩

· ⟨ΩT̃1
ΩT̃2

F |
T̃1 Ô2|ΩT̃1

F⟩ · ⟨ΩT̃1
F |Ô1|F⟩ (C7)

The advantage of this expression of η is that it is explicitly independent of the global phase choices
of involved four fluxon states. Although Eq. (C7) holds for arbitrary operators Ôi satisfying Eq. (C4),
there exist particularly convenient choices of these operators. Let us choose Ôi = Ôad

i as the adiabatic
transporting of the unit fluxon |F⟩ from its original position by one lattice spacing along the a⃗i
direction (i = 1, 2). Precisely, Ôad

i are defined as the following time-revolutions:

Ôad
i = Wi · T exp

(
−i

∫ T

0
dtHi(t)

)
, (C8)

where T is the time ordering. Starting from the original Hamiltonian Horig , Hi(0) ≡ H0 is the
modified Hamiltonian whose ground state hosts a fluxon |F⟩ located in the region D (and another
anti-fluxon far away from D). WiHi(T )W−1

i =
ΩT̃iH0 which hosts the fluxon-F in D spatially

translated by one lattice spacing (but the anti-fluxon is not moved), and Wi is the local gauge
transformation near F needed in order to make Hi(t) a smooth time-evolution.

Here the definition of
ΩT̃iH0 is the following: for those terms of H0 near the location of the fluxon

F , they are conjugated by the global operation T̃i; while all other terms stay invariant as in H0.
Because inside region D, H0 is different from Horig only by those terms near the location of F , and
Horig is T̃i symmetric, such a definition is self-consistent. Clearly, |ΩT̃i

F⟩ is the ground state of
ΩT̃iH0.
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Note that
ΩT̃1

ΩT̃2H0 =
ΩT̃2

ΩT̃1H0 (due to the fact that every local term of Hamiltonian need to be
U(1) symmetric) and |ΩT̃1

ΩT̃2
F⟩ is its ground state.

We will adopt the notation
ΩT̃i Ŝ for a similarly defined transformation of a general operator Ŝ

which is a summation of many local terms, which requires that within D, T̃i Ŝ − Ŝ is composed of
terms only near the location of the fluxon F . After discretizing the time-evolution then considering
the limit of the time-step going to zero, it is straightforward to establish that:

⟨ΩT̃1
F |Ôad

1 |F⟩ = ⟨ΩT̃2
ΩT̃1

F |
ΩT̃2 Ôad

1 |T̃2F⟩,

⟨ΩT̃2
F |Ôad

2 |F⟩ = ⟨ΩT̃1
ΩT̃2

F |
ΩT̃1 Ôad

2 |T̃1F⟩, (C9)

where
ΩT̃j Ôad

i =
TjWi · T exp

(
−i

∫ T
0 dt

ΩT̃jHi(t)
)
. Note that because gauge transformations commute

with each other, we have: T̃jWi =
TjWi; namely the conjugate of magnetic translation on gauge

transformation is just as the usual translation. This identity is eventually related to the fact that the
magnetic translation algebra of the unit fluxon, just as the usual translation algebra, measures e2π iρ̄ .

Therefore, η can be computed as:

η ∼⟨F |T exp
(
i
∫ 0

−T
dtH2(−t)

)
· W−1

2

· T exp
(
i
∫ 0

−T
dt
ΩT̃2H1(−t)

)
·
T2W−1

1

·
T1W2 · T exp

(
−i

∫ T

0
dt
ΩT̃1H2(t)

)
· W1 · T exp

(
−i

∫ T

0
dtH1(t)

)
|F⟩

= ⟨F |W−1
2

T2W−1
1

T1W2W1

·
W−1

1
T1W−1

2
T2W1W2 [T exp

(
i
∫ 0

−T
dtH2(−t)

)
]

·
W−1

1
T1W−1

2
T2W1 [T exp

(
i
∫ 0

−T
dt
ΩT̃2H1(−t)

)
]

·
W−1

1 [T exp
(
−i

∫ T

0
dt
ΩT̃1H2(t)

)
]

· T exp
(
−i

∫ T

0
dtH1(t)

)
|F⟩

≡ ⟨F |W−1
2

T2W−1
1

T1W2W1 · Ôad
d Ôad

l Ôad
u Ôad

r |F⟩ (C10)

After the second equation mark, we use accumulated gauge transformations to conjugate the time-
evolutions. After this treatment, the gauge during the whole four-step time-evolution is smooth, and
we are only left with the final gauge transformation W−1

2
T2W−1

1
T1W2W1, which is easy to compute.

After the third equation mark, we reserve the symbols Ôad
d , Ô

ad
l , Ô

ad
u , Ô

ad
r to describe the adiabatic

time-evolutions for the right, up, left and down move in this smooth gauge.
Next we compute this phase η explicitly by perturbation theory. The basic idea is to choose the

gauge in H1(t),H2(t) so that they are only perturbatively different from H0. We choose a rectangular
region on a square lattice to demonstrate the calculation. Let (x, y) be the coordinate of a site. The
adjacent sites are connected by links carrying the gauge field: Ax(x, y) connect (x, y) to (x + 1, y),
and Ay(x, y) connect (x, y) to (x, y + 1). Consider a rectangular region: 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly
which contains LxLy plaquettes. Initially, the state |F⟩ is the ground state of H0 hosting a single flux
uniformly distributed in this region (i.e. every plaquette hosts ϕ ≡

2π
LxLy

flux), the corresponding
gauge field configuration is denoted as A0

x,y(x, y). One can choose a gauge to describe this flux
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distribution. Then, we specifically define Hi(t) (0 ≤ t ≤ 1) as:

H1(t) = H0({A0
x (x, y), A

0
y(x, y) + δAy(x, y, t)}),

H2(t) = H0({A0
x (x, y) + δAx(x, y, t), A0

y(x, y)}), (C11)

where δAy(x, y, t) = −ϕ(t) if 1 ≤ x ≤ Lx, 0 ≤ y ≤ Ly − 1, and zero otherwise, ϕ(t = 0) = 0 and
ϕ(t = T ) = ϕ. And δAy(x, y, t) = ϕ(t) if 0 ≤ x ≤ Lx−1, 1 ≤ y ≤ Ly. Namely, we choose a convenient
gauge to describe the time-evolutions. When the region is very large, ϕ goes to zero. We will use ϕ
as the perturbative parameter to control the calculation.

We will only keep the leading order in our perturbative calculation. Taylor expanding these
time-dependent Hamiltonians leads to:

H1(t) = H0 − ϕ(t)
0≤y≤Ly−1∑
1≤x≤Lx

jy(x, y) + O(ϕ2),

H2(t) = H0 + ϕ(t)
1≤y≤Ly∑

0≤x≤Lx−1

jx(x, y) + O(ϕ2), (C12)

where the current operators living on links are obtained by partial differentiating H0 w.r.t. the
corresponding gauge fields. It then follows that to the leading order of ϕ:

Ôad
r/u = T exp

[
−i

∫ T

0
dt(H0 + O(ϕ)

0≤y≤Ly∑
0≤x≤Lx

jx

+ O(ϕ)
0≤y≤Ly∑
0≤x≤Lx

jy)
]
,

Ôad
l/d = T exp

[
+i

∫ T

0
dt(H0 + O(ϕ)

0≤y≤Ly∑
0≤x≤Lx

jx

+ O(ϕ)
0≤y≤Ly∑
0≤x≤Lx

jy)
]
. (C13)

Because we are considering a charge insulator, the spatial summation current density is zero in the
ground state of Horig . Due to the extra factor O(ϕ), it is safe to ignore these current contributions to
the leading order of ϕ. We conclude that to the leading order of ϕ, η is due to the following phase:

η = ⟨F |W−1
2

T2W−1
1

T1W2W1|F⟩, (C14)

where W−1
2

T2W−1
1

T1W2W1 is the required gauge transformation to send the final Hamiltonian Hfinal
in the smooth gauge (i.e., the Hamiltonian after Oad

d ) back to the original gauge of H0. Note that after
Oad
r , H = H0 − ϕ

∑0≤y≤Ly−1
1≤x≤Lx jy(x, y). After Oad

u , H = H0 − ϕ
∑0≤y≤Ly−1

1≤x≤Lx jy(x, y) + ϕ
∑1≤y≤Ly

1≤x≤Lx jx(x, y).

After Oad
l , H = H0−ϕ

∑0≤y≤Ly−1
1≤x≤Lx jy(x, y)+ϕ

∑1≤y≤Ly
1≤x≤Lx jx(x, y)+ϕ

∑1≤y≤Ly
1≤x≤Lx jy(x, y). Therefore, after O

ad
d ,

Hfinal = H0 − ϕ

0≤y≤Ly−1∑
1≤x≤Lx

jy(x, y) + ϕ

1≤y≤Ly∑
1≤x≤Lx

jx(x, y)

+ ϕ

1≤y≤Ly∑
1≤x≤Lx

jy(x, y) − ϕ

1≤y≤Ly∑
0≤x≤Lx−1

jx(x, y)
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= H0 − ϕ

y=0∑
1≤x≤Lx

jy(x, y) + ϕ

1≤y≤Ly∑
x=Lx

jx(x, y)

+ ϕ

y=Ly∑
1≤x≤Lx

jy(x, y) − ϕ

1≤y≤Ly∑
x=0

jx(x, y). (C15)

Note that the current terms form a loop enclosing sites 1 ≤ x ≤ Lx, 1 ≤ y ≤ Ly. Clearly, the required
gauge transformation is the following:

η = ⟨F |W−1
2

T2W−1
1

T1W2W1|F⟩

= ⟨F |exp
[
iϕ

1≤y≤Ly∑
1≤x≤Lx

n̂(x, y)
]
|F⟩, (C16)

where n̂(x, y) is the particle number operator on site (x, y). Because ϕ = 2π/(LxLy), this is exactly
measuring the average charge density per unit cell: e2π iρ̄ .
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