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Motivated by the recent discovery of higher-order topological insulators, we study their counterparts in
strongly interacting bosons: “higher-order symmetry-protected topological (HOSPT) phases.” While the usual
(first-order) SPT phases in d spatial dimensions support anomalous (d − 1)-dimensional surface states, HOSPT
phases in d dimensions are characterized by topological boundary states of dimension (d − 2) or smaller,
protected by certain global symmetries and robust against disorders. Based on a dimensional reduction analysis,
we show that HOSPT phases can be built from lower-dimensional SPT phases in a way that preserves the
associated crystalline symmetries. When the total symmetry is a direct product of global and crystalline
symmetry groups, we are able to classify the HOSPT phases using the Künneth formula of group cohomology.
Based on a decorated domain-wall picture of the Künneth formula, we show how to systematically construct the
HOSPT phases, and demonstrate our construction with many examples in two and three dimensions.
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I. INTRODUCTION

The discovery of topological insulators [1–3] (TIs) un-
veiled a large class of symmetry-protected topological (SPT)
states [4,5], which in d spatial dimensions feature symmetry-
protected surface states on (d − 1)-dimensional open bound-
aries, such as one-dimensional (1D) helical edge states in
two-dimensional (2D) quantum spin Hall insulators [6] and
2D Dirac fermions on the surface of three-dimensional (3D)
topological insulators [2]. Recently, a new family of “higher-
order” topological insulators has been revealed [7–27], which
do not have gapless surface states, but exhibit gapless modes
on hinges and corners of the system. Generally, a kth-order TI
in d dimensions hosts robust gapless excitations on (d − k)-
dimensional open boundaries of the system: such as zero-
dimensional corner states in second-order 2D TIs and third-
order 3D TIs, as well as 1D hinge states in second-order 3D
TIs. In this terminology, the usual TIs can be called first-order
TIs. These lower-dimensional boundary excitations are robust
against any small perturbations such as disorders and crystal
distortions, as long as the global symmetry G0 is protected,
analogous to the stability of the TI surface states. It has been
shown that the higher-order TIs usually also preserve certain
crystalline symmetries in addition to the global symmetry
[7–13,18,28]. While most of the efforts so far are focused
on higher-order topological phases within band theory of
noninteracting fermions, little is known about their strongly
interacting counterparts in, e.g., interacting boson systems
[29,30]. How to understand the higher-order SPT phases in
a generic interacting boson system?

The goal of this work is to address this issue. We pro-
vide the classification and explicit construction for “strong”
higher-order SPT (HOSPT) phases of interacting bosons with
various global (i.e., onsite) symmetry G0 and crystalline sym-
metry Gc, whose lower-dimensional boundary excitations are

protected only by onsite symmetry G0 and hence robust
against disorders and crystal distortions. To do this, we con-
struct the kth-order SPT phases in d spatial dimensions by
stacking (d + 1 − k)-dimensional G0-SPT phases in a way
which preserves crystalline symmetry Gc. This construction
generalizes the decorated domain-wall picture set out in
Ref. [4] to include the crystal symmetry.

The consistency conditions in a decorated domain-wall
construction are phrased in terms of cohomology groups.
In particular, for total symmetry G = G0 × Gc as a direct
product of onsite symmetry G0 and crystalline symmetry Gc,
we show that all (k + 1)th-order SPT phases in d dimensions
are classified within the group cohomology

Hk (G∗
c ,Hd+1−k (G0,U (1))), (1)

where G∗
c is isomorphic to crystalline group Gc by regarding

each orientation-reversing symmetry operation as an antiuni-
tary operator [31,32]. The above classification also provides
a procedure to construct these HOSPT phases from building
blocks of (d − k)-dimensional SPT phases protected by onsite
symmetry G0 only, as illustrated in many examples.

Expanding Eq. (1) using the Künneth formula will yield
several terms. By using our construction, we will see that
each of these terms is naturally associated with a particular
domain-wall configuration. However, since Eq. (1) is believed
to classify bosonic SPT phases [32], we conjecture that our
construction yields the correct states and classification groups.

This work is organized as follows. First, in Sec. II we
discuss the physical picture behind HOSPT phases based on
a dimensional reduction point of view. Then, we show the
general classification of HOSPT phases in Sec. III A based
on the Künneth formula of group cohomology, and how to the
construct the HOSPT phases using the decorated domain-wall
picture in Sec. III C. The classification and construction are
demonstrated for second-order SPT phases in two (Sec. IV)
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and three (Sec. V) dimensions, and third-order SPT phases in
three dimensions (Sec. VI). We conclude with a few remarks
in Sec. VII.

II. PHYSICAL PICTURE

Before introducing the mathematical classification for
higher-order SPT phases, we first discuss an intuitive physical
picture which shows how higher-order SPT phases can be
built by stacking lower-dimensional SPT phases. Throughout
this work, we will focus on the simplest situation where
the total symmetry group G = Gc × G0 is a direct product
of crystalline symmetry group Gc and onsite (i.e., global)
symmetry group G0.

By definition, a kth-order SPT phase in d dimensions is
characterized by symmetry-protected gapless states on bound-
aries of (d − k) dimensions. For example, as illustrated in
Fig. 2, a second-order SPT phase in d = 2 with fourfold
rotational symmetry Gc = C4 hosts gapless zero modes at
each corner of a square-shaped system, which are protected by
onsite symmetry G0. Based on this example and without loss
of generality, below we present two arguments to establish a
dimensional reduction picture for the HOSPT phases: while
the first argument (Sec. II A) shows why a kth-order SPT
phase in d dimensions is related to the usual G0-SPT phases
in (d + 1 − k) dimensions, the second argument (Sec. II B)
explicitly demonstrates how to build such a HOSPT phase
from lower-dimensional SPT phases. While the first argu-
ment explains why the classification of HOSPT phases is
determined by the classification of (d + 1 − k)-dimensional
SPT phases, the second argument shows which of the (d +
1 − k)-dimensional SPT phases can consistently lead to a
gapped symmetric kth-order SPT phase in d dimensions, to
be compatible with the crystalline symmetry Gc.

A. Corner/hinge states as gapless defects on
the gapped open surface

We consider a generic HOSPT phase |ψ〉 of order k � 2 on
a d-dimensional open manifold A (such as the square-shaped
system in Fig. 1), which is gapped almost everywhere except
for a (d − k)-dimensional submanifold on the boundary ∂A
(such as the four corners with k = d = 2 in Fig. 1). Since by
definition the (d − 1)-dimensional boundary ∂A is gapped,
this is not a “strong” SPT phase protected by onsite symmetry
G0 only, and hence there exists a finite-depth quantum circuit
[4] Û ,

Û |ψ〉 = |T 〉, (2)

which continuously evolves the HOSPT state |ψ〉 into a trivial
product state |T 〉, while preserving onsite symmetry G0. We
label the finite depth of circuit Û as dU .

As illustrated in Fig. 1, next we divide the total system
A into two regions: its (simply connected) interior B0 (both
white and gray in Fig. 1), and boundary B̄0 = A \ B0. We
can then define a finite-depth (dU ) quantum circuit UB0 =
PB0ÛPB0 by restricting quantum circuit Û into region B0,
such that

ÛB0 |ψ〉 = |TB〉 ⊗ |ψB̄〉, (3)

FIG. 1. Disentangling the gapped bulk with gapless corner states.
The interior region B is colored in white, while the “cushion”
region B0 \ B is colored in gray. Finite-depth quantum circuit ÛB0

preserving onsite symmetry G0 will trivialize the interior B into a
product state, while keeping the boundary B̄0 = A \ B0 (including
the gapless corner states) untouched.

where B ⊂ B0 is the interior (white in Fig. 1) of B0, differing
from B0 only by a “cushion” region (gray in Fig. 1) whose
width is of the order ∼dU . Here, |TB〉 denotes the trivial
product state on region B. In other words, finite-depth quan-
tum circuit UB0 can continuously tune the interior region B
of HOSPT phase into a trivial product state without closing
the gap or breaking onsite symmetry G0, while keeping the
boundary states (on B̄0) untouched. As a result, through finite-
depth quantum circuit ÛB0 which preserves onsite symmetry
G0, the HOSPT ground state is disentangled into a trivial
product state |TB〉 in the bulk B, and a state |ψB̄〉 on its
(d − 1)-dimensional surface B̄.

Notice that in addition to preserving onsite symmetry
G0, the (d − 1)-dimensional state |ψB̄〉 is mostly gapped
except for hosting gapless modes on its (d − k)-dimensional
submanifolds. Therefore, the gapless corner/hinge states in
a HOSPT can be viewed as gapless (d − k)-dimensional
defects on a gapped (d − 1)-dimensional surface state |ψB̄〉
with onsite symmetry G0. As argued in Refs. [33,34], the
classification of such a defect falls in the classification of a
(d + 1 − k)-dimensional SPT phase protected by the same
onsite symmetry G0.

These corner or hinge modes have two important proper-
ties. First, they are protected by G0 and possibly also by Gc.
As we will see below, there are two types of action of Gc on
the boundary modes: either it permutes them or acts onsite.
We are mostly interested in the first type, but will enumerate
both below. Second, the boundary modes are protected in the
thermodynamic limit. Trying to attach a (k + 1)-dimensional
state to trivialize k-dimensional corner or hinge modes cannot
be done with a symmetry-respecting finite-depth quantum
circuit in the limit of infinite system size.

For example, in a second-order SPT phase in d = k = 2,
the gapless corner states in, e.g., Fig. 1, can be viewed as
gapless zero-dimensional domain walls on the gapped 1D
edge. Therefore, they are reduced to the one-dimensional
G0-SPT phases. Similarly for a second-order SPT phase in
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FIG. 2. Dimensional reduction analysis of a second-order SPT
phase with Gc = C4 crystalline symmetry, where the black dots
represent robust corner zero modes protected by onsite symmetry G0.
Shaded regions are trivialized by the action of a local, finite-depth
quantum circuit. Dashed lines represent “effective” one-dimensional
(1D) G0-SPTs, as building blocks for the second-order SPT phase
in two dimensions. Note that the four end points of the 1D G0-SPT
phases must fuse to a linear representation in the bulk (circle in the
middle), imposing a compatibility condition on the topological index
of 1D G0-SPT phases.

d = 3, the gapless hinge states can be viewed as gapless 1D
domain walls on a gapped 2D surface, therefore related to
two-dimensional G0-SPT phases. For a third-order SPT phase
in d = k = 3, the gapless corner states should be viewed
as gapless zero-dimensional point defects on the gapped 2D
surface with symmetry G0, hence reduced to one-dimensional
G0-SPT phases.

B. Building HOSPT phases from lower-dimensional SPT phases

In the previous argument, we have shown that the gap-
less (d − k)-dimensional boundary states in a kth-order SPT
phase in d dimensions can be reduced to the classification of
(d + 1 − k)-dimensional SPT phases preserved only by onsite
symmetry G0. However, not all of the G0-SPT phases can lead
to a gapped HOSPT phase that preserves crystalline symme-
try Gc: certain compatibility conditions must be satisfied to
ensure a gapped bulk. Here, we provide another argument
based on the dimensional reduction approach [35–37], which
explicitly builds the kth-order SPT phases in d dimensions out
of (d − k)-dimensional G0-SPT phases.

Without loss of generality, we demonstrate this dimen-
sional reduction argument using the second-order 2D SPT
phase with Gc = C4 point-group symmetry, as shown in
Fig. 2. We first divide the whole open manifold A into four
disconnected shaded regions {Ri|1 � i � 4} in Fig. 2 which
are related by C4 symmetry, while both the C4 inversion
center and four gapless corners lie in the rest of the space
A \ (

⋃
i Ri ). Following the same construction as used in the

previous argument, we can construct a G0-preserving finite-
depth quantum circuit ÛR1 by restricting circuit Û in region
R1, such that

ÛR1 |ψ〉 = ∣∣TR1

〉 ⊗ ∣∣ψR̄1

〉
, (4)

where |TR1〉 represents the trivial product state on region R1.
By symmetrizing circuit UR1 with respect to C4 rotations, we
can construct a symmetric finite-depth quantum circuit

U sym
R =

3∏

i=0

(C4)iÛR1 (C4)−i, R ≡
⋃

i

Ri, (5)

which preserves both onsite symmetry G0 and crystalline
symmetry Gc, such that

Û sym
R |ψ〉 = |TR〉

⊗
|ψR̄〉. (6)

In other words, symmetric finite-depth circuit U sym
R trivializes

most of the manifold A, except for the four 1D systems
connecting the gapless corner to the rotation center. As argued
previously, now that each corner state carries a projective
representation of onsite symmetry G0 as the boundary state
of a 1D G0-SPT phase, each 1D system connecting the corner
to the C4 rotation center must be a 1D G0-SPT phase with a
topological index

ν ∈ H2(G0,U (1)). (7)

Note that as a part of the gapped bulk, the C4 rotation center
where the ends of the four 1D G0-SPT chains must form a
linear representation of onsite symmetry G0, i.e.,

4ν 	 0 ∈ H2(G0,U (1)). (8)

This compatibility condition comes from the fusion of a
number of edges of 1D SPTs dictated by the crystal symmetry
Gc = C4:

φ : Hd+1−k (G0,U (1)) → Hd+1(G,U (1)). (9)

Physically, the fusion map φ encodes a notion of compatibility
between onsite symmetry G0 and crystalline symmetry Gc,
so that the bulk of the full system is trivial and gapped.
Constructing the map φ is generally a difficult mathematical
problem for an arbitrary symmetry group G with both onsite
and crystalline symmetries. In this paper we consider the
simplest case, where the symmetry group G = G0 × Gc is a
direct product of onsite symmetry G0 and global symmetry
Gc. As we will show later, this allows a direct reduction
via the Künneth formula, where the compatibility conditions
between (d − k)-dimensional G0-SPT phases and crystalline
symmetry Gc in d spatial dimensions are captured by group
cohomology formula (1).

Finally, we recall that certain SPT phases are beyond
the group cohomology classification, such as the 3D time-
reversal SPT phase with efmf surface topological orders
[38,39] classified by cobordism [40,41] and Kitaev’s chiral
2D E8 state [42,43]. We have also considered these beyond-
group-cohomology HOSPT phases built from the E8 state, as
highlighted in red in Table II.

III. CLASSIFICATION AND CONSTRUCTION FROM
KÜNNETH FORMULA

A. General classification of HOSPT phases

In this work, we will focus on the cases where the total
symmetry group G is a direct product of crystalline symmetry
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Gc and onsite symmetry G0:

G = Gc × G0. (10)

In this situation, there is a simple mathematical formula based
on group cohomology, which gives the full classification of
higher-order SPT phases. It has been shown [31,32] within
the group cohomology classification of SPT phases that all Gs

symmetry-protected topological phases of interacting bosons
in d spatial dimensions are given by

Hd+1(G∗,U (1)) = Hd+1(G∗
c × G0,U (1)), (11)

where G∗
c is isomorphic to Gc, obtained by replacing each

orientation-reversing element of crystalline symmetry group
Gc by an antiunitary operation of the same rank. According to
the Künneth formula for group cohomology [44–46] we have

Hd+1(G∗
c × G0,U (1)) = Hd+2(G∗

c × G0,Z)

= ⊕d+2
k=0Hk (G∗

c ,Hd+2−k (Gs,Z))

= Hd+1(G∗
c ,U (1)) ⊕ Hd+1(G∗

c ,H1(G0,Z))

⊕d
k=0Hk (G∗

c ,Hd−k+1(G0,U (1))). (12)

The first term Hd+1(G∗
c ,U (1)) classifies crystalline SPT

phases protected only by crystalline symmetry Gc [32,35].
The second term Hd+1(G∗

c ,H1(G0,Z)) vanishes for any finite
group [46], as in the case considered here where Gc is a point
group or magnetic point group.

Therefore, we shall focus on the last line of the above
Künneth formula (12). Each term in

Hk (G∗
c ,Hd−k+1(G0,U (1))), 0 � k � d (13)

can be interpreted as the classification of (k + 1)th-order SPT
phases in d spatial dimensions, protected by onsite symmetry
G0 and crystalline symmetry Gc. Such a SPT phase is featured
by robust gapless states on proper (d − k − 1)-dimensional
open boundaries, which are protected by onsite symmetry G0

alone. For example, the k = 0 term in (13)

H0(G∗
c ,Hd+1(G0,U (1))) = Hd+1(G0,U (1)) (14)

corresponds to the first-order (i.e., the usual “strong”) SPT
phases protected by onsite symmetry G0, featured by gapless
modes on (d − 1)-dimensional boundaries.

Second-order SPT phases in d � 2 are all captured by k =
1 term in (13),

H1(G∗
c ,Hd (G0,U (1))), (15)

which hosts gapless (or anomalous topological orders when
d � 4) excitations on (d − 2)-dimensional boundaries pro-
tected by onsite symmetry G0.

Similarly, third-order SPT phases in d � 3 are all captured
by k = 2 term in (13),

H2(G∗
c ,Hd−1(G0,U (1))), (16)

which hosts gapless (or anomalous topological orders when
d � 5) excitations on (d − 3)-dimensional boundaries pro-
tected by onsite symmetry G0, such as corner states in d = 3.

B. “Strong” HOSPT phases versus “weak” crystalline SPT
phases

As mentioned previously, we define kth-order SPT
phases in d dimensions by the presence of robust (d − k)-
dimensional topological boundary states, protected by onsite
(or global) symmetry G0 only. These are “strong” SPT phases,
whose boundary excitations do not require protection from
the crystalline symmetry Gc. In comparison, there are also
“weak” crystalline SPT phases, whose topological boundary
excitations are protected by crystalline symmetries (in ad-
dition to onsite symmetries) [32,47–49]. In fact, in addition
to strong HOSPT phases which are the focus of this paper,
certain weak crystalline SPT phases are encoded inside the
whole Künneth formula (12), such as those colored in green
in Table III. Before systematically analyzing and constructing
HOSPT phases in detail, we briefly discuss the weak crys-
talline SPT phases.

First of all, the k = d + 1 term Hd+1(G∗
c ,U (1)) in Kün-

neth formula clearly describes weak SPT phases protected
only by the crystalline symmetry Gc. Next, we comment on
k = d term in (13):

Hd (G∗
c ,H1(G0,U (1))). (17)

The physics of this term is to assign onsite symmetry charges
[linear representation H1(G0,U (1)) of onsite symmetry G0]
to defects of the crystalline symmetry Gc. In a simplest exam-
ple, for the k = d = 1 case of 1D insulators [G0 = U (1)] with
inversion symmetry I (Gc = ZI

2 ), we have H1(U (1),U (1)) =
Z and hence

H1(G∗
c ,H1(U (1),U (1))) = H1

(
ZT

2 ,Z
) = Z2. (18)

The nontrivial element of the above Z2 classification cor-
responds to assigning an odd number of U (1) charges to
the inversion center, while the trivial element corresponds to
having an even number ofU (1) charge on the inversion center.
There are no gapless boundary excitations for either of the two
phases in 1D.

However, in k = d � 2, weak SPT phases with boundary
states protected by crystalline symmetry generally can appear
in the Künneth formula (12). For example, in k = d = 2 case
with mirror symmetry Gc = ZM

2 , H2(ZM
2 ,H1(G0,U (1)))

corresponds to assigning G0 charges to each domain wall
of mirror symmetry M on the 1D mirror axis of the 2D
system. This leads to gapless boundary states if the boundary
of the system preserves mirror symmetry. Similarly, in the
d = k = 3 case with n-fold rotational symmetry Gc = Cn,
H3(Cn,H1(G0,U (1))) corresponds to assigning G0 charges
to each domain wall of Cn rotational symmetry on the 1D
rotation axis. This leads to weak 3D crystalline SPT phases,
hosting gapless (or anomalous) boundary states if the bound-
ary preserves Cn symmetry.

Another example is k = d − 1 in (13). Take d = 3, k = 2
for instance, considering mirror symmetry Gc = ZM

2 again,
H2(ZM

2 ,H2(G0,U (1))) corresponds to assigning 1D G0-SPT
phases classified by H2(G0,U (1)) to each mirror domain wall
on the 2D mirror plane. This can lead to gapless (or anoma-
lous) boundary states protected by both mirror and onsite G0

symmetry, if the boundary preserves mirror symmetry M.
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As we mentioned before, the boundary states of these weak
crystalline SPT phases will generally be destroyed by pertur-
bations that break the crystalline symmetry, such as disorders
and crystalline distortions. Meanwhile, their interpretation in
the Künneth formula can be quite tricky, as shown in the
above examples. Hereafter, we will be focusing on the strong
HOSPT phases, whose topological boundary excitations are
robust even if crystalline symmetries are broken on the
surface.

C. Decorated domain-wall construction

Here, we briefly describe how to explicitly construct the
higher-order SPT phases in d spatial dimensions, using G0-
SPT phases in lower dimensions. In particular, the group
cohomology formula (13) provides a clear physical meaning
for such a construction, similar to the decorated domain-wall
construction [50] for the usual (“first-order”) SPT phases.

First, we consider second-order SPT phases in d dimen-
sions, classified by first group cohomology

{ν1(g0, g1) ∈ Hd (G0,U (1))|gi ∈ G∗
c}

∈ H1(G∗
c ,Hd (G0,U (1))). (19)

These are nothing but linear representations of the symmetry
group G∗

c ,

Ug ≡ ν1(1, g) ∈ Hd (G0,U (1)), g ∈ G∗
c (20)

satisfying the 1-cocycle condition

UgU
s(g)
h = Ugh, s(g) = ±1 for g = unitary/antiunitary.

(21)

Ug valued in Hd (G0,U (1)) physically represents a do-
main wall labeled by symmetry element g, decorated by
(d − 1)-dimensional G0-SPT phases labeled by elements in
Hd (G0,U (1)). The above 1-cocycle condition can be viewed
as a compatibility condition between the addition rules of
(d − 1)-dimensional G0-SPT phases and the addition rules
(gh = gh) of domain walls, in order to ensure a gapped bulk
spectrum. To understand this, we see that a domain wall of the
G∗

c symmetry is labeled by a group element g1 ∈ G∗
c . The (d −

1)-dimensional SPT phase associated with this domain wall
is labeled by an element m1 ∈ Hd (G0,U (1)). The fusion of
two domain walls g1g2 combines these (d − 1)-dimensional
G0-SPT’s into m1 + m2. However, the fusion must respect
the group structure of Hd (G0,U (1)), and this consistency
condition is exactly captured by Eq. (13). Therefore, each
element of H1(G∗

c ,Hd (G0,U (1))) describes a way to assign
(d − 1)-dimensional G0-SPT phases on the domain walls of
crystalline symmetry Gc, which is compatible with a gapped
bulk.

Next, we consider second-order SPT phases in d dimen-
sions, classified by second group cohomology

{ν2(g0, g1, g2) ∈ Hd−1(G0,U (1))|gi ∈ G∗
c}

∈ H2(G∗
c ,Hd−1(G0,U (1))). (22)

They are nothing but projective representation of symmetry
group G∗

c ,

UgU
s(g)
h = ω(g, h)Ugh, g, h ∈ G∗

c ; (23)

ω(g, h) ≡ ν2(1, g, gh) ∈ Hd−1(G0,U (1)), (24)

satisfying the 2-cocycle (or associativity) condition

ω(g, h)ω(gh, k) = ω(g, hk)ωs(g)(h, k), g, h, k ∈ G∗
c .

(25)

Since Ug represents the (d − 1)-dimensional domain wall
labeled by element g of crystalline symmetry G∗

c , ω(g, h)
naturally represents the (d − 2)-dimensional manifold where
three domain walls Ug, Uh, and U(gh)−1 intersect. The fact
that ω(g, h) takes values in Hd−1(G0,U (1)) physically means
that these domain-wall intersections are decorated by (d − 2)-
dimensional G0-SPT phases, which are classified by group
cohomology Hd−1(G0,U (1)).

As a simplest example, we consider the n-fold rotational
symmetry Gc = Cn. Each of the n domain walls of the Cn

symmetry can be decorated by the same (d − 1)-dimensional
G0-SPT phase, such that n copies of these G0-SPT phases
intersect at theCn rotational axis. For the system to be gapped
on the rotational axis, these n copies of G0-SPT phases
together must fuse to a trivial phase with no gapless boundary
states. This exactly corresponds to second-order SPT phases
classified by H1(C∗

n 	 Zn,Hd (G0,U (1))). Meanwhile, at the
intersection of n domain walls of Cn symmetry, the rotational
axis itself can also be decorated by a (d − 2)-dimensional G0-
SPT phase, which corresponds to the third-order SPT phases
classified by H2(C∗

n 	 Zn,Hd−1(G0,U (1))).
Another example is the mirror reflection symmetry Gc =

ZM
2 , where the orientation-reversing mirror symmetry M

should be regarded as an antiunitary symmetry when comput-
ing the group cohomology. For k = d = 2, the second-order
SPT phases in classified by H1(ZM

2 ,H2(G0,U (1))) can be
understood as assigning a 1D G0-SPT phase on each mirror
plane.

Below we will classify second-order SPT phases in d =
2, 3 (Tables I and II) and third-order SPT phases in d =
3 (Table III), for various choices of onsite symmetry G0

and crystalline (and magnetic crystalline) symmetry Gc. We
will also explicitly construct these higher-order SPT phases
using the decorated domain-wall picture as described above in
Secs. IV–VI.

IV. SECOND-ORDER SPT PHASES IN TWO DIMENSIONS

As shown in (15), the second-order SPT phases in d
spatial dimensions are classified by Hk=1(G∗

c ,Hd (G0,U (1))),
i.e., the linear representation of group G∗

c whose coefficients
take value in the (d − 1)-dimensional SPT classification
Hd (G0,U (1)). For d = 2 case, the building blocks of second-
order SPT phases in two dimensions are 1D SPT phases
protected by onsite symmetry G0. Below, we provide a full
classification for second-order SPT phases in d = 2 with all
possible 2D point-group and magnetic point-group symme-
tries, and describe how to use 1D SPT phases to construct
these second-order 2D SPT phases.

A. Classification

To compute H1(G∗
c ,Hd (G0,U (1))), first we need to obtain

the group G∗
c from crystalline symmetry Gc. As mentioned

earlier, G∗
c is isomorphic to Gc, obtained by replacing each
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TABLE I. Second-order bosonic SPT phases (k = 1) in d = 2 spatial dimensions, protected by symmetry group Gs = Gc × G0 where
Gc and G0 represent the crystalline and onsite symmetry group, respectively. The general classification is given by linear representation
H1(G∗

c ,H2(G0,U (1))) as shown in (15) with d = 2. Through a dimensional reduction procedure they are all constructed from G0-SPT phases
in d = 1 dimension, classified by H2(G0,U (1)) in the last line (blue).

k = 1, d = 2 Onsite symmetry G0

ZT
2 SO(3) or SO(3) × ZT

2 Za × Zb Za × ZT
2

Crystalline symmetry Gc U (1) � Z2 or U (1) × ZT
2

Cn Z(n,2) Z(n,2) Z(n,2) Z(n,a,b) Z(n,2) × Z(n,a,2)

Cn,v = Cn � ZMv
2 Z(n,2) × Z2 Z(n,2) × Z2 Z2

(n,2) × Z2
2 Z(n,a,b) × Z(2,a,b) Z(n,2) × Z(n,a,2) × Z2 × Z(a,2)

CT
2n ≡ {(c2n · T )m|0 � m < 2n} Z2 Z2 Z2

2 Z(2,a,b) Z2 × Z(a,2)

CT
2n � ZMv

2 Z2
2 Z2

2 Z4
2 Z2

(2,a,b) Z2
2 × Z2

(a,2)

Cn � ZMv·T
2 Z(n,2) × Z2 Z(n,2) × Z2 Z2

(n,2) × Z2
2 Z(2,n,a,b) × Z(2,a,b) Z(n,2) × Z(n,a,2) × Z2 × Z(a,2)

d = 1 G0-SPTs:H2(G0,U (1)) Z2 Z2 Z2
2 Z(a,b) Z2 × Z(a,2)

orientation-reversing element g of Gc by an antiunitary opera-
tion g∗ of the same rank. For example, we have

Gc = Cn �⇒ G∗
c 	 Zn; (26)

Gc = Cn � ZMv
2 �⇒ G∗

c 	 Zn � ZT
2 ; (27)

Gc = CT
2n or S2n �⇒ G∗

c 	, (28)

where we use ZT
2n to denote a group generated by an antiuni-

tary operator T of ranking 2n.
After obtaining G∗

c , the next step is to compute
Hd (G0,U (1)), the coefficient of the desired linear represen-
tation H1. For d = 2 case, H2(G0,U (1)) corresponds to the
classification of 1D SPT phases [51–54] protected by onsite
symmetry G0: it always forms a finite Abelian group, as
summarized in the last line of Table I.

Generally, the classification of SPT phases with onsite
symmetry G0 always forms a discrete Abelian group, which
holds for the group cohomology classification Hd (G0,U (1))

and beyond. One important relation for group cohomology is

Hk (G,A × B) = Hk (G,A) × Hk (G,B). (29)

Therefore, to compute H1(G∗
c ,Hd (G0,U (1))) in (15), we

only need to know H1(G,Z), and H1(G,Za) for any fi-
nite integer a ∈ Z. Since H2(G0,U (1)) is always a finite
Abelian group, making use of relation (29), we can com-
pute H1(G∗

c ,H2(G0,U (1))) purely based on knowledge of
H1(G,Za) for any finite integer a. Below, we list H1(G∗

c ,Za)
for all d = 2 point groups and magnetic point groups Gc:

(Cn)∗ 	 Zn,
(
ST2n

)∗ 	 Z2n, H1(Zn,Za) = Z(n,a); (30)

(Cn,v)∗ 	 (
Cn � ZMvMhT

2

)∗ 	 Zn � ZT
2 ,

H1
(
Zn � ZT

2 ,Za
) = Z(n,a) × Z(2,a); (31)

(
CT

2n

)∗ 	 (S2n)∗ 	 ZT
2n; H1

(
ZT

2n,Za
) = Z(2,a); (32)

TABLE II. Second-order bosonic SPT phases (k = 1) in d = 3 spatial dimensions, protected by symmetry group Gs = Gc × G0 where
Gc and G0 represent the crystalline and onsite symmetry group, respectively. The general classification is given by linear representation
H1(G∗

c ,H3(G0,U (1))) as shown in (15) with d = 3, except for the “beyond-cohomology” states colored by red. Through a dimensional
reduction procedure, they can all be built from G0-SPT phases in d = 2 dimension, classified by H3(G0,U (1)) in the last line. Red-colored
“beyond-cohomology” states are built from the chiral bosonic E8 state [42,43].

k = 1, d = 3 Onsite symmetry G0

U (1) U (1) � Z2 SO(3) × ZT
2 Za Za × ZT

2

Crystalline symmetry Gc or SO(3)

Cn Z1 Z(n,2) Z(n,2) Z(n,a) Z2
(n,a,2)

Cn,v or Cn � ZMvMhT
2 Z2 × Z2 Z2

2 × Z(n,2) × Z2 Z(n,2) × Z2 Z(n,a) × Z(2,a) × Z2 Z2
(n,a,2) × Z2

(a,2)

Cn,h ≡ Cn × ZMh
2 Z2 × Z2 Z2

2 × Z(n,2) × Z2 Z(n,2) × Z2 Z(n,a,2) × Z(2,a) × Z2 Z2
(n,a,2) × Z2

(a,2)

Dn ≡ Cn � ZMh·Mv
2 or Cn � ZMv·T

2 Z1 Z(n,2) × Z2 Z(n,2) × Z2 Z(n,a,2) × Z(2,a) Z2
(n,a,2) × Z2

(a,2)

Dn,h ≡ Cn,v × ZMh
2 Z2 × Z2 Z3

2 × Z(n,2) × Z2 Z(n,2) × Z2
2 Z(n,a,2) × Z2

(2,a) × Z2 Z2
(n,a,2) × Z4

(a,2)

CT
2n or S2n ≡ {(c2n · Mh)m|0 � m < 2n} Z2 × Z2 Z2

2 × Z2 Z2 Z(2,a) × Z2 Z2
(2,a)

Dn,d ≡ S2n � ZMv
2 or CT

2n � ZMv
2 Z2 × Z2 Z3

2 × Z2 Z2
2 Z2

(2,a) × Z2 Z4
(2,a)

ST2n ≡ {(c2n · Mh · T )m|0 � m < 2n} Z1 Z2 Z2 Z(2n,a) Z2
(a,2)

d = 2 G0-SPTs: H3(G0,U (1)) plus E8 state Z × Z Z × Z2 × Z Z2 Za × Z Z2
(a,2)
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TABLE III. Third-order bosonic SPT phases (k = 1) in d = 2 spatial dimensions, protected by symmetry group Gs = Gc × G0 where
Gc and G0 represent the crystalline and onsite symmetry group, respectively. The general classification is given by projective representation
H2(G∗

c ,H2(G0,U (1))) as shown in (16) with d = 3. Through a dimensional reduction procedure they are all constructed from G0-SPT phases
in d = 1 dimensions, classified by H2(G0,U (1)) in the last line (blue). To be contrasted with the strong third-order SPT phases in black, the
weak crystalline SPT phases included in H2(G∗

c ,H2(G0,U (1))) are colored in green.

k = 2, d = 3 Onsite symmetry G0

ZT
2 , SO(3) SO(3) × ZT

2 Za × Zb Za × ZT
2

Crystalline or U (1) � Z2 or U (1) × ZT
2

symmetry Gc

Cn Z(2,n) Z2
(2,n) Z(n,a,b) Z(2,n) × Z(a,2,n)

Cn,v Z(n,2) × Z(n,2) × Z2 Z2
(n,2) × Z2

(n,2) × Z2
2 Z(n,a,b) × Z(n,a,b,2) × Z(2,a,b) Z(n,2) × Z(n,a,2) × Z(n,a,2) × Z(a,2) × Z(n,2) × Z2

Cn,h Z(n,2) × Z2 × Z2 Z2
(n,2) × Z2

2 × Z2
2 Z(n,a,b,2) × Z(a,b,2) × Z(a,b,2) Z(n,2) × Z2 × Z(n,a,2) × Z(a,2) × Z2 × Z(a,2)

Dn Z(n,2) × Z2
2 Z2

(n,2) × Z4
2 Z(n,a,b,2) × Z2

(2,a,b) Z(n,2) × Z2
2 × Z(n,a,2) × Z2

(a,2)

Cn � ZMv·T
2 Z(n,2) × Z2

2 Z2
(n,2) × Z4

2 Z(n,a,b,2) × Z2
(a,b,2) Z(n,2) × Z(n,a,2) × Z2

2 × Z2
(a,2)

Dn,h Z2
(n,2) × Z2 × Z3

2 Z4
(n,2) × Z2

2 × Z6
2 Z2

(n,a,b,2) × Z(a,b,2) × Z3
(a,b,2) Z2

(n,2) × Z2 × Z2
(n,a,2) × Z(a,2) × Z3

2 × Z3
(a,2)

CT
2n or S2n Z2 Z2

2 Z(2,a,b) Z2 × Z(a,2)

CT
2n � ZMv

2 Z2 × Z2
2 Z2

2 × Z4
2 Z(a,b,2) × Z2

(a,b,2) Z2 × Z(a,2) × Z2
2 × Z2

(a,2)

Dn,d Z2
2 × Z2 Z4

2 × Z2
2 Z2

(a,b,2) × Z(a,b,2) Z2
2 × Z2

(a,2) × Z2 × Z(a,2)

ST2n Z2 Z2
2 Z(2n,a,b) Z2 × Z(a,2)

T 	 A4 Z2 Z2
2 Z(3,a,b) × Z(2,a,b) Z2 × Z(a,2)

Th = T × ZI
2 Z2

2 × Z2 Z4
2 × Z2

2 Z2
(2,a,b) × Z2

2,a,b Z2
2 × Z2

(2,a) × Z2 × Z(2,a)

H2(G0,U (1)) Z2 Z2
2 Z(a,b) Z2 × Z(a,2)

(Dn,d)∗ 	 (
CT

2n � ZMv
2

)∗ 	 ZT
2n � Z2,

H1
(
ZT

2n � Z2,Za
) = Z2

(2,a); (33)

(Dn)∗ 	 (
Cn � ZMvT

2

)∗ 	 Zn � Z2,

H1(Zn � Z2,Za) = Z(n,a,2) × Z(a,2); (34)

(Cn,h)∗ 	 (
Cn × ZI

2

)∗ 	 Zn × ZT
2 ,

H1
(
Zn × ZT

2 ,Za
) = Z(n,a,2) × Z(2,a); (35)

(Dn,h)∗ 	 (Zn � Z2) × ZT
2 ,

H1
(
(Zn � Z2) × ZT

2 ,Za
) = Z(n,a,2) × Z2

(2,a). (36)

Using relation (29) and the above results (30)–(36), we
acquire the classification of all second-order SPT phases in
d = 2, as summarized in Table I.

B. Examples

1. Gc = Cn

The simplest examples of second-order SPT phases are
protected by n-fold rotational symmetry Gc = Cn, classi-
fied by

H1(Zn,H2(G0,U (1))). (37)

They can all be built from 1D SPT phases protected by
onsite symmetry G0, where the 1D G0-SPT phases are aligned
in a Cn-symmetric manner as shown in Fig. 3 for Gc = C3

case. Since the end points of n copies of 1D G0-SPT phases
intersect at the center of the system (see Fig. 3), they must
form a linear representation of onsite symmetry G0 to en-
sure a gapped symmetric bulk. This provides a compatibility
condition for the 1D G0-SPT phases, manifested in the group

cohomology formula

H1(Zn,Za) = Z(n,a), (38)

where (n, a) is the greatest common divisor of integers n
and a.

Formula (38) can be understood as follows. The group co-
homology H1(Zn,Za) stands for linear representation {Ug|g ∈
Zn} of Zn group with coefficients in Za-valued phase factors

Za = {
u j ≡ e2π i j

a
∣∣0 � ν < a, j ∈ Z

}
. (39)

FIG. 3. Second-order SPT phases with Gc = C3 point-group
symmetry, where each of the three C3 domain walls is decorated
by the same 1D G0-SPT phase meeting at the rotation center. The
projective representations at the end of each 1D G0-SPT phase must
form a linear representation to ensure a gapped bulk, as manifested
in group cohomology formula (15).
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Denoting the generator of Zn group as R with Rn = 1, we have

UR|ν〉 = uν |ν〉 �⇒ U1=Rn = (UR)n = unν = 1 (40)

and as a result

nν = 0 mod a �⇒ ν = m
a

(n, a)
, 0 � m < (n, a) (41)

where (n, a) denotes the greatest common divisor of integers
a and n. Physically, this means the topological index ν ∈ Za

of the 1D G0-SPT phase decorated on each Cn domain wall
must be a multiple of a

(n,a) , to ensure the bulk to be gapped at
the rotation axis where the n domain walls intersect. Hence,
there are (n, a) distinct second-order SPT phases with Cn

symmetry, characterized by the 1D G0-SPT phase with ν =
0, a

(n,a) , 2 a
(n,a) , . . . on each domain wall. This corresponds to

the Z(n,a) classification in formula (38).
One immediate physical consequence is the presence of

zero-energy corner modes located on each corner of the Cn-
symmetric finite system shown in Fig. 3. Each corner mode
is nothing but the boundary states of 1D G0-SPT phases with
ν = 0 mod a

(n,a) , which carries a projective representation of
onsite symmetry G0. Notice that with only Cn symmetry, the
1D G0-SPT phases can together be rotated around the Cn

center by an arbitrary angle, and therefore the zero-energy
corner states will only appear in certain (but not all) finite
systems.

2. Gc = Cn,v ≡ Cn � ZMv
2 or Cn � ZMvMhT

2

Consider point group Gc = Cn,v, generated by n-fold rota-
tion R with Rn = 1 along ẑ axis, and mirror reflection Mv

whose mirror plane is parallel to the ẑ axis. As described
earlier, the associated second-order SPT phases are classi-
fied by the linear representation (first group cohomology) of
(Cn,v)∗ 	 Zn � ZT

2 , with coefficients in 1D G0-SPT phases
classified by H2(G0,U (1)). The decorated-domain-wall con-
struction of these second-order SPT phases with Cn,v symme-
try can be implied from the following formula:

H1
(
Zn � ZT

2 ,Za
) = Z(n,a) × Z(2,a). (42)

The first factor Z(n,a) labels the 1D G0-SPT phases assigned
on each Cn domain walls and intersected at the Cn rotation
center, illustrated by the red lines in Fig. 4. On the other hand,
the second factor Z(2,a) labels the 1D G0-SPT phases placed
on each of the n mirror planes, illustrated by the green lines
in Fig. 4. The linear representation {UR,UT } corresponding to
H1(Zn � ZT

2 ,Za) satisfies the following algebraic conditions:

(UR)n = UTU
∗
T = URUT (URUT )∗ = 1. (43)

Similar to Gc = Cn case discussed earlier, in (42) the linear
representation of n-fold rotation UR is given by

UR|ν〉 = uνR |ν〉, uνR = e2π i νR
a , νR = 0 mod

a

(n, a)
.

(44)

While UR is invariant under any gauge transformation on the
basis vectors of the linear representation, this is not the case
for antiunitary operator T = M∗

v. Specifically under a gauge
rotation by phase factor e

2π i
a on all basis vectors, the linear

FIG. 4. Second-order SPT phases with Gc = C3,v point-group
symmetry, where each of the three C3 domain walls is decorated by
the same 1D G0-SPT phase meeting at the rotation center, illustrated
by red lines. Meanwhile, each mirror plane can also be decorated by
another 1D G0-SPT phase, labeled by the green lines.

representation of antiunitary operator T changes as

UT |ν〉 = uνT |ν〉, |ν〉 → e
2π i
a |ν〉 �⇒

UT = uνT → e
2π i
a uνT (e− 2π i

a )∗ = uνT +2. (45)

This indicates that 1D G0-SPT index νT on each mirror plane
is only well-defined modulo 2, leading to the Z(2,a) factor
in formula (42). This result has a straightforward physical
interpretation: two 1D G0-SPT phases of the same topological
index can be merged from two sides into the mirror plane,
hence changing the 1D topological index on the mirror plane
by any even integer without closing the bulk gap.

Unlike in the previous Gc = Cn case where the n copies
of 1D G0-SPT phases can be rotated by an arbitrary angle,
here due to the presence of n mirror planes (related by Cn

rotations), all 1D G0-SPT phases are assigned to the mirror
planes. As a result, as long as the corners of the finite system
lie on the mirror planes, they will give rise to zero-energy
corner modes protected by onsite G0 symmetry. However as
illustrated in Fig. 4, there are two different types of corners,
terminating the green lines only versus terminating both green
lines. These two types of corners generally support different
types of projective representations of onsite symmetry G0.

Finally, it is straightforward to show that the above classifi-
cation and construction remain true for magnetic point group
Gc = Cn � ZMvMhT

2 , generated by rotation Cn around ẑ axis
and twofold antiunitary magnetic rotation MvMhT around
an in-plane (such as x̂) axis.

V. SECOND-ORDER SPT PHASES IN THREE DIMENSIONS

A. Classification

Second-order SPT phases in d = 3 are classified by
H1(G∗

c ,H3(G0,U (1))), i.e., linear representation of group
G∗

c with coefficients valued in H3(G0,U (1)). Physically,
this means the building blocks for second-order SPT phases
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in d = 3 are simply 2D G0-SPT phases, classified by
H3(G0,U (1)) within the group cohomology framework.

Unlike 1D G0-SPT phases which always form a finite
Abelian group, 2D G0-SPT phases can be an infinite Abelian
group, as shown in the last line of Table II. Therefore, to
classify second-order SPT phases in d = 3, we need to com-
pute H1(G∗

c ,Z) in addition to knowledge of H1(G∗
c ,Za) in

(30)–(36). Below, we summarize H1(G∗
c ,Z) for all axial point

groups and magnetic point groups Gc:

(Cn)∗ 	 Zn,
(
ST2n

)∗ 	 Z2n, H1(Zn,Z) = Z1; (46)

(Cn,v)∗ 	 (
Cn � ZMvMhT

2

)∗ 	 Zn � ZT
2 ,

H1
(
Zn � ZT

2 ,Z
) = Z2; (47)

(
CT

2n

)∗ 	 (S2n)∗ 	 ZT
2n; H1(ZT

2n,Z
) = Z2; (48)

(Dn,d)∗ 	 (
CT

2n � ZMv
2

)∗ 	 ZT
2n � Z2,

H1(ZT
2n � Z2,Z

) = Z2; (49)

(Dn)∗ 	 (
Cn � ZMvT

2

)∗ 	 Zn � Z2,

H1(Zn � Z2,Z) = Z1; (50)

(Cn,h)∗ 	 (
Cn × ZI

2

)∗ 	 Zn × ZT
2 ,

H1
(
Zn × ZT

2 ,Z
) = Z2; (51)

(Dn,h)∗ 	 (Zn � Z2) × ZT
2 ,

H1
(
(Zn � Z2) × ZT

2 ,Z
) = Z2. (52)

Using relation (29) and results (30)–(36) and (46)–(52), we
are able to compute H1(G∗

c ,H3(G0,U (1))) for various onsite
symmetry G0. The classification of second-order SPT phases
in d = 3 is summarized in Table II.

It is known that there are certain 2D short-range-entangled
(SRE) bosonic phases (without intrinsic topological order)
exhibiting chiral edge states [42,43], which are beyond the
description of group cohomology classification. These SRE
bosonic phases have an integer (Z) classification, generated
by the E8 state with a chiral central charge c− = 8.

One can also build higher-order SPT phases out of the
bosonic E8 states, as highlighted by the red color in Table II.
The constructions for E8 are analogous to the examples below
for other chiral boson states, except that the hinges are deco-
rated with E8 phases. The bulk must be trivial and gapped, so
the total chiral central charge in the bulk must vanish.

B. Examples

One physical signature of second-order SPT phases in
d = 3 is the existence of gapless states on certain 1D hinges
of the system. Below, we elucidate the procedure of con-
structing second-order SPT phases in d = 3 using the data of
H1(G∗

c ,H3(G0,U (1))), based on the decorated domain-wall
construction where the building blocks are 2D G0-SPT phases
and bosonic E8 states. We also show how this construction
leads to gapless hinge states in 3D second-order SPT phases.

FIG. 5. Second-order SPT phases in d = 3 spatial dimensions,
preserving C3 rotational symmetry. Similar to d = 2 case in Fig. 3,
they can be constructed by assigning the same 2D G0-SPT phases on
each C3 domain wall.

1. Gc = Cn

In the simplest case of n-fold rotational symmetry Gc =
Cn, the second-order SPT phases in 3D can be constructed
by decorating each Cn domain wall by the same 2D G0-SPT
phase, as illustrated in Fig. 5. Similar to 2D cases discussed
earlier, a gapped bulk provides strong constraints on the com-
patible 2D G0-SPT phases, encoded in the following group
cohomology formulas:

H1(Zn,Za) = Z(n,a) (53)

and

H1(Zn,Z) = Z1. (54)

This means if the 2D G0-SPT phases has an integer classifi-
cation, i.e., H3(G0,U (1)) = Z, none of these SPT phases are
compatible to a gapped bulk when decorated on theCn domain
walls. On the other hand, if the 2D G0-SPT phases form
a finite group such as H3(G0,U (1)) = Za, only those with
a topological index ν = 0 mod a

(n,a) can lead to a gapped
spectrum at theCn rotation center, indicated by (41) discussed
earlier. Similar to d = 2 cases in Sec. IV, these 2D G0-SPT
phases can be rotated together by an arbitrary angle around the
Cn axis. Notice that 1D gapless hinge modes are not always
present in a finite system: they only appear when the hinge
intersects with the plane of each 2D G0-SPT phase.

2. Gc = Cn,v

Considering point group Gc = Cn,v or magnetic point
group Cn � ZMvMhT

2 , the construction of associated second-
order SPT phases in d = 3 is completely in parallel to d = 2
cases illustrated in Fig. 4. Specifically, two types of 2D G0-
SPT phases are assigned to each mirror plane: one type (red
lines in Fig. 4) meeting at the Cn rotation center corresponds
to the linear representation UR of n-fold rotation generator R,
the other type (green lines in Fig. 4) on each mirror plane
corresponds to linear representation UMv of mirror operation
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Mv. They are constrained by the following compatibility
conditions for a gapped bulk. When H3(G0,U (1)), i.e., the
classification of 2D G0-SPT phases is a finite group, we have

H1
(
Zn � ZT

2 ,Za
) = Z(n,a) × Z(2,a), (55)

where UR ∈ Z(n,a) and UMv ∈ Z(2,a), the same as discussed in
Sec. IV for d = 2 case.

Meanwhile, if the classification of 2D G0-SPT phases is
an infinite group labeled, e.g., by an integer topological index
ν ∈ Z, we have

H1
(
Zn � ZT

2 ,Z
) = Z2, (56)

whereUR ≡ u0 ∈ Z1 andUMv = uνMv mod 2 ∈ Z2. Physically,
for the Cn rotation center to be gapped, one can only assign a
trivial 2D phase on each Cn domain wall, corresponding to
the trivial representation UR ≡ u0. On the other hand, each
mirror plane can be decorated by any 2D G0-SPT phase with
topological index νMv . The second-order SPT phase is only
characterized by the parity of topological index νMv mod 2
since a pair of the same 2D G0-SPT phases can always be
merged onto the mirror plane without closing the bulk gap.

As shown in Fig. 4, the gapless hinge states will appear
in a finite system as long as the hinge lies within a mirror
plane. The gapless 1D modes on the two opposite hinges of
the same mirror plane are generally different from each other,
as illustrated by the green hinges versus green-plus-red hinges
in Fig. 4.

3. Gc = S2n or Gc = CT
2n

Point group S2n is generated by a π
n rotation R along ẑ axis

followed by a mirror Mh with respect to [001] plane:

S2n = {S i|1 � i � 2n}, S = RMh �⇒ S2n = 1. (57)

Operation S is usually referred to as an improper rotation or
a rotoreflection. For both point group S2n and magnetic point
group CT

2n defined below

CT
2n ≡ {(RT )i|1 � i � 2n} (58)

they share the same classification for second-order SPT
phases since

(S2n)∗ 	 (
CT

2n

)∗ 	 ZT
2n, (59)

where ZT
2n is generated by an antiunitary operator of rank

2n. The following group cohomology formulas determine the
classification of second-order SPT phases with S2n or CT

2n
symmetry:

H1
(
ZT

2n,Za
) = Z(2,a) (60)

and

H1(ZT
2n,Z

) = Z2. (61)

They are determined by solving the following conditions for
linear representation US ∈ Za,Z:

USU
∗
S = 1. (62)

They can be understood similar to the mirror symmetry Mv

in the Gc = Cn,v case, where we have US = uνS mod 2 and the
topological index νS of the 2D G0-SPT phase is only well

FIG. 6. Second-order SPT phases with point-group symmetry S2

or magnetic point group CT
2 = {(RT )i|i = 0, 1}.

defined modulo 2. To construct these S2n-symmetric second-
order SPT phases, we decorate each S domain wall by a 2D
G0-SPT phase with topological index νS mod 2, in a stag-
gered fashion as shown in Fig. 6. Again, we can always merge
two identical G0-SPT phases into each S domain wall without
closing the bulk gap, which will change the topological index
of 2D G0 SPT phase on this S domain wall by an even
integer. This physically explains why the topological index
for the 2D G0-SPT phase νS decorated on each S domain
wall is only defined modulo 2, manifested in the Z(2,a) and
Z2 classifications in (60) and (61).

4. Gc = Dn,d ≡ S2n � ZMv
2 or CT

2n � ZMv
2

Point group Dn,d is generated by 2n-fold rotoreflection S =
RMh around ẑ axis as discussed earlier in Gc = S2n case, and
a mirror plane Mv parallel to ẑ axis. The group Dn,d can be
summarized as

Dn,d = {S is (R2)i2 |1 � is � 2n, 1 � i2 � 2}, (63)

where we defined R2 ≡ SMv as a twofold rotation
along an in-plane axis (colored red in Fig. 7), so
that S2n = (SMv)2 = 1. The linear representation
H1(G∗

c ,H3(G0,U (1))) = {US ,UR2 ∈ H3(G0,U (1))} must
satisfy the following algebraic conditions:

USU ∗
S = 1, (64)

(UR2 )2 = 1, (65)

UR2US (UR2US )∗ = 1. (66)

If 2D G0-SPT phases have a finite classification such as
H3(G0,U (1)) = Za, the linear representations are classi-
fied as

H1
(
ZT

2n � Z2,Za
) = Z2

(2,a) (67)

given by

US = e
2π i
a νS , νS 	 νS + 2, (68)

UR2 = e
2π i
a νR2 , 2νR2 = 0 mod a, (69)
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FIG. 7. Second-order SPT phases with point-group symmetry
Dn,d. There is a twofold rotoreflection axis along ẑ axis and a twofold
in-plane axis (colored red). 2D G0-SPT phases with topological
index S are decorated on each mirror plane, while 2D G0-SPT phases
with index νR2 are decorated on vertical planes crossing each R2 axis.

where νS and νR2 are the topological indices of 2D G0-SPT
phases decorated on S and R2 domain walls, respectively.

If 2D G0-SPT phases have an infinite classification such as
H3(G0,U (1)) = Z, we have

H1
(
ZT

2n � Z2,Z
) = Z2, (70)

where

νS = 0, 1 	 νS + 2, νR2 = 0. (71)

Physically, the 2D G0-SPT phases decorated on each S do-
main wall (chosen to lie within a mirror plane) have topologi-
cal indices νS = 0, 1 defined modulo 2, for the same reason
described previously in Gc = S2n case. They are illustrated
by black color in Fig. 7. On the other hand, the topological
index νR2 	 −νR2 decorated on each R2 domain wall must be
nonchiral, and hence must be trivial when H3(G0,U (1)) =
Z. These νR2 -indexed 2D G0-SPT phases are decorated on
vertical planes parallel to each R2 axis, as illustrated by the
green plane in Fig. 7.

Clearly, the hinges of a finite system can host 1D gapless
modes for these second-order SPT phases, if the hinge lies
within a mirror plane or a vertical plane containing one
twofold axis. Generally, the gapless modes on these two types
of hinges will be different.

5. Gc = Dn,h ≡ Cn,v × ZMh
2

Finally, we consider the following point group:

Dn,h = {(Rz )
in (Rx )i2 (Mh)iM |in ∈ Zn, i2, iM ∈ Z2}. (72)

As shown in Fig. 8, it is generated by n-fold rotation Rz along
ẑ axis, twofold rotation Rx along x̂ axis and mirror Mh with
respect to the x-y (or [001]) plane (colored in blue in Fig. 8).

FIG. 8. Second-order SPT phases with Dn,h point-group symme-
try. 2D G0-SPT phases with topological indices νRz , νRx , and νMh are
assigned to red, green, and blue mirror planes, respectively.

Its linear representation {URx ,URz ,UMh ∈ H3(G0,U (1))} ∈
H1(D∗

n,h,H3(G0,U (1))) satisfies the following conditions:
(
URz

)n = (
URx

)2 = (
URxURz

)2 = 1, (73)

UMhU
∗
Mh

= 1, (74)

URzUMh

(
URzUMh

)∗ = 1, (75)

URxUMh

(
URxUMh

)∗ = 1. (76)

When 2D G0-SPT phases have a finite classification, e.g.,
H3(G0,U (1)) = Za we have

H1
(
(Zn � Z2) × ZT

2 ,Za
) = Z(n,a,2) × Z2

(2,a), (77)

where

URz = e
2π i
a νRz ∈ Z(n,a,2), nνRz = 2νRz = 0 mod a, (78)

URx = e
2π i
a νRx ∈ Z(a,2), 2νRx = 0 mod a, (79)

UMh = e
2π i
a νMh ∈ Z(a,2), νMh = 0, 1 mod 2. (80)

Meanwhile, if 2D G0-SPT phases have an infinite classifica-
tion, e.g., H3(G0,U (1)) = Z we have

H1((Zn � Z2) × ZT
2 ,Z

) = Z2, (81)

where

νRz = νRx ≡ 0, νMh = 0, 1 mod 2 ∈ Z2. (82)

Physically, both Rz and Rx domain walls must be decorated
with nonchiral 2D G0-SPT phases due to the mirror symmetry
Mh, as denoted by red (νRz ) and green (νRx ) in Fig. 8.
Meanwhile, the Mh mirror plane can be decorated with a
(possibly chiral) 2D G0-SPT phase with index νMh , as denoted
by blue in Fig. 8.

From the above construction, we can see that there are
three types of hinges hosting different gapless 1D modes in
the system: (i) 1D hinge modes lying in the mirror Mh plane
(colored in blue) has topological index νMh ; (ii) 1D hinge
modes lying in vertical mirror RxMh plane (colored in green)
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has index νRx ; (iii) 1D hinge modes lying in vertical mirror
RzRxMh plane (colored in red) has index νRz .

VI. THIRD-ORDER SPT PHASES IN THREE DIMENSIONS

The third-order SPT phases in d = 3 are classified by
second group cohomology H2(G∗

c ,H2(G0,U (1))) whose co-
efficients take value in H2(G0,U (1)). Physically, they can
be constructed by stacking 1D G0-SPT phases, i.e., elements
of H2(G0,U (1)), in a way which preserves (magnetic) crys-
talline symmetry Gc. Specifically, as previously discussed in
the decorated domain-wall picture in Sec. III C, they can all
be built by decorating 1D intersections of domain walls with
1D G0-SPT phases. Below, we first classify these third-order
SPT phases in d = 3 dimensions, for various onsite symmetry
G0 and (magnetic) point group Gc. Then, we illustrate how to
explicitly construct these states in a few examples.

A. Classification

To compute the group cohomology H2(G∗
c ,H2(G0,U (1)))

for third-order SPT phases, we first notice that the classifi-
cation of 1D G0-SPT phases always form a finite discrete
Abelian group, which are products of the cyclic group Za

for a finite a ∈ Z. Therefore, according to relation (29),
we only need to know H2(G∗

c ,Za) in order to compute
H2(G∗

c ,H2(G0,U (1))).
Below, we list the results for various point groups and

magnetic point groups Gc:

(Cn)∗ 	 Zn,
(
ST2n

)∗ 	 Z2n, H2(Zn,Za) = Z(n,a); (83)

(Cn,v)∗ 	 (
Cn � ZMvMhT

2

)∗ 	 Zn � ZT
2 ,

H2
((
Cn � ZMvMhT

2

)∗
,Za

) = Z(n,a,2) × Z(n,a) × Z(2,a);

(84)

H2((Cn,v)∗,Za) = Z(n,a) × Z(n,a,2) × Z(2,a); (85)

(
CT

2n

)∗ 	 (S2n)∗ 	 ZT
2n; H2

(
ZT

2n,Za
) = Z(2,a); (86)

(Dn,d)∗ 	 (
CT

2n � ZMv
2

)∗ 	 ZT
2n � Z2,

H2((Dn,d)∗,Za) = Z2
(2,a) × Z(2,a); (87)

H2
((
CT

2n � ZMv
2

)∗
,Za

) = Z(2,a) × Z2
(2,a); (88)

(Dn)∗ 	 (
Cn � ZMvT

2

)∗ 	 Zn � Z2,

H2((Dn)∗,Za) = Z(n,a,2) × Z2
(a,2); (89)

H2
((
Cn � ZMvT

2

)∗
,Za

) = Z(n,a,2) × Z2
(a,2);

(Cn,h)∗ 	 (
Cn × ZI

2

)∗ 	 Zn × ZT
2 , (90)

H2
(
Zn × ZT

2 ,Za
) = Z(n,a,2) × Z(2,a) × Z(2,a);

(Dn,h)∗ 	 (Zn � Z2) × ZT
2 , (91)

H2((Dn,h)∗,Za) = Z2
(n,a,2) × Z(2,a) × Z3

(2,a); (92)

T ∗ 	 A4 = (Z2 × Z2) � Z3, H2(A4,Za) = Z(3,a) × Z(2,a);

(93)

(Th)∗ 	 A4 × ZT
2 , H2

(
A4 × ZT

2 ,Za
) = Z2

(2,a) × Z(2,a).

(94)

They are projective representations of group G∗
c with coeffi-

cients valued in Za. Using these results and relation (29), we
obtain the classification of third-order SPT phases for these
(magnetic) point groups Gc and various onsite symmetry G0,
as summarized in Table III.

B. Examples

1. Gc = Cn

First, we consider point group Cn, generated by rotation
R along, e.g., the ẑ axis. Its second group cohomology is
classified by

H2(Zn,Za) = Z(n,a) (95)

which can be understood as follows. As described in
Sec. III C, the second group cohomology H2(Zn,Za) are
projective representations {ω(g, h) ∈ Za|g, h ∈ Zn} valued in
Za = {e 2π i

a ν |ν ∈ Z}, defined below:

UgU
s(g)
h = ω(g, h)Ugh, (96)

ω(g, h)ω(gh, k) = ω(g, hk)ωs(g)(h, k). (97)

For our group (Cn)∗ 	 Zn with Rn = 1, we have

(UR)n = ωCn1, ωCn =
n−1∏

i=1

ω(R,Ri ) = e
2π i
a νCn ∈ Za (98)

since U1 ≡ 1. Notice that we can always redefine the symme-
try operation by an extra phase factor valued in Za,

UR → e
2π i
a UR, (99)

which leads to equivalence relation

νCn 	 νCn + n mod a ∈ Z(n,a), (100)

where (n, a) is the greatest common divisor of integers n and
a. This leads to the second group cohomology formula (95).

Physically, as argued in Sec. III C, we decorate each Cn

rotational axis by a 1D G0-SPT phase with topological index
νCn . Notice that we can always merge n copies of the same
1D G0-SPT phases into the rotational axis in a Cn-symmetric
manner, without closing the bulk gap. This physically explains
the equivalence relation (100).

Unlike second-order SPT phases in d = 3 which hosts
gapless 1D hinge states, third-order SPT phases in d = 3
only support gapless zero modes at the corners of certain
finite systems, which carry projective representation of onsite
symmetry G0. For example, here for point group Gc = Cn or
magnetic point group Gc = ST2n = {(ST )i|1 � i � 2n}, there
will be protected zero modes at every corner of the finite
system lying on a Cn rotatonal axis.
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FIG. 9. Third-order SPT phases with magnetic point-group sym-
metry Cn � ZMvMhT

2 with n = 2. The topological indices of 1D
G0-SPT phases are labeled by νR (colored blue, along n-fold vertical
rotation axis R), νC (colored red, along twofold horizontal magnetic
rotation axis C), and νRC (colored green, along twofold horizontal
magnetic rotation axis RC).

2. Gc = Cn � ZMvMhT
2 and Cn,v

Next, we consider magnetic point groupCn � ZMvMhT
2 and

point group Cn,v, which share the same

G∗
c 	 Z2 � ZT

2 . (101)

Take magnetic point group Gc = Cn � ZMvMhT
2 for example:

generated by n-fold vertical rotation R and twofold horizontal
magnetic rotation axis C ≡ MvMhT , it is defined by the
following algebraic relations:

Rn = C2 = (RC)2 = 1, (102)

where both C and RC correspond to in-plane (horizontal)
twofold magnetic rotation axes. Its projective representation

H2
(
Zn � ZT

2 ,Za
) = Z(n,a,2) × Z(n,a) × Z(2,a) (103)

is characterized by Za-valued factors

(UR)n = ωCn ≡ e
2π i
a νCn , (104)

UCU
∗
C = ωC = e

2π i
a νC , (105)

URUC (URUC )∗ = ωRC = e
2π i
a (νRC+νC ). (106)

It is straightforward to show that the solutions to the
factors are

νCn 	 νCn + n mod a ∈ Z(n,a), (107)

2νC = 0 mod a �⇒ νC ∈ Z(n,a,2), (108)

2νRC = nνRC = 0 mod a �⇒ νRC ∈ Z(n,a,2), (109)

as shown earlier in (84). Physically, they correspond to the
topological index of 1D G0-SPT phases decorated on the Cn

rotation axis (νCn , colored blue in Fig. 9), on each horizontal
C axis (νC , colored red in Fig. 9), and on each horizontal RC
axis (νRC , colored green in Fig. 9), as shown in Fig. 9.

Clearly, there are robust corner states at each intersection
of the surface with the three types of rotation axes: vertical
n-fold rotation R, horizontal twofold magnetic rotation C and
RC. All these corner states are protected by onsite symmetry
G0 and are robust against disorders and crystal distortions.

Compared to magnetic point group Cn � ZMvMhT
2 , the

point group Gc = Cn case is different. In addition to n-fold
vertical rotation axis R, it also has vertical mirror planes Mv

and RMv. Although the Künneth formula (85) yields the same
outcome as the magnetic point group in (84), the factors have
different meanings. While νCn still labels the topological index
of 1D G0-SPT phase decorated on the verticalCn rotation axis,
νC and νRC correspond to weak crystalline SPT indices. They
characterize whether each 2D mirror plane, Mv and RMv,
are 2D SPT phases protected by mirror and G0 symmetries.
Although there can be gapless boundary states if mirror
symmetry is preserved by the surface, they are generally not
stable against perturbations breaking the mirror symmetry on
the surface.

3. Gc = T

Point group T is generated by twofold rotations Ry,z along
ŷ and ẑ axes, as well as threefold rotations R3 along (111) axis:

T ≡ {
R
iy
y R

iz
z R

i3
3

∣∣iy,z ∈ Z2, i3 ∈ Z3
}
. (110)

The group multiplication rules are set by the following alge-
braic identities:

(Ry)2 = (Rz )2 = (RyRz )2 = (R3)2 = 1, (111)

R3RzR
−1
3 = RyRz, R3RyR

−1
3 = Rz. (112)

Its projective representation is determined by the following
phase factors:

(
URy

)2 = (
URz

)2 = (
URyURz

) = ω2 = e
2π i
a ν2 ∈ Za, (113)

(
UR3

)3 = ω3 = e
2π i
a ν3 ∈ Za. (114)

It is straightforward to show that

ν3 	 ν3 + 3 mod a �⇒ ν3 ∈ Z(a,3), (115)

ν2 = −ν2 mod a �⇒ ν2 ∈ Z(a,2), (116)

leading to the group cohomology classification

H2(T ∗ 	 A4,Za) = Z(3,a) × Z(2,a). (117)

As shown in Fig. 10, the T -symmetric third-order SPT
phases are constructed by decorating all four of the threefold
axes (green in Fig. 10) by 1D G0-SPT phases with topological
index ν3 ∈ Z(3,a), and decorating all three of the twofold axes
(red in Fig. 10) by 1D G0-SPT phases with topological index
ν2 ∈ Z(2,a).

Now, we discuss G0 symmetry-protected corner states in
the system. If the surface intersects with any of the twofold or
threefold axes, it will host gapless corner modes protected by
onsite symmetry G0 at the intersection. Generally the projec-
tive representations for corners on the twofold and threefold
axes will be different. Take a spin-1 system with G0 = SO(3)
symmetry, for example, there will only be gapless spin- 1

2
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FIG. 10. Third-order SPT phases with point-group symmetry T .
They are constructed by decorating the four threefold axes (green)
with 1D G0-SPT phases with topological index ν3, and the three
twofold axes (red) with topological index ν2.

modes at each corner on the x̂, ŷ, and ẑ axes, but not on the
(111) axis.

4. Gc = Th = T × ZI
2

Finally, we consider the point group Th, which is a direct
product of group T and the rank-2 group ZI

2 generated by
inversion I. In addition to algebraic relations (111) and (112),
we also have

I2 = 1, (118)

IRαI−1 = Rα, α = y, z, 3. (119)

This leads to three more phase factors, in addition to ω2,3

considered in Gc = T case:

UIU ∗
I = ω1 = e

2π i
a ν1 , (120)

UIU ∗
Ry,z

U−1
I U−1

Ry,z
= ω4 = e

2π i
a ν4 , (121)

UIU ∗
R3
U−1
I U−1

R3
= ω5 = e

2π i
a ν5 . (122)

It is straightforward to show that ω4,5 ≡ 1, and

2νi = 0 mod a �⇒ νi ∈ Z(2,a), i = 1, 2, 3. (123)

This results in the second group cohomology classification

H2
(
T ∗

h 	 A4 × ZT
2 ,Za

) = Z3
(2,a). (124)

Physically similar to Gc = T case discussed earlier, ν2,3 still
correspond to the topological indices of 1D G0-SPT phases,
assigned along the two types of high-symmetry axes (and their
symmetry-related partners) colored by red (with index ν2) and
green (with index ν3) as shown in Fig. 11. As a result, if the
surface of an open system intersects with one of these axes, it
will host gapless corner modes protected by onsite symmetry
G0. A difference between this case and the previous Gc = T
example is that due to inversion symmetry, each 1D SPT phase
decorated along a high-symmetry axis must be its own inverse
phase, leading to ωi = ω∗

i = ±1.

FIG. 11. Third-order SPT phases with point-group symmetry Th,
classified by three topological invariants ν1,2,3. Among them, ν2,3

correspond to the topological indices of 1D G0-SPT phases along the
two types of high-symmetry axes colored by red and green, while
ν1 + ν2 labels whether each mirror plane (perpendicular to red axis)
is a 2D SPT protected by both mirror and onsite symmetry G0.

Meanwhile, ν1 has a slightly different physical meaning.
Notice that there are three mirror planes associated with
mirror reflection symmetry Mα = IRα for α = x, y, z. Since
each mirror symmetry serves as an onsite Z2 symmetry within
its 2D mirror plane, the projective representation of the mirror
symmetry

UMα
U ∗
Mα

= UIU
∗
Rα
U ∗
IURα

= ω1ω2 ∈ Z(2,a) (125)

corresponds to whether each 2D mirror plane is a SPT phase
protected by both Z2 mirror symmetry and onsite symmetry
G0. In other words, ω1ω2 = ±1 labels whether the mirror
domain wall within each mirror plane is decorated by a 1D G0-
SPT phase or not. Therefore, ω1ω2 is an index for weak crys-
talline SPT phases, and generally does not host corner/hinge
modes robust against small mirror-breaking perturbations.

VII. DISCUSSIONS

In summary, to understand the HOSPT phases of inter-
acting bosons with robust symmetry-protected corner/hinge
states, we provide a physical picture based on dimensional
reduction analysis and a classification and construction based
on the Künneth formula of group cohomology. These strong
HOSPT phases support topological boundary excitations ro-
bust against general perturbations such as disorders and crys-
talline distortions, and should be differentiated from weak
crystalline SPT phases whose surface states are protected
by crystalline symmetries. Focusing on the case where the
total symmetry G = Gc × G0 is a direct product of crys-
talline symmetry Gc and onsite symmetry G0, we show
that a (k + 1)th-order SPT phase in d spatial dimensions
can be built from G0-SPT phases in (d − k) dimensions,
and is fully classified within group cohomology formula
Hk (G∗

c ,Hd+1−k (G0,U (1))). Based on a decorated domain-
wall picture for this group cohomology formula, we show
how to explicitly construct a HOSPT phase using lower-
dimensional SPT phases as building blocks.
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To conclude, we briefly discuss the limitations of the
group cohomology classification (1) of HOSPT phases from
Künneth formula. One implicit assumption for the above
classification is that the local Hilbert space always forms
a linear representation of the total symmetry group. If we
consider the local Hilbert space S (α) at a high-symmetry
Wyckoff position α, such as theC4 rotation center in Fig. 2, the
local Hilbert space should also preserve the “local symmetry”
Gc(α) = C4 in addition to the onsite symmetry G0. In the
group cohomology classification (1), we always require such
a local Hilbert space S (α) to form a linear representation
of local symmetry Gc(α) × G0. In particular, the local crys-
talline symmetry operations in Gc(α) must commute with
all onsite symmetry in G0. Failure of this requirement [i.e.,
projective representations of local symmetry Gc(α) × G0]
may lead to even more interesting consequences, such as Lieb-
Schultz-Mattis theorems forbidding a short-ranged-entangled
ground state [37], which are beyond the description of
formula (1).

One natural direction to expand this work is to go beyond
a direct product of onsite and crystalline symmetries, and
to consider the HOSPT phases with a generic symmetry

group. While the Künneth formula does not simply apply
for a generic symmetry group, the dimensional reduction
arguments appear to remain valid. Another interesting direc-
tion is to use the same approach to study HOSPT phases of
interacting fermions. We leave these for future works.

Note added. Recently, we became aware of two indepen-
dent works which studied the general classification of crys-
talline SPT phases (with onsite and crystalline symmetries)
using spectral sequence: one by Else and Thorngren [55], and
one by Qi and Fang [56]. Their works have partial overlaps
with this work.
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