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Motivated by the recent discovery of higher-order topological insulators, we study their counterparts in
strongly interacting bosons: “higher-order symmetry-protected topological (HOSPT) phases.” While the usual
(first-order) SPT phases in d spatial dimensions support anomalous (d — 1)-dimensional surface states, HOSPT
phases in d dimensions are characterized by topological boundary states of dimension (d — 2) or smaller,
protected by certain global symmetries and robust against disorders. Based on a dimensional reduction analysis,
we show that HOSPT phases can be built from lower-dimensional SPT phases in a way that preserves the
associated crystalline symmetries. When the total symmetry is a direct product of global and crystalline
symmetry groups, we are able to classify the HOSPT phases using the Kiinneth formula of group cohomology.
Based on a decorated domain-wall picture of the Kiinneth formula, we show how to systematically construct the
HOSPT phases, and demonstrate our construction with many examples in two and three dimensions.

DOLI: 10.1103/PhysRevB.101.085137

I. INTRODUCTION

The discovery of topological insulators [1-3] (TIs) un-
veiled a large class of symmetry-protected topological (SPT)
states [4,5], which in d spatial dimensions feature symmetry-
protected surface states on (d — 1)-dimensional open bound-
aries, such as one-dimensional (1D) helical edge states in
two-dimensional (2D) quantum spin Hall insulators [6] and
2D Dirac fermions on the surface of three-dimensional (3D)
topological insulators [2]. Recently, a new family of “higher-
order” topological insulators has been revealed [7-27], which
do not have gapless surface states, but exhibit gapless modes
on hinges and corners of the system. Generally, a kth-order TI
in d dimensions hosts robust gapless excitations on (d — k)-
dimensional open boundaries of the system: such as zero-
dimensional corner states in second-order 2D TIs and third-
order 3D TIs, as well as 1D hinge states in second-order 3D
TIs. In this terminology, the usual TIs can be called first-order
TIs. These lower-dimensional boundary excitations are robust
against any small perturbations such as disorders and crystal
distortions, as long as the global symmetry Gy is protected,
analogous to the stability of the TI surface states. It has been
shown that the higher-order TIs usually also preserve certain
crystalline symmetries in addition to the global symmetry
[7-13,18,28]. While most of the efforts so far are focused
on higher-order topological phases within band theory of
noninteracting fermions, little is known about their strongly
interacting counterparts in, e.g., interacting boson systems
[29,30]. How to understand the higher-order SPT phases in
a generic interacting boson system?

The goal of this work is to address this issue. We pro-
vide the classification and explicit construction for “strong”
higher-order SPT (HOSPT) phases of interacting bosons with
various global (i.e., onsite) symmetry Gy and crystalline sym-
metry G., whose lower-dimensional boundary excitations are
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protected only by onsite symmetry Go and hence robust
against disorders and crystal distortions. To do this, we con-
struct the kth-order SPT phases in d spatial dimensions by
stacking (d + 1 — k)-dimensional G(-SPT phases in a way
which preserves crystalline symmetry G.. This construction
generalizes the decorated domain-wall picture set out in
Ref. [4] to include the crystal symmetry.

The consistency conditions in a decorated domain-wall
construction are phrased in terms of cohomology groups.
In particular, for total symmetry G = Gy x G, as a direct
product of onsite symmetry Gy and crystalline symmetry G,
we show that all (k + 1)th-order SPT phases in d dimensions
are classified within the group cohomology

HEGE, HITH(Gy, U (1)), (1)

where G is isomorphic to crystalline group G, by regarding
each orientation-reversing symmetry operation as an antiuni-
tary operator [31,32]. The above classification also provides
a procedure to construct these HOSPT phases from building
blocks of (d — k)-dimensional SPT phases protected by onsite
symmetry Gy only, as illustrated in many examples.
Expanding Eq. (1) using the Kiinneth formula will yield
several terms. By using our construction, we will see that
each of these terms is naturally associated with a particular
domain-wall configuration. However, since Eq. (1) is believed
to classify bosonic SPT phases [32], we conjecture that our
construction yields the correct states and classification groups.
This work is organized as follows. First, in Sec. II we
discuss the physical picture behind HOSPT phases based on
a dimensional reduction point of view. Then, we show the
general classification of HOSPT phases in Sec. IIT A based
on the Kiinneth formula of group cohomology, and how to the
construct the HOSPT phases using the decorated domain-wall
picture in Sec. III C. The classification and construction are
demonstrated for second-order SPT phases in two (Sec. IV)
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and three (Sec. V) dimensions, and third-order SPT phases in
three dimensions (Sec. VI). We conclude with a few remarks
in Sec. VIIL

II. PHYSICAL PICTURE

Before introducing the mathematical classification for
higher-order SPT phases, we first discuss an intuitive physical
picture which shows how higher-order SPT phases can be
built by stacking lower-dimensional SPT phases. Throughout
this work, we will focus on the simplest situation where
the total symmetry group G = G, X Gy is a direct product
of crystalline symmetry group G. and onsite (i.e., global)
symmetry group Gy.

By definition, a kth-order SPT phase in d dimensions is
characterized by symmetry-protected gapless states on bound-
aries of (d — k) dimensions. For example, as illustrated in
Fig. 2, a second-order SPT phase in d =2 with fourfold
rotational symmetry G, = C4 hosts gapless zero modes at
each corner of a square-shaped system, which are protected by
onsite symmetry Gy. Based on this example and without loss
of generality, below we present two arguments to establish a
dimensional reduction picture for the HOSPT phases: while
the first argument (Sec. I A) shows why a kth-order SPT
phase in d dimensions is related to the usual Gy-SPT phases
in (d + 1 — k) dimensions, the second argument (Sec. 11 B)
explicitly demonstrates how to build such a HOSPT phase
from lower-dimensional SPT phases. While the first argu-
ment explains why the classification of HOSPT phases is
determined by the classification of (d + 1 — k)-dimensional
SPT phases, the second argument shows which of the (d +
1 — k)-dimensional SPT phases can consistently lead to a
gapped symmetric kth-order SPT phase in d dimensions, to
be compatible with the crystalline symmetry G..

A. Corner/hinge states as gapless defects on
the gapped open surface

We consider a generic HOSPT phase |) of order k > 2 on
a d-dimensional open manifold A (such as the square-shaped
system in Fig. 1), which is gapped almost everywhere except
for a (d — k)-dimensional submanifold on the boundary 9.4
(such as the four corners with k = d = 2 in Fig. 1). Since by
definition the (d — 1)-dimensional boundary 9.4 is gapped,
this is not a “strong” SPT phase protected by onsite symmetry
Gy only, and hence there exists a finite-depth quantum circuit
410U,

Uly) =T), 2)

which continuously evolves the HOSPT state |1/) into a trivial
product state |T'), while preserving onsite symmetry Gy. We
label the finite depth of circuit U as dj.

As illustrated in Fig. 1, next we divide the total system
A into two regions: its (simply connected) interior 3y (both
white and gray in Fig. 1), and boundary By = A\ By. We
can then define a finite-depth (dy) quantum circuit Up, =
PBOU Pg, by restricting quantum circuit U into region By,
such that

Us, |¥) = |T5) ® |¥3), 3)

FIG. 1. Disentangling the gapped bulk with gapless corner states.
The interior region B is colored in white, while the “cushion”
region B, \ B is colored in gray. Finite-depth quantum circuit UBO
preserving onsite symmetry G, will trivialize the interior B into a
product state, while keeping the boundary By = A\ By (including
the gapless corner states) untouched.

where B C B is the interior (white in Fig. 1) of By, differing
from By only by a “cushion” region (gray in Fig. 1) whose
width is of the order ~dy. Here, |Tg) denotes the trivial
product state on region 5. In other words, finite-depth quan-
tum circuit Ug, can continuously tune the interior region B
of HOSPT phase into a trivial product state without closing
the gap or breaking onsite symmetry Gy, while keeping the
boundary states (on 3) untouched. As a result, through finite-
depth quantum circuit UBU which preserves onsite symmetry
Gy, the HOSPT ground state is disentangled into a trivial
product state |73) in the bulk B, and a state |y3) on its
(d — 1)-dimensional surface B.

Notice that in addition to preserving onsite symmetry
Gy, the (d — 1)-dimensional state [y;) is mostly gapped
except for hosting gapless modes on its (d — k)-dimensional
submanifolds. Therefore, the gapless corner/hinge states in
a HOSPT can be viewed as gapless (d — k)-dimensional
defects on a gapped (d — 1)-dimensional surface state |yz)
with onsite symmetry Gy. As argued in Refs. [33,34], the
classification of such a defect falls in the classification of a
(d + 1 — k)-dimensional SPT phase protected by the same
onsite symmetry Gy.

These corner or hinge modes have two important proper-
ties. First, they are protected by Gy and possibly also by G..
As we will see below, there are two types of action of G, on
the boundary modes: either it permutes them or acts onsite.
We are mostly interested in the first type, but will enumerate
both below. Second, the boundary modes are protected in the
thermodynamic limit. Trying to attach a (k + 1)-dimensional
state to trivialize k-dimensional corner or hinge modes cannot
be done with a symmetry-respecting finite-depth quantum
circuit in the limit of infinite system size.

For example, in a second-order SPT phase ind =k =2,
the gapless corner states in, e.g., Fig. 1, can be viewed as
gapless zero-dimensional domain walls on the gapped 1D
edge. Therefore, they are reduced to the one-dimensional
Go-SPT phases. Similarly for a second-order SPT phase in
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FIG. 2. Dimensional reduction analysis of a second-order SPT
phase with G. = C4 crystalline symmetry, where the black dots
represent robust corner zero modes protected by onsite symmetry G.
Shaded regions are trivialized by the action of a local, finite-depth
quantum circuit. Dashed lines represent “effective” one-dimensional
(1D) Gy-SPTs, as building blocks for the second-order SPT phase
in two dimensions. Note that the four end points of the 1D G,-SPT
phases must fuse to a linear representation in the bulk (circle in the
middle), imposing a compatibility condition on the topological index
of 1D Gy-SPT phases.

d = 3, the gapless hinge states can be viewed as gapless 1D
domain walls on a gapped 2D surface, therefore related to
two-dimensional Go-SPT phases. For a third-order SPT phase
in d =k =3, the gapless corner states should be viewed
as gapless zero-dimensional point defects on the gapped 2D
surface with symmetry Gy, hence reduced to one-dimensional
Go-SPT phases.

B. Building HOSPT phases from lower-dimensional SPT phases

In the previous argument, we have shown that the gap-
less (d — k)-dimensional boundary states in a kth-order SPT
phase in d dimensions can be reduced to the classification of
(d + 1 — k)-dimensional SPT phases preserved only by onsite
symmetry Go. However, not all of the Gy-SPT phases can lead
to a gapped HOSPT phase that preserves crystalline symme-
try G,: certain compatibility conditions must be satisfied to
ensure a gapped bulk. Here, we provide another argument
based on the dimensional reduction approach [35-37], which
explicitly builds the kth-order SPT phases in d dimensions out
of (d — k)-dimensional Gy-SPT phases.

Without loss of generality, we demonstrate this dimen-
sional reduction argument using the second-order 2D SPT
phase with G, = (4 point-group symmetry, as shown in
Fig. 2. We first divide the whole open manifold .4 into four
disconnected shaded regions {R;|1 < i < 4} in Fig. 2 which
are related by C, symmetry, while both the C; inversion
center and four gapless corners lie in the rest of the space
AN\ (U; Ri). Following the same construction as used in the
previous argument, we can construct a Gy-preserving finite-
depth quantum circuit l7R, by restricting circuit U in region
Ry, such that

Ur, 1Y) = |Tr,) ® |¥z,), )

where |7k, ) represents the trivial product state on region R;.
By symmetrizing circuit Ug, with respect to C4 rotations, we
can construct a symmetric finite-depth quantum circuit

3
U™ =[€lr €™, R={JRs, )

i=0 i

which preserves both onsite symmetry Gy and crystalline
symmetry G, such that

O™ 1) = ITr) Q) 1¥g)- (6)

In other words, symmetric finite-depth circuit Uy'™ trivializes
most of the manifold A, except for the four 1D systems
connecting the gapless corner to the rotation center. As argued
previously, now that each corner state carries a projective
representation of onsite symmetry Gy as the boundary state
of a 1D Gy-SPT phase, each 1D system connecting the corner
to the Cy4 rotation center must be a 1D Gy-SPT phase with a
topological index

v e H2(Gy, U(1)). (7

Note that as a part of the gapped bulk, the Cy4 rotation center
where the ends of the four 1D Gy-SPT chains must form a
linear representation of onsite symmetry Gy, i.e.,

4v ~ 0 € H*(Gy, U(1)). (8)

This compatibility condition comes from the fusion of a
number of edges of 1D SPTs dictated by the crystal symmetry
GC = C4Z

¢ HT'K(Go, U(1)) — HITNG, U)). ©)

Physically, the fusion map ¢ encodes a notion of compatibility
between onsite symmetry Gy and crystalline symmetry G,
so that the bulk of the full system is trivial and gapped.
Constructing the map ¢ is generally a difficult mathematical
problem for an arbitrary symmetry group G with both onsite
and crystalline symmetries. In this paper we consider the
simplest case, where the symmetry group G = Gy x G, is a
direct product of onsite symmetry Gp and global symmetry
G.. As we will show later, this allows a direct reduction
via the Kiinneth formula, where the compatibility conditions
between (d — k)-dimensional Go-SPT phases and crystalline
symmetry G, in d spatial dimensions are captured by group
cohomology formula (1).

Finally, we recall that certain SPT phases are beyond
the group cohomology classification, such as the 3D time-
reversal SPT phase with efmf surface topological orders
[38,39] classified by cobordism [40,41] and Kitaev’s chiral
2D Ejg state [42,43]. We have also considered these beyond-
group-cohomology HOSPT phases built from the Eg state, as
highlighted in red in Table II.

III. CLASSIFICATION AND CONSTRUCTION FROM
KUNNETH FORMULA

A. General classification of HOSPT phases

In this work, we will focus on the cases where the total
symmetry group G is a direct product of crystalline symmetry
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G, and onsite symmetry Gy:
G =G, x G. (10)

In this situation, there is a simple mathematical formula based
on group cohomology, which gives the full classification of
higher-order SPT phases. It has been shown [31,32] within
the group cohomology classification of SPT phases that all G
symmetry-protected topological phases of interacting bosons
in d spatial dimensions are given by

HITNGH, U(1)) = HTU(GE x Gy, U(1)), (1)

where G is isomorphic to G., obtained by replacing each
orientation-reversing element of crystalline symmetry group
G. by an antiunitary operation of the same rank. According to
the Kiinneth formula for group cohomology [44-46] we have

HITNGH x Gy, U(1)) = HIPH(GE x Gy, )
= @ TH (G HTTNG,. 2))
= HTNGE, U() @ HT UG, H (Go, 7))
B H (G, HI (G, U (1))). (12)

The first term HT1(G*, U(1)) classifies crystalline SPT
phases protected only by crystalline symmetry G, [32,35].
The second term HY™ (G, H! (G, Z)) vanishes for any finite
group [46], as in the case considered here where G, is a point
group or magnetic point group.

Therefore, we shall focus on the last line of the above
Kiinneth formula (12). Each term in

HNGE, HTHH NGy, U(1)), 0<k<d (13)

can be interpreted as the classification of (k + 1)th-order SPT
phases in d spatial dimensions, protected by onsite symmetry
Gy and crystalline symmetry G,.. Such a SPT phase is featured
by robust gapless states on proper (d — k — 1)-dimensional
open boundaries, which are protected by onsite symmetry Gy
alone. For example, the k = 0 term in (13)

HOGE, HT N (Go, U(1))) = HTH(Go, U(1))  (14)

corresponds to the first-order (i.e., the usual “strong”) SPT
phases protected by onsite symmetry Gy, featured by gapless
modes on (d — 1)-dimensional boundaries.

Second-order SPT phases in d > 2 are all captured by k =
1 term in (13),

H(G, H (Go, U(1))), (15)

which hosts gapless (or anomalous topological orders when
d > 4) excitations on (d — 2)-dimensional boundaries pro-
tected by onsite symmetry Go.

Similarly, third-order SPT phases in d > 3 are all captured
by k = 2 term in (13),

HA (G, H™(Go, U (1)), (16)

which hosts gapless (or anomalous topological orders when
d > 5) excitations on (d — 3)-dimensional boundaries pro-
tected by onsite symmetry Gy, such as corner states in d = 3.

B. “Strong” HOSPT phases versus ‘“weak” crystalline SPT
phases

As mentioned previously, we define kth-order SPT
phases in d dimensions by the presence of robust (d — k)-
dimensional topological boundary states, protected by onsite
(or global) symmetry Gy only. These are “strong” SPT phases,
whose boundary excitations do not require protection from
the crystalline symmetry G.. In comparison, there are also
“weak” crystalline SPT phases, whose topological boundary
excitations are protected by crystalline symmetries (in ad-
dition to onsite symmetries) [32,47-49]. In fact, in addition
to strong HOSPT phases which are the focus of this paper,
certain weak crystalline SPT phases are encoded inside the
whole Kiinneth formula (12), such as those colored in green
in Table III. Before systematically analyzing and constructing
HOSPT phases in detail, we briefly discuss the weak crys-
talline SPT phases.

First of all, the k = d + 1 term H4T1(G*, U(1)) in Kiin-
neth formula clearly describes weak SPT phases protected
only by the crystalline symmetry G.. Next, we comment on
k =d termin (13):

HUGE, H (Go, U(1))). (17)

The physics of this term is to assign onsite symmetry charges
[linear representation ' (G, U(1)) of onsite symmetry Go]
to defects of the crystalline symmetry G,. In a simplest exam-
ple, for the k = d = 1 case of 1D insulators [Gy = U (1)] with
inversion symmetry I (G, = Zzz), we have H! (U (1), U(1)) =
Z and hence

HUG L, H' U, UW)) =H (2], Z) =Z,. (18)

The nontrivial element of the above 7Z, classification cor-
responds to assigning an odd number of U(1) charges to
the inversion center, while the trivial element corresponds to
having an even number of U (1) charge on the inversion center.
There are no gapless boundary excitations for either of the two
phases in 1D.

However, in k = d > 2, weak SPT phases with boundary
states protected by crystalline symmetry generally can appear
in the Kiinneth formula (12). For example, in k = d = 2 case
with mirror symmetry G, = ZZM, H2(ZM, H' (Go, U(1)))
corresponds to assigning Gy charges to each domain wall
of mirror symmetry M on the 1D mirror axis of the 2D
system. This leads to gapless boundary states if the boundary
of the system preserves mirror symmetry. Similarly, in the
d =k =3 case with n-fold rotational symmetry G. = C,,
H3(C,, H'(Go, U(1))) corresponds to assigning Gy charges
to each domain wall of C, rotational symmetry on the 1D
rotation axis. This leads to weak 3D crystalline SPT phases,
hosting gapless (or anomalous) boundary states if the bound-
ary preserves C, symmetry.

Another example is k =d — 1in (13). Taked =3, k =2
for instance, considering mirror symmetry G, = Zé\” again,
H2(ZM, H?(Go, U(1))) corresponds to assigning 1D Go-SPT
phases classified by H2(Gy, U (1)) to each mirror domain wall
on the 2D mirror plane. This can lead to gapless (or anoma-
lous) boundary states protected by both mirror and onsite Gy
symmetry, if the boundary preserves mirror symmetry M.
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As we mentioned before, the boundary states of these weak
crystalline SPT phases will generally be destroyed by pertur-
bations that break the crystalline symmetry, such as disorders
and crystalline distortions. Meanwhile, their interpretation in
the Kiinneth formula can be quite tricky, as shown in the
above examples. Hereafter, we will be focusing on the strong
HOSPT phases, whose topological boundary excitations are
robust even if crystalline symmetries are broken on the
surface.

C. Decorated domain-wall construction

Here, we briefly describe how to explicitly construct the
higher-order SPT phases in d spatial dimensions, using Gy-
SPT phases in lower dimensions. In particular, the group
cohomology formula (13) provides a clear physical meaning
for such a construction, similar to the decorated domain-wall
construction [50] for the usual (“first-order””) SPT phases.

First, we consider second-order SPT phases in d dimen-
sions, classified by first group cohomology

v1(g0, g1) € H(Go, U(1))lg: € G7}
e HU(G*, H (Gy, U(1))). (19)

These are nothing but linear representations of the symmetry
group G7,

U, =wi(l,8) € H'(Go,U(1)), ge€G: (20)
satisfying the 1-cocycle condition

UU® = Uy,  s(g) = £1 for g = unitary/antiunitary.

21
U, valued in H?(Gy, U(1)) physically represents a do-
main wall labeled by symmetry element g, decorated by
(d — 1)-dimensional Gy-SPT phases labeled by elements in
H4(Gy, U(1)). The above 1-cocycle condition can be viewed
as a compatibility condition between the addition rules of
(d — 1)-dimensional Gy-SPT phases and the addition rules
(gh = gh) of domain walls, in order to ensure a gapped bulk
spectrum. To understand this, we see that a domain wall of the
G symmetry is labeled by a group element g; € G¥. The (d —
1)-dimensional SPT phase associated with this domain wall
is labeled by an element m; € H¢(Gy, U(1)). The fusion of
two domain walls gg, combines these (d — 1)-dimensional
Go-SPT’s into m; + m,. However, the fusion must respect
the group structure of H¢(Gp, U(1)), and this consistency
condition is exactly captured by Eq. (13). Therefore, each
element of ’Hl(Gj, H4(Gy, U(1))) describes a way to assign
(d — 1)-dimensional Gy-SPT phases on the domain walls of
crystalline symmetry G, which is compatible with a gapped
bulk.
Next, we consider second-order SPT phases in d dimen-
sions, classified by second group cohomology

{v2(80, &1, 82) € H' (G, U(1))lgi € G}
€ HA(G*, H' " (Gy, U(1))). (22)

They are nothing but projective representation of symmetry
group G7,

U U = w(g. U, 8. h € G (23)

w(g h) = (1, g gh) € H'(Go, U (1)), (24)

satisfying the 2-cocycle (or associativity) condition

w(g, hw(gh, k) = w(g, hk)aw* @ (h, k), g h keG:.
(25)

Since U, represents the (d — 1)-dimensional domain wall
labeled by element g of crystalline symmetry G¥, w(g, h)
naturally represents the (d — 2)-dimensional manifold where
three domain walls U, U, and Ugy)1 intersect. The fact
that w(g, h) takes values in HY~'(Gy, U (1)) physically means
that these domain-wall intersections are decorated by (d — 2)-
dimensional Gy-SPT phases, which are classified by group
cohomology H¢~(Gy, U(1)).

As a simplest example, we consider the n-fold rotational
symmetry G. = C,. Each of the n domain walls of the C,
symmetry can be decorated by the same (d — 1)-dimensional
Go-SPT phase, such that n copies of these Gy-SPT phases
intersect at the C, rotational axis. For the system to be gapped
on the rotational axis, these n copies of Gy-SPT phases
together must fuse to a trivial phase with no gapless boundary
states. This exactly corresponds to second-order SPT phases
classified by H!'(C} ~ Z,, H?(Gp, U(1))). Meanwhile, at the
intersection of n domain walls of C,, symmetry, the rotational
axis itself can also be decorated by a (d — 2)-dimensional Gy-
SPT phase, which corresponds to the third-order SPT phases
classified by H(C* = Z,, H~'(Gy, U(1))).

Another example is the mirror reflection symmetry G, =
Zé\’l, where the orientation-reversing mirror symmetry M
should be regarded as an antiunitary symmetry when comput-
ing the group cohomology. For k = d = 2, the second-order
SPT phases in classified by H!'(ZM, H2(Gy, U(1))) can be
understood as assigning a 1D G(-SPT phase on each mirror
plane.

Below we will classify second-order SPT phases in d =
2,3 (Tables I and II) and third-order SPT phases in d =
3 (Table III), for various choices of onsite symmetry Gy
and crystalline (and magnetic crystalline) symmetry G.. We
will also explicitly construct these higher-order SPT phases
using the decorated domain-wall picture as described above in
Secs. IV-VL.

IV. SECOND-ORDER SPT PHASES IN TWO DIMENSIONS

As shown in (15), the second-order SPT phases in d
spatial dimensions are classified by #*=! (G, H4(Gy, U(1))),
i.e., the linear representation of group G whose coefficients
take value in the (d — 1)-dimensional SPT classification
H4(Gy, U(1)). For d = 2 case, the building blocks of second-
order SPT phases in two dimensions are 1D SPT phases
protected by onsite symmetry Gy. Below, we provide a full
classification for second-order SPT phases in d = 2 with all
possible 2D point-group and magnetic point-group symme-
tries, and describe how to use 1D SPT phases to construct
these second-order 2D SPT phases.

A. Classification

To compute H' (G}, HE(Gy, U(1))), first we need to obtain
the group G? from crystalline symmetry G.. As mentioned
earlier, G} is isomorphic to G, obtained by replacing each
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TABLE 1. Second-order bosonic SPT phases (k = 1) in d = 2 spatial dimensions, protected by symmetry group G, = G, x G, where
G. and Gy represent the crystalline and onsite symmetry group, respectively. The general classification is given by linear representation
HU(GE, H%(Gy, U(1))) as shown in (15) with d = 2. Through a dimensional reduction procedure they are all constructed from G,-SPT phases
in d = 1 dimension, classified by H2(Gy, U(1)) in the last line (blue).

k=1,d=2 Onsite symmetry Gy
z] SO(3) or SO0(3) x 7] Z. X Zy Z, x 7]
Crystalline symmetry G, UQ) %2, orU(1) x Z]
Cn Z(VL.Z) Z(n,Z) Z(n,Z) Z(n,a.b) Z(n,Z) X Z(n,a,2)
Civ=0C, % Zsz Lny X Ly Linay X Ly Z%,,,z) X Z% ZLinapy X L2,a,p) Zny X Lnapy X Ly X Liay
CZTn = {(Czn . T)m|0 < m < 21’!} Zz Zz Z% Z(Z,a,h) Zz X Z(a,Z)
CzTn e szvlv z; z; z Z%Z,a.b) Z5 x Z(za.z)
C, X ZéMV‘T Lnay X Ly Linay X Ly Z%n,z) X Z% Znap) X L, Zny X Lna2y X Ly X Lia)
d=1 G()-SPTSI HZ(GO, U(l)) Zz Zz Z% Z(a,b) Zz X Z(a])
orientation-reversing element g of G, by an antiunitary opera- and beyond. One important relation for group cohomology is
tion g* of the same rank. For example, we have
HY(G, A x B) = HNG, A) x H'(G, B). (29)
G.=C, = G =7, (26)
Therefore, to compute HI(GZ‘.,H”’(GQ,U(I))) in (15), we
G.=C, x sz"lv — G~ 7, x z7T: (27) only need to know H!(G,Z), and H'(G, Z,) for any fi-
nite integer a € Z. Since H2(Gy, U(1)) is always a finite
G. = CzTn or Sy, = G* =, (28) Abelian group, making use of relation (29), we can com-
pute ”Hl(Gj, H2(Go, U(1))) purely based on knowledge of
where we use ZJ to denote a group generated by an antiuni-  H'(G, Z,) for any finite integer a. Below, we list #' (G}, Z,)
tary operator 7 of ranking 2n. for all d = 2 point groups and magnetic point groups G:
After obtaining G}, the next step is to compute .
H(Gy, U(1)), the coefficient of the desired linear represen- CH ~ 27, (SZ,;) ~ Zon, HYZ,,74) = Zn.ays (30)
tation H'. For d = 2 case, H*(Gy, U(1)) corresponds to the
classification of 1D SPT phases [51-54] protected by onsite C. Y~ (C s ZMMTYVE < 7 7T
symmetry Gy: it always forms a finite Abelian group, as G = (Gin 2, ) =ZinZy,
summarized in the last line of Table I. H! (Zn “ Zsz Za) = Znay X Lz.a; (31)

Generally, the classification of SPT phases with onsite
symmetry Gy always forms a discrete Abelian group, which

TV ~ w0 T (7T _ )
holds for the group cohomology classification H%(Gy, U (1)) (CL) =) =27 HY(Zy Zd) =L (32)

TABLE II. Second-order bosonic SPT phases (k = 1) in d = 3 spatial dimensions, protected by symmetry group G; = G, x Gy where
G, and G represent the crystalline and onsite symmetry group, respectively. The general classification is given by linear representation
’H‘(ij, H3(Gy, U(1))) as shown in (15) with d = 3, except for the “beyond-cohomology” states colored by red. Through a dimensional
reduction procedure, they can all be built from G,-SPT phases in d = 2 dimension, classified by #>(Gy, U (1)) in the last line. Red-colored
“beyond-cohomology” states are built from the chiral bosonic Eg state [42,43].

k=1,d=3 Onsite symmetry Gy

U(l) U(l) %2, S0(3) x Z] Z, Z.x Z]
Crystalline symmetry G, or SO(3)
C, Z, L2 L2 L0 L3, 4
Cyy 01 C, 3 Z 0T Zox Ty TEX Ty x Ty Loy X Lo Ly X Loy X Lo L2, 40y X L2,
Cn,h = C,, X ZéMh Z2 X Zz Z% X Z(n,Z) X Zz Z(n,Z) X Zz Z(n.a,Z) X Z(2,a) X Zg Z%n.a.Z) X Z%a,z)
Dn = Cn X ZéMhVMV or Cn X Zé/\/lvlT Zl Z(n,Z) X Zz Z(n,Z) X Z2 Z(n,a,Z) X Z(Z.a) Z%n.n,z) X Z(Za_z)
Dpn=C,y X ZzMh Zy X 1 25 X Loy X Lo Loy x 15 Lnaz) % Z%Za) X 2 Z%n,a,Z) x Z?a,Z)
CZC or SQ,, = {(CZn . Mh)m|0 g m< 2}’[} ZZ X Zz Z% X Zz Zz Z(2,a) X Zz Z%Z_a)
Dya = Sou % Z2" or C 0 72 Zy x 7 73 x 7, 73 7%, x Ly Zh .
Sg;l = {(C2n . Mh . T)ml() < m< 21’!} Zl Zz Zz Z(Qn,a) Z%a,Z)
d =2 Gy-SPTs: H3(Gy, U(1)) plus Ejg state 7 x 7 Z X7y X7 Zs Zy X7 Z(Za‘z)
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TABLE III. Third-order bosonic SPT phases (k = 1) in d = 2 spatial dimensions, protected by symmetry group G, = G, x Gy where
G. and Gy represent the crystalline and onsite symmetry group, respectively. The general classification is given by projective representation
Hz(GZ‘, H%(Gy, U(1))) as shown in (16) with d = 3. Through a dimensional reduction procedure they are all constructed from G,-SPT phases
in d = 1 dimensions, classified by H2(Gy, U(1)) in the last line (blue). To be contrasted with the strong third-order SPT phases in black, the
weak crystalline SPT phases included in H? (G, H?(Gy, U(1))) are colored in green.

k=2,d=3 Onsite symmetry Gy

77, S0(3) SO(3) x ZT 7, x Z, Zox 7]
Crystalline orU(1) x 2, orU(1) x Z]
symmetry G,
C, Za,ny L%, Zn,a.b) Zany X La2my
Cuv Lin,2) X Z%,,,z) X ZLin,apy X Lin2y X Lina2) X
Cun Znay X Ly x L%,y X 13 % Znan2y X Liapay X Zinny X Loy X Linazy X Liazy X
D, ZLinay X 13 L35 % 13 Lnap2y X L o) Znay X L3 X Linany X L3, 5,
Co 0 ZT Loy X 72,5 % Znanay X Znzy X Linazy X
Dy L3 5 X Ly % Loy X 15 % L3 ab2y X Lab) X L3y X Ly X L3, 42y X Lia2) X
CJ. or Sy, Z, 73 Z.an) Zy X Lo
CT o« zZ Z, % 73 x Lianz) X Ly X Ly X
Dy 73 x 74 x Z(za,b_z) X 73 x Z%al) X
s7, Z, VA Zn.a.b) Zy X Lo
T ~ A, Zin Z% Z3ab) X Lo,ab Ly X Lap)
T,=T x 7Z* 73 x 74 x ?Z,a,b) X 73 x Z%M) X
H*(Go, U(1)) Z, 73 Za,p) Ly X Liapy

(Dna)* = (C], x 23" = 2] % 25,

M (Z], % 22, Za) = L3, (33)
(Da)* = (Cy 0 ZNT) = Z, % 25,
H'(Zy % 22, Za) = Lina2y X Lia2ys (34
(Cun)* = (Cux Z3) =2, x Z]
HY (Z, x 2], Z4) = Zina2) X Lo.ay; (35)
(Dnn)* = (Zy x Z2) X 7],
H' ((Zi % 22) x 2], Za) = Zna2) X Ly gy (36)

Using relation (29) and the above results (30)—(36), we
acquire the classification of all second-order SPT phases in
d = 2, as summarized in Table I.

B. Examples
1. G, =C,

The simplest examples of second-order SPT phases are
protected by n-fold rotational symmetry G. = C,, classi-
fied by

H(Z,, HA(Go, U(1))). (37)

They can all be built from 1D SPT phases protected by
onsite symmetry Gy, where the 1D Gy-SPT phases are aligned
in a C,-symmetric manner as shown in Fig. 3 for G, = C;
case. Since the end points of n copies of 1D Gy-SPT phases
intersect at the center of the system (see Fig. 3), they must
form a linear representation of onsite symmetry Gy to en-
sure a gapped symmetric bulk. This provides a compatibility
condition for the 1D Gy-SPT phases, manifested in the group

cohomology formula

H(Z1, La) = Zina). (38)
where (n, a) is the greatest common divisor of integers n
and a.

Formula (38) can be understood as follows. The group co-
homology H'(Z,, Z,) stands for linear representation {Uglg €
Z,} of Z, group with coefficients in Z,-valued phase factors

Ele:iﬁ

Ly =

0<v<a, jelZl. (39)

{u,-

FIG. 3. Second-order SPT phases with G, = C; point-group
symmetry, where each of the three C; domain walls is decorated
by the same 1D G,-SPT phase meeting at the rotation center. The
projective representations at the end of each 1D Gy-SPT phase must
form a linear representation to ensure a gapped bulk, as manifested
in group cohomology formula (15).
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Denoting the generator of Z, group as R with R" = 1, we have
Urlv) = uy|v) = Ui—pr = (Ur)" = umy =1 (40)

and as a result

n=0 moda=—v=m 0<m<@ma 41

a
(n,a)’
where (n, a) denotes the greatest common divisor of integers
a and n. Physically, this means the topological index v € Z,
of the 1D Gy-SPT phase decorated on each C, domain wall
must be a multiple of —*= (n G to ensure the bulk to be gapped at
the rotation axis where the n domain walls intersect. Hence,
there are (n, a) distinct second-order SPT phases with C,
symmetry, characterized by the 1D G(-SPT phase with v =
0, (n o 2 (n“a), ... on each domain wall. This corresponds to
the Zy,q) classification in formula (38).

One immediate physical consequence is the presence of
zero-energy corner modes located on each corner of the C,-
symmetric finite system shown in Fig. 3. Each corner mode
is nothing but the boundary states of 1D Gy-SPT phases with
v =0 mod ﬁ, which carries a projective representation of
onsite symmetry Gy. Notice that with only C, symmetry, the
1D Gy-SPT phases can together be rotated around the C,
center by an arbitrary angle, and therefore the zero-energy
corner states will only appear in certain (but not all) finite
systems.

2. G. =Cp, =Cy X Z2" 0orC, x 2207

Consider point group G, = C, v, generated by n-fold rota-
tion R with R" =1 along Z axis, and mirror reflection M,
whose mirror plane is parallel to the Z axis. As described
earlier, the associated second-order SPT phases are classi-
fied by the linear representation (first group cohomology) of
(Cov)* = 2Z, % ZT, with coefficients in 1D Gy-SPT phases
classified by H?(Gy, U(1)). The decorated-domain-wall con-
struction of these second-order SPT phases with C,, , symme-
try can be implied from the following formula:

7‘[1 (Z,, X ZZ—, Za) = Z(n’a) X Z(Z,a)- (42)

The first factor Z, 4 labels the 1D Go-SPT phases assigned
on each C, domain walls and intersected at the C, rotation
center, illustrated by the red lines in Fig. 4. On the other hand,
the second factor Z, 4 labels the 1D Gy-SPT phases placed
on each of the n mirror planes, illustrated by the green lines
in Fig. 4. The linear representation {Ug, U7} corresponding to
HY(Z, x ZZT , Z,) satisfies the following algebraic conditions:

(Ur)" = UrUy = UrU7 (UrUr)" = 1. (43)

Similar to G. = C, case discussed earlier, in (42) the linear
representation of n-fold rotation Uk is given by

Wy
2miR
a N

Urlv) = uylv), uy, =e vg =0 mod

a
(n,a)’
(44)

While Uy is invariant under any gauge transformation on the
basis vectors of the linear representation, this is not the case
for antiunitary operator 7 = M. Specifically under a gauge

rotation by phase factor e * on all basis vectors, the linear

FIG. 4. Second-order SPT phases with G. = Cs, point-group
symmetry, where each of the three C; domain walls is decorated by
the same 1D G(-SPT phase meeting at the rotation center, illustrated
by red lines. Meanwhile, each mirror plane can also be decorated by
another 1D Gy-SPT phase, labeled by the green lines.

representation of antiunitary operator 7 changes as
2ri
v) > e v) =

_mi,
<) =y 45)

This indicates that 1D Gy-SPT index vy on each mirror plane
is only well-defined modulo 2, leading to the Z; . factor
in formula (42). This result has a straightforward physical
interpretation: two 1D Gy-SPT phases of the same topological
index can be merged from two sides into the mirror plane,
hence changing the 1D topological index on the mirror plane
by any even integer without closing the bulk gap.

Unlike in the previous G, = C, case where the n copies
of 1D Gy-SPT phases can be rotated by an arbitrary angle,
here due to the presence of n mirror planes (related by C,
rotations), all 1D Gy-SPT phases are assigned to the mirror
planes. As a result, as long as the corners of the finite system
lie on the mirror planes, they will give rise to zero-energy
corner modes protected by onsite Gy symmetry. However as
illustrated in Fig. 4, there are two different types of corners,
terminating the green lines only versus terminating both green
lines. These two types of corners generally support different
types of projective representations of onsite symmetry Gy.

Finally, it is straightforward to show that the above classifi-
cation and construction remain true for magnetic point group
G.=C, % ZM M“T, generated by rotation C, around Z axis
and twofold antlunltary magnetic rotation My M7 around
an in-plane (such as %) axis.

Urlv) = uyy Iv),

i
Ur =u,, — e« u,l(e

V. SECOND-ORDER SPT PHASES IN THREE DIMENSIONS

A. Classification

Second-order SPT phases in d =3 are classified by
H (G, H3(Gy, U(1))), i.e., linear representation of group
G* with coefficients valued in H3(Go, U(1)). Physically,
this means the building blocks for second-order SPT phases
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in d =3 are simply 2D G(-SPT phases, classified by
H3(Gy, U(1)) within the group cohomology framework.

Unlike 1D Gy-SPT phases which always form a finite
Abelian group, 2D Gy-SPT phases can be an infinite Abelian
group, as shown in the last line of Table II. Therefore, to
classify second-order SPT phases in d = 3, we need to com-
pute H'(G*, Z) in addition to knowledge of H'(G*, Z,) in
(30)—(36). Below, we summarize (G%, Z) for all axial point
groups and magnetic point groups G.:

€ ~Zp, (S]) ~Z, HZnZ)=17,; (46)

(Cnv) N(CHX]ZMMh ) ~7Z, NZZ,

HY (2, % Z] | Z) = Z»; @7

(€Y =Sy 7] H(ZL.7)=Zs (48)
(Dpa)* = (Cf, % 23")" ~ 2], % 75,

H(Z], X 75, ) = Zo; 49)

(Dy)* =~ (Cy Zé\/‘VT)* ~ 7, X2,
HY(Z, % 2o, L) = Ly; (50)

(Con)* = (Co x Z2) ~ 7, x 7],
HY (2, x 2] | Z) = L»; (51)

(Dun)* = (Zy X Zy) x Z]

H' ((Zy % 22) x 2], Z) = Z». (52)

Using relation (29) and results (30)-(36) and (46)—(52), we
are able to compute H'(G*, H3(Gy, U(1))) for various onsite
symmetry Gy. The classification of second-order SPT phases
in d = 3 is summarized in Table II.

It is known that there are certain 2D short-range-entangled
(SRE) bosonic phases (without intrinsic topological order)
exhibiting chiral edge states [42,43], which are beyond the
description of group cohomology classification. These SRE
bosonic phases have an integer (Z) classification, generated
by the Eg state with a chiral central charge c_ = 8.

One can also build higher-order SPT phases out of the
bosonic Eg states, as highlighted by the red color in Table II.
The constructions for Eg are analogous to the examples below
for other chiral boson states, except that the hinges are deco-
rated with Eg phases. The bulk must be trivial and gapped, so
the total chiral central charge in the bulk must vanish.

B. Examples

One physical signature of second-order SPT phases in
d = 3 is the existence of gapless states on certain 1D hinges
of the system. Below, we elucidate the procedure of con-
structing second-order SPT phases in d = 3 using the data of
H! (G, H3(Gy, U(1))), based on the decorated domain-wall
construction where the building blocks are 2D G(-SPT phases
and bosonic Eg states. We also show how this construction
leads to gapless hinge states in 3D second-order SPT phases.

FIG. 5. Second-order SPT phases in d = 3 spatial dimensions,
preserving C; rotational symmetry. Similar to d = 2 case in Fig. 3,
they can be constructed by assigning the same 2D G(-SPT phases on
each C; domain wall.

1. G, =C,

In the simplest case of n-fold rotational symmetry G, =
C,, the second-order SPT phases in 3D can be constructed
by decorating each C, domain wall by the same 2D G,-SPT
phase, as illustrated in Fig. 5. Similar to 2D cases discussed
earlier, a gapped bulk provides strong constraints on the com-
patible 2D Gy-SPT phases, encoded in the following group
cohomology formulas:

Hl(Zn» Za) = Z(n,a) (53)
and
H'(Z. Z) = 7. (54)

This means if the 2D Gy-SPT phases has an integer classifi-
cation, i.e., H>(Go, U(1)) = Z, none of these SPT phases are
compatible to a gapped bulk when decorated on the C,, domain
walls. On the other hand, if the 2D GO—SPT phases form
a finite group such as H3(Gy, U (1)) = Zyq, only those with
a topological index v =0 mod —a) can lead to a gapped
spectrum at the C,, rotation center, indicated by (41) discussed
earlier. Similar to d = 2 cases in Sec. IV, these 2D G,-SPT
phases can be rotated together by an arbitrary angle around the
C, axis. Notice that 1D gapless hinge modes are not always
present in a finite system: they only appear when the hinge
intersects with the plane of each 2D G,-SPT phase.

2. G, =C,,

Considering point group G. = C,, or magnetic point
group C, X Zéva“T, the construction of associated second-
order SPT phases in d = 3 is completely in parallel to d = 2
cases illustrated in Fig. 4. Specifically, two types of 2D Gy-
SPT phases are assigned to each mirror plane: one type (red
lines in Fig. 4) meeting at the C, rotation center corresponds
to the linear representation Ug of n-fold rotation generator R,
the other type (green lines in Fig. 4) on each mirror plane
corresponds to linear representation Uy, of mirror operation
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M. They are constrained by the following compatibility
conditions for a gapped bulk. When H3(Gy, U(1)), i.e., the
classification of 2D Gy-SPT phases is a finite group, we have

Hl (Zn X ZZ, Za) = Z(n,a) X Z(Z,a)’ (55)

where Ug € Z .4y and Up, € Z(2,4), the same as discussed in
Sec. IV for d = 2 case.

Meanwhile, if the classification of 2D Gy-SPT phases is
an infinite group labeled, e.g., by an integer topological index
v € Z, we have

HY (2, % 2], Z) = Z», (56)

where Ug = up € Zy and Uy, = U,,,, mod 2 € Z>. Physically,
for the C, rotation center to be gapped, one can only assign a
trivial 2D phase on each C, domain wall, corresponding to
the trivial representation Ug = uy. On the other hand, each
mirror plane can be decorated by any 2D Gy-SPT phase with
topological index v,,. The second-order SPT phase is only
characterized by the parity of topological index vy, mod 2
since a pair of the same 2D Gy-SPT phases can always be
merged onto the mirror plane without closing the bulk gap.

As shown in Fig. 4, the gapless hinge states will appear
in a finite system as long as the hinge lies within a mirror
plane. The gapless 1D modes on the two opposite hinges of
the same mirror plane are generally different from each other,
as illustrated by the green hinges versus green-plus-red hinges
in Fig. 4.

3. G, =83,0rG. =C],

Point group Sy, is generated by a 7- rotation R along Z axis
followed by a mirror My, with respect to [001] plane:

S ={S1<i<2n), S=RMy=8"=1. (57)

Operation S is usually referred to as an improper rotation or
a rotoreflection. For both point group S>, and magnetic point
group CJ, defined below

C] = {(RT)'|1 <i < 2n) (58)

they share the same classification for second-order SPT
phases since

(Son)* = (CT)" = 2], (59)

where ZzTn is generated by an antiunitary operator of rank
2n. The following group cohomology formulas determine the
classification of second-order SPT phases with S,, or CzTn
symmetry:

H'(2],.2a) = Zoow (60)
and
HY(Z].Z) = Z». (61)

They are determined by solving the following conditions for
linear representation Us € Z,, Z:

UsU% = 1. (62)

They can be understood similar to the mirror symmetry M,
in the G. = G, , case, where we have Us = u,; mod 2 and the
topological index vs of the 2D Gy-SPT phase is only well

S N

FIG. 6. Second-order SPT phases with point-group symmetry S,
or magnetic point group C] = {(RT)|i = 0, 1}.

defined modulo 2. To construct these S,,-symmetric second-
order SPT phases, we decorate each S domain wall by a 2D
Go-SPT phase with topological index vs mod 2, in a stag-
gered fashion as shown in Fig. 6. Again, we can always merge
two identical Go-SPT phases into each S domain wall without
closing the bulk gap, which will change the topological index
of 2D Gy SPT phase on this & domain wall by an even
integer. This physically explains why the topological index
for the 2D Gy-SPT phase vs decorated on each & domain
wall is only defined modulo 2, manifested in the Z, ,) and
Z, classifications in (60) and (61).

4. G, =D, g =Sy X 23" or C], x 23"

Point group D, 4 is generated by 2n-fold rotoreflection S =
RMy, around % axis as discussed earlier in G, = S, case, and
a mirror plane M, parallel to Z axis. The group D, 4 can be
summarized as

Dya={S"(R)"1 <iy<2n,1<i <2},  (63)

where we defined R, =SM, as a twofold rotation
along an in-plane axis (colored red in Fig. 7), so
that S =(SM,)>=1. The linear representation

HU(GE, H}(Go, U(1))) = {Us, Ug, € H*(Go, U(1))}  must
satisfy the following algebraic conditions:

UsUS =1, (64)

(Ur,)* = 1, (65)

Ur,Us(Ug,Us)" = 1. (66)

If 2D Gy-SPT phases have a finite classification such as
H3(Gy,U(1)) = Z,, the linear representations are classi-
fied as

HY(Z], % 2o, Za) = L, (67)
given by
Us = e¥"5,

vs ~vs + 2, (68)

ZTriUR
UR2 EX R

2vg, =0 mod a, (69)

085137-10



CLASSIFICATION AND CONSTRUCTION OF ...

PHYSICAL REVIEW B 101, 085137 (2020)

9
/

FIG. 7. Second-order SPT phases with point-group symmetry
D, 4. There is a twofold rotoreflection axis along Z axis and a twofold
in-plane axis (colored red). 2D G,-SPT phases with topological
index S are decorated on each mirror plane, while 2D G,-SPT phases
with index vg, are decorated on vertical planes crossing each R, axis.

where vg and vg, are the topological indices of 2D Gy-SPT
phases decorated on S and R, domain walls, respectively.

If 2D Gy-SPT phases have an infinite classification such as
H3(Gy, U(1)) = Z, we have

HY(Z], % 2,,Z) = L, (70)
where

vs=0,1~v5+2, g =0. (71)

Physically, the 2D G(-SPT phases decorated on each S do-
main wall (chosen to lie within a mirror plane) have topologi-
cal indices vs = 0, 1 defined modulo 2, for the same reason
described previously in G, = S,, case. They are illustrated
by black color in Fig. 7. On the other hand, the topological
index vg, > —ug, decorated on each R, domain wall must be
nonchiral, and hence must be trivial when H3(Gy, U(1)) =
Z. These vg,-indexed 2D Gy-SPT phases are decorated on
vertical planes parallel to each R, axis, as illustrated by the
green plane in Fig. 7.

Clearly, the hinges of a finite system can host 1D gapless
modes for these second-order SPT phases, if the hinge lies
within a mirror plane or a vertical plane containing one
twofold axis. Generally, the gapless modes on these two types
of hinges will be different.

5.G. =D, =C,p x 23
Finally, we consider the following point group:
Dn,h = {(Rz)i'1 (Rx)i2 (Mh)iM |ln €22y, Ia, l./\/l € ZZ} (72)

As shown in Fig. 8, it is generated by n-fold rotation R, along
Z axis, twofold rotation R, along % axis and mirror My with
respect to the x-y (or [001]) plane (colored in blue in Fig. 8).

FIG. 8. Second-order SPT phases with D, ;, point-group symme-
try. 2D Go-SPT phases with topological indices vg_, Vg, , and vy, are
assigned to red, green, and blue mirror planes, respectively.

Its linear representation {Ug ,Ug ,Upm, € H3 (G, U(l))} e
’Hl(Dl’;’h, H3(Gy, U(1))) satisfies the following conditions:

(Ux)" = (Ur) = (UrUr)* =1, (73)
U MhUjAh =1, (74)

Ur.Upm, (Ur.Un,)" = 1, (75)
Ur,Unm, (Ur.Un,)" = 1. (76)

When 2D Gy-SPT phases have a finite classification, e.g.,
H3(Go, U(1)) = Z, we have

H' ((Zu % 22) x 2], Za) = Zina2) X Ly gy (T7)
where

U, = €« € Linan, nvg =20k =0 moda, (78)

U, =€ e % €L, 2vg =0 moda, (79)

Upy, = €« " € Ziga, v, =0,1 mod 2. (80)

Meanwhile, if 2D Gy-SPT phases have an infinite classifica-
tion, e.g., H3(Go, U(1)) = Z we have

H ((Zy % 2) x 2] | L) = L», (81)
where

vg, =V, =0, vuy, =0,1 mod?2e7Z,. (82)

Physically, both R, and R, domain walls must be decorated
with nonchiral 2D G(-SPT phases due to the mirror symmetry
My, as denoted by red (vg) and green (vg ) in Fig. 8.
Meanwhile, the M), mirror plane can be decorated with a
(possibly chiral) 2D Go-SPT phase with index v, , as denoted
by blue in Fig. 8.

From the above construction, we can see that there are
three types of hinges hosting different gapless 1D modes in
the system: (i) 1D hinge modes lying in the mirror My, plane
(colored in blue) has topological index vy, ; (ii) 1D hinge
modes lying in vertical mirror R, M}, plane (colored in green)
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has index vg,; (iii) 1D hinge modes lying in vertical mirror
R.R. M, plane (colored in red) has index vg,.

VI. THIRD-ORDER SPT PHASES IN THREE DIMENSIONS

The third-order SPT phases in d =3 are classified by
second group cohomology H2(G?, H*(Gp, U(1))) whose co-
efficients take value in H>(Gy, U(1)). Physically, they can
be constructed by stacking 1D Gp-SPT phases, i.e., elements
of H*(Gy, U(1)), in a way which preserves (magnetic) crys-
talline symmetry G,. Specifically, as previously discussed in
the decorated domain-wall picture in Sec. III C, they can all
be built by decorating 1D intersections of domain walls with
1D Gy-SPT phases. Below, we first classify these third-order
SPT phases in d = 3 dimensions, for various onsite symmetry
Gy and (magnetic) point group G.. Then, we illustrate how to
explicitly construct these states in a few examples.

A. Classification

To compute the group cohomology H*(G¥, H*(Go, U(1)))
for third-order SPT phases, we first notice that the classifi-
cation of 1D Gy-SPT phases always form a finite discrete
Abelian group, which are products of the cyclic group Z,
for a finite a € Z. Therefore, according to relation (29),
we only need to know H*(G¥,Z,) in order to compute
H> (G, H*(Go, U(1))).

Below, we list the results for various point groups and
magnetic point groups G,:

(Cn)* =~ Zn» (Sg_”)* =~ ZZn» Hz(zns Za) = Z(n,a); (83)

(Cn,v)* = (Cn X ZéMVMhT)* ~7Z, XN Zér,
Hz((cn X ZZAAVMhT)*’ Za) = Z(n,a,Z) X Z(n,a) X Z(z,a);
(84)

H2(Cor)*s Za) = Zinay ¥ (85)
(CL) ~ S ~2Z]; HNZ].Z.) =Zew:  (86)

(Dua)* = (CF, 0 Z3") = Z], % 2,

H((Dn,a)* Za) = Ly 4y X (87)
HA(C % ™) Za) = Ly X (88)

(Dn)* = (Cn X ZQ/VIVT)* = Zn X Z2’
HA((Dn)*, Za) = Zna2) ¥ Ly (89)

’Hz((cn X zszT)*, Za) = Zna2) X
Con)" = (Cox Z) =2, x 7] (90)

Hz(zn X ZzT’ Za) = Z(n,a,Z) X Z(Z,a) X
(Dup)* = (Zy % 22) x 7], o1

HZ((Dn,h)*s Za) = Z(Zn,a,Z) X Z(Z,a) X (92)

T* ~Ay=(Zy x o) % Z3, H* A4, Z4) = L0y X Lg.ays

93)
(T ~Asx 2], H(AsxZ],Z,) = L 4y %
(94)

They are projective representations of group G with coeffi-
cients valued in Z,. Using these results and relation (29), we
obtain the classification of third-order SPT phases for these
(magnetic) point groups G, and various onsite symmetry Gy,
as summarized in Table III.

B. Examples
1. G.=C,

First, we consider point group C,, generated by rotation

R along, e.g., the Z axis. Its second group cohomology is
classified by

Hz(Zm Za) = Z(n,a) (95)

which can be understood as follows. As described in
Sec. IIIC, the second group cohomology H2(Z,,Z,) are
projective representations {w(g, h) € Z,|g, h € Z,} valued in
Zg = {eZHT"’lv € 7}, defined below:

UU® = w(g, h)Ug,, (96)
(g, Ww(gh, k) = w(g, hk)w*'®(h, k). o7

For our group (C,)* ~ Z, with R" = 1, we have

n—1
Up)' =wc,1, wg, =[]o®RR)=e5" ez, (98)
i=1
since U; = 1. Notice that we can always redefine the symme-
try operation by an extra phase factor valued in Z,,,

2
UR—)E”

U, (99)
which leads to equivalence relation

Ve, 2 ve, +n mod a € Z,q, (100)

where (n, a) is the greatest common divisor of integers n and
a. This leads to the second group cohomology formula (95).

Physically, as argued in Sec. Il C, we decorate each C,
rotational axis by a 1D Gy-SPT phase with topological index
vc,. Notice that we can always merge n copies of the same
1D Gy-SPT phases into the rotational axis in a C,-symmetric
manner, without closing the bulk gap. This physically explains
the equivalence relation (100).

Unlike second-order SPT phases in d = 3 which hosts
gapless 1D hinge states, third-order SPT phases in d =3
only support gapless zero modes at the corners of certain
finite systems, which carry projective representation of onsite
symmetry Gy. For example, here for point group G. = C, or
magnetic point group G, = SzTn = {(ST)'I1 <i < 2n}, there
will be protected zero modes at every corner of the finite
system lying on a C, rotatonal axis.
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FIG. 9. Third-order SPT phases with magnetic point-group sym-
metry C, X Z;M M7 With n=2. The topological indices of 1D
Gy-SPT phases are labeled by vg (colored blue, along n-fold vertical
rotation axis R), v¢ (colored red, along twofold horizontal magnetic
rotation axis C), and vge (colored green, along twofold horizontal
magnetic rotation axis RC).

2. G, =C, x 227 and C,,

Next, we consider magnetic point group C,, X ZZM"M‘“T and
point group C, v, which share the same

G ~7,x7]. (101)
Take magnetic point group G, = C, X Z;MVM“T for example:
generated by n-fold vertical rotation R and twofold horizontal
magnetic rotation axis C = M, M,T, it is defined by the

following algebraic relations:
R"=C?>=(RC) =1, (102)

where both C and RC correspond to in-plane (horizontal)
twofold magnetic rotation axes. Its projective representation

Hz(zn X ZZ’ Za) = Z(n,a,Z) X Z(n,a) X Z(2,a) (103)
is characterized by Z,-valued factors
Up)' =g, =& ", (104)
UeUf =we =e'a ", (105)
2 i
UrUc(UrUc)* = wge = e« Vretve), (106)

It is straightforward to show that the solutions to the
factors are

Ve, X Vg, +n mod a € Z(n,a)a (107)
2v0 =0 moda—=— v € Z(n,a,Z)a (108)
2vgc =nvge =0 mod a = Vg € Z(n0,2), (109)

as shown earlier in (84). Physically, they correspond to the
topological index of 1D G(-SPT phases decorated on the C,
rotation axis (vc,, colored blue in Fig. 9), on each horizontal
C axis (v¢, colored red in Fig. 9), and on each horizontal RC
axis (vgc, colored green in Fig. 9), as shown in Fig. 9.

Clearly, there are robust corner states at each intersection
of the surface with the three types of rotation axes: vertical
n-fold rotation R, horizontal twofold magnetic rotation C and
RC. All these corner states are protected by onsite symmetry
Gy and are robust against disorders and crystal distortions.

Compared to magnetic point group C, % ZZM"MhT, the
point group G, = C, case is different. In addition to n-fold
vertical rotation axis R, it also has vertical mirror planes M,
and RM,. Although the Kiinneth formula (85) yields the same
outcome as the magnetic point group in (84), the factors have
different meanings. While v, still labels the topological index
of 1D Gy-SPT phase decorated on the vertical C, rotation axis,
ve and vge correspond to weak crystalline SPT indices. They
characterize whether each 2D mirror plane, M, and RM,,
are 2D SPT phases protected by mirror and Gy symmetries.
Although there can be gapless boundary states if mirror
symmetry is preserved by the surface, they are generally not
stable against perturbations breaking the mirror symmetry on
the surface.

3.G. =T

Point group 7 is generated by twofold rotations R, ; along
¥ and Z axes, as well as threefold rotations Rz along (111) axis:
T = {RYR“RY iy, € 2, i5 € Z3). (110)

The group multiplication rules are set by the following alge-
braic identities:

(R’ = (R) = (R,\R) = (R3)* =1, (111)

RRR;' =RR;, R:R,R;' =R.. (112)

Its projective representation is determined by the following
phase factors:

(Ur,)" = (Ur)" = (UnUr) = r = 5 € Z,, (113)

(Ur,)’ = w3 = 5V € Z,,. (114)
It is straightforward to show that
V3~ v3+3 mod a= v; € Zy3), (115)
vy =—V; mod a= v € Zy2), (116)
leading to the group cohomology classification
HAT* ~ A4, Zo) = T3y X Loy (117)

As shown in Fig. 10, the T-symmetric third-order SPT
phases are constructed by decorating all four of the threefold
axes (green in Fig. 10) by 1D G(-SPT phases with topological
index v3 € Z3 4, and decorating all three of the twofold axes
(red in Fig. 10) by 1D G,-SPT phases with topological index
vy € Z(Z,a)~

Now, we discuss Gy symmetry-protected corner states in
the system. If the surface intersects with any of the twofold or
threefold axes, it will host gapless corner modes protected by
onsite symmetry Gy at the intersection. Generally the projec-
tive representations for corners on the twofold and threefold
axes will be different. Take a spin-1 system with Gy = SO(3)
symmetry, for example, there will only be gapless spin-%
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\

FIG. 10. Third-order SPT phases with point-group symmetry 7.
They are constructed by decorating the four threefold axes (green)
with 1D Gy-SPT phases with topological index vs;, and the three
twofold axes (red) with topological index v,.

modes at each corner on the %, y, and Z axes, but not on the
(111) axis.

4. G£=Th=TXZZI
Finally, we consider the point group 7}, which is a direct
product of group T and the rank-2 group ZZ generated by
inversion Z. In addition to algebraic relations (111) and (112),
we also have

7* =1, (118)

IR, I ' =Ry, a=y,13. (119)

This leads to three more phase factors, in addition to ws 3
considered in G, = T case:

UrU] = o) = efe v, (120)
UrUi Ur'Up! = g = %%, (121)
UrUs U U = ws = e™a . (122)

It is straightforward to show that w4 5 = 1, and
2v,=0 moda= v, €Zpq, i=1,2,3 (123)

This results in the second group cohomology classification

HA(T ~ Ay x 2] La) = Ly . (124)

Physically similar to G, = T case discussed earlier, v; 3 still
correspond to the topological indices of 1D Gy-SPT phases,
assigned along the two types of high-symmetry axes (and their
symmetry-related partners) colored by red (with index v,) and
green (with index v3) as shown in Fig. 11. As a result, if the
surface of an open system intersects with one of these axes, it
will host gapless corner modes protected by onsite symmetry
Gy. A difference between this case and the previous G, =T
example is that due to inversion symmetry, each 1D SPT phase
decorated along a high-symmetry axis must be its own inverse
phase, leading to w; = @} = £1.

-] - - - -
\

! [ — E—

T rm=m—_—-—--

FIG. 11. Third-order SPT phases with point-group symmetry 7j,,
classified by three topological invariants v; ;3. Among them, v 3
correspond to the topological indices of 1D G(-SPT phases along the
two types of high-symmetry axes colored by red and green, while
v1 + v, labels whether each mirror plane (perpendicular to red axis)
is a 2D SPT protected by both mirror and onsite symmetry Gj.

Meanwhile, v; has a slightly different physical meaning.
Notice that there are three mirror planes associated with
mirror reflection symmetry M, = ZR,, for ¢ = x, y, z. Since
each mirror symmetry serves as an onsite Z, symmetry within
its 2D mirror plane, the projective representation of the mirror
symmetry

UMHUX/(& = UIUI:QU;URD, = wiwy € Z(Q’a) (125)
corresponds to whether each 2D mirror plane is a SPT phase
protected by both Z, mirror symmetry and onsite symmetry
Gy. In other words, w;w, = £1 labels whether the mirror
domain wall within each mirror plane is decorated by a 1D G-
SPT phase or not. Therefore, w;w; is an index for weak crys-
talline SPT phases, and generally does not host corner/hinge
modes robust against small mirror-breaking perturbations.

VII. DISCUSSIONS

In summary, to understand the HOSPT phases of inter-
acting bosons with robust symmetry-protected corner/hinge
states, we provide a physical picture based on dimensional
reduction analysis and a classification and construction based
on the Kiinneth formula of group cohomology. These strong
HOSPT phases support topological boundary excitations ro-
bust against general perturbations such as disorders and crys-
talline distortions, and should be differentiated from weak
crystalline SPT phases whose surface states are protected
by crystalline symmetries. Focusing on the case where the
total symmetry G = G, x Gy is a direct product of crys-
talline symmetry G, and onsite symmetry Gy, we show
that a (k 4 1)th-order SPT phase in d spatial dimensions
can be built from Gy-SPT phases in (d — k) dimensions,
and is fully classified within group cohomology formula
HM(GE, HIH14(Gy, U(1))). Based on a decorated domain-
wall picture for this group cohomology formula, we show
how to explicitly construct a HOSPT phase using lower-
dimensional SPT phases as building blocks.
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To conclude, we briefly discuss the limitations of the
group cohomology classification (1) of HOSPT phases from
Kiinneth formula. One implicit assumption for the above
classification is that the local Hilbert space always forms
a linear representation of the total symmetry group. If we
consider the local Hilbert space S(a) at a high-symmetry
Wyckoff position ¢, such as the Cy rotation center in Fig. 2, the
local Hilbert space should also preserve the “local symmetry”
G.(a) = C4 in addition to the onsite symmetry Gy. In the
group cohomology classification (1), we always require such
a local Hilbert space S(«) to form a linear representation
of local symmetry G.(«) x Gy. In particular, the local crys-
talline symmetry operations in G.(«) must commute with
all onsite symmetry in Gy. Failure of this requirement [i.e.,
projective representations of local symmetry G.(«) x Go]
may lead to even more interesting consequences, such as Lieb-
Schultz-Mattis theorems forbidding a short-ranged-entangled
ground state [37], which are beyond the description of
formula (1).

One natural direction to expand this work is to go beyond
a direct product of onsite and crystalline symmetries, and
to consider the HOSPT phases with a generic symmetry

group. While the Kiinneth formula does not simply apply
for a generic symmetry group, the dimensional reduction
arguments appear to remain valid. Another interesting direc-
tion is to use the same approach to study HOSPT phases of
interacting fermions. We leave these for future works.

Note added. Recently, we became aware of two indepen-
dent works which studied the general classification of crys-
talline SPT phases (with onsite and crystalline symmetries)
using spectral sequence: one by Else and Thorngren [55], and
one by Qi and Fang [56]. Their works have partial overlaps
with this work.
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