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Summary
Understanding the adaptive capacity of ecosystems to cope with change is crucial to management. 
However, unclear and often confusing definitions of adaptive capacity make application of this 
concept difficult. In this paper, we revisit definitions of adaptive capacity and operationalize the 
concept. We define adaptive capacity as the latent potential of an ecosystem to alter resilience in 
response to change. We present testable hypotheses to evaluate complementary attributes of 
adaptive capacity that may help further clarify the components and relevance of the concept. 
Adaptive sampling, inference and modeling can reduce key uncertainties incrementally over time 
and increase learning about adaptive capacity. Such improvements are needed because uncertainty 
about global change and its effect on the capacity of ecosystems to adapt to social and ecological 
change is high.
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Introduction
Future global environmental sustainability requires research that integrates human-nature 
interactions with sustainable practices to foster ecosystem regimes that are desirable (Kates 
et al. 2011). Ecosystems are subject to stresses (increasing intensification of agriculture, 
increasingly over-appropriated water supplies, and climate change), and these stresses are 
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dangerously approaching the planetary boundaries of sustainable use of natural resources 
(Rockström et al. 2008). The ability of ecosystems to adapt to these changes is limited. 
Eventually, ecosystems may undergo regime shifts (for definition of terms in italics see 
Box1) to alternate species assemblages and ecosystem functioning at local, regional, and 
even global scales (Hughes et al. 2013). The outcomes of regime shifts are highly uncertain, 
potentially having substantial negative effects on human health, security and welfare 
(Horner-Dixon 1991; McMichael et al 2008). Therefore, it is important to determine the 
capacity of ecosystems to adapt to swiftly-changing social-ecological baselines towards a 
future without historical analogue, and how management and conservation can contribute to 
this adaptation.

The concept of adaptive capacity has been rapidly assimilated in the social sciences and 
transdisciplinary social-ecological research (Gunderson 2000; Folke et al. 2003), with 
multiple attempts made to formalize its meaning. Adaptive capacity is related to resilience 
(Holling 1973) and panarchy (Gunderson and Holing 2002), which has taken center stage in 
the effort to understand ecosystem dynamics during change. The concept of adaptive 
capacity has, in parallel with the transdisciplinary development of resilience theory, helped 
to diversify the meanings and definitions of systems undergoing change (Gallopín 2006). 
Adaptive capacity has been mainly used qualitatively in climate change, vulnerability and a 
risk/disaster management context in the social sciences and varies between different contexts 
and systems (Adger et al. 2007). Similarly, in the ecological sciences, adaptation, 
adaptedness, adaptability and adaptive capacity, terms with different meanings, have often 
been used interchangeably (Gallopín 2006, Smit and Wandel 2006). Consequently, 
operationalizing the concept of adaptive capacity, and by extension resilience theory for 
application and management, has been difficult, because of a loss of clarity and loose, 
incorrect and often normative use of these disparate concepts (Brand and Jax 2007; Angeler 
and Allen 2016). Misuse of terms can have significant negative impacts, because resilience 
and adaptive capacity are being used to help guide responses to natural disasters. Further, 
assessments of ecosystems that drive international research priorities depend on a 
comprehensive understanding of these concepts (Smit and Wandel 2006).

Because the concept of adaptive capacity is muddied with multiple meanings, its current use 
often makes it indistinguishable from resilience. In this paper, our goal is to clearly define 
the concept of adaptive capacity in ecosystems with the aim of differentiating it from similar 
concepts, particularly ecological resilience. Since approaches for operationalization and 
quantification of these concepts are needed, we describe components of adaptive capacity in 
ecosystems and discuss how they might mitigate and direct ecological response to ongoing 
environmental change. Further, we identify a research agenda to test hypotheses related to 
adaptive capacity and the ability of ecosystems to cope with environmental change.

Definitions and formalization
Much of the terminology and definitions used in the ecological adaptive capacity context has 
a Darwinian adaptation focus on species and populations. This is reflected in the currently 
most comprehensive definition of adaptive capacity (Beever et al. 2015; Nicotra et al. 2015). 
These authors define adaptive capacity for species and populations as a combination of 
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evolutionary potential, dispersal ability, life-history traits and phenotypic plasticity, which 
are influenced by genetic, epigenetic, and behavioral and acclimation processes.

This definition is well aligned with the broad use of the term adaptation in ecology, which is 
defined as an organism’s ability to cope with environmental changes in order to survive and 
reproduce (Smit and Wandel 2006). The term adaptation itself is often used interchangeably 
with the term adaptability, which, as defined in biology, means the ability to become 
adjusted and to live and reproduce under a certain range of environmental conditions 
(Conrad 1983). Another term, adaptedness, has a more specific meaning than adaptation or 
adaptability. Dobzhansky (1968) defined adaptedness as the adaptive traits (structure, 
function and behavior of an organism) that are crucial for an organism to thrive in an 
environment. Adaptedness embraces species- or population-specific adaptation to a certain 
range of environmental conditions. Adaptedness is therefore context dependent and not a 
generic property as adaptability or adaptation would suggest. That is, high adaptedness does 
not necessarily mean high adaptability because a species may be highly adapted to a special 
and constant environment but have little capacity to adapt to other environments or to 
changes in its environment (Gallopín 2006). For example, a cold-stenothermic mayfly may 
thrive in an arctic stream, but it does not have the necessary adaptation to live in tropical 
lakes or to keep pace with warming of the arctic stream environment. Adaptedness can be 
tested through reciprocal transplant experiments to assess phenotypic fitness to local 
ecological niches.

Despite the dominant focus of adaptive capacity on lower levels of biological hierarchical 
organization in the literature, the term is increasingly used as an ecosystem property, 
recognizing that the ability of ecosystems to cope with disturbances is limited and that 
regime shifts can occur. Gunderson (2000) defined adaptive capacity as a system property, 
where adaptive capacity modifies ecological resilience (or “basin of attraction”). This 
definition is very similar to the earlier definition of ecological resilience: “Resilience is a 
measure of the persistence of systems and of their ability to absorb change and disturbance 
and still maintain the same relationships between populations or state variables” (Holling 
1973).

Underlying ecological resilience is the capacity of ecosystems to undergo regime shifts, 
meaning that ecosystems can exist in more than one regime (Holling 1973). Gunderson and 
Holling (2002) defined ecological resilience as “the magnitude of disturbance that can be 
absorbed before the system changes its structure by changing the variables and processes 
that control behavior”. Similarly, in a recent overview of resilience definitions, Angeler and 
Allen (2016) refer to ecological resilience as “a measure of the amount of change needed to 
change an ecosystem from one set of processes and structures to a different set of processes 
and structures”.

Ecological resilience encompasses broader systems dynamics by considering both 
adaptation within, and shifts between, alternative basins of attraction (i.e., alternative 
regimes). The distinction between single vs multiple regimes helps distinguish adaptive 
capacity from ecological resilience. Adaptive capacity focuses on dynamics within a specific 
regime, and therefore adaptive capacity is a subset of ecological resilience, which is 
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explicitly concerned with dynamics both within and between regimes. Thus, similar to the 
view of Gunderson (2000), ecosystem adaptive capacity can be formalized and defined as 
follows (Figure 1, Box 1): Adaptive capacity is the latent potential of an ecosystem to alter 
resilience in response to change. In particular, adaptive capacity is the capability of an 
ecological system or other complex system to alter its basin of attraction in response to 
change such that the current regime is maintained.

Considering adaptive capacity as a subset of ecological resilience has applied relevance. 
Research is increasingly focused on the assessment of early warning signals of impending 
regime shifts (e.g., Dakos et al. 2015; Spanbauer et al. 2014, 2016), with the goal of 
employing management intervention if appreciable signals are detected (Batt et al. 2016). 
Although such studies implicitly consider an exhaustion of adaptive capacity, underlying 
mechanisms are not fully accounted for. However, scrutinizing adaptive capacity may 
provide such a mechanistic understanding. We discuss components of adaptive capacity and 
forward hypotheses to test these.

Components of adaptive capacity
Adaptive capacity as a latent potential of ecosystems is comprised of components that are 
dynamically interlinked (Table 1):

Ecological memory
The composition and distribution of organisms, their interactions in space and time and their 
life-history experience with environmental fluctuations contribute to ecological memory 
(Nyström and Folke 2004). Ecological memory has been defined as “the capability of the 
past states or experiences of a community to influence the present or future ecological 
responses of the community” (Zhong-Yu and Hai 2011). Specifically, ecological memory 
comprises all structural and functional features of ecological communities, which have been 
shaped by the interaction of past disturbances (natural and anthropogenic), spatial aspects 
(dispersal, habitat connectivity), biological interactions (competition, predation), 
evolutionary (speciation, extinctions, anagenesis, random mutations) and phylogenetic 
processes. This memory of ecological communities allows for a “learning process” 
(Carpenter et al. 2001). From this learning at the community level patterns and processes 
emanate, which enable ecosystems to prepare for and respond to future disturbances. This 
highlights that aspects of ecological memory compartmentalize by scales of space and time. 
Adaptive capacity explicitly accounts for pattern-process relationships of ecological memory 
that operate within and across the hierarchy of biological organization (i.e., they contribute 
to cross-scale resilience) (Table 1).

Cross-scale interactions
Ecosystems are hierarchically organized and have distinct patterns of structure, function, and 
processes that are compartmentalized by spatiotemporal scales. Considering cross-scale 
interactions is important because the impact of disturbance in ecosystems can be scale-
specific (Pickett & White, 1985; Nash et al., 2014). That is, if disturbances affect 
components of ecological memory at one scale, other components at other scales might 
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buffer the disturbances in the entire ecosystem to maintain functioning and resilience 
(Peterson et al., 1998; Allen et al., 2005; Allen & Holling 2008). This buffering ability is 
critical to the understanding of the latent potential of adaptive capacity because it can be 
expected that adaptive capacity to absorb disturbances and maintain ecosystem regimes 
increases with the buffering ability conferred through cross-scale interactions. This buffering 
ability can be further explored through assessments of functional ecosystem characteristics.

Ecological functioning
Ecosystem reactions to disturbances, including buffering, rely on functional responses to 
perturbations, which in turn depends on the diversity of traits (e.g., reproductive phenology, 
seed bank potential, colonization and dispersal abilities [functional diversity]) that provide a 
range of response patterns to disturbances (i.e., response diversity) (Elmqvist et al., 2003). A 
recent study on coral-reefs (Nash et al. 2016) and a meta-analysis of forest resilience (Cole 
et al. 2014) support the importance of response diversity and cross-scale resilience after 
disturbances. Additionally, response-effect trait patterns and ecological network structure 
influence response diversity and ecosystem service provisioning (Mori et al. 2013, Oliver et 
al. 2015, Schleuning et al. 2015). In addition to diversity, redundancies of functional traits 
(functional redundancy) are important to stabilize processes (e.g., primary production, 
decomposition) and feedbacks, and therefore contribute to the resilience of an ecosystem 
(Folke et al. 2004). Assessing the distribution, diversity and redundancy of functional traits 
within and across spatiotemporal scales can therefore be used as a measurable surrogate for 
adaptive capacity, and may provide an indicator of the erosion of adaptive capacity as a 
result of environmental change (Laliberté et al. 2010). Important in such assessments is the 
consideration of rare species.

Rare species
Mouillot et al. (2013) found that rare species in alpine meadows, coral reefs, and tropical 
forests supported functional trait combinations that were not represented by abundant 
species. This suggests that if rare species go extinct with ongoing environmental change, 
negative effects on ecosystem processes may ensue with a subsequent loss of adaptive 
capacity. Such effects may occur even if biodiversity associated with abundant species is 
high (Mouillot et al. 2013).

The importance of rare species is also evident in their ability to replace dominant species 
after perturbation and maintain ecological functions in the system, which in turn contributes 
to ecological resilience (Walker et al.1999). For instance, rare shrub species with larger root 
crowns than dominant species were able to compensate for the loss of dominant shrub 
species to mechanical disturbance by re-sprouting prolifically, thus maintaining a shrub-
dominated system despite disturbance (Wonkka et al. 2016). This example shows that rare 
species may contribute an important but, to some extent, unpredictable degree of adaptive 
capacity to ecosystem change.
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Assessing adaptive capacity
The integration of scales, and functional and structural features between abundant and rare 
species offers a means to assess adaptive capacity. Resilience assessments have used 
discontinuity approaches to objectively identify the scaling structure present in ecosystems 
(Angeler et al., 2016). The discontinuity analyses have so far shown promising results in 
assessing resilience of aquatic and terrestrial ecosystems (Angeler et al. 2016) and also other 
complex systems (economic, anthropological, social-ecological; Garmestani et al. 2005; 
Garmestani et al. 2009; Sundstrom et al. 2014). Discontinuity analysis may therefore also be 
useful in assessing the adaptive capacity of ecosystem regimes. The implementation of this 
approach will be examined from an adaptive capacity assessment point of view.

Because information about ecosystems is frequently limited adaptive capacity can be 
assessed following a recently proposed hypothesis-testing framework for quantifying 
ecological resilience (Baho et al. 2017). This evaluation comprises initial assessments of 
specific facets of adaptive capacity and then tests and recalibrates hypotheses iteratively to 
increase knowledge and provide learning opportunities about its general adaptive capacity.

Surrogates of adaptive capacity can be evaluated using simple measures of ecological 
stability (resistance, persistence, variability, and engineering resilience) (Donohue et al. 
2013), biodiversity (Magurran 2004), and resilience (Angeler et al. 2016). The stability 
aspects can be evaluated for structural and functional variables (e.g., diversity, abundance, 
evenness, community composition, functional redundancies and diversity and process rates) 
within and across scales.

The initial step for quantifying adaptive capacity builds on Carpenter et al. (2001) to test for 
the “adaptive capacity of what to what”. However, testing for specific aspects of adaptive 
capacity may not be representative of the general adaptive capacity of an ecosystem. This is 
because there is limited surrogacy of metrics when assessing ecological responses to 
stressors (Johnson and Hering 2009). In addition, focusing on specified adaptive capacity 
can be problematic because managing adaptive capacity of particular parts of an ecosystem, 
especially in terms of managing for predictable outcomes of disturbances or provision of 
ecosystem services, may cause the system to lose adaptive capacity or resilience in other 
ways (Carpenter et al., 2015). Specified assessments of adaptive capacity shall therefore be 
regarded as an initial step towards assessing the broader systemic or general adaptive 
capacity of an ecosystem.

It follows that assessing and managing for general adaptive capacity will require the 
simultaneous assessment of a range of variables to cover generic system properties and 
create possibilities for integral, resilience-based ecosystem management, which is difficult 
for most ecosystems.

Hypothesis testing to clarify adaptive capacity concepts
We suggest that this problem can be overcome by implementing adaptive monitoring and 
management. For this purpose, posing hypotheses that test premises of adaptive capacity are 
helpful (Table 2). We propose hypotheses that are not mutually exclusive and are well 
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aligned with our adaptive capacity definition, allowing for the evaluation of its attributes in a 
logical, iterative sequence. These hypotheses can be tested using quantifiable stability and 
resilience measures (Angeler et al., 2016) based on multiple lines of evidence (e.g., taxa 
across distinct trophic levels; Burthe et al., 2016). Most hypotheses can be framed 
specifically from a management perspective to facilitate the quantification of adaptive 
capacity without sacrificing the complexity inherent in management-related assessments. 
Also, most of our proposed hypotheses are supported by empirical observations (examples in 
Table 2), suggesting implementation of our quantification framework with ecological 
realism.

Hypothesis testing is carried out sequentially, which first objectively identifies key species in 
ecosystems that might serve as sentinels of system change (Angeler et al. 2016a). Next, 
sampling can be adapted to select appropriate spatial and/or temporal scales for monitoring 
to account for the cross-scale structure present in the system (Thompson and Seber 1996). 
This can contribute to pattern identification following population responses of sentinel 
species to disturbances. Incorporation of genetic, evolutionary, molecular and physiological 
variables and the measurement of process rates in monitoring can increase inference about 
ecosystem change, providing information for recalibration of management hypotheses. 
Monitoring can be refined by subsequently recalibrating hypotheses in an adaptive process 
that first focuses on reducing Type II errors (identifying false negatives) prior to reduce 
uncertainty sufficiently such that subsequent analyses can focus on Type I error (identifying 
false positives) reduction (adaptive inference, Holling and Allen 2002). Type II errors can be 
reduced by assessing adaptive capacity attributes (e.g., cross-scale and within scale structure 
and associated functional diversity redundancy) when ecological information of the 
ecosystem is limited. This can be done with the analysis of temporal snapshots, which are 
often the only resource available to managers. Subsequently, monitoring can be designed, 
implemented and sequentially modified to successively reduce Type I errors; that is, by 
improving knowledge of a broader range of adaptive capacity characteristics that need to be 
sampled over time (e.g., how fast is recovery after a disturbance). Such recalibrations can 
target functional assessments of sentinel species to change and, in further iterations, be 
extended to other taxa. This type of hypothesis testing builds on adaptive management 
(Allen et al., 2011), sampling (Thompson and Seber 1996), modeling (Uden et al., 2015) and 
inference (Holling & Allen, 2002). It allows revealing, refining, understanding and 
ultimately managing general ecosystem adaptive capacity, while increasing learning and 
reducing uncertainty. In this process, experiments can be designed that sequentially 
recalibrate strategies based on the outcomes of previous experiments and from which 
decisions about further data generation and monitoring can be made (Figure 2).

Managing adaptive capacity
Our suggested hypotheses are very general at this stage, but they can provide an initial step 
to inform management. First, managing for adaptive capacity may help maintain ecosystems 
in a regime desirable for humans (Allen et al. 2011). In this case maintaining adaptive 
capacity is fundamental for managing ecosystems away from critical thresholds (Batt et al. 
2016). Crucial to managing for adaptive capacity is the consideration of cross-scale 
interactions across hierarchical levels and temporal scales. Upholding our premises while 
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testing hypotheses iteratively can be useful for designing management interventions to foster 
the adaptive capacity of a specific desired regime. A combination of ecological and 
technological approaches might be necessary to this end (Rist et al. 2014). Some of these 
approaches, e.g. assisted translocations or introductions of species invasions to compensate 
for lost crucial functions in an ecosystem (Chaffin et al. 2016b), are debated and thus 
potentially limited in their application to management. Second, when an ecosystem is in an 
undesired regime, management can reduce adaptive capacity, induce a shift towards a more 
desired regime and foster the adaptive capacity of this new regime (Chaffin et al. 2016a) 
(Figure 2). There is, for instance, a rich body of literature on lake biomanipulation, which 
exemplifies transformation of degraded lakes into more desirable systems (Hansson et al. 
1998).

The biomanipulation example is useful because while it offers possible management options, 
it also highlights potential limitations when managing for adaptive capacity. Lake 
biomanipulation has adopted a series of management interventions, based on ecological 
(food web manipulations) and technological interventions (water column aeration, sediment 
dredging or lining, nutrient precipitation). However, lessons from biomanipulation have 
shown that these solutions can incur short- to long-term costs that may not be tenable for 
most systems.

It is clear that a series of ecological, resource and ethical issues may currently complicate 
the translation of a solid body of theory on adaptive capacity to its management on the 
ground. Current environmental policy further limits the implementation of resilience to 
management (Green et al. 2015).

Conclusion
This paper suggests a way forward to enhance our ability to explicitly define and reduce 
uncertainties and promote more holistic and effective modeling, management and 
monitoring of adaptive capacity. In addition to testing premises and hypotheses of adaptive 
capacity, defining highly-related concepts will aid in continuing toward operationalizing 
adaptive capacity. For instance, although we have defined how adaptive capacity relates to 
the width of the basin of attraction in the iconic ball-and-cup heuristic, methods for defining 
the actual basin of attraction are few and lack rigorous testing (Gunderson et al. 2000). 
Estimating the basin of attraction would allow estimates of adaptive capacity to move 
beyond point estimates comparable only between subsequent measures and toward a direct 
estimate of adaptive capacity relative to the system’s potential adaptive capacity (Carpenter 
et al. 2001). Defining the basin of attraction would also allow the buffer that the current level 
of adaptive capacity provides against system transformations to be estimated, and it would 
allow transformative elements (e.g. invasive species) to be distinguished from elements that 
contribute to adaptive capacity (e.g. rare species; Elmqvist et al. 2003, Folke et al. 2010). 
However, new methods for detecting spatial regimes and discontinuous resource 
aggregations show promise for delineating basins of attraction in space and over time 
(Angeler et al. 2016, Allen et al. 2016, Sundstrom et al. 2017).

Angeler et al. Page 8

Adv Ecol Res. Author manuscript; available in PMC 2020 January 06.

EPA Author M
anuscript

EPA Author M
anuscript

EPA Author M
anuscript



Uncertainty will not be eliminated completely or immediately, but it can be reduced 
incrementally while an ecosystem is monitored, modeled and managed over time. Explicit 
learning during this process can overcome common management problems, such as delayed 
action under uncertainty (Conroy et al., 2011), prioritization of limited financial resources 
(Stewart-Koster, Olden & Johnson, 2015), and the limited coordination in governance of 
natural resources (Cumming et al., 2013). Such improvements are needed because of 
uncertainty about global change impacts on an ecosystem’s ability to absorb disturbances. 
An improved understanding of adaptive capacity can ultimately help to facilitate ecosystem 
management within current ecological, economic and ethical constraints. Our approach to 
assess adaptive capacity provides insight into the challenges to account for ecological 
complexity in ecosystem management. It particularly highlights enormous resource needs to 
the practical implementation and pinpoints persistent problems for closing gaps between 
science, policy, and management (Garmestani and Benson 2013).
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Box 1.

Definitions

Adaptive capacity

Latent property of an ecological system (or other complex system) to respond to 
disturbances in a manner that maintains it within its current basin of attraction by altering 
the depth and/or breadth of that basin (Figure 1).

Contrasted with

Adaptation
Alterations in the structure or function of an organism due to natural selection by which 
the organism becomes better fitted to survive and reproduce in its environment

Adaptability
ability to become adapted to live and reproduce under a particular range of environmental 
conditions

Adaptedness
adaptive traits (structural, functional, and behavioural), that are necessary for an organism 
to thrive in a particular environment

Ecological Resilience
ecological resilience is the capacity of a system to absorb disturbance to avoid a regime 
shift (multiple equilibrium focus), and a measure of the amount of disturbance a system 
can withstand before collapsing.

Engineering Resilience
return time to equilibrium after disturbance

Alternative State/Regime
a potential alternate configuration in terms of the structural and functional composition, 
processes, and feedbacks of a system

Basin of Attraction (stability domain)
configuration in terms of the abundance, composition, and processes of a system in which 
the system tends to remain

Cross-scale Resilience
resilience in ecological systems is enhanced when functional traits are diverse within 
scales and reinforced across scales

Ecological Memory
The collective representation of functional and structural attributes in an ecosystem that 
has been shaped by the systems disturbance history
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Stability
Stability is a system characteristic whereby system variables remain unchanged following 
disturbance. Adaptive capacity can increase stability, but system components can 
fluctuate (therefore being unstable) while still remaining within the range of values that 
signify a particular state, and therefore, a system can be somewhat unstable while still 
possessing high adaptive capacity

Persistence
duration of species existence before it becomes extinct (either locally or globally)

Resistance
the external force or pressure needed to displace a system by a certain amount.

Variability
inverse of ecological stability; fluctuation in ecosystem parameters over time.

Functional Diversity
Diversity of reproductive phenology, seed bank potential, colonization and dispersal 
abilities, and other traits. This can enhance adaptive capacity by increasing functional 
redundancy and response diversity (see below).

Functional Redundancy
Existence of more than one species or process delivering the same ecological function. 
This contributes to adaptive capacity in ecosystems by providing buffering for loss of 
function due to extinction.

Response Diversity
Response diversity is variability in combinations of traits that provides a range of 
response patterns to disturbances and therefore increases the overall adaptive capacity in 
the system.

Regime Shift
persistent change in structure, function, and feedbacks of an ecosystem
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Figure 1: 
Schematics illustrating high (A) and low (B) adaptive capacity. Adaptive capacity as a latent 
potential is shown by the dotted lines and the lengths of arrows that surround the basins of 
attraction that represent ecological resilience (left drawings). Drawings on the right show 
how high and low adaptive capacity can translate in rebound or a regime shift after a 
disturbance.
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Figure 2: 
Reiterative testing, recalibrating, and refining of explicit hypotheses of adaptive capacity 
within an adaptive management, inference and modeling framework. The approach first 
recognizes patterns (reducing risk of type II error) and then refines knowledge about patterns 
reiteratively (reducing risk of type I error) to meet adaptive or transformative management 
objectives and reduce uncertainty.
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Table 1:

Factors that contribute to ecological memory and that mediate adaptive capacity across different scales of 
biological organization. Note: the table is not exhaustive and meant only to highlight the complexity of factors 
influencing adaptive capacity.

Hierarchy of organization and selected traits

• Sub-individual

 ○ Matching physiological conditions to fluctuating inputs or internal demands (allostasis) (Carpenter and Brock, 2008).

 ○ Genetic, epigenetic and molecular processes (e.g., mutation).

• Individual

 ○ Phenotypic plasticity.

 ○ Learning and dispersal ability.

 ○ Behavior

 ○ Adaptive evolution related to genetic diversity and evolutionary rates.

 ○ Links between life-history traits, phenotypic plasticity, and evolutionary potential.

• Population

 ○ Heritable life history characteristics: generation time, reproductive capacity, migration, habitat selection, genome size, survival 
characteristics (resting stages; hibernation, estivation), generalist vs. specialist species.

 ○ Population structure.

 ○ Metapopulation dynamics.

• Community

 ○ Taxonomic diversity.

 ○ Functional diversity (redundancy, response diversity).

 ○ Strength of species interactions.

 ○ Metacommunity dynamics (colonization and dispersal abilities).

 ○ Founder effects.

 ○ Priority effects.

 ○ Dormancy (resting eggs and propagule banks) and bet-hedging strategies.

• Ecosystem

 ○ Interaction of and connection between abiotic and biotic elements in feedback loops (balancing and reinforcing or negative and positive).

 ○ Changing shapes of basin of attraction/stability landscape (topography, soils, landforms)

• Biome

 ○ Biogeographical distributions of native an invasive species.

 ○ Phylogenetic dynamics.

 ○ Evolutionary, disturbance and climate histories.
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