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Drug repositioning has drawn significant attention for drug development in pharmaceutical research and in-
dustry, because of its advantages in cost and time compared with the de novo drug development. The availability
of biomedical databases and online health-related information, as well as the high-performance computing,
empowers the development of computational drug repositioning methods. In this work, we developed a sys-
tematic approach that identifies repositioning drugs based on heterogeneous network mining using both phar-
maceutical databases (PharmGKB and SIDER) and online health community (MedHelp). By utilizing adverse
drug reactions (ADRs) as the intermediate, we constructed a heterogeneous health network containing drugs,
diseases, and ADRs, and developed path-based heterogeneous network mining approaches for drug re-
positioning. Additionally, we investigated on how the data sources affect the performance on drug repositioning.
Experiment results showed that combining both PharmKGB and MedHelp identified 479 repositioning drugs,
which are more than the repositioning drugs discovered by other alternatives. In addition, 31% of the 479 of the

discovered repositioning drugs were supported by evidence from PubMed.

1. Introduction

Over the past decades, de novo drug development has become costly
and time-consuming, with the success rate of less than 10% [1] despite
the increasing investment in R&D and the progress in life science and
technology [2]. The number of newly developed drugs that can enter
preclinical tests and clinical trials has gradually declined [3] and the
number of newly approved drugs has not kept up with the consistent
increases in pharmaceutical R&D spending. In light of these challenges,
drug repositioning receives increasing attention from both academia
and pharmaceutical companies, becoming an alternative and promising
way for drug development. Drug repositioning has contributed about
30% of the new FDA approved drugs in recent years [4] for instance,
repositioning drugs accounted for 20% among 84 new drugs brought to
market in 2013 [5].

Drug repositioning is the application of discovering new indications
for existing drugs [6] and plays a key role in drug development and
healthcare industry. Supported by governments, nonprofit organiza-
tions and academic institutions, and under the economic incentives, a
number of drug repositioning studies have been conducted and
achieved various degrees of success [7]. One notable example of suc-
cessful drug repositioning is about Gabapentin, which was initially
developed for epileptics but was found to be effective for treating
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anxiety disorders and neuropathic pain [8]; another example is Pler-
ixafor, which was initially developed as an inhibitor of HIV but was
repurposed as a stem cell mobilizing drug later [9]. However, most of
the successful stories are owing to serendipity. Hence, there is a desire
of a systematic approach of drug repositioning.

Compared with the traditional drug development from molecule to
product, drug repositioning is more time- and cost-efficient, accel-
erating drug discovery process. By estimation, it usually takes ten to
twelve years to develop a new drug to market, and it costs drug com-
panies an average of $1.2 billion — as high as $5 billion-before a drug
available for sale [3]. On the other hand, the repositioned drugs have
already been validated by pharmaceutical and toxicological tests. The
time and cost in the early-stage development and the risk of failure are
reduced significantly. For instance, the time of introducing a reposi-
tioned drug to market could be shortened to three years [10]. The other
advantages of drug repositioning embody in its potential for cancer,
orphan diseases, and personalized medicine. Due to the high demand
for anti-cancer drugs and the limited efficacy in current anti-cancer
drug development, drug repositioning has been a promising and ef-
fective way for searching anti-cancer therapeutics [11]. Due to the
limited attention and investment for orphan and rare diseases, drug
repositioning has been an alternative and important approach to
identify novel therapeutics from known drugs [12]. Beside, advances in
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medical science and technologies enable personalized genomic studies
for each patient and assist to determine the underlying causes of dis-
eases, when possible, repositioned drugs become an efficient option to
provide a personalized treatment [13].

Depending on where the discovery derives from, current computa-
tional drug-repositioning methods can be classified as either disease-
based or drug-based [14]. Disease-based methods usually exploit
knowledge of symptomatology, phenotype and pathology while drug-
based methods mostly utilized the characteristics of drug compounds
such as chemical structures, pharmacological properties and molecular
activities [15]. Since different repositioning methods need different
aspects of information of drugs and diseases, such as genetic, chemical,
pharmacological, clinical, and protein information, multiple data
sources, including Drugs@FDA, Gene Expression Omnibus (GEO),
Pharmacogenomics Knowledge Base (PharmGKB), Side Effect Resource
(SIDER), and DrugBank, have been exploited [2].

In this paper, we adopted the disease-based repositioning strategy
by using adverse drug reactions (ADRs) as intermediary to discover
novel disease-drug relationships. With the capability of profiling phe-
notypic expressions of drugs and converting the physiological con-
sequences, ADR is becoming an important intermediary to connect
drugs with diseases in drug repositioning and have been exploited to
discover new therapeutic uses in some previous studies [16-18]. The
rationale for an ADR-based drug repositioning approach is ADR and
disease are both behavioral and physiological changes in response to
the drug treatment, and if drugs treating a disease share the same ADR,
that ADR may serve as a phenotypic “biomarker” for the disease. In
other words, ADRs and indications of disease have similar phenotypic
expressions because of similar underlying pathways and underlying
mechanism of action (MOA) on human subjects [19]. Therefore, ADR
are sometimes used as the intermediary between drug and disease or
the “biomarker” for diseases in drug repositioning. In addition, con-
sidering the fact that ADRs are substantially under-reported in most
medical systems and databases, it might lead to the insufficiency of
such data sources. In this work, we utilized both social media data and
pharmaceutical databases to extract ADRs and their associations with
drugs and diseases for drug repositioning. We also investigated how the
performance of drug repositioning would be influenced by the choices
of data sources and whether social media data would achieve a better
performance.

2. Literature review

In general, there are two underlying principles of drug re-
positioning. Firstly, drugs are confounding by nature. That means a
drug can be linked with multiple targets and pathways. Secondly, drugs
related to a certain disease may also work on other related diseases due
to connections between diseases [6]. Based on these principles, the
strategies used in systematic drug repositioning could be categorized
into two classes depending on where the discoveries initiate from: (a)
drug-based strategy and (b) disease-based strategy [15]. Besides, the
computational approaches of drug repositioning usually include data
mining, machine learning and network-based analysis [2]. Table 1
provides an overview of current drug repositioning studies.

2.1. Drug-based strategy

Drug-based strategy relies on the pharmacological, chemical,
genomic and biomedical data to infer novel drug uses. This approach is
preferred when rich information about drug characteristics is available
or there is interest or knowledge in understanding how pharmacolo-
gical properties lead to drug repositioning [15]. A majority of the drug-
based strategies hold the assumption that drugs with similar profiles or
structures are likely to share common indications. The most frequently
used features of drug-based strategies include chemical structure and
molecule information [20-24], and genome [25-29].
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Chemical structure and molecule information are valuable sources
for identify similar drugs for repositioning. Keiser et al. [20] integrated
the structural similarity between drug compounds with the knowledge
of drug-target relationships to infer novel drug-target relations. With
drugs represented by a set of compounds and targets by a set of ligands,
the prediction of whether a novel drug-target association is possible
was calculated by the sum of similarities between each compound of
the drug and each ligand of the target. In result, they predicted thou-
sands of novel associations and tested thirty of them experimentally.
Considering the fact that the chemical structures of drugs are so com-
plex that they are not always consistent with the drugs’ function, Tan
et al. [22] developed a new form of “expression profile” for drugs by
integrating chemical structure and gene semantic information to cal-
culate the similarity between drugs. Li and Lu [21] developed a bi-
partite-graph based approach, with the underlying principle that if two
drugs rl and r2 are defined to be similar, and rl is indicated for a
disease d, then r2 could be seen as a repurposing candidate for treating
d. The similarity between drugs combines both the similarity of che-
mical structures and that of target profiles, and the similarity of sharing
target proteins was computed based on a bipartite graph. Zheng et al.
[23] developed a new similarity measurement based on “ensemble”. A
protein is composed of several ligands. The ligands build a set and the
set was seen as an ensemble. Instead of comparing two compounds to
measure their similarity, this method compared a compound with the
whole feature of an ensemble, because the ensemble often covers a
small chemical space with structurally similar compounds. Kinnings
et al. [24] computed the similarity between drugs by summarizing the
transcriptional responses of a drug under multiple treatments, cell lines
and dosages. They constructed a drug network, in which, an edge is
created when two drugs share similar response profiles. A network
partitioning approach was applied to classify the drugs into different
communities and repositioning opportunities were discovered within
each community.

Genome is another valuable source for drug repositioning in drug-
based strategies. Ng et al. [29] introduced the algorithm-ligand En-
richment of Network Topological Similarity (ligENTS) to identify new
drug indications by using drug-target interactions on genome scale.
Meanwhile, as most of the existing algorithms only focus on finding
local neighborhood for drugs, techniques used by ligENTS discover
global relationships between chemicals. Rastegar-Mojarad et al. [30]
used genes as the intermediary between drugs and diseases. They
connected drugs and gene targets with DrugBank as data source and
connected diseases and genes by applying large-scale phenome-wide
association studies. Through these two connections, they inferred
connections between diseases and drugs. Jiang et al. [25] focused on
discovering connections between molecules and miRNAs in cancers
with data coming from cMap [31]. They constructed a Small Molecule-
MiRNA Network (SMirN) to discover new drug candidates. Rukov et al.
[27] connected MiRNAs with drug effects via the pathway of MiR-
NA-gene—drug-drug effect.

2.2. Disease-based strategy

Given the principle that drugs associated to a certain disease or
pathways can also be effective in other related diseases or pathways
[6], disease-based strategy usually exploits disease-related knowledge
such as phenotype (e.g., indication, side effect) and pathology to dis-
cover novel relationships between drugs and diseases. This approach is
preferred when missing pharmacological knowledge or expertise in
drugs, or when repositioning efforts are to be focused on a specific
disease or therapeutic category [32,33].

Indication information is utilized in some disease-based approaches.
For instance, based on the principle that if two diseases, D1 and D2,
share some similar therapies (e.g., drugs), then the drugs that are cur-
rent used for D1 can be seen as a candidate for the treatment of D2,
Chiang et al. [34] applied a “guilt by association” approach to discover
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Table 1
An overview of drug-repositioning studies.
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Drug repositioning strategies

Drug-based strategy Disease-based strategy

Computational approaches Data mining

Machine learning

Network-based analysis

Li and Lu [39]

Okada et al. [28]
Zhu et al. [41]
Rastegar-Mojarad et al. [30]
Zheng et al. [23]
Lamb et al. [31]
Napolitano et al. [43]
Leaman et al. [46]
Keiser et al. [20]
Kinnings et al. [24]
Jiang et al. [25]

Li and Lu [21]

Rukov et al. [27]

Ng et al. [29]

Tan et al. [22]

Torio et al. [26]

Campillos et al. [36]
Andronis et al. [38]
Rastegar-Mojarad et al. [59]
Nugent et al. [37]

Gottlieb et al. [42]
Yang et al. [45]
Zhang et al. [44]
Chiang and Butte [34]
Hu and Agarwal [50]
Yang and Agarwal [19]
Cheng et al. [48]
Fukuoka et al. [14]
Wu et al. [47]

Wang et al. [58]
Rakshit et al. [49]

new indications for drugs. Some other disease-based approaches are
built on the assumption that a drug can be repositioned from one in-
dication to another because the two indications share some aspects of
underlying pathophysiology, which is responsive to the therapeutic
effect of a drug [35].

Another approach to connect diseases with drugs is via their side
effects (SE). Based on the rationale that side effects and diseases have
similar phenotypic expressions because of similar underlying pathways
[15]. Campillos et al. [36] used phenotypic side-effect similarities to
infer whether two drugs share targets and to identify novel drug-target
relationships. Yang and Agarwal [19] constructed a database of dis-
ease—SE relationships by using drug-SE data extracted from SIDER and
drug-disease relationships from PharmGKB. They generated a confu-
sion matrix for each disease-SE pair, in which, each cell represents the
number of drugs listing or not listing a SE when that drug is indicated or
not indicated for a disease. The association strength of a pair was
measured by Matthews correlation coefficient (MCC), sensitivity and
specificity. In a disease-SE matrix, the “false positive” drugs for a dis-
ease represents the drugs listing the SE but are not indicated to treat the
disease. These “false positive” drugs are the repositioning candidates
for the disease identified by Yang and Agarwal's approach [19]. Ac-
cording to the detected disease-ADR associations, they built Naive
Bayes models to predict new indications for 145 diseases. The method
was extended to predict indications for clinical compounds. Nugent
et al. [37] developed a SE-based computational method based on
Twitter data and used SE similarity between drugs to construct the
drug-drug network, using inverse covariance estimation to find
neighboring drugs for each drug.

2.3. Computational approaches

As a large volume of biomedical and pharmaceutical information
grows immensely in databases and literature, computational ap-
proaches including data mining, machine learning and network analysis
are gaining importance in systematical drug repositioning practices [2].

In the studies adopting data mining approach, a majority of them
were literature based and adopted text mining techniques such as se-
mantic inference and ontology model [38]. For instance, Li and Lu [39]
automatically identified pharmacogenomics (PGx) relationships be-
tween genes, drugs and diseases from trial records in ClinicalTrials.gov
by developing a dictionary-based text mining method. Rastegar-Mo-
jarad et al. [40] adopted a literature-based method, relying on ex-
tracting drug-gene and gene-disease pairs from abstracts in Medline to
infer drug-disease pairs with gene as intermediary. The underlying
principle is that the association between drug and disease is based on
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how strong the associations of drug and gene, and gene and disease.
Meanwhile, they utilized semantic predications, retrieved from Sem-
MedDB, to infer new connections between drugs and diseases, and
ranked the discovered pairs by calculating scores based on the quality
of predicates. Zhu et al. [41] developed a meta-ontology model based
on the pharmacogenomics data they extracted from PharmGKB, with
base classes such as “drug” and “gene” and with relationships such as
“associatedwithDrug” and “associatedwithDisease”. Based on the
model, they exploited semantic inference to identify new drug indica-
tions with the principle that a disease D is considered to be associated
with a drug R if D is associated with R directly or associated with genes,
single nucleotide polymorphisms (SNPs) or pathways that are asso-
ciated with R.

Machine learning techniques can leverage the data from various
data sources to identify medical entities (e.g. gene, compound, protein,
drug, and disease), to reveal the underlying associations between these
entities, and to explore repositioning opportunities. Gottlieb et al. [42]
utilized multiple drug-drug similarity (chemical based, side effect
based, sequence based, closeness in a PPI network, GO based) and
disease—disease similarity (phenotype based, semantic phenotypic, ge-
netic based) measures as classification features, and used a logistic re-
gression classifier to predict novel drug indications. Napolitano et al.
[43] predicted drug therapeutic class by using drug-related features
(e.g. drug chemical structure similarity, drug molecular target simi-
larity and drug gene expression similarity). They merged these features
into a single drug similarity matrix, which was used as a kernel for SVM
classification, and applied collaborative filtering techniques to predict
unknown drug-disease associations. Zhang et al. [44] proposed a uni-
fied computational framework, DDR (multiple Drug information
sources and multiple Disease information sources for Repositioning
tasks) for integrating multiple aspects of drug similarity and disease
similarity. Based on all this information, the authors formulated the
drug-disease network analysis into an optimization problem and solved
it using Block Coordinate Descent (BCD) strategy. Yang et al. [45] used
a causal inference-probabilistic matrix factorization approach to infer
drug-disease associations. Leaman et al. [46] adopted a model combi-
nation approach based on two different linear chain conditional
random fields (CRF) models to identify chemical entities, where the two
CRF models used different tokenizations, feature sets, CRF im-
plementations, CRF parameters, and some variations in post processing,
and demonstrated different performances in different aspects.

Network analysis is the most popular and widely used approach in
computational drug repositioning, in both drug-based and disease-
based strategies. By highlighting the network concept, network-based
methods have shown the great capability for deciphering mechanisms,
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interactions, and MOAs underlying drugs, diseases and other medical
entities [47]. Wu et al. [47] presented various ways to construct the
connections between medical entities. Besides a majority of similarity-
based methods resort to network knowledge to identify the re-
positioning candidates, various types of networks have been con-
structed to extract novel drug targets or drug—disease relationships. In
these networks, nodes can be drugs, diseases, targets, side effects, genes
and proteins. Links can be the similarity between the same type of
nodes or associations between different types of node such as drug—drug
similarity and drug-disease association.

“Guilt by association” principle is one common way of utilizing the
network to find novel drug-target or drug—disease relationships. For
instance, Chiang et al. [34] implemented a network-based method,
where the network was constructed with disease as nodes and whether
the two corresponding diseases share FDA-approved drugs as links.
Novel drug uses were suggested by “guilt by association” approach with
weakly suggested drug uses (those with only one suggestion) removed.

Inference based on network topological features is another im-
portant approach for repositioning. Cheng et al. [48] utilized bipartite
network topology similarity, which was derived from the re-
commendation algorithms of complex network theory and similar to
the collaborative filtering method, to infer new targets for known drugs.
Rakshit et al. [49] constructed an indication-drug-target network and
used topological measures in the network to find non-Parkinsonian
drugs for repositioning.

Classification and clustering algorithms have been adopted for
generating novel drug-disease relationships. Hu and Agarwal [50] de-
veloped a large-scale drug—disease network and classified the diseases
according to the Medical Subject Headings (MeSH). Scores of dis-
ease—disease pairs within the same category or between different ca-
tegories were computed and used to identify new drug indications. Wu
et al. [47] built a weighted heterogeneous network and clustered the
network to identify modules and then assembled all possible drug-di-
sease pairs from these modules. Tan et al. [22] constructed a drug-drug
similarity network and used a popular clustering algorithm-MCODE to
find neighbor nodes for drugs.

2.4. Data sources

Since different repositioning methods need different aspects of in-
formation of drugs and diseases, such as genetic, chemical, pharmaco-
logical, clinical, and protein information, multiple data sources have
been used, including the most commonly used databases such as
Drugs@FDA, Gene Expression Omnibus (GEO), Pharmacogenomics
Knowledge Base (PharmGKB), Side Effect Resource (SIDER), DrugBank,
PubMed, and Unified Medical Language System (UMLS) [2]. Table 2
summarizes the mostly used data sources and the approaches that were
applied.

2.5. ADR detection

In this work, we used ADR as an intermediate for drug re-
positioning. As a result, the performance of the repositioning techni-
ques is highly dependent on the quality of ADR extraction, in which to a
great extend impacted by the data sources for ADR extraction.

The quality of data source has a great impact on the ADR detection
and affects the drug repositioning results of our approach. Currently,
data sources for obtaining ADR mainly include: (1) spontaneous re-
porting system, (2) electronic health records, (3) Administrative Health
Databases, (4) Medical Literature, (5) online health communities
(OHCs) [51].

FDA (Food and Drug Administration) Adverse Event Reporting
System (FAERS) is the most important spontaneous reporting system as
well as the primary data source for the study and identification of ADRs
in United States. However, there are two major restrictions in FAERS.
Users report ADRs spontaneously and voluntarily, which leads to a
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surprisingly low reporting rate because of the nature of passiveness,
with a median of 6%. It usually takes FDA a long time to complete the
whole process of collecting reports, investigating cases and releasing
alerts. As a result, it is difficult to obtain the timely information about
ADRs.

Compared with the spontaneous reporting system, data in the
electronic health records is more timely and authoritative since the
electronic health records are generated by the health professionals.
However, due to the privacy and policy issues, as well as the difficulty
in integrating electronic health databases from multiple resources, the
ADR detection can only be restricted to a particular electronic health
record system with a limited demographic coverage.

Administrative health databases provide high-level information
about a patient's illness and medication history, but they lack the record
information of treatment outcomes, which is required to assess a drug.
Another type of missing data is the information on non-prescription
medicine consumed by patients.

Medical literature has been used to generate useful resources for
identifying ADRs, for the literature is easily accessible via Internet with
or without subscriptions. Although the data quality is high, the in-
formation is available after a long delay of scientific research and
publication process. The data is not as timely as spontaneous reporting
system, electronic health records, and administrative health database.

In the recent years, the development of Web 2.0 not only breeds the
various online social media sites like Facebook and Twitter, but also
fosters online health communities (OHCs) such as MedHelp,
PatientsLikeMe, and DailyStrength. OHCs generate a great deal of
health-related contents and are more informative than some adminis-
trative databases. OHCs provide a space for patients and their care-
givers to learn about an illness, seek and offer support, and connect
with others in similar circumstances. OHCs have been growing in po-
pularity across the world and provide a convenient way to exchange
health information. It has been claimed that 80% of adults in US and
66% of adults in Europe seek online health advice [47]. 72% of Internet
users said they searched online for health information in 2011 [52]. In
addition, taking MedHelp for instance, it empowers over 12 million
people each month to seek and offer healthcare information on the site.
Since huge volumes of information were generated on OHCs, an in-
creasing number of researches have been focused on OHCs, especially
their impact on health consumers.

3. Drug repositioning based on heterogeneous network

The proposed drug repositioning system is comprised of four major
modules, as shown in Fig. 1: (1) Dataset construction module, (2) As-
sociation mining module, (3) Heterogeneous network mining module,
and (4) Drug repositioning module. The external data sources of this
system include: (1) PharmGKB, a database providing disease-drug as-
sociation data; (2) SIDER, a database providing drug—ADR association
data; (3) CHV Wiki, a lexicon providing user expressions of ADRs; (4)
MedHelp, an online health community providing abundant user con-
tributed content, especially the discussion data of diseases, drugs, and
ADRs. As a whole, the drug repositioning system takes in disease(s) as
input and generates repositioning drug(s) as output, by referring to
several external data sources.

(1) Dataset Construction Module:
Dataset Construction Module takes disease names as inputs and
constructs a dataset of disease entities, drug entities and ADR sig-
nals as outputs, by referring to resources such as social media
websites (e.g. MedHelp), pharmaceutical databases (e.g.
PharmGKB, SIDER), and medical ontologies (e.g. CHV Wiki).
Firstly, sub-module “Social Media Data Crawling” used the in-
coming disease names as queries to retrieve related drugs from
PharmGKB. We used the identified drugs as queries to retrieve re-
lated ADRs from SIDER, and then used the obtained diseases, drugs,
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Table 2
Data sources and drug-repositioning approaches.

Data sources Computational approaches

Data mining Machine learning Network-based analysis

Genome GEO Napolitano et al. [43] Hu and Agarwal [50]
cMap Zhang et al. [44] Jiang et al. [25]
Napolitano et al. [43] Torio et al. [26]
MsigDB Lee et al. [60] Yang et al. [45] Jiang et al. [25]
KEGG Cheng et al. [48]
Wu et al. [47]
Molecule PDB Zheng et al. [23] Kinnings et al. [24]
HPRD Li and Lu [21]
BindingDB Zheng et al. [23]
PubChem Tan et al. [22]
ChEMBL Ng et al. [29]
Drug/phenome PharmGKB Li and Lu [39]
Zhu et al. [41]
SIDER Yang and Agarwal [19]
ClinicalTrials.gov Li and Lu [39]
Drugs@FDA Zhu et al. [41]
DrugBank Campillos et al. [36] Yang et al. [45] Fukuoka et al. [14]

PubMed

UMLS Campillos et al.

Andronis et al. [38]

[36]

Gottlieb et al. [42] Tan et al. [22]
Li and Lu [21]
Rukov et al. [27]

Rastegar-Mojarad et al. [30]

Gottlieb et al. [42]

and ADRs as keywords to crawl relative threads from MedHelp.
Secondly, with the incoming MedHelp data, sub-module “ADR
Detection” works on detecting the ADR signals by using a lexicon-
based approach, and the disease and drug signals with considera-
tion of their alternative names. In result, the outputs of Dataset
Construction Module include two chunks: a set of social media
threads (each thread is comprised of an original post and all the
following comments), and a set of disease, drug, and ADR signals
(which are used in the following Association Mining Module and
Heterogeneous Network Mining Module).

(2) Association Mining Module:

Association Mining Module computes the associations and the

Disease

weights of associations among disease, drug, and ADR signals in the
dataset coming from Dataset Construction Module. There include
three types of associations: disease-drug, drug-ADR, and
disease-ADR associations. Using MedHelp threads as corpus, the
computation of association weights is based on co-occurrence
principle by exploiting association rule mining methods. In the end,
Association Mining Module generates three matrices: disease-drug
matrix, drug—ADR matrix, and disease-~ADR matrix; each cell in the
matrices describes the calculated association weights between two
signals.

(3) Heterogeneous Network Mining Module:

Heterogeneous Network Mining Module has two sets of inputs: one

I
1 1
' Heterogeneous i !
| Dataset ! S p
] " Network Mining | Drug Repositioning | |
i Construction Modul :
o i Module Module e :
GKB /(N 000 T I
1 !
1 iz e Heterogeneous !
1 Threads A§5001at|ons. ‘ Network : Association 1
Bl Social Media e Riseass-Lrug ; | Il Significance :
MedHelp BN .2 Crawii Association | pisease-ADR Construction | Associations: | g I
i ata Crawling . isease-ADR | Test !
I Mining Drug-ADR s | :
1 Module |
1 | !
! I
1 | Gatasan ' Path Building I
1} B=5 A 1
: ADR | Blsease. i Repositioning :
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: Detection | ADR signal i Drug Discovery :
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1 1
1 I
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Repositioning Drug

Fig. 1. Architecture of drug repositioning system.
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ADR(199)

e =
- %

Disease(10) =Y  Drug(142)

Fig. 2. Medical entities and associations in dataset.

is the dataset of disease, drug, and ADR signals, generated by
Dataset Construction Module and serving as nodes in the hetero-
geneous network; the other one is a set of association matrices,
generated by Association Mining Module and serving as links and
link weights in the heterogeneous network. Firstly, sub-module
“Heterogeneous Network Construction” constructs a heterogeneous
healthcare network with the incoming data as nodes and links.
Secondly, sub-module “Path Building” defines all the possible paths
between each disease-ADR pair. Thirdly, sub-module “Path
Mining” infers the final path value of each disease—-ADR pair by
exploiting  different path mining approaches. Finally,
Heterogeneous Network Mining Module outputs a list of
disease-ADR pairs, along with the corresponding pair values that
represent the inferred association strength.
(4) Drug Repositioning Module:

The task of Drug Repositioning Module is to identify repositioning
drugs. Firstly, with the set of disease~ADR associations from
Heterogeneous Network Mining Module as input, sub-module
“Association Significance Test” extracts the significant associations
from them, by using statistical analysis. Secondly, sub-module
“Repositioning Drug Discovery” identifies the repositioning drugs
based on the significant disease~ADR associations, by retrieving the
drugs that show the ADR while have not yet been indicated for the
disease from SIDER database. In the end, Drug Repositioning
Module gives the repositioning drugs for targeted diseases.

4. Dataset construction module
4.1. Medical entities: drug, disease, ADR

The disease-based repositioning strategy enables researchers to
focus on specific diseases and identify the drugs for repositioning.

Staring from these diseases of interest, we refer to PharmGKB
(www.pharmgkb.org) to identify the corresponding drugs.
Pharmacogenomics Knowledge Base (PharmGKB) is a publicly available
knowledge resource that collects, curates, integrates and disseminates
knowledge about the impact of human genetic variations on drug re-
sponses, containing genotypic and phenotypic information, as well as
gene & drug & disease relationships. For instance, for each disease, it
provides the alternated names, and the related drugs and genes; for
each drug, it provides the properties (e.g. chemical structure, absorp-
tion, toxicity), pathways, and the related genes and diseases.

We refer to SIDER database (sideeffects.embl.de/) to obtain the
corresponding ADRs as potential ADR candidates for these drugs. Side
Effect Resource (SIDER) encompasses information about marketed
drugs and their recorded ADRs, with data extracted from public docu-
ments such as MedSafe and FDA, and package inserts. The database
contains 1430 drugs, 5868 ADRs and 139,756 drug-ADR pairs, and
39.9% pairs provide ADR frequency information.

Using the disease and drug name as query terms, we implemented
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an automatic web crawler to obtain all the related posts and comments
from social media websites.

4.2. Medical entities extraction from social media data

When detecting signals of a disease in social media data, we utilized
all the alternate names suggested in PharmGKB as well as the ab-
breviation (e.g. OCD for Obsessive-Compulsive Disorder), for example,
the terms used to detect Parkinson included “parkinson” “parkinson
disease” and “parkinson's disease”. When detecting the signals of a
drug, we utilized the terms included in PharmGKB and UMLS.

The expressions of diseases and drugs in social media and phar-
maceutical databases are mostly similar and consistent, while the vo-
cabularies of ADRs are quite different, because consumers use diverse
and various expressions to describe the concepts and their adverse re-
actions [53]. Therefore, standard medical lexicons used by profes-
sionals like UMLS are not applicable in analyzing health consumer
contributed content. To deal with this problem, we resorted to Con-
sumer Health Vocabulary (CHV) Wiki to build up our ADR lexicon. CHV
links everyday health-related words to professional terms or jargon, and
the goal is to bridge the communication gap between consumers and
healthcare professionals [54]. It provides a list of preferred names of
ADRs and the corresponding consumer contributed expressions to each
of them, for example, “anorexia” is a professional expression of ADR,
CHV Wiki extends it to “appetite lost” “appetite loss” “appetite lack”
“no appetite” and several other common expressions of health con-
sumers. In our study, we used all the expressions suggested by CHV
Wiki to detect ADR signals in user-generated information.

4.3. Associations between medical entities

There were three types of medical entities in the dataset: disease,
drug and ADR, and there are three types of associations between these
entities: disease—drug, drug-ADR and disease-ADR, which could be
obtained from pharmaceutical databases or social media data, as shown
in Fig. 2. Specifically, the associations of disease-drug and drug—ADR
associations are accessible from PharmGKB and SIDER respectively.
These associations can also be extracted from social media, which will
be discussed in Section 5. However, the association of disease—ADR is
not embodied in any pharmaceutical databases. We resort to social
media for mining the disease—ADR association. Section 5 introduces the
method of association mining from social media data in detail.

5. Association mining module

Association mining module deals with the extraction of dis-
ease—drug, drug-ADR and disease—ADR associations from social media,
as well as the measurement of strength of the associations. When ex-
tracting these associations from the unstructured social media data,
analysis granularity should be chosen empirically according to the re-
search question to be answered. In this study, we use a thread as an
analysis unit, which contains a post and the following comments, be-
cause the thread is composed of all discussions on a particular issue
raised in the original post. A post or comment can also be considered as
an analysis unit, but they are usually very short and the user may jump
into his/her point without describing the concerned issue. For example,
a comment could look like “I have just got similar reactions...” without
mentioning the ADRs raised in the post. As the result, a post or com-
ment is too small as analysis unit to extract ADR signals compared with
the thread.

In social media data, if two entities are mentioned together fre-
quently, they are deemed to be strongly associated [55], therefore, a
number of studies have applied co-occurrence analysis to evaluate the
strength of associations. To find the strong associations between the
medical entity pairs (drug-disease, drug-ADR, disease-ADR), we
adopted association rule mining here, because association rule mining
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is one of the most important techniques in data mining to extract in-
teresting correlations and frequent patterns among sets of items. Spe-
cifically, we followed the principle of Apriori algorithm in association
rule mining by firstly using a breadth-first search strategy to count the
support of itemsets and then using lift to determine the frequent item-
sets.

In association rule mining, letI = {I;, I, ..., I,} be a set of items and
let T = {Ty, To, ..., T} be a set of transactions, where each transaction
is a subset of items such that T; C I. An itemset that contains k items is a
k-itemset; the occurrence frequency of an itemset is the number of
transactions that contain the itemset. The association rule is an impli-
tion of form A= B, where AC1I, BC1I and A N B = @, which is
deemed as an itemset. In our case, I denotes the whole set that contains
diseases (D), drugs (R), and ADRs; T denotes the dataset of all threads
and each thread represents a transaction; there are both 1-itemset (e.g.
{D}, {R}, {ADR}) and 2-itemset (e.g. {D, R}, {D, ADR}, {R, ADR})
involved in our calculation. Our goal is to mine and evaluate the as-
sociations presented in 2-itemset, in other words, mining the rules in
the form of D = R, R = ADR, D = ADR.

Support is a common indicator used in association rule mining, de-
fined as the percentage of transactions that contain 1-itemset or 2-
itemset, for instance:

count (ADR)

support (ADR) =
pport( ) total count

count (R U ADR)

support(R = ADR) =
total count

in which, count (ADR) is the number of threads that contain target ADR;
count (R U ADR) is the number of threads that contain both drug R and
ADR, total count is the total number of threads.

Nevertheless, for the 2-itemset, support is appropriate only when the
co-occurrence frequency of the items is high. However, when con-
sumers mention a drug, they might discuss different aspects of drugs, so
that threads that are related to ADR only occupy a small portion in all
the threads. To address this problem, another indicator lift is often used.
Lift is a measure based on probability and reflects the division of the
actual probability and theoretical probability. For instance, when
measuring the strength of rule R = ADR, lift not only takes account of
support (R U ADR) but also the correlation between 1-itemset R and 1-
itemset ADR, by calculating the ratio of the proportion of threads
containing both R and ADR above those expected if R and ADR are
independent of each other. The calculation of
lift (D = R), lift(D = ADR), lift(R = ADR) are shown in the following
formulas:

support(D U R)
support (D) X support (R)

lift(D = R) =

support (D U ADR)
support (D) X support (ADR)

lift(D = ADR) =

support (R U ADR)

lift(R => ADR) =
i ) support (R) X support (ADR)

The outputs of this module are extracted disease-drug, disease~ADR
and drug-ADR associations, the strength of which are indicated by lift.
Besides, the higher of lift value represents the stronger the association
between the two items.

6. Heterogeneous network mining module

Network analysis is an important approach applied in drug re-
positioning, with the great capability of revealing the connections as
well as the underlying mechanisms and interactions between multiple
medical entities. Most of current studies based on network science
views networks as homogeneous, where nodes are objects of the same
type and relationships among nodes are of the same type, such as only
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authors involved in citation network and only users in social network.
However, most real world networks such as healthcare information
networks are heterogeneous, where nodes and relationships are of
different types, for example, in a healthcare information network, nodes
could be diseases, drugs, ADRs, genes, and proteins, and the links be-
tween these nodes are also different. Analysis based on homogeneous
network may miss important semantic and schema-level information,
while heterogeneous network can present more essential, accurate and
complete features of the real-world network, thus unveiling the un-
derlying knowledge and patterns. However, there is no adequate re-
search in applying heterogeneous network techniques in drug re-
positioning yet. Therefore, we proposed a heterogeneous network based
method to represent associations between diseases, drugs and ADRs,
and to explore novel connections.

6.1. Heterogeneous healthcare network definition

A heterogeneous network is defined as a graph consisting of nodes
connected by links, with at least two types of nodes and at least two
types of links [56]. Let N = {ny, ny, ..., nx} be a set of nodes and L = {l;,
I, ..., I} be a set of links, then G = (N, L) denotes the graph. In the
graph G, each node n; € N belongs to a particular type from y; each link
I; € L belongs to a particular type from 7, and Iyl > 1 or Izl > 1, and can
be directional or non-directional. Then Mg = (y, 7) denotes the node
types y and link types 7 in graph G.

6.2. Construction of heterogeneous healthcare network

In our heterogeneous healthcare network G = (N, L), there are three
types of nodes: drug(R), disease(D) and ADR, and three types of links:
drug-ADR, disease-ADR and drug-disease, that is, y = {R, D, ADR} and
T = {Lr_apr> Lp-apr> Lp_gr}. The relation between D and R is treat
(R — D) or be treated (D — R); the relation between R and ADR is cause
(R — ADR) or be caused (ADR — R); the relation between D and ADR is
not a directly causal relationship, but one connected by some under-
lying MOAs.

The proposed network is non-directional weighted heterogeneous
network. The weights of links are uniform and the strength of asso-
ciations between nodes is not considered in a non-weighted hetero-
geneous healthcare network. However, in our proposed network, the
weights are determined by the association strength between two nodes
as discussed in Section 5. Our proposed network is not directional be-
cause we are not considering the causality of relations between dif-
ferent types of node. There is no explicit causality information provided
when we construct the heterogeneous healthcare network from social
media data and pharmaceutical databases. It is too complicated to ac-
curately determine the causal relations between nodes even with the
assistant of natural language processing (NLP) techniques from the user
contributed content [57]. Meanwhile, non-directional relations here are
capable of revealing the associations between drugs, diseases and ADRs
for repositioning use. Fig. 3 presents the non-directional heterogeneous
healthcare network model.

6.3. Path mining

The rationale for ADR-based repositioning strategy is that ADRs and
indications both convert the physiological or behavioral consequences
to the treatment, and if drugs treating a disease share the same ADR,
there might be some underlying MOA linking the disease with the ADR,
thus ADR could be seen as a phenotypic “biomarker” of the disease.
Therefore, the goal in heterogeneous network mining is to discover the
associations between disease and ADR. Under a strong disease~ADR
association, the drugs having the ADR but not indicated for the disease
could be evaluated as a repositioning candidate.

In view of the heterogeneous network model, there are two path-
ways to connect D and ADR: the first path is a direct link of D-ADR, or
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Fig. 3. Heterogeneous healthcare network model.

Ip_apr; the second is a path of D-R-ADR, or lp_g—lz_apr-
(1) Path(D-ADR)

Since there are no existing databases revealing disease~ADR asso-
ciations, we resort to social media to obtain D-ADR information.
That means such associations are mined from unstructured user-
contributed content directly (as shown in Fig. 4) and the strength of

D-ADR association, Sp_pr(Ip-apr), is measured by lift we computed
in Section 5:

we obtained R-ADR relationships from both social media and phar-
maceutical databases. Fig. 5 demonstrates four different combinations
of data sources in applying Path(D-R-ADR):

The strength of a path, Path(D-R-ADR), is measured by both the
weights of Ip_ and lz_spr. When the weight is computed from MedHelp,
lift (D = R) and lift (R = ADR) are used. When the weight is computed
from PharmGKB or SIDER, the weight is binary depending on if the
association is indicated in the databases. The strength of D-ADR asso-

=
= -
a-

i

Disease

«®>
- ADR

Fig. 4. Path(D-ADR).

Sp-apr = Z Ip-apr = Z lift (D = ADR)

vP VP

(2) Path(D-R-ADR)

ADR represents the harmful and unpleasant reactions of medicine
use, and hence, the ADRs that are associated with a disease are
highly influenced by the drugs that are treating the disease. In other
words, disease indications and ADR are not connected directly with
each other, while both of them are direct responses of drugs.

Therefore, it is reasonable to use drugs as the bridge between dis-
ease and ADR.

Considering the variability of qualities of multiple health data
sources, we applied the proposed mining method on different data
sources to explore if the results of drug repositioning would be influ-
enced by data source and if social media data would gain a better
performance. For instance, since adverse reactions of drugs are sub-
stantially under-reported in most medical systems and databases, it
might lead to the incompleteness of drug-ADR information, therefore,
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ciation via Path(D-R-ADR) is computed by the following formulation:

Sp-r-ADR = Z Ip-r X lr-aDR
vP

where P denotes all the possible paths between D and ADR with R as
intermediary.

InPharmSIDERandPharmMed,

1 ifD — Risfoundin PharmGKB
0 ifD — Risnotfoundin PharmGKB

Ip-r

InMedSIDERandMedMed,
Ip-r = lift(D=>R)

InPharmSIDERandMedSIDER,

! _ |1 ifR — ADRisfoundinSIDER
R-4DR =10 ifR — ADRisnotfoundinSIDER

In PharmMedandMedMed,
lR—ADR = llft(R = ADR)

7. Drug repositioning module

A strong association between a disease and an ADR implies an un-
derlying MOA between the disease and the ADR, then the drugs con-
nected with the ADR could be evaluated as a repositioning candidate
for this disease. Based on the mined D-ADR associations from Section 6,

this module is targeted at: firstly, assessing and extracting the sig-
nificant D-ADR associations from all associations; secondly, identifying
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Fig. 5. Different combinations of data sources in Path(D-R-ADR).

repositioning drugs for each disease.

7.1. Significance test on D-ADR associations

The heterogeneous network mining module generates a large set of
D-ADR associations, while not all of the associations are persuasive to
be utilized for drug repositioning analysis, especially those with weak
association strength. For example, Yang and Agarwal [19] generated a
confusion matrix for each D-ADR pair and used Matthews correlation
coefficient (MCC), sensitivity and specificity to evaluate the strength of
the association. Here we utilized significance test in statistics, specifi-
cally, one-sample T-test, to differentiate the significant associations
with the insignificant ones. For each ADR, we computed the strength of
the associations between the ADR and all the diseases. We conducted
the one-sample T-test, with the null hypothesis that there was no sig-
nificant difference between the value and the sample mean. For ex-
ample, we created a sample for ADR “abnormal sensation”, which in-
cluded 10 values of Sp_gr_apr(Ip-apr) obtained based on MedSIDER. We
applied the T-test and computed the t-value. In hypothesis testing, we
compared the calculated t-value and the table value, and rejected the
null hypothesis for the three associations between abnormal sensation
and transplantation, Parkinson, and obsessive-compulsive disorder, as
shown in Table 3.

7.2. Identification of repositioning drugs

For each significant disease—~ADR association, the goal is identifying
the drugs with this ADR while not yet indicated for the corresponding

Table 3
Significance test results on the sample of abnormal-sensation.

ADR abnormal sensation (AS) Sp-r-apr (p-apr) t-value (2.262)

Disease transplantation 1.42E-03 —5.187
parkinson 1.14E-03 —3.381
obsessive-compulsive disorder 1.09E-03 —3.052
hypercholesterolemia 9.44E-04 -2.129
cystitis 4.51E-04 1.032
pharyngitis 4.37E-04 1.122
kidney failure 3.20E-04 1.872
gastroesophageal reflux 1.77E-04 2.789
myalgia 8.73E-05 3.364
glaucoma 5.29E-05 3.584

2.262 is the critical value in t-value table where degree of freedom = 9 and
confidence level = 95%.

Bold fonts represent there are significant associations between that disease and
the ADR-AS.

disease. The main procedures include: (1) SIDER provides a list of the
drugs for each ADR and the corresponding frequency. We identified the
drugs with the ADR frequency labeled with “very common”,
“common”, or the percentage higher than 10%; (2) referring to
PharmGKB, we removed the drugs that have already been indicated for
the disease. The remaining drugs in the discovery are considered as
repositioning drugs for the disease.

Based on each disease-ADR association, we generated a list of re-
positioning drugs for this disease. That is, if a disease was significantly
associated with k ADRs, there were k lists of repositioning drugs for this
disease. If a drug was suggested in more than k/2 of the lists, it would
be deemed as a repositioning drug, which reinforced the reliability of
the underlying MOA between a disease and an ADR.

8. Experiment

In this study, we used MedHelp (www.medhelp.org), one of the
pioneers in online health communities, as the data source for obtaining
health consumer-contributed contents and targeted at 10 common
diseases: Cystitis, Gastroesophageal Reflux, Glaucoma,
Hypercholesterolemia, Kidney Failure, Myalgia, Obsessive-Compulsive
Disorder, Parkinson, Pharyngitis, and Transplantation, for which we
collected data from both medical databases and social media websites.

We collected more than 41,000 threads from MedHelp by using the
10 diseases and the corresponding 142 drugs suggested by PharmGKB
as query terms, where each thread was composed of a post and all the
following comments. After the extraction of disease, drug, and ADR
entities from user posts, we constructed a heterogeneous network with
351 nodes.

8.1. Experiment results

Based on the constructed heterogeneous network, we applied the
path-mining methods and completed drug repositioning. Table 4 shows
the number of repositioning drugs we discovered for each disease by
applying Path(D-ADR) approach, and Path(D-R-ADR) approaches with
four combinations of different data sources.

In respect of the number of identified repositioning drugs, Path
(D-ADR) achieved the worst comparing with all of the four approaches
in Path(D-R-ADR). Path(D-ADR) detected the D-ADR associations by
mining such associations directly from unstructured social media data,
while Path(D-R-ADR) inferred these associations based on the features
of heterogeneous network, which demonstrated that network-based
method was an effective way to uncover the underlying associations
between diseases and ADRs especially when their associations were not
reflected explicitly in user-contributed content.
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Table 4
Number of discovered repositioning drugs.
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Disease Number of repositioning drugs

Path(D-ADR) PharmSIDER PharmMed MedMed MedSIDER
Cystitis 0 0 11 18 16
Gastroesophageal reflux 7 15 15 10 10
Glaucoma 0 0 2 14 3
Hypercholesterolemia 0 0 7 16 13
Kidney failure 4 0 74 5 5
Obsessive-compulsive disorder 15 142 147 25 17
Parkinson 25 67 60 0 17
Pharyngitis 0 0 21 11 12
Transplantation 21 118 142 31 14
Total 72 342 479 130 107

Comparing the four approaches in Path(D-R-ADR), PharmMed,
where the association of D-R was obtained from PharmGKB and the
association of R-ADR was obtained from MedHelp, achieved the
highest number of repositioning drugs (479). On the other hand,
MedSIDER, where the association of D-R was obtained from MedHelp
and the association of R~ADR was obtained from SIDER, discovered the
least number of repositioning drugs (107).

When disease-drug relationships derived from PharmGKB, the re-
positioning drugs identified by PharmMed were more than
PharmSIDER, especially for cystitis, glaucoma, hypercholesterolemia
and kidney failure, where PharmSIDER did not discover any re-
positioning drugs but PharmMed did. The possible reason was that
some drug—-ADR associations were not collected in SIDER database, but
they could be determined from the timely health consumer contributed
data. In other words, social media data appeared to be a better data
source for obtaining drug-ADR information than SIDER. In addition,
when disease—drug relationships coming from MedHelp, MedMed also
performed better than MedSIDER.

When drug-ADR relationships derived from SIDER, the re-
positioning drugs identified by PharmSIDER were substantially more
than MedSIDER, which meant PharmGKB included more complete
disease—drug information than that was mined from MedHelp. Besides,
when drug-ADR relationships coming from MedHelp, PharmMed also
achieved a better result than MedMed.

The above observations also explained why PharmMed performed
the best while MedSIDER performed the worst, because PharmMed
utilized the best data sources for both disease-drug and drug—ADR as-
sociations, meanwhile, MedSIDER utilized the worst for both associa-
tions.

Most of the drug repositioning results extracted by computing
methodologies are not confirmed truth before clinical trials are con-
ducted. Instead, they suggest a possibility for further drug development.
As a result, evaluating the performance of these computing methodol-
ogies is not a simple task. The common evaluation of repositioning
drugs are either computational or experimental [30]. The computa-
tional assessments are usually based on the co-occurrence of drug and
disease terms in biomedical literature and clinical trials. The experi-
mental assessments are based on in silico or in vitro experiments. In
computational assessment, finding evidence in medical articles is one of
the evaluation methods that have been adopted by a majority of the
previous studies [22,23,39,58]. We resorted to medical literature for
result assessment by finding evidence in articles published in PubMed.
As shown in Table 5, the results showed that 47% of repositioning-
drug — disease associations discovered by Path(D-ADR) had at least
one article in publication type of “Clinical Trial”, with the disease as a
major subject heading for that article and the drug name mentioned in
the title or abstract, followed by 36% of the repositioning-drug — dis-
ease associations discovered MedMed and MedSIDER, and 31% by
PharmMed.
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As shown in Table 5, by considering the number of identified re-
positioning drugs with evidence out of the number of identified re-
positioning drugs by each approach, Path(D-ADR) achieved the highest
precision (47%), followed by MedMed (36%) and MedSIDER (36%)
approaches in Path(D-R-ADR). However, with regard to the absolute
value rather than the relative value (the number of identified re-
positioning drugs with evidence), PharmMed discovered 150 drugs,
which was 4.41 times more than Path(D-ADR) (34 drugs) and 3.13
times more than MedMed (48 drugs). Although PharmSIDER achieved
relatively lower precision, it discovered the second most of re-
positioning drugs with evidence (90 drugs). The precision measured
one aspect of the experimental results, regarding to the percentage of
identified repositioning drugs that were supported by literature. When
the precision of an approach was not as high, it did not necessarily
mean the approach was not good at identifying repositioning drugs.
There was always a trade off between the precision and the number of
identified repositioning drugs with evidence. When an approach was
capable of identify more repositioning drugs, it might also produce
more false positives (identified repositioning drugs without evidence)
and therefore lower the precision. An approach might achieve a high
precision but might also miss many true positives (identified re-
positioning drugs with evidence). In this case, PharmMed identified a
lot more repositioning drugs with evidence but it achieved a lower
precision of 31% compared to the best precision of 47% achieved by
Path(D-ADR). 1t is also possible that there will be more studies in the
future that can provide evidence on the identified repositioning drugs
that are not supported yet. That means some of the false positives may
indeed have evidences in the future studies.

By taking the drugs identified by all of the five approaches, we had a
total of 750 repositioning drugs. Among these 750 drugs, 171 drugs
were supported by evidence that we considered as positives. The other
579 drugs were not supported by evidence and therefore considered as
negatives. We used this set of drugs to measure the sensitivity (True
Positives/Positives) and specificity (True Negatives/Negatives)
achieved by the five approaches.

Table 6 presents the results of sensitivity and specificity on each
approach. PharmMed achieved the highest sensitivity of 0.877, re-
presenting that among all the repositioning drugs with evidence it
identified 87.7% of them, whereas the sensitivities of the other methods
were much lower. On the other hand, Path(D-ADR), MedMed and
MedSIDER achieved high specificity of 0.934, 0.858, and 0.883 re-
spectively, which means they were good at identifying the true nega-
tives with the cost of missing many true positives.

We also found that PharmSIDER and PharmMed outperformed
MedMed and MedSIDER substantially in sensitivity, but MedMed and
MedSIDER outperformed PharmSIDER and PharmMed substantially in
specificity. That means measuring the associations of disease and drug
with PharmGKB in Path(D-R-ADR) approach can achieve higher sen-
sitivity but measuring the associations of disease and drug with
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Table 5
Number of repositioning drugs supported by literature.
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Disease Number of repositioning drugs supported by literature

Path(D-ADR) PharmSIDER PharmMed MedMed MedSIDER
Cystitis 0 0 55% (6/11) 33% (6/18) 37% (6/16)
Gastroesophageal reflux 57% (4/7) 47% (7/15) 47% (7/15) 40% (4/10) 30% (3/10)
Glaucoma 0 0 100% (2/2) 29% (4/14) 0(0/3)
Hypercholesterolemia 0 0 43% (3/7) 31% (5/16) 38% (5/13)

Kidney failure
Obsessive-compulsive disorder

75% (3/4) 0
60% (9/15)

26% (37/142)

47% (35/74)
27% (39/147)

60% (3/5)
52% (13/25)

60% (3/5)
29% (5/17)

Parkinson 40% (10/25) 28% (19/67) 32% (19/60) 0 47% (8/17)
Pharyngitis 0 0 33% (7/21) 27% (3/11) 25% (3/12)
Transplantation 38% (8/21) 23% (27/118) 23% (32/142) 39% (10/31) 43% (6/14)
Total 47% (34/72) 26% (90/342) 31% (150/479) 36% (48/130) 36% (39/107)
Table 6 no similar studies that integrated social media data for phenotypic in-
Sensitivity and specificity of each method. formation-based drug repositioning, we are unable to compare our re-
Method ™ N FP TN Sensitivity  Specificity  F1 sults Yv1th the: other exllstlng approaches. VYe comPare the ff)ur in-
tegrations as illustrated in Fig. 5. The four integrations use different
Path(D-ADR) 34 137 38 541  0.199 0.934 0.280 combinations of data sources, PharmGKB and SIDER (PharmSIDER),
E]}"larmﬂD;:R ?go 21 ;Zi zgg 8'25;’ g'igz g'iz PharmGKB and MedHelp (PharmMed), MedHelp and MedHelp
armivies . B .
MedMed 48 123 82 497 0281 0.858 0.319 (MedMed), and MedHelp and SIDER (MedSIDER). ) )
MedSIDER 39 132 68 511  0.228 0.883 0.281 We analyzed the different performance of different integration ap-

MedHelp in Path(D-R-ADR) can achieve higher specificity. When we
compared PharmSIDER and PharmMed, PharmMed achieved sub-
stantially higher sensitivity than PharmSIDER. That means combining
the association measurement from PharmGKB and the association
measurement from MedHelp produce the highest sensitivity. On the
other, MedSIDER achieved slightly higher specificity than MedMed but
not substantially. In general, in order to identify the most number of
true positives out of the identified repositioning drugs that are sup-
ported by evidence, the best performance can be achieved by using the
heterogeneous network approach with the extracted associations of
diseases and drugs from PharmGKB and the extracted associations of
drugs and ADRs from MedHelp. It reflects that social media data is not
as reliable as pharmaceutical database in determining the disease-drug
associations; however, the social media data is more useful in de-
termining the drug—ADR associations. By selecting the appropriate re-
sources in building the heterogeneous networks for mining, the best
performance can be achieved rather than relying on only one type of
resource in constructing the heterogeneous network.

In one confusion matrix, the total number of instances refers to all
the repositioning drugs that are identified by the five approaches, while
the true-positives only refer to drugs that are identified by the current
approach, which explains why F1 scores of the approaches are not high
in Table 6. Within the five approaches, PharmMed achieved the highest
F1 of 0.461, showing its best performance on the whole.

9. Discussion

Most of the drug repositioning studies have relied on single data
sources such as pharmaceutical database and medical record, while few
of them integrated multiple medical data sources especially data pro-
vided by health consumers. For example, there are works that used data
sources such as PharmGKB and SIDER, but there is no existing work
that has integrated social media data with the previous data sources. In
this work, we utilized both social media data (e.g. MedHelp) and
pharmaceutical databases (e.g. PharmGKB and SIDER) to detect re-
positioning drugs. The integration of multiple data sources allows us to
compare the impact of different data sources and different integration
ways, and to explore whether using health consumer-contributed data
could improve the drug repositioning results. However, since there are
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proaches in Section 8. The experiment results in Table 4 showed that
integrating PharmGKB with MedHelp achieved the best performance
for drug repositioning. Furtherly, in order to analyze how each of the
data source effects the repositioning results, we did comparisons using
controlling variable method and found that PharmGKB contributes the
most information on disease-drug relationship and MedHelp con-
tributes the most on drug—ADR relationship. The reason why consumer-
contributed data perform better than the databases is that ADRs are
substantially under-reported in most medical systems and databases
especially in FAERS (FDA Adverse Effect Reporting System). Tables 5
and 6 compare the four integration ways regarding to how the identi-
fied repositioning drugs are supported by literature evidence.
PharmMed achieved the best performance in terms of the number of
repositioning drugs that are supported by literature evidence as well as
the sensitivity and F1. PharmMed seems to have a lower specificity.
However, it is possible that some of the true negatives do not have
evidences from the literature because no studies have been done yet.

The way we evaluated our experiment results was based on the
consultation with the medical experts. When a medication is re-
commended for repositioning to the medical experts (e.g. pharmacists
and physicians), the medical experts would resort to the medical lit-
erature to look for evidence that supports the repositioning (e.g. article,
publication, clinical reports or studies). Given this practice traditionally
conducted by the medical experts, we conducted our experiment ex-
haustively which is conventionally done in scientific evaluation of drug
repositioning papers. We then presented the results to our medical
experts to guarantee the accuracy of evaluation results and the de-
scriptions. The medical experts we have consulted include one phar-
macist with over twenty years of experience, one physician with over
ten years of experience, and one research scientist working in a phar-
maceutical company. They concluded that the repositioning drugs re-
commended by the proposed algorithms are very helpful for them to
narrow down the drugs that can be potentially used for the suggested
indication. Some of the recommended repositioning drugs were indeed
used as off-label drugs in practice. The experiment also helped them to
understand the limitations of the data sources as well as the strength of
integrating multiple sources of data in investigation.

This evaluation method has been used in many previous studies as
well [19,21-23,39,58,61]. For example, Tan et al. [22] validated their
results by searching for current clinical trials. Wang et al. [58] eval-
uated their predictions by searching for the published literatures. Li and
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Lu [21] evaluated their results by searching the disease-repositioning
drug pairs in ClinicalTrials.gov and scientific abstracts in PubMed to
look for evidences that support the repositioning drug might be in-
dicated for the disease. Li and Lu [61] evaluated their results by
searching evidence in both clinical trials and literature and found about
1/3 predictions could be found in PubMed and only a small percentage
could be found in ClinicalTrials.gov.

The results of drug repositioning are usually considered as sugges-
tions, predictions, or recommendations, not the results that can be
approved for patients immediately. Chiang and Butte [34] even de-
clared that they were unable to examine the results that are only “po-
tential” suggestions rather than FDA-approved drugs, and they saw
their results as suggestions for further in vitro and in vivo tests. The
main contribution of our work and many repositioning studies is sug-
gesting novel drug uses for pharmaceutical companies and medical
associations to conduct further in vitro and in vivo tests, effectiveness
and risk evaluation, and clinical trials. Besides, our medical experts also
said they would like to see such findings and explore whether there are
off-label use opportunities from the repositioning drugs.

10. Conclusion

By suggesting new therapeutic uses for approved drugs, drug re-
positioning plays a significant role in dealing with the problems of high
risks, costly process and long period in drug discovery and develop-
ment. In this paper, we connected drugs with potential indications for
drug repositioning through Adverse Drug Reactions (ADRs). ADR-based
repositioning approach were shown to be capable of profiling drug
related phenotypic information and can subsequently helped in dis-
covering new therapeutic uses for drugs, and were proved to display
better performance than chemical features, biological features (protein
features) or their combination. In this work, we developed the path-
mining approaches of heterogeneous network mining to explore the
associations between drugs, diseases and ADRs. In addition, due to the
fact that ADRs were substantially under-reported in most medical sys-
tems and databases, which might lead to the insufficiency of such data
sources, we utilized both social media data and pharmaceutical data-
bases to extract ADRs, as well as their associations with drugs and
diseases, to explore if the results of drug repositioning would be in-
fluenced by data source and if social media data would have advantages
over pharmaceutical databases in providing information about disease,
drug, ADR, and their associations. We obtained data from PharmGKB
and SIDER, as well as an online health community — MedHelp, and
developed two path-mining methods Path(D-ADR) and Path(D—-R-ADR)
based on the proposed heterogeneous network model. With Path
(D-R-ADR) method, we applied four implementations with data col-
lecting from different data sources, namely PharmMed, PharmSIDER,
MedMed, and MedSIDER. To evaluate the performance of different
approaches, we resorted to medical literature to identify evidence in
articles published by PubMed, and we employed precision, sensitivity
and specificity as measurements to evaluate their performance on the
identification of repositioning drugs.

Path(D-ADR) achieved the highest precision (repositioning drugs
with evidence/identified repositioning drugs), while PharmMed dis-
covered the most number of repositioning drugs with evidence. In terms
of sensitivity and specificity, PharmMed achieved the highest sensi-
tivity (repositioning drugs with evidence identified by this approach/all
repositioning drugs with evidence), showing its capability in identifying
true positives, meanwhile, Path(D-ADR), MedMed and MedSIDER
achieved high specificity, showing their advantage in identifying true
negatives.

In the experiment, we found that all the Path(D-R-ADR) approaches
identify more repositioning drugs than Path(D-ADR). Path(D-ADR)
mined the associations between diseases and ADRs directly from the
unstructured social media data while Path(D-R-ADR) utilized the fea-
tures of heterogeneous network to discover the underlying associations.
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When we compared the different approaches in Path(D-R-ADR), we
found that social media reveals more ADR related information than
pharmaceutical databases, while pharmaceutical database out-
performed social media in identifying the disease—-drug associations. By
incorporating PharmGKB and MedHelp in the heterogeneous network
mining approach, it achieved the best sensitivity but relatively worse
specificity. In the future, we shall further explore other resources and
integration in adverse drug reaction detection and drug repositioning.
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