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A B S T R A C T

Drug safety, also called pharmacovigilance, represents a serious health problem all over the world. Adverse drug

reactions (ADRs) and drug-drug interactions (DDIs) are two important issues in pharmacovigilance, and how to

detect drug safety signals has drawn many researchers’ attention and efforts. Currently, methods proposed for

ADR and DDI detection are mainly based on traditional data sources such as spontaneous reporting data,

electronic health records, pharmaceutical databases, and biomedical literature. However, these data sources are

either limited by under-reporting ratio, privacy issues, high cost, or long publication cycle. In this study, we

propose a framework for drug safety signal detection by harnessing online health community data, a timely,

informative, and publicly available data source. Concretely, we used MedHelp as the data source to collect

patient-contributed content based on which a weighted heterogeneous network was constructed. We extracted

topological features from the network, quantified them with different weighting methods, and used supervised

learning method for both ADR and DDI signal detection. In addition, after identifying DDI signals, we proposed a

new metric, named Interaction Ratio, to identify associated ADRs due to suspected interactions. The experiment

results showed that our proposed techniques outperforms baseline methods.

1. Introduction

Drug safety, also known as pharmacovigilance, is defined by the

World Health Organization (WHO) as “the science and activities re-

lating to the detection, assessment, understanding and prevention of

adverse effects or any other possible drug-related problems” [1]. One

important issue related to drug safety is how to detect signal of adverse

drug reactions (ADRs). It has been long recognized that ADRs represent

a significant world-wide health problem. In 2000, ADR was defined

comprehensively by Edwards and Aronson [2] as: “an appreciably

harmful or unpleasant reaction, resulting from an intervention related

to the use of a medicinal product, which predicts hazard from future

administration and warrants prevention or specific treatment, or al-

teration of the dosage regimen, or withdrawal of the product”. In the

United States, ADRs are considered to be a leading cause of death all

over the country. For example, it is showed that approximately 2 mil-

lion patients are affected each year by ADRs [3] and approximately

5.3% of hospital admissions are associated with ADRs [4]. The asso-

ciated cost is up to about 75 billion dollars annually [5]. Therefore, how

to effectively and efficiently detect ADR signals is of paramount im-

portance for drug manufacturers, government agencies, as well as

health consumers.

Drug-drug interactions (DDIs), alterations of the effects of a drug

due to the recent or simultaneous use of one or more other drugs, is

another significant drug safety problem. As an important subset of

ADRs, DDIs may account for up to 30% of unexpected adverse drug

reactions [6]. Because of common therapeutic and clinical multiple

drug co-administrations, DDIs are also common and often caused by

shared pathways of metabolism or intersecting pathways of drug action

[7]. In some extreme cases, adverse reactions caused by DDIs have led

to death. For example, drug cerivastatin caused 31 cases of fatal

rhabdomyolysis prior to June 2001, 12 of which involved the con-

comitant use of cerivastatine and gemfibrozil [8]. DDI detection is also

of great clinical importance because most interactions could result in

precaution of prescription, absolute contraindications of combination

use, or even drug withdrawal from market [7], and therefore has been

becoming an important research area in pharmacovigilance.

Currently, there are two major approaches to pharmacovigilance

process: pre-marketing review and post-marketing surveillance. Before

any pharmaceutical new drugs are approved by Food and Drug

Administration (FDA) for marketing, the pre-marketing review process

is required. This process focuses on identifying the risk associated with

drugs and the risks must be established and clearly communicated to

prescribers and consumers. However, pre-marketing clinical trials are

often conducted in selective patient populations, with relatively small

numbers of patients, and a short duration of follow-up. Hence, the pre-
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marketing review process is too constrained in terms of sample size,

cohort biases, time spans, and financial limit to possibly identify all

potential adverse reactions that may occur when the drug is used in

clinical practice [9]. Furthermore, clinical trials primarily focus on ADR

detection of single drugs and do not typically investigate DDIs [10,11].

Therefore, drug safety surveillance, both ADR and DDI detection, de-

pends heavily on post-marketing surveillance to detect latent adverse

reactions.

In the recent years, some traditional data sources are often mined

for drug safety signal detection, such as spontaneous reporting systems,

electronic health records, pharmaceutical databases, and biomedical

literature. However, these sources bare their own limitations that to

some extent hinder effective and confident signal detection. For in-

stance, spontaneous reporting systems have extremely high under-re-

porting ratio systems [9], electronic health records are not accessible to

everyone due to privacy issue, pharmaceutical databases are more fo-

cused on chemical and molecular level so that not everyone has such

domain knowledge, and formally-written literature has long publishing

cycle. Therefore, it is urgent to find alternative data sources to sup-

plement drug safety surveillance. Nowadays, the advancement of In-

ternet breeds a lot of online health communities (OHCs) such as Med-

Help, WebMD, PatientsLikeMe, DailyStrength, etc. A recent survey by

Pew Internet & American Life Project showed that 72% of internet users

said they went online for health information in 2012, 13% of which said

they began their information seeking by visiting a site that specializes in

health information, like WebMD [12]. We can imagine that countless

health consumers and professionals go to those OHCs frequently to ei-

ther seek or offer healthcare information, experience, advice, support,

and so on. Frequent visits on OHCs would inevitably produce a huge

volume of health-related contents that might be even more informative

than some administrative databases. If we can take good advantage of

these patient-contributed content, we may be able to reveal interesting

and timely knowledge, insights and patterns that may not be extracted

from other data sources.

In light of the popularity of social media in Web 2.0 and Health 2.0

era, it is beneficial to explore the potential of using OHC data for drug

safety signal detection. Some of our previous studies have shown that

OHC data can be used for pharmacovigilance. Concretely, in [13–17],

we applied association rule mining techniques directly to patient-con-

tributed content extracted from OHCs for drug safety detection. In this

study, we propose a framework to detect both ADR and DDI signals by

mining the structural information of weighted heterogeneous health-

care networks built from OHC data.

2. Literature review

In this section, we provide a thorough literature review for both

ADR and DDI detection. Since both of them are very important issues in

pharmacovigilance, abundant efforts have been dedicated to this area.

In terms of data sources used by researchers, these two topics are quite

similar, i.e. four traditional data sources are often used for both ADR

and DDI detection, namely spontaneous reporting systems, electronic

health records, pharmaceutical databases, and biomedical literature.

Although traditional data sources have been widely utilized for drug

safety signal detection and abundant promising results have been

shown, each of them suffers from certain limitations so that timely and

effective signal detection will be hampered. More introductions of the

traditional sources can be found in a recent survey [18]. This paper

explores the potential of an emerging data source – patient-contributed

content, so we focused on reviewing recent studies that used this type of

data. Also, we provided a literature review on heterogeneous network

since our method is built within this framework.

2.1. Pharmacovigilance using patient-contributed content

To the best of our knowledge, there are an increasing number of

studies dedicated to pharmacovigilance using patient-contributed con-

tent from such platform in the recent years. However, the number of

such studies is still limited, and more efforts need to be made.

2.1.1. ADR detection

Segura-Bedmar et al. proposed to detect drugs and adverse events

from Spanish posts collected from a health social media [19]. However,

this study only extracted drugs and adverse events separately rather

than identified drug-ADR associations. A group from University of

Pennsylvania has released a tool –Medpie – that can be used to collect a

corpus of medical message board posts, anonymize the corpus, and

extract information on potential adverse drug effects discussed by users

[20]. Using a diabetes online community data, Liu et al. developed a

framework – the AZDrugMiner system – based on statistical learning to

extract adverse drug reactions in patient discussions [3]. Using Daily-

Strength as the source of user comments, Leaman et al. extracted ad-

verse reactions by matching the terms in user comments with a lexicon

that combined concepts and terms from four resources [21]. Further,

they developed a system to automatically extract mentions of ADRs

from user reviews about drugs by mining a set of language patterns

[22]. Some Natural Language Processing (NLP) techniques such as

linguistic dependency relations were also used for ADR detection from

health-related social media [23]. Sarker and Gonzalez utilized machine

learning algorithm to classify ADR assertive text segments [24]. They

harnessed NLP techniques to generate useful features such as topics,

concepts, sentiments, and polarities. They also showed that integration

of multiple corpora can significantly improve classification perfor-

mance. Liu et al. also leverage NLP techniques to extract various lexical,

syntactic, and semantic features, based on which several classifier en-

sembles were used to distinguish between ADRs and non-ADRs in social

media texts [25]. Liu and Chen developed a framework with advanced

NLP techniques for ADR extraction from social media data [26]. The

framework consists of three components, namely medical entity ex-

traction, adverse drug event extraction, and report source classification.

However, information extraction using NLP would miss important in-

formation captured in paraphrase or formulated in colloquial language

[27]. Recently, with the advancement of word embedding, Nikfarjam

et al. proposed to use sequential labeling techniques to label ADRs [28].

Specifically, they utilized Condition Random Fields (CRFs) to extract

ADR concepts, and the performance could be boosted significantly by

adding word-embedding-based word cluster features.

2.1.2. DDI detection

Compared with ADR detection using patient-contributed content,

much less efforts have been found for DDI detection using such data.

White et al. demonstrated that Internet users are able to provide early

clues about DDIs via their search logs [29,30]. In their study, they

conducted a large-scale study of Web search log data gathered during

2010 and paid particular attention to the specific drug pairing of par-

oxetine and pravastatin, whose interaction was reported to cause hy-

perglycemia after the time period of the online logs used in the analysis.

Then they used Reporting Ratio (RR) to assess the increased chance of a

user searching for hyperglycemia-related terms given that they sear-

ched for both pravastatin and paroxetine. The experiment results

showed that logs of the search activities of populations of computer

users can contribute to drug safety surveillance.

Saker et al. conducted a thorough review on pharmacovigilance

utilizing social media data. Out of the 15 studies that were published

within the last two years, as many as 11 (73.3%) used annotated data

that requires a lot of expert efforts [5]. Our previous endeavors do not

rely on expert annotation. We proposed to mine associations between

drugs and adverse reactions and to utilize measures such as support,

confidence, leverage, lift, etc. to identify FDA alerted ADRs and DDI

signals [13–17]. No matter which measure we use, one crucial factor is

the number of forum threads that contain direct association between

drugs and ADRs. For example, in ADR detection, we are counting the
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number of threads that contain both a drug and an ADR whereas in DDI

detection, we are counting the number of threads that contain two

drugs and an ADR.

2.2. Link prediction in heterogeneous networks

An online health community itself is also a social network. Besides

discovering knowledge by directly mining patient-contributed content,

the structure of the network could also provide valuable information. In

most of the current research on network science, social and information

networks are usually assumed to be homogeneous, where nodes are

objects of the same entity type and links are relationships from the same

relation type. However, most real-word networks are heterogeneous,

where nodes and relations are of different types. For example, the

network of Twitter consists of persons as well as tweets, photo, video,

location, and so on, and the relationships could be following, followed,

person-tweets, person-location, and so forth. Given a dataset consisting

of patient-contributed content, if we can extract from it different types

of nodes such as drugs, ADRs, users, diseases, etc. and identify the re-

lationships among them, we could view our data as a heterogeneous

network.

Given the problem of drug safety signal detection, we are predicting

if there is an association between a drug and an ADR or between two

different drugs. Such problem can be formulated as link prediction. Link

prediction, dedicated to addressing the question of whether a link will

be formed in the future, is an important subtask in link mining. It is

defined as predicting the emergence of links in a network based on

certain current or historical network information [31]. As one of the

early researchers who started working on link mining, Liben-Nowell

and Kleinberg formalized link prediction problem [32]. In [32], they

used an unsupervised approach to predict the links based on a set of

network topology features such as graph distance, common neighbors,

Jaccard’s coefficient, preferential attachment, etc. in co-authorship

networks.

However, most link predictions are formulated in homogenous

network [32], and not until recent years are a few researchers dedicated

to this problem in heterogeneous network. In [33], Sun et al. studied

the problem of co-authorship prediction in heterogeneous bibliographic

network. Specifically, they first used a structure called network schema

to summarize the heterogeneous network and proposed a new concept

called meta path that can be extracted from network schema. Then they

proposed 4 topological measures on those meta paths, which are path

count, normalized path count, random walk, and symmetric random

walk. At last, the authors viewed the link prediction as a binary clas-

sification problem and proposed to use logistic regression model as the

supervised prediction model. Other than predicting whether a link will

be built in the future, Sun et al. also conducted a study addressing the

problem of when it will happen. In [34]. they used meta path-based

topological features and a generalized linear model (exponential dis-

tribution, Weibull distribution and geometric distribution) based su-

pervised framework to predict the building time of author citation re-

lationship.

To the best of our knowledge, there has been only a very limited

number of research that uses techniques of heterogeneous network

mining on OHC for knowledge discovery such as [35]. However, no

studies have been found that provide a framework for drug safety signal

detection by leveraging heterogeneous healthcare network. In this

section, we introduce in detail the definition of heterogeneous health-

care network, the topological features extracted from such network,

and the model for both ADR and DDI detection tasks in such network

setting.

3. A framework for drug safety signal detection

In our previous studies, it is important to count the number of

threads that contain drugs and ADRs. However, due to the openness and

casualness of Internet, consumers could talk about anything, not ne-

cessary a specific drug or ADR, not to mention very rare ADRs, which

makes it challenging to extract direct associations between drugs and

ADRs. Fig. 1 shows part of our datasets in DDI detection experiment.

Each cell represents the number of threads that contain both two drugs

and the ADR. As we can see, a large number of cells are 0. It is probably

because consumers are not aware of that the ADR is caused by drug-

drug interactions, and they only mention one drug in the thread, thus

making it difficult to extract direct associations between two drugs and

an ADR. However, consumers may talk about two different drugs and

the same ADR in separate threads, meaning the two drugs are linked by

the same ADR. If we can extract the indirect relationships between

those drugs, such relationships may help us identify ADR or DDI signals.

Therefore, in this study, the idea leads us to consider our dataset as a

network, and then identify drug safety signals through link mining in

such network.

Recently, heterogeneous information network mining has been

drawing increasing attention. Heterogeneous networks are more in-

creasingly favored by researchers over homogeneous counterpart as

they represent real-word networks in a more complete manner and

carry much richer information, thus unveiling more interesting and

otherwise hidden knowledge and patterns. Therefore, in this work, we

propose to leverage heterogeneous network mining approach to detect

drug safety signals. Fig. 2 shows our method schema that contains four

primary components, namely data collection, network construction,

feature extraction, and signal detection. Data collection component

aims to collect data from online health communities. Depending on

whether the websites provide API or not, we can develop different web

crawlers for data collection. Extracted forum posts are stored in well-

designed databases. Taking forum posts as input, network construction

component aims to build a heterogeneous healthcare network that

contains rich information. We first use external lexicons to extract

different types of nodes from posts, such as drugs, ADRs, diseases, etc.,

and then link different nodes together based on their co-occurrence in

an analysis unit. After the network is constructed, feature extraction

component steps in to extract features for ADR and DDI detection re-

spectively. At last, given extracted features, signal detection component

performs binary classification to predict signals.

3.1. Heterogeneous healthcare network definition

A heterogeneous network is defined as a graph N L=G ( , ) con-

sisting of nodes joined by links, where = …N n n n{ , , , }g1 2 ,

= …L l l l{ , , , }L1 2 and li can be directional or non-directional. In the

graph G, each node N∈ni belongs to one particular type from T ,

each link L∈li belongs to one particular relation from R , and the

number of the types of nodes T >| | 1 or the number of types of rela-

tions R >| | 1.

An OHC can be modeled as a heterogeneous healthcare network in

Fig. 1. Partial DDI Detection Dataset.
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which there are a set of node types, such as Drug, ADR, Disease,

Treatment, Diagnostics, Users, etc. and a set of relation types, such as

cause or is caused between Drug and ADR, treat or is treated between

Treatment and Disease, use or is used between User and Drug, have or is

had between User and Disease, etc.

3.2. Heterogeneous healthcare network model

A network model T R=M ( , )G is a compressed representation for a

heterogeneous network N L=G ( , ), which is a directional or non-

directional graph consisting of node types T , with links as relations

from R . Fig. 3 succinctly presents a directional network model of a

heterogeneous healthcare network. As we can see, the network includes

four types of nodes, namely Drug, ADR, Disease, and User. For ab-

breviation, we use a capital letter to represent each node type, i.e. R for

Drug, A for ADR, D for Disease, and U for User. The relations in this

network contain cause or is caused between R and A, treat or is treated

between R and D, show or is shown between U and A, have or is had

between U and D, and take or is taken between U and R.

A directional network model can be extracted from a heterogeneous

network only when the relation between a pair of different types of

node can be determined. For example, a bibliographic network can be

represented by a directional network model. The relations among dif-

ferent types of node, such as paper, author, venue, and topic, can be

explicitly and easily determined. Detailed examples of bibliographic

heterogeneous network mining can be found in [33,34]. However, not

all heterogeneous networks contain explicit relations among different

types of nodes, i.e. the semantic meaning of the relation could not be

easily determined. Under such circumstances, the heterogeneous net-

work could be represented as a non-directional network model and the

relation between nodes can be the same kind of associations. For ex-

ample, given a dataset of patient-contributed, it is not an easy task to

accurately determine the explicit relations between nodes without

using sophisticated natural language processing (NLP) techniques or

thorough human annotation. However, it is still challenging to use NLP

tools to analyze social media data [27] and thorough human annotation

would be very time consuming. In our work, we propose to analyze a

non-directional heterogeneous healthcare network (Fig. 4) that con-

tains 4 types of nodes (namely R, A, D, and U) joined together by their

co-occurrence in an analysis unit – a forum thread consisting of the

original post and all following comments and replies. For R, A, and D,

there will be a link between any two of them if co-occurrence is iden-

tified. For U, if there is a link between two users, there could be two

scenarios: (1) one user is thread originator, another user is a com-

menter, and (2) both users are commenters of the same thread. We can

always expand the network by adding more types of nodes and relations

in the future.

3.3. Topological features

Topological features are also called structural features, which are

extracted connectivity properties for pairs of objects in the networks

[34]. Based on homogeneous network which only contains a specific

Fig. 2. ADR and DDI Detection Schema.

Fig. 3. Directional Network Model for Heterogeneous Healthcare Network. Fig. 4. Non-directional Network Model for Heterogeneous Healthcare Network.
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type of nodes, there are a number of well-known and frequently used

topological features. Most of the features are either path-based, such as

graph distance, Katzβ [32] and propflow [36] or neighbor-based, such

as common neighbors, Jaccard’s coefficient, Adamic/Adar, preferential

attachment, and SimRankγ [32]. However, in a heterogeneous network,

as a neighbor of one node could belong to different types and a path

could also flow through different types of nodes, the commonly used

features in homogeneous networks may no longer be applicable in such

situation. For instance, in a heterogeneous healthcare network, two

different drugs could be related by the path − − − −R D U D R because of

the co-occurrence of each two adjacent nodes in analysis units, and the

possible semantic meaning of such path could be explained as “a user

has two different diseases which are treated by two different drugs

respectively.” However, such information cannot be inferred from a

homogeneous healthcare network that only consists of drugs. There-

fore, some novel features that can reflect the characteristics of a het-

erogeneous network should be designed.

In our work, we define − −T T Path Ls d as a topological feature of a

heterogeneous network. A − −T T Path Ls d is an abstract path defined

between two types of nodes Ts and Td with length L. It is extracted from

the network model T R=M ( , )G , and is presented in the form of

→ →…⎯ →⎯⎯⎯⎯ ⎯→⎯−
−

T T T Ts

R R R

L

R

d1 1
L L1 2 1

. When the specific types of relations and di-

rections cannot be determined between nodes, − −T T Path L1 2 takes the

form of − −…− −−T T T Ts L d1 1 with links denoting associations between

nodes.

3.3.1. Topological features for ADR detection

In [8], Vilar et al. proposed to detect drug-drug interaction signals

through molecular structure similarity analysis. The basic assumption

of their method is that if drug a interacts with drug b to cause a specific

ADR, and drug c is structurally similar to a, then c is likely to interact

with b to produce the same ADR. In this work, we focus on social media

data. If one drug is identified to have an association with an ADR, it is

possible that other drugs that are associated to this drug through other

associations of diseases, users, and ADRs may cause the same ADR but

not explicitly discussed in social media due to the limited medical

knowledge of health consumers. In a heterogeneous healthcare net-

work, we are going to predict the drug and ADR association through the

path associations. If we know that drug b would cause the ADR and

drug a and drug b are highly associated, it is possible that drug a would

cause the same ADR. For example, if a user is taking drug a and drug b

and she is experiencing an ADR that is a common side effect of drug b,

there is a path of drug a – user – drug b – ADR on the heterogeneous

healthcare network. It is possible that the ADR is also caused by drug a

but there is not an explicit association in the heterogeneous network.

Therefore, we construct a topological feature set by considering all 16

symmetric −RR Path with length less than 5 denoting associations be-

tween drugs and concatenating the targeted association, −R A, to its left

side or right side. Since we are dealing with an non-directional het-

erogeneous network, we only consider concatenating −R A to the right

side of each −R Path. For example, by concatenating − − − −R D U D R and

−R A together, we obtain a topological feature − −Path 5:

− − − − −R D U D R A. In total, including the targeted association −A, we

have 17 topological features (Table 1).

3.3.2. Topological features for DDI detection

After we have the topological features for ADR detection, we can

easily extract features for DDI detection. We just need to remove as-

sociation −R A from all features in Table 1, and the rest can be used to

represent associations between two drugs. Therefore, in DDI detection

problem, we extracted all the symmetric −R R Paths d with length 1 to

length 4, and there are 16 such paths in total given 4 different types of

nodes R, A, D, and U, such as R-R, R-D-R, R-A-D-A-R, etc. (Table 2) The

link existing between two nodes specifies the co-occurrence association

between them.

3.4. Weighted heterogeneous healthcare network and feature quantification

There are two possible types of heterogeneous networks: non-

weighted and weighted. A non-weighted network means the links do

not carry weight information whereas a weighted one is a network in

which the links between any pairs of nodes have weights assigned to

them. In most real-world networks, the strength of associations between

different pairs of nodes is not entirely the same when links exist be-

tween them. For example, given a heterogeneous healthcare network in

Fig. 5, the number next to the link denotes the link frequency. If we

don’t consider the weight, PC R A( , )1 3 under path − − −R A R A is 2, and

PC R A( , )1 3 under path − − −R D R A is also 2. However, to some extent,

path − − −R D R A is more interesting in this case because the nodes under

the path co-occurred more frequently. Therefore, drug safety detection

based on a weighted heterogeneous network could achieve better per-

formance by considering the paths with different strength of associa-

tions. In this study, we propose to use three different metrics to weight

the network: link frequency (LF), link leverage (LV), and link lift (LT).

Let lab be a link between nodes Ta and Tb and considering a thread of

an OHC forum as an analysis unit, LF is the number of threads in which

nodes Ta and Tb co-occur. Leverage and lift are often used in association

rule mining, one of the most important and well researched techniques

of data mining. Association rule mining was first introduced by Agrawal

Table 1

Topological Features for ADR Detection: − −RA Path 1 to

− −RA Path 5 Denoting Associations between Drug and

ADR.

Path Length

R – A 1

R – R – A 2

R – A – R – A 3

R – D – R – A 3

R – U – R – A 3

R – A – A – R – A 4

R – D – D – R – A 4

R – U – U – R – A 4

R – A – A – A – R – A 5

R – A – D – A – R – A 5

R – A – U – A – R – A 5

R – D – A – D – R – A 5

R – D – D – D – R – A 5

R – D – U – D – R – A 5

R – U – A – U – R – A 5

R – U – D – U – R – A 5

R – U – U – U – R – A 5

Table 2

Topological Features for DDI Detection:

− −R R Path 1s d to − −R R Path 4s d Denoting Associations

between Drug and Drug.

Path Length

R – R 1

R – A – R 2

R – D – R 2

R – U – R 2

R – A – A – R 3

R – D – D – R 3

R – U – U – R 3

R – A – A – A – R 4

R – A – D – A – R 4

R – A – U – A – R 4

R – D – A – D – R 4

R – D – D – D – R 4

R – D – U – D – R 4

R – U – A – U – R 4

R – U – D – U – R 4

R – U – U – U – R 4
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et al. when they were trying to identify significant purchasing pattern

from a large database of consumer transactions [37]. This technique

aims to extract interesting correlations, frequent patterns, associations

or casual structures among sets of items in the transaction databases or

other data repositories and is widely used in various areas such as

telecommunication networks, market and risk management, inventory

control, etc [38]. Mathematically, let = …I I I I{ , , , }m1 2 be a set of items.

Let X, the task–relevant data, be a set of database transactions where

each transaction T is a set of items such that ⊆T I . An association rule

is an implication of the form ⇒A B, where ⊂A I , ⊂B I , and

∩ = ∅A B , where both A and B are a set of items, which is referred to

as an itemset. Leverage and lift are often used to measure the inter-

estingness and impressiveness of an association. In this study, we use

these two to measure the association strength between a pair of nodes

as represented by a link in a heterogeneous network. Give a link lab
between nodes Ta and Tb, LV and LT are defined respectively as:

= − ×LV l support l support T support T( ) ( ) ( ) ( )ab ab a b

=
×

LT l
support l

support T support T
( )

( )

( ) ( )
ab

ab

a b

where

=support l
LF l

Z
( )

( )
ab

ab

=support T
NF T

Z
( )

( )
a

a

=support T
NF T

Z
( )

( )
b

b

where NF T( )a and NF T( )b denote node frequency (number of threads

that contain the node) of node Ta and Tb respectively, and Z is the total

number of threads in the dataset. For both LV and LT, the higher the

value is, the more importance the link will be.

There are several ways of quantifying the topological features in a

heterogeneous network. In [34], Sun et al. proposed to use such mea-

sures as path count, normalized path count, random walk, and sym-

metric random walk to quantify the features. There measures could also

be applied into our non-directional heterogeneous network with some

modifications. In this work, after adding weight to the network, we

propose to use Weighted Path Count (WPC) to quantify the extracted

topological features. Given a − −T T Path Ls d , the WPC is defined as:

∑∑=
=

+WPC T T
L

w n n( , )
1

( , )s d

P i

L

i i

1

1

where P denotes a specific path, L is the length of P, ni and +ni 1 are two

directly connected nodes following P , and +w n n( , )i i 1 is weight of the

corresponding link connecting node ni and +ni 1. Take the network in

Fig. 5 as an example. If we use link frequency as the weight, (1) under

path − − −R A R A, = + + + + + =WPC R A( , ) (1 1 8 2 3 8)1 3
1

3

23

3
, and (2) under

path − − −R D R A, =WPC R A( , )1 3
1

3
+ + + + + =(3 4 8 5 6 8)

34

3
. In this

way, we can tell that for drug R1 and ADR A2 path − − −R D R A has

stronger association than − − −R A R A.

3.5. Drug safety signal detection model

We model drug safety signal detection as a binary classification

problem.

3.5.1. ADR detection

Given a drug-ADR pair, we use a classification model to label them

as either “1″ (drug causes the ADR) or “0″ (drug does not cause the

ADR) based on their quantified topological features extracted from the

heterogeneous healthcare network.

3.5.2. DDI detection

Given a pair of drug nodes, we use a classification model to label

them as either “1″ (interaction) or “0″ (no interaction) based on their

quantified topological features. Various classification models could be

used such as Logistical Regression (LR) [39], Naïve Bayes (NB) [39],

Support Vector Machine (SVM) [40], etc.

3.6. Associated adverse reaction for DDI detection

3.6.1. Association rule mining metrics

Above techniques for DDI detection could only predict if two drugs

are interacting through mining the weighted heterogeneous healthcare

network. However, after such signals are detected, we are also inter-

ested in identifying what consequent adverse reaction would be caused

due to interaction, which would lead to better further investigation.

Therefore, we also propose to apply association mining to associated

ADR detection. Three metrics are often used to capture the association

strength, namely confidence, leverage, and lift. The metrics here are

different from those in section 3.4 that only measure the strength of two

nodes. Instead, they are trying calculate the association strength of two

drugs causing an ADR, and are defined as follows.

∪ ⇒ =
∪ ⇒

∪
confidence R R A

support R R A

support R R
(( ) )

(( ) )

( )
1 2

1 2

1 2

∪ ⇒ = ∪ ⇒

− ∪ ×

leverage R R A support R R A

support R R support A

(( ) ) (( ) )

(( ) ( )

1 2 1 2

1 2

∪ ⇒ =
∪ ⇒

∪ ×
lift R R A

support R R A

support R R support A
(( ) )

(( ) )

(( ) ( )
1 2

1 2

1 2

where

∪ ⇒ =
∪ ∪

support R R A
count R R A

total count
(( ) )

( )
1 2

1 2

where ∪ ∪count R R A( )1 2 is the number of threads that contain R1, R2
and A, and total count is the total number of threads in the whole da-

taset.

Confidence determines the extent to which the appearance of

∪R R1 2 implies the appearance of. Both leverage and lift consider the

correlation between ∪R R1 2 and A. Leverage indicates the proportion of

threads that contain ∪ ∪R R A1 2 by excluding probability that if ∪R R1 2

and A are independent with each other whereas lift considers the ratio

of those two. For example, note that lift can also be written as:

∪ ⇒ =
∪ ⇒

∪ ×

=
×

=

lift R R A
support R R A

support R R support A

P R R A

P R R P A

P A R R

P A

(( ) )
(( ) )

(( ) ( )

( , , )

( , ) ( )

( , )

( )

1 2
1 2

1 2

1 2

1 2

1 2

Large values indicate that the occurrence of the ∪ ⇒R R A( )1 2 as-

sociation has unlikely occurred by chance. Roughly,

∪ ⇒ =lift R R A(( ) ) 11 2 indicates that the two drugs and ADR are sta-

tistically independent with each other, ∪ ⇒ >lift R R A(( ) ) 11 2 that the

Fig. 5. An Example of A Heterogeneous Healthcare Network.
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drugs and ADR are positively correlated, and ∪ ⇒ <lift R R A(( ) ) 11 2

that they are negatively correlated. For both leverage and lift, the

higher the values are, the stronger the DDIs signals are.

3.6.2. Interaction ratio

Although our previous research has demonstrated that the three

measures, especially leverage and lift could effectively detect ADRs

reported by FDA [13,14,16,17], we were dealing with a single drug and

its adverse reaction. Also, there are some limitations about them. For

example, in DDI detection, confidence could be very low because there

may be very few consumers mentioning both drugs and associated ADR

as they may not be aware of fact that the ADR is caused by drug-drug

interaction. Also, leverage could be even negative that makes it very

difficult to interpret the results. Therefore, in order to effectively

identify associated ADR, we propose a new metric that is called Inter-

action Ratio and defined as:

∪ ⇒ =
∪ ⇒

⇒ × ⇒
IR R R A

confidence R R A

confidence R A confidence R A
(( ) )

(( ) )

( ) ( )
c 1 2

1 2

1 2

where IRc means Interaction Ratio, subscript c denotes confidence on

which this formula is based, R1 is one of the drugs in our collected

dataset, R2 is a drug which could interact with D1 to generated ADR R,

⇒confidence R A( )1 is the confidence value that A is caused by R1, and

⇒confidence R A( )2 is the confidence value that A is caused by R2. The

rationale behind this metric is that if an ADR is caused by the inter-

action of R1 and R2 rather than only by R1 or R2 alone, the value of

∪ ⇒confidence R R A(( ) )1 2 should be higher than that of ⇒confidence R A( )1 or

⇒onfidence R A( )2 , and the division would boost the value of

∪ ⇒IR R R A(( ) )c 1 2 .

4. Experiment

4.1. Data collection

In this study, MedHelp.org, a pioneer in online health communities, is

used as the source of health-contributed contents. We focus on the drug

section, which is one of the most important and popular components in

MedHelp. To effectively detect drug safety signals, the drugs should bear

active discussion. Therefore, we targeted 20 drugs that have more than 500

threads for each of them, and collected all the original posts and following

comments of those threads. The 20 drugs include Adenosine, Biaxin, Cialis,

Concerta, Elidel, Epogen, Gadolinium, Geodon, Heparin, Lansoprazole,

Lantus, Lunest, Luvox, Prozac, Risperdal, Simvastatin, Tacrolimus, Vyvanse,

Zocor, and Zyprexa. The names of those drugs come from FDA’s website1,

which includes an index of drugs that have been the subject of a Drug Safety

Communication, Healthcare Professional Information sheet, Early Com-

munication About an Ongoing Safety Review, or other important informa-

tion. In total, there are 16,344 threads.

4.2. Network construction

To construct the heterogeneous healthcare network, we need to

extract different types of nodes and their relations. In this work, we

focus on four types of nodes, namely R, A, D, and U, and external lex-

icons are used to extract them. For R, besides the 20 drug names col-

lected, we also add three other drugs (i.e. Quinidine, Ticlopidine, and

Gemfibrozil) that could interact with some of the 20 drugs into our drug

list to enrich our dataset for DDI detection. For A, we focus on 10 ADRs,

namely Blurred Vision, Cancer, Depression, Diarrhea, Heart Disease,

Hypertension, Kidney Disease, Skin Discoloration, Stroke, Suicide.

Some of the drugs collected were alerted by FDA to cause some adverse

reactions. For example, Lansoprazole and Heparin are both alerted to

cause Diarrhea; Luvox and Prozac are both alerted to cause suicidal

thoughts. Therefore, a part of our ADR list comes from FDA’s official

alert, whereas the rest is based on drug labeling revisions. The drug

labeling revisions provide new ADRs added on the labels of drugs after

the drugs are released. The labeling revision information could be

found on FDA’s website “Drugs@FDA”. Then we use Consumer Health

Vocabulary (CHV) Wiki to build our ADR lexicon. More introduction of

CHV can be found in [41]. CHV reflects the difference between con-

sumers and professionals in expressing health concepts and helps to

bridge this vocabulary gap. Therefore, high quality CHV is able to help

with capturing more consumers’ expressions and better extracting ADR

terms. Some studies are dedicated to expanding CHV by using social

media data [42–44]. For D, we search for diseases that are treated by

each of the 20 drugs in SIDER database to construct our disease lexicon.

SIDER contains information such as adverse drug reactions and diseases

on marketed medicines, and the information is extracted from public

documents and package inserts [45]. At last, there are 205 diseases in

total, such as Bipolar Disorder, Hyperactivity Disorder, Hypercholes-

terolaemia, and so on. For U, we extract all user names from each

thread. The dataset is de-identified before conducting the experiment.

For links, we treat our network as non-directional, and two nodes are

linked together if they co-occur in the same thread.

In order to exclude the nodes and links that appear in the hetero-

geneous healthcare network rarely, we only retain the nodes and links

with frequency larger than 15. After filtering, there are 511 nodes and

4378 links in our final network with density being 0.034. Then we

weigh the network using leverage and lift respectively, and quantify the

extracted features for both ADR and DDI detection with weighted path

count.

4.3. Gold standard

4.3.1. ADR detection

As mentioned earlier, current post-marketing surveillance in United

States primarily depends on FDA’s FAERS system, and alerts will be

released on FDA’s website2 if the ADR is confirmed after investigation.

Out of the 20 drugs collected, 8 of them were alerted by FDA to cause

some adverse reactions. Some of the drugs share the same alerted ADRs.

For example, Lansoprazole and Heparin are both alerted to cause

Diarrhea; Luvox and Prozac are both alerted to cause suicidal thoughts.

We used 6 ADRs alerted by FDA to construct a part of our gold standard

for evaluating the proposed techniques. Another part of the gold stan-

dard is based on drug labeling revisions. The drug labeling revisions

provide new ADRs added on the labels of drugs after the drugs are

released. The labeling revision information could be found on FDA’s

website “Drugs@FDA3
”. In this study, we used 4 other ADRs as another

part of our gold standard, and we have 10 ADRs in total, namely

Blurred Vision, Cancer, Depression, Diarrhea, Heart Disease, Hy-

pertension, Kidney Disease, Skin Discoloration, Stroke, and Suicide.

4.3.2. DDI detection

In the constructed healthcare network, the links between nodes are

based on co-occurrence and their semantic meanings are implicit, so

even if two different nodes are linked together, it does not mean that

they would interact with each other. Therefore, an external database

DrugBank is used to set up the gold standard. DrugBank database is a

unique bioinformatics and cheminformatics resource that combines

detailed drug data with comprehensive drug target information

[46].We search for all the 23 drugs to see if one drug is reported to

interact with any other drugs using the Interax Interaction Search4

1 http://www.fda.gov/Drugs/DrugSafety/

PostmarketDrugSafetyInformationforPatientsandProviders/ucm111085.htm

2 http://www.fda.gov/Drugs/DrugSafety/

PostmarketDrugSafetyInformationforPatientsandProviders/ucm111085.htm
3 http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm
4 http://www.drugbank.ca/interax/drug_lookup
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engine. If two drugs are reported to have interaction, we label the pair

of drug nodes as “1″, and otherwise “0″. For example, Biaxin is reported

by interact with Quinidine to cause Arrhythmias, Simvastatin is re-

ported to interact with Gemfibrozil to cause Myopathy, etc. At last, 20

positive (drug pairs labeled as “1″) are identified. This information is

also used as gold standard for associated adverse reaction detection.

4.4. Evaluation

To evaluate the effectiveness of the proposed techniques, we set up

baseline for both ADR and DDI detection.

4.4.1. ADR detection

In our previous study [17], when using association rule mining to

detect ADR signals, leverage has the best performance. Therefore, we

first compare supervised techniques with unsupervised counterpart,

namely association rule mining, and we use F1 score to compare their

performance. Second, we set up a comparison between weighted and

non-weighted heterogeneous healthcare networks: specifically, we

construct a non-weighted heterogeneous network, extract all the 17

− −RA Path L and used path count to quantify them, and then perform

classification on it. We use both F1 score and area under the ROC curve

(AUC) to evaluate the performance.

4.4.2. DDI detection

Here we have two steps for DDI detection. We first detect if two

drugs interact, and then identify the associated adverse reactions due to

interaction. Therefore, we develop baselines for each step.

For the first step, we set up two baselines for comparison:

(1) Comparison between heterogeneous and homogeneous net-

works: We compare the performances between heterogeneous and

homogeneous networks. Specifically, we constructed an unweighted

homogeneous network that only contains one type of node – drug. We

counted the number of path instances for each drug pair to quantify the

homogeneous topological features with length no longer than 4, namely

R–R, R–R–R, R–R–R–R, and R–R–R–R–R. Then we perform classification

on the dataset.

(2) Comparison between weighted and unweighted heterogeneous

networks: We also compare the performances between weighted and

unweighted heterogeneous networks. Specifically, we constructed an

unweighted heterogeneous network, extracted all the 16 symmetric

− −R R Path Ls d and used path count to quantify them. Then we perform

classification on the dataset.

We use sensitivity, specificity, and AUC to evaluate the proposed

methods.

For the second step, we compare our proposed techniques with

Reporting Ratio (RR) that were used in [29] to detect DDI signal and

associated ADR from Web search log data. They paid particular atten-

tion to the specific drug pairing of paroxetine and pravastatin, whose

interaction was reported to cause hyperglycemia. Fig. 6 shows the Venn

diagram of different user groups in the analysis conducted in [29]. RR is

defined as observed/expected, i.e. a b c d( / )/( / ). Observed is defined as

the fraction of users who searched for both pravastatin and paroxetine

(b) who also queried for hyperglycemia symptoms (a), and expected is

defined as the fraction of users who searched for pravastatin (d1) who

also searched for hyperglycemia symptoms (c1), or the fraction of users

who searched for paroxetine (d2) who also searched for hyperglycemia

symptoms (c2) [29]. In this work, we replace Pravastatin searchers with

R1, Paroxetine searchers with R2, and All hyperglycemia searchers with A.

Therefore, RR R( )1 is defined as a b c d( / )/( / )1 1 , where a denotes the

number of threads that contain R1, R2 and A, b is the number of threads

that contain both R1 and R2, c1 is the number of threads that contain

both R1 and A, and d1 is the number of threads that contain R1. RR R( )2 is

defined in a similar way. Sensitivity, specificity, and AUC are also used

to compare the performance of different metrics.

4.5. Results and discussion

4.5.1. ADR detection

During the experiment, we found that our dataset is highly im-

balanced, and the ratio of positive (labeled as 1) and negative (labeled

as 0) drug-ADR pairs is approximately 1:14. Therefore, we use under-

sampling to build a training dataset with an equal sized set of positive

and negative pairs. Then we perform 5-fold cross validation using

multiple classifiers, i.e. LR, NB, and SVM. The undersampling process is

repeated 1000 times and the final performance is averaged.

When applying association rule mining with leverage as metric to

our dataset, we can achieve 0.20 in F1 score. As shown in Table 3, no

matter what weighting schema and classifier we use, the proposed su-

pervised leaning techniques outperformed unsupervised one, especially

when we use leverage and lift to weight the heterogeneous healthcare

network. It is because supervised learning technique is able to recognize

patterns of true positive and true negative signals by analyzing the

proposed features. It is more powerful in predicting unseen new ex-

amples.

Figs. 7 and 8 show the performance comparisons of different net-

work weighting schemas using different classifiers in terms of F1 score

and AUC score respectively. We can observe that, in all scenarios,

heterogeneous network weighted by leverage (Hete_LV) and hetero-

geneous network weighted by lift (Hete_LT) outperform non-weighted

network and network weighted by link frequency except AUC score

using Naïve Bayes as classifier.

We also conducted ANOVA analysis to see, for each classifier, if

there is any significant difference between different network weighting

schemas in terms of F1 score and AUC score. Both Welch procedure

(p= .000) and Brown-Forsythe procedure (p= .000) showed that a

statistically significant difference exists in terms of both F1 score and

AUC no matter which classifier is used. Furthermore, for both F1 and

AUC scores under all three classifiers, Games-Howell post-hoc tests

demonstrated that (1) Hete_LV is statistically significant higher than all

other three network weighting schemas (p = .000 for all comparisons)

except its AUC score is significantly lower than Hete_Non-weighted (p

= .000) and Hete_LT (p = .000) when Naïve Bayes is used; (2) Hete_LT

is significantly higher than both Hete-Non-weighted and Hete_LF (p =

.000 for all comparisons) except its AUC score is significantly lower

than Hete_Non-weighted (p = .000) when NB is used. Last but not the

least, ANOVA analysis under network weighting schema Hete_LV

showed that (1) for F1 score, NB is significantly higher than both LR (p

= .000) and SVM (p = .000), and SVM is significantly higher than LR

(p = .000); (2) for AUC score, SVM is significantly higher than both LR

(p = .000) and NB (p = .000), and LR is significantly higher than NB (p

= .000).

The results demonstrate that (1) the performance of different clas-

sifiers varies under different evaluation scenarios, and (2) leverage- and

Fig. 6. Venn Diagram Showing the Different User Groups [29].
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lift-weighted heterogeneous healthcare networks are generally more

effective in ADR detection than non-weighted and frequency-weighted

heterogeneous network. Link frequency is proportional to its support

value ( =support l
LF l

Z
( )

( )
ab

ab ), which is not enough to represent the

information carried by links. For example, considering a link R – A, its

support value could be very small, but it does not mean that this link is

trivial, because this ADR could be one of the rare ADRs that would be

caused by the drug. One limitation of support lies in the fact that it

would work well when the ADR of the drug appear frequently in the

dataset. However, health consumers discuss diverse aspects of drugs in

online forum, such as drug dosage, drug prescription, concomitant use

of different drugs, and so forth. It is very likely that threads that are

related to the specific ADR are only a small portion of the total threads,

especially for those rare ADRs. Leverage and lift could be used to ad-

dress this problem because they incorporate the support of the ADR in

the dataset. Both leverage and lift measure the strength of a link not

only by looking at its support but also the correlation between the two

nodes. Leverage measures the difference between the proportion of

threads containing both nodes above those expected if the two nodes

were independent of each other whereas lift calculate the ratio of these

two. Therefore, both leverage- and lift-weighted heterogeneous net-

works perform better than frequency-weighted one. It is also worth

noting that in ADR detection, we only utilized undersampling for

handling imbalanced dataset. However, since undersampling only

randomly select a small portion of data from the majority class, it would

potentially remove very important data examples, thus hurting the

training model. Therefore, in DDI detection, we also applied other

methods for handling imbalanced dataset.

4.5.2. DDI detection

4.5.2.1. Interaction detection. Compared with adverse drug reactions,

drug-drug interactions are more scarce [47], so we also expect our

dataset to be highly imbalanced. Indeed, we found that the ratio of

positive (drug pairs labeled as 1) and negative (drug pairs labeled as 0)

examples is approximately 1:12 in our dataset. Besides undersampling,

we also propose to use oversampling, MetaCost [48], and AdaBoost

[49,50] techniques to learn from the imbalanced data.

Table 4 demonstrates the sensitivity and specificity of different

methods in different network setting. Homo_NW and Hete_NW denote

non-weighted homogeneous network and non-weighted heterogeneous

network respectively, whereas Hete_LV and Hete_LT denote hetero-

geneous network weighted by leverage and lift respectively. As we can

see, except AdaBoost that classified all examples as “no interaction”, for

the other three methods, Heterogeneous network generally performed

better than the homogeneous counterpart. In particular, compared

horizontally, leverage-weighted heterogeneous network has the best

Table 3

Comparison between Supervised Learning and Unsupervised Learning Using F1

Score.

Hete_Non-Weighted Hete_LF Hete_LV Hete_LT

LR 0.35 0.41 0.95 0.97

NB 0.75 0.43 0.98 1.00

SVM 0.45 0.41 0.97 0.92

Hete_Non-Weighted: heterogeneous network with no weight.

Hete_LF: heterogeneous network weighted with link frequency.

Hete_LV: heterogeneous network weighted with leverage.

Hete_LT: heterogeneous network weighted with lift.

Fig. 7. F1 Score Comparison.

Fig. 8. AUC Score Comparison.

C.C. Yang, H. Yang Artificial Intelligence In Medicine 90 (2018) 42–52

50
Downloaded for Anonymous User (n/a) at Drexel University from ClinicalKey.com by Elsevier on March 13, 2020.

For personal use only. No other uses without permission. Copyright ©2020. Elsevier Inc. All rights reserved.



performance for undersampling, oversampling, and MetaCost in terms

of both sensitivity and specificity. Lift-weighted heterogeneous network

also performed better than non-weighted heterogeneous network in

sensitivity and comparable in specificity. Compared vertically, Meta-

Cost under leverage-weighted heterogeneous network outperformed

other methods in sensitivity whereas oversampling under the same

network setting has the highest specificity. Table 5 illustrates the AUC

scores of different methods in various network settings, which, again,

shows that both non-weighted and weighted heterogeneous networks

outperformed homogeneous counterpart, and leverage-weighted het-

erogeneous healthcare network has the highest AUC in all methods.

The results suggest that (1) heterogeneous network is more effective

in DDI signal detection and (2) leverage- and lift-weighted hetero-

geneous network perform better than non-weighted one and leveraged-

weighted network has the best performance. It suggests that hetero-

geneous healthcare networks carry richer information because it in-

corporates various types of nodes that could better represent the real-

world network. Also, weighted links are more informative than binary

representation. We also found that although AdaBoost method could

achieve reasonable specificity and AUC score, it is not able to recall any

true positive signals. Therefore, only AdaBoost may not achieve sa-

tisfactory performance and more techniques should be incorporated.

For example, cost-sensitive methods and adaptive boosting could be

integrated for improving the performance.

4.5.2.2. Associated ADR detection. Here we are more interested in

recalling as many true positive examples as possible. Therefore, we

apply MetaCost to our original leverage-weighted heterogeneous

healthcare network because this combination has the highest cross

validated sensitivity and fair specificity according to Table 4 and we are

more interested in recalling as more true signals as possible. Our dataset

consists of 20 positive and 233 negative drug pairs. At last, 18 true

positive pairs out of 20 and 64 false positive pairs are detected by the

algorithm. We believe that as we expand our dataset in the future, the

proposed techniques are able to save a fair amount of computational

resource without sacrificing too much sensitivity.

We set up a threshold for each metric by their characteristics and

domain knowledge. Concretely, we assign 1 to both RR R( )1 and RR R( )2
because RR greater than 1 means a higher odds of interaction [51]; 0.3

to triad confidence based on expert opinion; 0 to leverage because

leverage greater than 0 denotes a positive correlation between two

drugs and ADR [17]; 1 to lift because lift greater than 1 also denotes a

positive correlation between two drugs and ADR [17]; and 20 to IR

(confidence) based on expert opinion. Table 6 shows the performance

of different metrics in detecting associated ADRs due to drug-drug in-

teraction. As we can see, association mining metrics except confidence

have better performance than baseline methods. In particular, our

proposed technique, IRc, achieved the highest AUC and sensitivity and

comparable specificity. It is also worth noting that although IRc is based

on confidence, it significantly outperformed confidence in AUC and

sensitivity and has a slightly lower specificity

5. Conclusion

The development of Web 2.0 and Health 2.0 technologies leads the

booming of OHCs such as MedHelp, WebMD and so on. Such platforms

are not only empowering individuals to play a substantial role in their

own health, but also generating informative patient-contributed con-

tent that can be utilized to mine timely and useful knowledge, thus

providing automated insights and discovery. Since pharmacovigilance,

namely ADRs and DDIs, represents a serious health problem all over the

world, how to detect drug safety signals has drawn many researchers’

attention and efforts. Currently, the methods proposed to detect ADR

and DDI signals are mainly based on traditional data sources such as

spontaneous reporting data, electronic health records, pharmaceutical

databases, and biomedical literature. However, these data sources are

either limited by under-reporting ratio, privacy issues, high cost, or

long publication cycle. In this study, we propose a framework for drug

safety signal detection by harnessing online health community data, a

timely, informative, and publicly available data source. We used

MedHelp as data source to collect patient-contributed content based on

which a weighted heterogeneous network was constructed. Then we

extracted topological features from the network, quantified them with

different weighting methods, and used supervised learning method for

both ADR and DDI signal detection. In addition, after identifying DDI

signals, we proposed a new metric, named Interaction Ratio, to identify

associated ADRs due to suspected interactions. The experiment results

show that our proposed techniques outperform the baseline methods.

Specifically, in ADR detection, supervised techniques outperformed

unsupervised counterpart with association rule mining, and leverage-

and lift-weighted networks could achieve better results than non-

weighted network within supervised methods. In DDI detection, besides

undersampling, we also utilized oversampling, cost-sensitive, and en-

semble methods to deal with imbalanced dataset issue. The experiment

results showed that, again, leverage-weighted network has better per-

formance than both homogeneous network and non-weighted hetero-

geneous network. The advantage of heterogeneous-network-based ap-

proach is that it captures both direct and indirect relations among

different types of nodes. Furthermore, compared with homogeneous

Table 4

Sensitivity and Specificity of Different Methods in Different Network Settings.

Sensitivity Specificity

Homo_NW Hete-NW Hete_LV Hete_LT Homo_NW Hete-NW Hete_LV Hete_LT

Undersampling 0.63 0.77 0.83 0.80 0.73 0.68 0.74 0.70

Oversampling 0.69 0.76 0.86 0.83 0.72 0.73 0.78 0.73

MetaCost 0.71 0.74 0.95 0.85 0.61 0.65 0.66 0.63

AdaBoost 0 0.23 0.2 0.30 1 0.97 0.97 0.96

Table 5

AUC Score of different Methods in Different Network Settings.

Homo_NW Hete-NW Hete_LV Hete_LT

Undersampling 0.73 0.78 0.81 0.78

Oversampling 0.76 0.85 0.87 0.85

MetaCost 0.73 0.81 0.84 0.80

AdaBoost 0.76 0.78 0.87 0.83

Table 6

Sensitivity, Specificity, and AUC of Different Metrics in Associated ADR

Detection.

Sensitivity Specificity AUC

RR R( )1 0.43 0.84 0.63

RR R( )2 0.43 0.82 0.63

Confidence 0.14 0.96 0.55

Leverage 0.48 0.82 0.65

Lift 0.48 0.82 0.65

IRc 0.52 0.83 0.68
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and unweight network, weighted heterogeneous healthcare networks

carry much rich information that could better represent the real-world

networks and help us better identify drug safety signals. There are also

some limitations in this study. First of all, the construction of network

depends on extracted nodes, among which extraction of ADRs, drugs,

and diseases highly relies on the quality of pre-compiled vocabularies.

If some rare or undiscovered ADR or diseases are not included in the

vocabulary, then we are not able to make the prediction. Second, social

media data abounds with misspellings, omissions, newly invented

words, etc. that could also affect the quality of extracted entities.

Therefore, a very critical digression research would be focused on how

to extract verbatim of adverse reactions, drugs, and diseases from pa-

tient-contributed contents. In the future, this work could be extended in

several directions: (1) increase the scale of dataset and include addi-

tional types of nodes into the heterogeneous healthcare network such as

diagnostics, symptoms, treatments, and (2) consider asymmetric topo-

logical features and other quantification methods in mining hetero-

geneous networks.

Acknowledgements

This work was supported in part by the National Science Foundation

under the Grant IIS-1741306, IIS-1650531, and DIBBs-1443019. Any

opinions, findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation.

References

[1] WHO. (2002, 6/18/2014). The Importance of Pharmacovigilance. Available: http://
apps.who.int/medicinedocs/pdf/s4893e/s4893e.pdf.

[2] Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and man-
agement. Lancet 2000;356(9237):1255–9.

[3] X. Liu and H. Chen, "AZDrugMiner: An Information Extraction System for Mining
Patient-Reported Adverse Drug Events in Online Patient Forums," in Smart Health,
ed: Springer, 2013, pp. 134-150.

[4] Kongkaew C, Noyce PR, Ashcroft DM. Hospital admissions associated with adverse
drug reactions: a systematic review of prospective observational studies. Ann
Pharmacother 2008;vol. 42(7):1017–25.

[5] Sarker A, Ginn R, Nikfarjam A, O’Connor K, Smith K, Jayaraman S, Upadhaya T,
Gonzalez G. Utilizing social media data for pharmacovigilance: a review. J Biomed
Inform 2015;54:202–12.

[6] Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for
identifying hidden drug-drug interactions in adverse event reports. J Am Med
Inform Assoc 2012;19(1):79–85.

[7] Tatonetti NP, Roden DM, Altman RB, Denny JC, Murphy SN, Fernald GH, Krishnan
G, Castro V, Yue P, Tsau PS, Kohane I. Detecting drug interactions from adverse-
event reports: interaction between paroxetine and pravastatin increases blood glu-
cose levels. Clin Pharmacol Ther 2011;90(1):133–42.

[8] Vilar S, Harpaz R, Uriarte E, Santana L, Rabadan R, Friedman C. Drug-drug inter-
action through molecular structure similarity analysis. J Am Med Inform Assoc
2012;19(6):1066.

[9] van der Heijden PGM, van Puijenbroek EP, van Buuren S, van der Hofstede JW. On
the assessment of adverse drug reactions from spontaneous reporting systems: the
influence of under-reporting on odds ratios. Stat Med 2002;21(14):2027–44.

[10] Olvey EL, Clauschee S, Malone DC. Comparison of critical drug-Drug interaction
listings: the department of veterans affairs medical system and standard reference
compendia. Clin Pharmacol Ther 2010;87(1):48–51.

[11] van Puijenbroek EP, Egberts ACG, Heerdink ER, Leufkens HGM. Detecting drug-
drug interactions using a database for spontaneous adverse drug reactions: an ex-
ample with diuretics and non-steroidal anti-inflammatory drugs. Eur J Clin
Pharmacol 2000;56(9):733–8.

[12] S. Fox and M. Duggan. (2013, 5/20/2013). Health Online 2013. Available: http://
www.pewinternet.org/2013/01/15/health-online-2013/.

[13] Yang CC, Jiang L, Yang H, Tang X. Detecting signals of adverse drug reactions from
health consumer contributed content in social media. Presented at the ACM SIGKDD
Workshop on Health Informatics. 2012.

[14] Yang CC, Yang H, Jiang L, Zhang M. Social media mining for drug safety Signal
detection. Proceedings of the ACM CIKM International Workshop on Smart Health
and Wellbeing. 2012. p. 33–40.

[15] Yang H, Yang CC. Harnessing social media for drug-drug interactions detection.
Proceedings of the IEEE International Conference on Healthcare Informatics. 2013.
p. 22–9.

[16] C. C. Yang, H. Yang, and L. Jiang, Postmarketing Drug Safety Surveillance Using
Publicly Available Health-Consumer-Contributed Content in Social Media ACM
Transactions on Management Information Systems (TMIS), 5 (1), 2:1-2:21, 2014.

[17] Yang H, Yang CC. Using health consumer contributed data to detect adverse drug
reactions by association mining with temporal analysis. ACM Tran Intell Syst
Technol (TIST) 2015;6(4). 55, 27 pages.

[18] S. Karimi, C. Wang, A. Metke-Jimenez, R. Gaire, and C. Paris, "Text and data mining
techniques in adverse drug reaction detection," ACM Computing Surveys To appear.
View in Article, 2015.

[19] Segura-Bedmar I, Revert R, Martínez P. Proceedings of the Proceedings of the 5th
International Workshop on Health Text Mining and Information Analysis (Louhi)@
EACL. 2014. p. 106–15.

[20] Benton A, Ungar L, Hill S, Hennessy S, Mao J, Chung A, Leonard CE, Holmes JH.
Identifying potential adverse effects using the web: a new approach to medical
hypothesis generation. J Biomed Inform 2011;44(6):989.

[21] Leaman R, Wojtulewicz L, Sullivan R, Skariah A, Yang J, Gonzalez G. Towards
internet-age pharmacovigilance: extracting adverse drug reactions from user posts
to health-related social networks. Proceedings of the 2010 Workshop on Biomedical
Natural Language Processing, ACL 2010;2010:117–25.

[22] Nikfarjam A, Gonzalez GH. Pattern mining for extraction of mentions of adverse
drug reactions from user comments. AMIA Annu Symp Proc 2011;2011:1019–26.

[23] Yates A, Goharian N, Frieder O. Proceedings of the 2013 ACM SIGIR Workshop on
Health Search and Discovery. 2013.

[24] Sarker A, Gonzalez G. Portable automatic text classification for adverse drug re-
action detection via multi-corpus training. J Biomed Inform 2015;53:196–207.

[25] Liu J, Zhao S, Zhang X. An ensemble method for extracting adverse drug events
from social media. Artif Intell Med 2016;70:62–76.

[26] Liu X, Chen H. A research framework for pharmacovigilance in health social media:
identification and evaluation of patient adverse drug event reports. J Biomed
Inform 2015;58:268–79.

[27] Denecke K. Extracting medical concepts from medical social media with clinical
NLP tools: a qualitative study. Presented at the The Fourth Workshop on Building
and Evaluating Resources for Health and Biomedical Text Processing. 2014.

[28] Nikfarjam A, Sarker A, O’Connor K, Ginn R, Gonzalez G. Pharmacovigilance from
social media: mining adverse drug reaction mentions using sequence labeling with
word embedding cluster features. J Am Med Inform Assoc 2015;22(3):671–81.

[29] White RW, Tatonetti NP, Shah NH, Altman RB, Horvitz E. Web-scale pharmacov-
igilance: listening to signals from the crowd. J Am Med Inform Assoc
2013;20(3):404–8.

[30] White RW, Harpaz R, Shah NH, DuMouchel W, Horvitz E. Toward enhanced
pharmacovigilance using patient-generated data on the internet. Clin Pharmacol
Ther 2014;96(2):239–46.

[31] Sun Y, Han J. Mining heterogeneous information networks: principles and meth-
odologies. Synth Lect Data Min Knowl Discov 2012;3(2):1–159.

[32] LibenNowell D, Kleinberg J. The link‐prediction problem for social networks,". J Am
Soc Inf Sci Technol 2007;58(7):1019–31.

[33] Sun Y, Barber R, Gupta M, Aggarwal CC, Han J. Co-author relationship prediction in
heterogeneous bibliographic networks. Proceedings of the Advances in Social
Networks Analysis and Mining (ASONAM). 2011. p. 121–8.

[34] Sun Y, Han J, Aggarwal CC, Chawla NV. Proceedings of the Proceedings of the Fifth
ACM International Conference on Web Search and Data Mining. 2012. p. 663–72.

[35] Kumar A, Zhao K. Making sense of a helathcare forum - smart keywork and user
navigation graphs. Thirty Fourth Internationsl Conference on Information Systems.
2013.

[36] Lichtenwalter RN, Lussier JT, Chawla NV. Proceedings of the Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2010. p. 243–52.

[37] Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in
large databases. Proceedings of the ACM SIGMOD Record. 1993. p. 207–16.

[38] Kotsiantis S, Kanellopoulos D. Association rules mining: a recent overview. GESTS
International Transactions on Computer Science and Engineering
2006;32(1):71–82.

[39] Ng AY, Jordan MI. On discriminative vs. Generative classifiers: a comparison of
logistic regression and naive bayes. Proceedings of the Advances in Neural
Information Processing Systems. 2002. p. 841–8.

[40] Boser BE, Guyon IM, Vapnik VN. Proceedings of the Proceedings of the Fifth Annual
Workshop on Computational Learning Theory. 1992. p. 144–52.

[41] Zeng QT, Tse T. Exploring and developing consumer health vocabularies. J Am Med
Inform Assoc 2006;13(1):24–9.

[42] Jiang L, Yang C. Using Co-occurrence analysis to expand consumer health voca-
bularies from social media data. Proceedings of the IEEE International Conference
on Healthcare Informatics. 2013.

[43] Jiang L, Yang CC, Li J. Discovering consumer health expressions from consumer-
contributed content. Proceedings of the Social Computing, Behavioral-Cultural
Modeling and Prediction. 2013. p. 164–74.

[44] Jiang L, Yang CC. Expanding consumer health vocabularies by learning consumer
health expressions from online health social media. Proceedings of the International
Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction
2015. 2015. p. 314–20.

[45] Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture
phenotypic effects of drugs. Mol Syst Biol 2010;6(1).

[46] Knox C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS, Law V, Jewison T,
Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C. DrugBank 3.0: a comprehensive
resource for’ omics’ research on drugs. Nucleic Acids Res 2011;39. (Database issue),
p. D1035.

[47] Zwart-van Rijkom JEF, Uijtendaal EV, ten Berg MJ, van Solinge WW, Egberts ACG.
Frequency and nature of drug-drug interactions in a Dutch university hospital. Br J
Clin Pharmacol 2009;68(2):187–93.

[48] Domingos P. Proceedings of the Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 1999. p. 155–64.

[49] Freund Y, Schapire RE. Experiments with a new boosting algorithm. Proceedings of
the ICML. 1996. p. 148–56.

[50] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and
an application to boosting. J Comput Syst Sci 1997;55(1):119–39.

[51] Szumilas M. Explaining odds ratios. J Can Acad Child Adolesc Psychiatry
2010;19(3):227–9.

C.C. Yang, H. Yang Artificial Intelligence In Medicine 90 (2018) 42–52

52
Downloaded for Anonymous User (n/a) at Drexel University from ClinicalKey.com by Elsevier on March 13, 2020.

For personal use only. No other uses without permission. Copyright ©2020. Elsevier Inc. All rights reserved.


	Mining heterogeneous networks with topological features constructed from patient-contributed content for pharmacovigilance
	Introduction
	Literature review
	Pharmacovigilance using patient-contributed content
	ADR detection
	DDI detection

	Link prediction in heterogeneous networks

	A framework for drug safety signal detection
	Heterogeneous healthcare network definition
	Heterogeneous healthcare network model
	Topological features
	Topological features for ADR detection
	Topological features for DDI detection

	Weighted heterogeneous healthcare network and feature quantification
	Drug safety signal detection model
	ADR detection
	DDI detection

	Associated adverse reaction for DDI detection
	Association rule mining metrics
	Interaction ratio


	Experiment
	Data collection
	Network construction
	Gold standard
	ADR detection
	DDI detection

	Evaluation
	ADR detection
	DDI detection

	Results and discussion
	ADR detection
	DDI detection
	Interaction detection
	Associated ADR detection


	Conclusion
	Acknowledgements
	References


