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ARTICLE INFO ABSTRACT

Drug safety, also called pharmacovigilance, represents a serious health problem all over the world. Adverse drug
reactions (ADRs) and drug-drug interactions (DDIs) are two important issues in pharmacovigilance, and how to
detect drug safety signals has drawn many researchers’ attention and efforts. Currently, methods proposed for
ADR and DDI detection are mainly based on traditional data sources such as spontaneous reporting data,
electronic health records, pharmaceutical databases, and biomedical literature. However, these data sources are
either limited by under-reporting ratio, privacy issues, high cost, or long publication cycle. In this study, we
propose a framework for drug safety signal detection by harnessing online health community data, a timely,
informative, and publicly available data source. Concretely, we used MedHelp as the data source to collect
patient-contributed content based on which a weighted heterogeneous network was constructed. We extracted
topological features from the network, quantified them with different weighting methods, and used supervised
learning method for both ADR and DDI signal detection. In addition, after identifying DDI signals, we proposed a
new metric, named Interaction Ratio, to identify associated ADRs due to suspected interactions. The experiment
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results showed that our proposed techniques outperforms baseline methods.

1. Introduction

Drug safety, also known as pharmacovigilance, is defined by the
World Health Organization (WHO) as “the science and activities re-
lating to the detection, assessment, understanding and prevention of
adverse effects or any other possible drug-related problems” [1]. One
important issue related to drug safety is how to detect signal of adverse
drug reactions (ADRs). It has been long recognized that ADRs represent
a significant world-wide health problem. In 2000, ADR was defined
comprehensively by Edwards and Aronson [2] as: “an appreciably
harmful or unpleasant reaction, resulting from an intervention related
to the use of a medicinal product, which predicts hazard from future
administration and warrants prevention or specific treatment, or al-
teration of the dosage regimen, or withdrawal of the product”. In the
United States, ADRs are considered to be a leading cause of death all
over the country. For example, it is showed that approximately 2 mil-
lion patients are affected each year by ADRs [3] and approximately
5.3% of hospital admissions are associated with ADRs [4]. The asso-
ciated cost is up to about 75 billion dollars annually [5]. Therefore, how
to effectively and efficiently detect ADR signals is of paramount im-
portance for drug manufacturers, government agencies, as well as
health consumers.

Drug-drug interactions (DDIs), alterations of the effects of a drug
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due to the recent or simultaneous use of one or more other drugs, is
another significant drug safety problem. As an important subset of
ADRs, DDIs may account for up to 30% of unexpected adverse drug
reactions [6]. Because of common therapeutic and clinical multiple
drug co-administrations, DDIs are also common and often caused by
shared pathways of metabolism or intersecting pathways of drug action
[7]. In some extreme cases, adverse reactions caused by DDIs have led
to death. For example, drug cerivastatin caused 31 cases of fatal
rhabdomyolysis prior to June 2001, 12 of which involved the con-
comitant use of cerivastatine and gemfibrozil [8]. DDI detection is also
of great clinical importance because most interactions could result in
precaution of prescription, absolute contraindications of combination
use, or even drug withdrawal from market [7], and therefore has been
becoming an important research area in pharmacovigilance.
Currently, there are two major approaches to pharmacovigilance
process: pre-marketing review and post-marketing surveillance. Before
any pharmaceutical new drugs are approved by Food and Drug
Administration (FDA) for marketing, the pre-marketing review process
is required. This process focuses on identifying the risk associated with
drugs and the risks must be established and clearly communicated to
prescribers and consumers. However, pre-marketing clinical trials are
often conducted in selective patient populations, with relatively small
numbers of patients, and a short duration of follow-up. Hence, the pre-
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marketing review process is too constrained in terms of sample size,
cohort biases, time spans, and financial limit to possibly identify all
potential adverse reactions that may occur when the drug is used in
clinical practice [9]. Furthermore, clinical trials primarily focus on ADR
detection of single drugs and do not typically investigate DDIs [10,11].
Therefore, drug safety surveillance, both ADR and DDI detection, de-
pends heavily on post-marketing surveillance to detect latent adverse
reactions.

In the recent years, some traditional data sources are often mined
for drug safety signal detection, such as spontaneous reporting systems,
electronic health records, pharmaceutical databases, and biomedical
literature. However, these sources bare their own limitations that to
some extent hinder effective and confident signal detection. For in-
stance, spontaneous reporting systems have extremely high under-re-
porting ratio systems [9], electronic health records are not accessible to
everyone due to privacy issue, pharmaceutical databases are more fo-
cused on chemical and molecular level so that not everyone has such
domain knowledge, and formally-written literature has long publishing
cycle. Therefore, it is urgent to find alternative data sources to sup-
plement drug safety surveillance. Nowadays, the advancement of In-
ternet breeds a lot of online health communities (OHCs) such as Med-
Help, WebMD, PatientsLikeMe, DailyStrength, etc. A recent survey by
Pew Internet & American Life Project showed that 72% of internet users
said they went online for health information in 2012, 13% of which said
they began their information seeking by visiting a site that specializes in
health information, like WebMD [12]. We can imagine that countless
health consumers and professionals go to those OHCs frequently to ei-
ther seek or offer healthcare information, experience, advice, support,
and so on. Frequent visits on OHCs would inevitably produce a huge
volume of health-related contents that might be even more informative
than some administrative databases. If we can take good advantage of
these patient-contributed content, we may be able to reveal interesting
and timely knowledge, insights and patterns that may not be extracted
from other data sources.

In light of the popularity of social media in Web 2.0 and Health 2.0
era, it is beneficial to explore the potential of using OHC data for drug
safety signal detection. Some of our previous studies have shown that
OHC data can be used for pharmacovigilance. Concretely, in [13-17],
we applied association rule mining techniques directly to patient-con-
tributed content extracted from OHCs for drug safety detection. In this
study, we propose a framework to detect both ADR and DDI signals by
mining the structural information of weighted heterogeneous health-
care networks built from OHC data.

2. Literature review

In this section, we provide a thorough literature review for both
ADR and DDI detection. Since both of them are very important issues in
pharmacovigilance, abundant efforts have been dedicated to this area.
In terms of data sources used by researchers, these two topics are quite
similar, i.e. four traditional data sources are often used for both ADR
and DDI detection, namely spontaneous reporting systems, electronic
health records, pharmaceutical databases, and biomedical literature.
Although traditional data sources have been widely utilized for drug
safety signal detection and abundant promising results have been
shown, each of them suffers from certain limitations so that timely and
effective signal detection will be hampered. More introductions of the
traditional sources can be found in a recent survey [18]. This paper
explores the potential of an emerging data source — patient-contributed
content, so we focused on reviewing recent studies that used this type of
data. Also, we provided a literature review on heterogeneous network
since our method is built within this framework.

2.1. Pharmacovigilance using patient-contributed content

To the best of our knowledge, there are an increasing number of
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studies dedicated to pharmacovigilance using patient-contributed con-
tent from such platform in the recent years. However, the number of
such studies is still limited, and more efforts need to be made.

2.1.1. ADR detection

Segura-Bedmar et al. proposed to detect drugs and adverse events
from Spanish posts collected from a health social media [19]. However,
this study only extracted drugs and adverse events separately rather
than identified drug-ADR associations. A group from University of
Pennsylvania has released a tool — Medpie - that can be used to collect a
corpus of medical message board posts, anonymize the corpus, and
extract information on potential adverse drug effects discussed by users
[20]. Using a diabetes online community data, Liu et al. developed a
framework — the AZDrugMiner system — based on statistical learning to
extract adverse drug reactions in patient discussions [3]. Using Daily-
Strength as the source of user comments, Leaman et al. extracted ad-
verse reactions by matching the terms in user comments with a lexicon
that combined concepts and terms from four resources [21]. Further,
they developed a system to automatically extract mentions of ADRs
from user reviews about drugs by mining a set of language patterns
[22]. Some Natural Language Processing (NLP) techniques such as
linguistic dependency relations were also used for ADR detection from
health-related social media [23]. Sarker and Gonzalez utilized machine
learning algorithm to classify ADR assertive text segments [24]. They
harnessed NLP techniques to generate useful features such as topics,
concepts, sentiments, and polarities. They also showed that integration
of multiple corpora can significantly improve classification perfor-
mance. Liu et al. also leverage NLP techniques to extract various lexical,
syntactic, and semantic features, based on which several classifier en-
sembles were used to distinguish between ADRs and non-ADRs in social
media texts [25]. Liu and Chen developed a framework with advanced
NLP techniques for ADR extraction from social media data [26]. The
framework consists of three components, namely medical entity ex-
traction, adverse drug event extraction, and report source classification.
However, information extraction using NLP would miss important in-
formation captured in paraphrase or formulated in colloquial language
[27]. Recently, with the advancement of word embedding, Nikfarjam
et al. proposed to use sequential labeling techniques to label ADRs [28].
Specifically, they utilized Condition Random Fields (CRFs) to extract
ADR concepts, and the performance could be boosted significantly by
adding word-embedding-based word cluster features.

2.1.2. DDI detection

Compared with ADR detection using patient-contributed content,
much less efforts have been found for DDI detection using such data.
White et al. demonstrated that Internet users are able to provide early
clues about DDIs via their search logs [29,30]. In their study, they
conducted a large-scale study of Web search log data gathered during
2010 and paid particular attention to the specific drug pairing of par-
oxetine and pravastatin, whose interaction was reported to cause hy-
perglycemia after the time period of the online logs used in the analysis.
Then they used Reporting Ratio (RR) to assess the increased chance of a
user searching for hyperglycemia-related terms given that they sear-
ched for both pravastatin and paroxetine. The experiment results
showed that logs of the search activities of populations of computer
users can contribute to drug safety surveillance.

Saker et al. conducted a thorough review on pharmacovigilance
utilizing social media data. Out of the 15 studies that were published
within the last two years, as many as 11 (73.3%) used annotated data
that requires a lot of expert efforts [5]. Our previous endeavors do not
rely on expert annotation. We proposed to mine associations between
drugs and adverse reactions and to utilize measures such as support,
confidence, leverage, lift, etc. to identify FDA alerted ADRs and DDI
signals [13-17]. No matter which measure we use, one crucial factor is
the number of forum threads that contain direct association between
drugs and ADRs. For example, in ADR detection, we are counting the
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number of threads that contain both a drug and an ADR whereas in DDI
detection, we are counting the number of threads that contain two
drugs and an ADR.

2.2. Link prediction in heterogeneous networks

An online health community itself is also a social network. Besides
discovering knowledge by directly mining patient-contributed content,
the structure of the network could also provide valuable information. In
most of the current research on network science, social and information
networks are usually assumed to be homogeneous, where nodes are
objects of the same entity type and links are relationships from the same
relation type. However, most real-word networks are heterogeneous,
where nodes and relations are of different types. For example, the
network of Twitter consists of persons as well as tweets, photo, video,
location, and so on, and the relationships could be following, followed,
person-tweets, person-location, and so forth. Given a dataset consisting
of patient-contributed content, if we can extract from it different types
of nodes such as drugs, ADRs, users, diseases, etc. and identify the re-
lationships among them, we could view our data as a heterogeneous
network.

Given the problem of drug safety signal detection, we are predicting
if there is an association between a drug and an ADR or between two
different drugs. Such problem can be formulated as link prediction. Link
prediction, dedicated to addressing the question of whether a link will
be formed in the future, is an important subtask in link mining. It is
defined as predicting the emergence of links in a network based on
certain current or historical network information [31]. As one of the
early researchers who started working on link mining, Liben-Nowell
and Kleinberg formalized link prediction problem [32]. In [32], they
used an unsupervised approach to predict the links based on a set of
network topology features such as graph distance, common neighbors,
Jaccard’s coefficient, preferential attachment, etc. in co-authorship
networks.

However, most link predictions are formulated in homogenous
network [32], and not until recent years are a few researchers dedicated
to this problem in heterogeneous network. In [33], Sun et al. studied
the problem of co-authorship prediction in heterogeneous bibliographic
network. Specifically, they first used a structure called network schema
to summarize the heterogeneous network and proposed a new concept
called meta path that can be extracted from network schema. Then they
proposed 4 topological measures on those meta paths, which are path
count, normalized path count, random walk, and symmetric random
walk. At last, the authors viewed the link prediction as a binary clas-
sification problem and proposed to use logistic regression model as the
supervised prediction model. Other than predicting whether a link will
be built in the future, Sun et al. also conducted a study addressing the
problem of when it will happen. In [34]. they used meta path-based
topological features and a generalized linear model (exponential dis-
tribution, Weibull distribution and geometric distribution) based su-
pervised framework to predict the building time of author citation re-
lationship.

To the best of our knowledge, there has been only a very limited
number of research that uses techniques of heterogeneous network
mining on OHC for knowledge discovery such as [35]. However, no
studies have been found that provide a framework for drug safety signal
detection by leveraging heterogeneous healthcare network. In this
section, we introduce in detail the definition of heterogeneous health-
care network, the topological features extracted from such network,
and the model for both ADR and DDI detection tasks in such network
setting.

3. A framework for drug safety signal detection

In our previous studies, it is important to count the number of
threads that contain drugs and ADRs. However, due to the openness and
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Do Quinidine& |Ticlopidine& | Gemfibrozil&
arrhythmias| bleeding myopathy

Biaxin 1 0 0
Lansoprazole 0 0 0
Luvox 0 1 0
Prozac 0 0 0
Gadolinium 0 0 0
Heparin 0 6 0
Simvastatin 2 0 3
Tacrolimus 1 0 0
Zocor 2 0 3
Epogen 0 0 0

Fig. 1. Partial DDI Detection Dataset.

casualness of Internet, consumers could talk about anything, not ne-
cessary a specific drug or ADR, not to mention very rare ADRs, which
makes it challenging to extract direct associations between drugs and
ADRs. Fig. 1 shows part of our datasets in DDI detection experiment.
Each cell represents the number of threads that contain both two drugs
and the ADR. As we can see, a large number of cells are 0. It is probably
because consumers are not aware of that the ADR is caused by drug-
drug interactions, and they only mention one drug in the thread, thus
making it difficult to extract direct associations between two drugs and
an ADR. However, consumers may talk about two different drugs and
the same ADR in separate threads, meaning the two drugs are linked by
the same ADR. If we can extract the indirect relationships between
those drugs, such relationships may help us identify ADR or DDI signals.
Therefore, in this study, the idea leads us to consider our dataset as a
network, and then identify drug safety signals through link mining in
such network.

Recently, heterogeneous information network mining has been
drawing increasing attention. Heterogeneous networks are more in-
creasingly favored by researchers over homogeneous counterpart as
they represent real-word networks in a more complete manner and
carry much richer information, thus unveiling more interesting and
otherwise hidden knowledge and patterns. Therefore, in this work, we
propose to leverage heterogeneous network mining approach to detect
drug safety signals. Fig. 2 shows our method schema that contains four
primary components, namely data collection, network construction,
feature extraction, and signal detection. Data collection component
aims to collect data from online health communities. Depending on
whether the websites provide API or not, we can develop different web
crawlers for data collection. Extracted forum posts are stored in well-
designed databases. Taking forum posts as input, network construction
component aims to build a heterogeneous healthcare network that
contains rich information. We first use external lexicons to extract
different types of nodes from posts, such as drugs, ADRs, diseases, etc.,
and then link different nodes together based on their co-occurrence in
an analysis unit. After the network is constructed, feature extraction
component steps in to extract features for ADR and DDI detection re-
spectively. At last, given extracted features, signal detection component
performs binary classification to predict signals.

3.1. Heterogeneous healthcare network definition

A heterogeneous network is defined as a graph G = (./", ) con-
sisting of nodes joined by links, where N ={n, n, ..,ng,
L={l, b, ..,I;)} and [; can be directional or non-directional. In the
graph G, each node n; € .#" belongs to one particular type from .7,
each link [; € ¢ belongs to one particular relation from #, and the
number of the types of nodes [.77| > 1 or the number of types of rela-
tions |l > 1.

An OHC can be modeled as a heterogeneous healthcare network in
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Fig. 2. ADR and DDI Detection Schema.

which there are a set of node types, such as Drug, ADR, Disease,
Treatment, Diagnostics, Users, etc. and a set of relation types, such as
cause or is caused between Drug and ADR, treat or is treated between
Treatment and Disease, use or is used between User and Drug, have or is
had between User and Disease, etc.

3.2. Heterogeneous healthcare network model

A network model M; = (7, #)is a compressed representation for a
heterogeneous network G = (./", .¢’), which is a directional or non-
directional graph consisting of node types .7~, with links as relations
from #. Fig. 3 succinctly presents a directional network model of a
heterogeneous healthcare network. As we can see, the network includes
four types of nodes, namely Drug, ADR, Disease, and User. For ab-
breviation, we use a capital letter to represent each node type, i.e. R for
Drug, A for ADR, D for Disease, and U for User. The relations in this
network contain cause or is caused between R and A, treat or is treated
between R and D, show or is shown between U and A, have or is had
between U and D, and take or is taken between U and R.

A directional network model can be extracted from a heterogeneous
network only when the relation between a pair of different types of
node can be determined. For example, a bibliographic network can be
represented by a directional network model. The relations among dif-
ferent types of node, such as paper, author, venue, and topic, can be
explicitly and easily determined. Detailed examples of bibliographic
heterogeneous network mining can be found in [33,34]. However, not
all heterogeneous networks contain explicit relations among different

is treated

is caused

show is taken

. is had
is shown

Fig. 3. Directional Network Model for Heterogeneous Healthcare Network.
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types of nodes, i.e. the semantic meaning of the relation could not be
easily determined. Under such circumstances, the heterogeneous net-
work could be represented as a non-directional network model and the
relation between nodes can be the same kind of associations. For ex-
ample, given a dataset of patient-contributed, it is not an easy task to
accurately determine the explicit relations between nodes without
using sophisticated natural language processing (NLP) techniques or
thorough human annotation. However, it is still challenging to use NLP
tools to analyze social media data [27] and thorough human annotation
would be very time consuming. In our work, we propose to analyze a
non-directional heterogeneous healthcare network (Fig. 4) that con-
tains 4 types of nodes (namely R, A, D, and U) joined together by their
co-occurrence in an analysis unit — a forum thread consisting of the
original post and all following comments and replies. For R, A, and D,
there will be a link between any two of them if co-occurrence is iden-
tified. For U, if there is a link between two users, there could be two
scenarios: (1) one user is thread originator, another user is a com-
menter, and (2) both users are commenters of the same thread. We can
always expand the network by adding more types of nodes and relations
in the future.

3.3. Topological features

Topological features are also called structural features, which are
extracted connectivity properties for pairs of objects in the networks
[34]. Based on homogeneous network which only contains a specific

Fig. 4. Non-directional Network Model for Heterogeneous Healthcare Network.
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type of nodes, there are a number of well-known and frequently used
topological features. Most of the features are either path-based, such as
graph distance, Katzg [32] and propflow [36] or neighbor-based, such
as common neighbors, Jaccard’s coefficient, Adamic/Adar, preferential
attachment, and SimRank, [32]. However, in a heterogeneous network,
as a neighbor of one node could belong to different types and a path
could also flow through different types of nodes, the commonly used
features in homogeneous networks may no longer be applicable in such
situation. For instance, in a heterogeneous healthcare network, two
different drugs could be related by the path R—D—U—D—R because of
the co-occurrence of each two adjacent nodes in analysis units, and the
possible semantic meaning of such path could be explained as “a user
has two different diseases which are treated by two different drugs
respectively.” However, such information cannot be inferred from a
homogeneous healthcare network that only consists of drugs. There-
fore, some novel features that can reflect the characteristics of a het-
erogeneous network should be designed.

In our work, we define T; Ty—Path—L as a topological feature of a
heterogeneous network. A T,Ty—Path—L is an abstract path defined
between two types of nodes T; and T; with length L. It is extracted from
the network model M; = (77, #), and is presented in the form of
Ty 51» T152>...E>TL_1 Eﬂ}. When the specific types of relations and di-
rections cannot be determined between nodes, T ,—Path—L takes the
form of T,—T—..—T;—1—T; with links denoting associations between
nodes.

3.3.1. Topological features for ADR detection

In [8], Vilar et al. proposed to detect drug-drug interaction signals
through molecular structure similarity analysis. The basic assumption
of their method is that if drug a interacts with drug b to cause a specific
ADR, and drug c is structurally similar to a, then c is likely to interact
with b to produce the same ADR. In this work, we focus on social media
data. If one drug is identified to have an association with an ADR, it is
possible that other drugs that are associated to this drug through other
associations of diseases, users, and ADRs may cause the same ADR but
not explicitly discussed in social media due to the limited medical
knowledge of health consumers. In a heterogeneous healthcare net-
work, we are going to predict the drug and ADR association through the
path associations. If we know that drug b would cause the ADR and
drug a and drug b are highly associated, it is possible that drug a would
cause the same ADR. For example, if a user is taking drug a and drug b
and she is experiencing an ADR that is a common side effect of drug b,
there is a path of drug a — user — drug b — ADR on the heterogeneous
healthcare network. It is possible that the ADR is also caused by drug a
but there is not an explicit association in the heterogeneous network.
Therefore, we construct a topological feature set by considering all 16
symmetric RR—Path with length less than 5 denoting associations be-
tween drugs and concatenating the targeted association, R—A, to its left
side or right side. Since we are dealing with an non-directional het-
erogeneous network, we only consider concatenating R—A to the right
side of each R—Path. For example, by concatenating R—D—U—D—R and
R—A together, we obtain a topological feature —Path—5:
R—-D-U-D—R-A. In total, including the targeted association —A, we
have 17 topological features (Table 1).

3.3.2. Topological features for DDI detection

After we have the topological features for ADR detection, we can
easily extract features for DDI detection. We just need to remove as-
sociation R—A from all features in Table 1, and the rest can be used to
represent associations between two drugs. Therefore, in DDI detection
problem, we extracted all the symmetric RyRq4—Path with length 1 to
length 4, and there are 16 such paths in total given 4 different types of
nodes R, A, D, and U, such as R-R, R-D-R, R-A-D-A-R, etc. (Table 2) The
link existing between two nodes specifies the co-occurrence association
between them.
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Table 1

Topological Features for ADR Detection: RA—Path—1 to
RA—Path—5 Denoting Associations between Drug and
ADR.
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Topological ~ Features for DDI  Detection:
RsR4—Path—1 to RyRs—Path—4 Denoting Associations
between Drug and Drug.
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3.4. Weighted heterogeneous healthcare network and feature quantification

There are two possible types of heterogeneous networks: non-
weighted and weighted. A non-weighted network means the links do
not carry weight information whereas a weighted one is a network in
which the links between any pairs of nodes have weights assigned to
them. In most real-world networks, the strength of associations between
different pairs of nodes is not entirely the same when links exist be-
tween them. For example, given a heterogeneous healthcare network in
Fig. 5, the number next to the link denotes the link frequency. If we
don’t consider the weight, PC(R;, A;) under path R—A—R—A is 2, and
PC(Ry, A;) under path R—D—R—A is also 2. However, to some extent,
path R—D—R—A is more interesting in this case because the nodes under
the path co-occurred more frequently. Therefore, drug safety detection
based on a weighted heterogeneous network could achieve better per-
formance by considering the paths with different strength of associa-
tions. In this study, we propose to use three different metrics to weight
the network: link frequency (LF), link leverage (LV), and link lift (LT).

Let I, be a link between nodes T, and T, and considering a thread of
an OHC forum as an analysis unit, LF is the number of threads in which
nodes T, and T}, co-occur. Leverage and lift are often used in association
rule mining, one of the most important and well researched techniques
of data mining. Association rule mining was first introduced by Agrawal
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o

Fig. 5. An Example of A Heterogeneous Healthcare Network.

et al. when they were trying to identify significant purchasing pattern
from a large database of consumer transactions [37]. This technique
aims to extract interesting correlations, frequent patterns, associations
or casual structures among sets of items in the transaction databases or
other data repositories and is widely used in various areas such as
telecommunication networks, market and risk management, inventory
control, etc [38]. Mathematically, let I = {L, L, ...,I,,} be a set of items.
Let X, the task-relevant data, be a set of database transactions where
each transaction T is a set of items such that T C I. An association rule
is an implication of the form A= B, where ACI, BcCI, and
A N B = @, where both A and B are a set of items, which is referred to
as an itemset. Leverage and lift are often used to measure the inter-
estingness and impressiveness of an association. In this study, we use
these two to measure the association strength between a pair of nodes
as represented by a link in a heterogeneous network. Give a link I,
between nodes T, and T}, LV and LT are defined respectively as:

LV (Iop) = support (lap)—support (T,) X support (Tp)

LT (L) = support (lop)
support (T,) X support (T})
where
support (1) = 22 dat)
Z
support (T,) = NF (%)
zZ
support (Ty) = %(Tb)

where NF(T,) and NF (T;) denote node frequency (number of threads
that contain the node) of node T, and T; respectively, and Z is the total
number of threads in the dataset. For both LV and LT, the higher the
value is, the more importance the link will be.

There are several ways of quantifying the topological features in a
heterogeneous network. In [34], Sun et al. proposed to use such mea-
sures as path count, normalized path count, random walk, and sym-
metric random walk to quantify the features. There measures could also
be applied into our non-directional heterogeneous network with some
modifications. In this work, after adding weight to the network, we
propose to use Weighted Path Count (WPC) to quantify the extracted
topological features. Given a T; Ty—Path—L, the WPC is defined as:

L
1
WPC (T, Tp) = 35 3w, niva)
P i=1

where P denotes a specific path, L is the length of P, n; and n;;, are two
directly connected nodes following P, and w(n;, n;4;) is weight of the
corresponding link connecting node n; and n;,,. Take the network in
Fig. 5 as an example. If we use link frequency as the weight, (1) under
path R—A—R—A, WPC(R,, As) = é(l +1+8+2+3+8) = 2—33, and (2) under
path R—D—R—A, WPC(Ry, A;) = (3 + 4 +8 + 5+ 6 +8) = 2. In this
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way, we can tell that for drug R, and ADR A, path R—-D—R—-A has
stronger association than R—A—R—A.

3.5. Drug safety signal detection model

We model drug safety signal detection as a binary classification
problem.

3.5.1. ADR detection

Given a drug-ADR pair, we use a classification model to label them
as either “1” (drug causes the ADR) or “0” (drug does not cause the
ADR) based on their quantified topological features extracted from the
heterogeneous healthcare network.

3.5.2. DDI detection

Given a pair of drug nodes, we use a classification model to label
them as either “1” (interaction) or “0” (no interaction) based on their
quantified topological features. Various classification models could be
used such as Logistical Regression (LR) [39], Naive Bayes (NB) [39],
Support Vector Machine (SVM) [40], etc.

3.6. Associated adverse reaction for DDI detection

3.6.1. Association rule mining metrics

Above techniques for DDI detection could only predict if two drugs
are interacting through mining the weighted heterogeneous healthcare
network. However, after such signals are detected, we are also inter-
ested in identifying what consequent adverse reaction would be caused
due to interaction, which would lead to better further investigation.
Therefore, we also propose to apply association mining to associated
ADR detection. Three metrics are often used to capture the association
strength, namely confidence, leverage, and lift. The metrics here are
different from those in section 3.4 that only measure the strength of two
nodes. Instead, they are trying calculate the association strength of two
drugs causing an ADR, and are defined as follows.

support (R U Ry) = A)

confidence((R, U R) = A) =
f (& ) ) support(R; U R)

leverage (R U Ry) = A) = support (R U R) = A)
—support ((R U Ry) X support (A)

support (R, U Ry) = A)
support ((R; U Ry) X support (A)

lift(RRURy) = A) =

where

count(R, U R, U A)

support (Rj U Ry) = A) =
total count

where count (R, U R, U A) is the number of threads that contain R;, R,
and A, and total count is the total number of threads in the whole da-
taset.

Confidence determines the extent to which the appearance of
R, U R, implies the appearance of. Both leverage and lift consider the
correlation between R, U R, and A. Leverage indicates the proportion of
threads that contain R U R, U A by excluding probability that if R U R,
and A are independent with each other whereas lift considers the ratio
of those two. For example, note that lift can also be written as:

support ((Ry U Ry)) = A)
support ((R; U Ry) X support (A)
_ P(Ri, R, A) _ P(A|R;, R)

P(Ry, Ry) X P(A) P(A)

lift (R UR) = A) =

Large values indicate that the occurrence of the (Rj U R,) = A as-
sociation  has  unlikely occurred by chance.  Roughly,
lift (R U Ry) = A) =1 indicates that the two drugs and ADR are sta-
tistically independent with each other, lift (Rj U R,) = A) > 1 that the

Downloaded for Anonymous User (n/a) at Drexel University from ClinicalKey.com by Elsevier on March 13, 2020.
For personal use only. No other uses without permission. Copyright ©2020. Elsevier Inc. All rights reserved.



C.C. Yang, H. Yang

drugs and ADR are positively correlated, and lift (R U R,) = A) <1
that they are negatively correlated. For both leverage and lift, the
higher the values are, the stronger the DDIs signals are.

3.6.2. Interaction ratio

Although our previous research has demonstrated that the three
measures, especially leverage and lift could effectively detect ADRs
reported by FDA [13,14,16,17], we were dealing with a single drug and
its adverse reaction. Also, there are some limitations about them. For
example, in DDI detection, confidence could be very low because there
may be very few consumers mentioning both drugs and associated ADR
as they may not be aware of fact that the ADR is caused by drug-drug
interaction. Also, leverage could be even negative that makes it very
difficult to interpret the results. Therefore, in order to effectively
identify associated ADR, we propose a new metric that is called Inter-
action Ratio and defined as:

confidence((Ry U Ry) = A)
confidence(R; = A) X confidence(R, = A)

IR.((RUR)=>A) =

where IR, means Interaction Ratio, subscript ¢ denotes confidence on
which this formula is based, R; is one of the drugs in our collected
dataset, R, is a drug which could interact with D; to generated ADR R,
confidence (R, = A) is the confidence value that A is caused by R;, and
confidence(R, = A) is the confidence value that A is caused by R,. The
rationale behind this metric is that if an ADR is caused by the inter-
action of R; and R, rather than only by R} or R, alone, the value of
confidence (R, U Ry) = A) should be higher than that of confidence (R, = A) or
onfidence(R, = A), and the division would boost the value of
IR.((R, U R,) = A).

4. Experiment
4.1. Data collection

In this study, MedHelp.org, a pioneer in online health communities, is
used as the source of health-contributed contents. We focus on the drug
section, which is one of the most important and popular components in
MedHelp. To effectively detect drug safety signals, the drugs should bear
active discussion. Therefore, we targeted 20 drugs that have more than 500
threads for each of them, and collected all the original posts and following
comments of those threads. The 20 drugs include Adenosine, Biaxin, Cialis,
Concerta, Elidel, Epogen, Gadolinium, Geodon, Heparin, Lansoprazole,
Lantus, Lunest, Luvox, Prozac, Risperdal, Simvastatin, Tacrolimus, Vyvanse,
Zocor, and Zyprexa. The names of those drugs come from FDA’s website',
which includes an index of drugs that have been the subject of a Drug Safety
Communication, Healthcare Professional Information sheet, Early Com-
munication About an Ongoing Safety Review, or other important informa-
tion. In total, there are 16,344 threads.

4.2. Network construction

To construct the heterogeneous healthcare network, we need to
extract different types of nodes and their relations. In this work, we
focus on four types of nodes, namely R, A, D, and U, and external lex-
icons are used to extract them. For R, besides the 20 drug names col-
lected, we also add three other drugs (i.e. Quinidine, Ticlopidine, and
Gemfibrozil) that could interact with some of the 20 drugs into our drug
list to enrich our dataset for DDI detection. For A, we focus on 10 ADRs,
namely Blurred Vision, Cancer, Depression, Diarrhea, Heart Disease,
Hypertension, Kidney Disease, Skin Discoloration, Stroke, Suicide.
Some of the drugs collected were alerted by FDA to cause some adverse
reactions. For example, Lansoprazole and Heparin are both alerted to

1 http://www.fda.gov/Drugs/DrugSafety/
PostmarketDrugSafetyInformationforPatientsandProviders/ucm111085.htm
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cause Diarrhea; Luvox and Prozac are both alerted to cause suicidal
thoughts. Therefore, a part of our ADR list comes from FDA’s official
alert, whereas the rest is based on drug labeling revisions. The drug
labeling revisions provide new ADRs added on the labels of drugs after
the drugs are released. The labeling revision information could be
found on FDA'’s website “Drugs@FDA”. Then we use Consumer Health
Vocabulary (CHV) Wiki to build our ADR lexicon. More introduction of
CHV can be found in [41]. CHV reflects the difference between con-
sumers and professionals in expressing health concepts and helps to
bridge this vocabulary gap. Therefore, high quality CHV is able to help
with capturing more consumers’ expressions and better extracting ADR
terms. Some studies are dedicated to expanding CHV by using social
media data [42-44]. For D, we search for diseases that are treated by
each of the 20 drugs in SIDER database to construct our disease lexicon.
SIDER contains information such as adverse drug reactions and diseases
on marketed medicines, and the information is extracted from public
documents and package inserts [45]. At last, there are 205 diseases in
total, such as Bipolar Disorder, Hyperactivity Disorder, Hypercholes-
terolaemia, and so on. For U, we extract all user names from each
thread. The dataset is de-identified before conducting the experiment.
For links, we treat our network as non-directional, and two nodes are
linked together if they co-occur in the same thread.

In order to exclude the nodes and links that appear in the hetero-
geneous healthcare network rarely, we only retain the nodes and links
with frequency larger than 15. After filtering, there are 511 nodes and
4378 links in our final network with density being 0.034. Then we
weigh the network using leverage and lift respectively, and quantify the
extracted features for both ADR and DDI detection with weighted path
count.

4.3. Gold standard

4.3.1. ADR detection

As mentioned earlier, current post-marketing surveillance in United
States primarily depends on FDA’s FAERS system, and alerts will be
released on FDA’s website? if the ADR is confirmed after investigation.
Out of the 20 drugs collected, 8 of them were alerted by FDA to cause
some adverse reactions. Some of the drugs share the same alerted ADRs.
For example, Lansoprazole and Heparin are both alerted to cause
Diarrhea; Luvox and Prozac are both alerted to cause suicidal thoughts.
We used 6 ADRs alerted by FDA to construct a part of our gold standard
for evaluating the proposed techniques. Another part of the gold stan-
dard is based on drug labeling revisions. The drug labeling revisions
provide new ADRs added on the labels of drugs after the drugs are
released. The labeling revision information could be found on FDA’s
website “Drugs@FDA>”. In this study, we used 4 other ADRs as another
part of our gold standard, and we have 10 ADRs in total, namely
Blurred Vision, Cancer, Depression, Diarrhea, Heart Disease, Hy-
pertension, Kidney Disease, Skin Discoloration, Stroke, and Suicide.

4.3.2. DDI detection

In the constructed healthcare network, the links between nodes are
based on co-occurrence and their semantic meanings are implicit, so
even if two different nodes are linked together, it does not mean that
they would interact with each other. Therefore, an external database
DrugBank is used to set up the gold standard. DrugBank database is a
unique bioinformatics and cheminformatics resource that combines
detailed drug data with comprehensive drug target information
[46].We search for all the 23 drugs to see if one drug is reported to
interact with any other drugs using the Interax Interaction Search®

2 http://www.fda.gov/Drugs/DrugSafety/
PostmarketDrugSafetyInformationforPatientsandProviders/ucm111085.htm

3 http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm

“ http://www.drugbank.ca/interax/drug_lookup
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engine. If two drugs are reported to have interaction, we label the pair
of drug nodes as “1”, and otherwise “0”. For example, Biaxin is reported
by interact with Quinidine to cause Arrhythmias, Simvastatin is re-
ported to interact with Gemfibrozil to cause Myopathy, etc. At last, 20
positive (drug pairs labeled as “1”) are identified. This information is
also used as gold standard for associated adverse reaction detection.

4.4. Evaluation

To evaluate the effectiveness of the proposed techniques, we set up
baseline for both ADR and DDI detection.

4.4.1. ADR detection

In our previous study [17], when using association rule mining to
detect ADR signals, leverage has the best performance. Therefore, we
first compare supervised techniques with unsupervised counterpart,
namely association rule mining, and we use F1 score to compare their
performance. Second, we set up a comparison between weighted and
non-weighted heterogeneous healthcare networks: specifically, we
construct a non-weighted heterogeneous network, extract all the 17
RA—Path—L and used path count to quantify them, and then perform
classification on it. We use both F1 score and area under the ROC curve
(AUCQ) to evaluate the performance.

4.4.2. DDI detection

Here we have two steps for DDI detection. We first detect if two
drugs interact, and then identify the associated adverse reactions due to
interaction. Therefore, we develop baselines for each step.

For the first step, we set up two baselines for comparison:

(1) Comparison between heterogeneous and homogeneous net-
works: We compare the performances between heterogeneous and
homogeneous networks. Specifically, we constructed an unweighted
homogeneous network that only contains one type of node — drug. We
counted the number of path instances for each drug pair to quantify the
homogeneous topological features with length no longer than 4, namely
R-R, R-R-R, R-R-R-R, and R-R-R-R-R. Then we perform classification
on the dataset.

(2) Comparison between weighted and unweighted heterogeneous
networks: We also compare the performances between weighted and
unweighted heterogeneous networks. Specifically, we constructed an
unweighted heterogeneous network, extracted all the 16 symmetric
RsR¢4—Path—L and used path count to quantify them. Then we perform
classification on the dataset.

We use sensitivity, specificity, and AUC to evaluate the proposed
methods.

For the second step, we compare our proposed techniques with
Reporting Ratio (RR) that were used in [29] to detect DDI signal and
associated ADR from Web search log data. They paid particular atten-
tion to the specific drug pairing of paroxetine and pravastatin, whose
interaction was reported to cause hyperglycemia. Fig. 6 shows the Venn
diagram of different user groups in the analysis conducted in [29]. RR is
defined as observed/expected, i.e. (a/b)/(c/d). Observed is defined as
the fraction of users who searched for both pravastatin and paroxetine
(b) who also queried for hyperglycemia symptoms (a), and expected is
defined as the fraction of users who searched for pravastatin (d;) who
also searched for hyperglycemia symptoms (c;), or the fraction of users
who searched for paroxetine (d,) who also searched for hyperglycemia
symptoms (c;) [29]. In this work, we replace Pravastatin searchers with
Ry, Paroxetine searchers with R,, and All hyperglycemia searchers with A.
Therefore, RR(R,) is defined as (a/b)/(c,/d;), where a denotes the
number of threads that contain R;, R, and A, b is the number of threads
that contain both R, and R,, ¢; is the number of threads that contain
both R, and A, and d, is the number of threads that contain R;. RR(R,) is
defined in a similar way. Sensitivity, specificity, and AUC are also used
to compare the performance of different metrics.
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Pravastatin
searchers

Paroxetine
searchers

d> di

All hyperglycemia
searchers

Fig. 6. Venn Diagram Showing the Different User Groups [29].

4.5. Results and discussion

4.5.1. ADR detection

During the experiment, we found that our dataset is highly im-
balanced, and the ratio of positive (labeled as 1) and negative (labeled
as 0) drug-ADR pairs is approximately 1:14. Therefore, we use under-
sampling to build a training dataset with an equal sized set of positive
and negative pairs. Then we perform 5-fold cross validation using
multiple classifiers, i.e. LR, NB, and SVM. The undersampling process is
repeated 1000 times and the final performance is averaged.

When applying association rule mining with leverage as metric to
our dataset, we can achieve 0.20 in F1 score. As shown in Table 3, no
matter what weighting schema and classifier we use, the proposed su-
pervised leaning techniques outperformed unsupervised one, especially
when we use leverage and lift to weight the heterogeneous healthcare
network. It is because supervised learning technique is able to recognize
patterns of true positive and true negative signals by analyzing the
proposed features. It is more powerful in predicting unseen new ex-
amples.

Figs. 7 and 8 show the performance comparisons of different net-
work weighting schemas using different classifiers in terms of F1 score
and AUC score respectively. We can observe that, in all scenarios,
heterogeneous network weighted by leverage (Hete LV) and hetero-
geneous network weighted by lift (Hete LT) outperform non-weighted
network and network weighted by link frequency except AUC score
using Naive Bayes as classifier.

We also conducted ANOVA analysis to see, for each classifier, if
there is any significant difference between different network weighting
schemas in terms of F1 score and AUC score. Both Welch procedure
(p = .000) and Brown-Forsythe procedure (p = .000) showed that a
statistically significant difference exists in terms of both F1 score and
AUC no matter which classifier is used. Furthermore, for both F1 and
AUC scores under all three classifiers, Games-Howell post-hoc tests
demonstrated that (1) Hete_LV is statistically significant higher than all
other three network weighting schemas (p = .000 for all comparisons)
except its AUC score is significantly lower than Hete_Non-weighted (p
= .000) and Hete_LT (p = .000) when Naive Bayes is used; (2) Hete_ LT
is significantly higher than both Hete-Non-weighted and Hete LF (p =
.000 for all comparisons) except its AUC score is significantly lower
than Hete_Non-weighted (p = .000) when NB is used. Last but not the
least, ANOVA analysis under network weighting schema Hete LV
showed that (1) for F1 score, NB is significantly higher than both LR (p
.000) and SVM (p = .000), and SVM is significantly higher than LR
= .000); (2) for AUC score, SVM is significantly higher than both LR
= .000) and NB (p = .000), and LR is significantly higher than NB (p
.000).

The results demonstrate that (1) the performance of different clas-
sifiers varies under different evaluation scenarios, and (2) leverage- and
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Table 3
Comparison between Supervised Learning and Unsupervised Learning Using F1
Score.

Hete_Non-Weighted Hete LF Hete LV Hete LT
LR 0.35 0.41 0.95 0.97
NB 0.75 0.43 0.98 1.00
SVM 0.45 0.41 0.97 0.92

Hete_Non-Weighted: heterogeneous network with no weight.
Hete_LF: heterogeneous network weighted with link frequency.
Hete_LV: heterogeneous network weighted with leverage.
Hete_LT: heterogeneous network weighted with lift.
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only by looking at its support but also the correlation between the two
nodes. Leverage measures the difference between the proportion of
threads containing both nodes above those expected if the two nodes
were independent of each other whereas lift calculate the ratio of these
two. Therefore, both leverage- and lift-weighted heterogeneous net-
works perform better than frequency-weighted one. It is also worth
noting that in ADR detection, we only utilized undersampling for
handling imbalanced dataset. However, since undersampling only
randomly select a small portion of data from the majority class, it would
potentially remove very important data examples, thus hurting the
training model. Therefore, in DDI detection, we also applied other
methods for handling imbalanced dataset.

ELR
ENB
#SVM
Hete_Non-Weighted ' Hete LF Hete LV Hete LT
Fig. 7. F1 Score Comparison.
1 -
09
08 - ELR
07 =NB
0.6 =SVM
0.5 4
04 1
03
02 -
0.1+
[ T
Hete_Non-Weighted Hete LF Hete LV Hete LT

Fig. 8. AUC Score Comparison.

lift-weighted heterogeneous healthcare networks are generally more
effective in ADR detection than non-weighted and frequency-weighted

heterogeneous network. Link frequency is proportional to its support

LF (lab)

value (support (ly) = ), which is not enough to represent the

information carried by links. For example, considering a link R — A, its
support value could be very small, but it does not mean that this link is
trivial, because this ADR could be one of the rare ADRs that would be
caused by the drug. One limitation of support lies in the fact that it
would work well when the ADR of the drug appear frequently in the
dataset. However, health consumers discuss diverse aspects of drugs in
online forum, such as drug dosage, drug prescription, concomitant use
of different drugs, and so forth. It is very likely that threads that are
related to the specific ADR are only a small portion of the total threads,
especially for those rare ADRs. Leverage and lift could be used to ad-
dress this problem because they incorporate the support of the ADR in
the dataset. Both leverage and lift measure the strength of a link not
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4.5.2. DDI detection

4.5.2.1. Interaction detection. Compared with adverse drug reactions,
drug-drug interactions are more scarce [47], so we also expect our
dataset to be highly imbalanced. Indeed, we found that the ratio of
positive (drug pairs labeled as 1) and negative (drug pairs labeled as 0)
examples is approximately 1:12 in our dataset. Besides undersampling,
we also propose to use oversampling, MetaCost [48], and AdaBoost
[49,50] techniques to learn from the imbalanced data.

Table 4 demonstrates the sensitivity and specificity of different
methods in different network setting. Homo NW and Hete NW denote
non-weighted homogeneous network and non-weighted heterogeneous
network respectively, whereas Hete LV and Hete LT denote hetero-
geneous network weighted by leverage and lift respectively. As we can
see, except AdaBoost that classified all examples as “no interaction”, for
the other three methods, Heterogeneous network generally performed
better than the homogeneous counterpart. In particular, compared
horizontally, leverage-weighted heterogeneous network has the best
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Table 4
Sensitivity and Specificity of Different Methods in Different Network Settings.
Sensitivity Specificity
Homo NW Hete-NW Hete LV Hete LT Homo_NW Hete-NW Hete LV Hete LT
Undersampling 0.63 0.77 0.83 0.80 0.73 0.68 0.74 0.70
Oversampling 0.69 0.76 0.86 0.83 0.72 0.73 0.78 0.73
MetaCost 0.71 0.74 0.95 0.85 0.61 0.65 0.66 0.63
AdaBoost 0 0.23 0.2 0.30 1 0.97 0.97 0.96
Table 5 Table 6
AUC Score of different Methods in Different Network Settings. Sensitivity, Specificity, and AUC of Different Metrics in Associated ADR
Detection.
Homo NW Hete-NW Hete LV Hete LT
Sensitivity Specificity AUC
Undersampling 0.73 0.78 0.81 0.78
Oversampling 0.76 0.85 0.87 0.85 RR(R)) 0.43 0.84 0.63
MetaCost 0.73 0.81 0.84 0.80 RR(R,) 0.43 0.82 0.63
AdaBoost 0.76 0.78 0.87 0.83 Confidence 0.14 0.96 0.55
Leverage 0.48 0.82 0.65
Lift 0.48 0.82 0.65
performance for undersampling, oversampling, and MetaCost in terms IR, 0.52 0.83 0.68

of both sensitivity and specificity. Lift-weighted heterogeneous network
also performed better than non-weighted heterogeneous network in
sensitivity and comparable in specificity. Compared vertically, Meta-
Cost under leverage-weighted heterogeneous network outperformed
other methods in sensitivity whereas oversampling under the same
network setting has the highest specificity. Table 5 illustrates the AUC
scores of different methods in various network settings, which, again,
shows that both non-weighted and weighted heterogeneous networks
outperformed homogeneous counterpart, and leverage-weighted het-
erogeneous healthcare network has the highest AUC in all methods.

The results suggest that (1) heterogeneous network is more effective
in DDI signal detection and (2) leverage- and lift-weighted hetero-
geneous network perform better than non-weighted one and leveraged-
weighted network has the best performance. It suggests that hetero-
geneous healthcare networks carry richer information because it in-
corporates various types of nodes that could better represent the real-
world network. Also, weighted links are more informative than binary
representation. We also found that although AdaBoost method could
achieve reasonable specificity and AUC score, it is not able to recall any
true positive signals. Therefore, only AdaBoost may not achieve sa-
tisfactory performance and more techniques should be incorporated.
For example, cost-sensitive methods and adaptive boosting could be
integrated for improving the performance.

4.5.2.2. Associated ADR detection. Here we are more interested in
recalling as many true positive examples as possible. Therefore, we
apply MetaCost to our original leverage-weighted heterogeneous
healthcare network because this combination has the highest cross
validated sensitivity and fair specificity according to Table 4 and we are
more interested in recalling as more true signals as possible. Our dataset
consists of 20 positive and 233 negative drug pairs. At last, 18 true
positive pairs out of 20 and 64 false positive pairs are detected by the
algorithm. We believe that as we expand our dataset in the future, the
proposed techniques are able to save a fair amount of computational
resource without sacrificing too much sensitivity.

We set up a threshold for each metric by their characteristics and
domain knowledge. Concretely, we assign 1 to both RR(R;) and RR(R,)
because RR greater than 1 means a higher odds of interaction [51]; 0.3
to triad confidence based on expert opinion; O to leverage because
leverage greater than O denotes a positive correlation between two
drugs and ADR [17]; 1 to lift because lift greater than 1 also denotes a
positive correlation between two drugs and ADR [17]; and 20 to IR
(confidence) based on expert opinion. Table 6 shows the performance
of different metrics in detecting associated ADRs due to drug-drug in-
teraction. As we can see, association mining metrics except confidence
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have better performance than baseline methods. In particular, our
proposed technique, IR, achieved the highest AUC and sensitivity and
comparable specificity. It is also worth noting that although IR, is based
on confidence, it significantly outperformed confidence in AUC and
sensitivity and has a slightly lower specificity

5. Conclusion

The development of Web 2.0 and Health 2.0 technologies leads the
booming of OHCs such as MedHelp, WebMD and so on. Such platforms
are not only empowering individuals to play a substantial role in their
own health, but also generating informative patient-contributed con-
tent that can be utilized to mine timely and useful knowledge, thus
providing automated insights and discovery. Since pharmacovigilance,
namely ADRs and DDIs, represents a serious health problem all over the
world, how to detect drug safety signals has drawn many researchers’
attention and efforts. Currently, the methods proposed to detect ADR
and DDI signals are mainly based on traditional data sources such as
spontaneous reporting data, electronic health records, pharmaceutical
databases, and biomedical literature. However, these data sources are
either limited by under-reporting ratio, privacy issues, high cost, or
long publication cycle. In this study, we propose a framework for drug
safety signal detection by harnessing online health community data, a
timely, informative, and publicly available data source. We used
MedHelp as data source to collect patient-contributed content based on
which a weighted heterogeneous network was constructed. Then we
extracted topological features from the network, quantified them with
different weighting methods, and used supervised learning method for
both ADR and DDI signal detection. In addition, after identifying DDI
signals, we proposed a new metric, named Interaction Ratio, to identify
associated ADRs due to suspected interactions. The experiment results
show that our proposed techniques outperform the baseline methods.
Specifically, in ADR detection, supervised techniques outperformed
unsupervised counterpart with association rule mining, and leverage-
and lift-weighted networks could achieve better results than non-
weighted network within supervised methods. In DDI detection, besides
undersampling, we also utilized oversampling, cost-sensitive, and en-
semble methods to deal with imbalanced dataset issue. The experiment
results showed that, again, leverage-weighted network has better per-
formance than both homogeneous network and non-weighted hetero-
geneous network. The advantage of heterogeneous-network-based ap-
proach is that it captures both direct and indirect relations among
different types of nodes. Furthermore, compared with homogeneous
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and unweight network, weighted heterogeneous healthcare networks
carry much rich information that could better represent the real-world
networks and help us better identify drug safety signals. There are also
some limitations in this study. First of all, the construction of network
depends on extracted nodes, among which extraction of ADRs, drugs,
and diseases highly relies on the quality of pre-compiled vocabularies.
If some rare or undiscovered ADR or diseases are not included in the
vocabulary, then we are not able to make the prediction. Second, social
media data abounds with misspellings, omissions, newly invented
words, etc. that could also affect the quality of extracted entities.
Therefore, a very critical digression research would be focused on how
to extract verbatim of adverse reactions, drugs, and diseases from pa-
tient-contributed contents. In the future, this work could be extended in
several directions: (1) increase the scale of dataset and include addi-
tional types of nodes into the heterogeneous healthcare network such as
diagnostics, symptoms, treatments, and (2) consider asymmetric topo-
logical features and other quantification methods in mining hetero-
geneous networks.
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