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Abstract

We study the use of predictions by multiple ex-

perts (such as machine learning algorithms) to

improve the performance of online algorithms. In

particular, we consider the classical rent-or-buy

problem (also called ski rental), and obtain algo-

rithms that provably improve their performance

over the adversarial scenario by using these pre-

dictions. We also prove matching lower bounds

to show that our algorithms are the best possible,

and perform experiments to empirically validate

their performance in practice.

1. Introduction

Uncertainty plays a central role in many scenarios where

an optimizer is faced with the decision between two alter-

natives with very different costs. The first alternative has

a recurring small cost (“rent”) while the second alternative

presents a large cost upfront (“buy”) but nothing thereafter.

While long term use justifies the large cost to buy, renting

is the preferred option for short term use. The uncertainty

arises in the length of use, which is typically not known

in advance. These decisions arise in our everyday lives,

such as in deciding whether to buy a house or rent. The

same question arises in much larger contexts, such as in a

corporate decision of whether to invest in a new data center

or rent space in an existing one. In optimization, such prob-

lems constitute the rent-or-buy question, and are modeled

as the widely-studied ski rental problem (Karlin et al., 1994;

Lotker et al., 2008; Khanafer et al., 2013; Kodialam, 2014).

Two popular paradigms for dealing with uncertainty are

online algorithms (Borodin & El-Yaniv, 1998) that are de-

signed to work without knowing the input to the problem in

advance, and machine learning that makes future predictions

by fitting a model to prior data. Recent work has begun to

incorporate machine learned predictions into the design of
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online algorithms (Medina & Vassilvitskii, 2017; Lykouris

& Vassilvitskii, 2018; Kumar et al., 2018; Mitzenmacher,

2018) to improve their performance. The goal is to incor-

porate the ML predictions in a manner that improves the

performance of the online algorithm if the predictions are

accurate (a design goal called consistency), but not degrade

it significantly if the predictions are inaccurate (a design

goal called robustness). Note that these properties are en-

sured by the algorithm without any knowledge of the quality

of the predictions.

While the previous studies focused on using prediction in-

puts from a single ML algorithm or expert, we study the

more general setting where we get predictions from multiple

experts. This is often the case in practice, where different

ML algorithms use a variety of models and techniques to

arrive at different sets of predictions for the future. Indeed,

the problem of combining predictions from multiple experts

to obtain a policy that matches the performance of the best

expert has been extensively studied in the context of online

learning (Jacobs et al., 1991; Chen et al., 1999; Hansen,

1999; Masoudnia & Ebrahimpour, 2014). In this paper, we

study the use of multiple predictions to improve the per-

formance of online algorithms, namely for the classical ski

rental problem. Our goal is to match the performance of

the best expert, while also ensuring that the algorithm does

not degrade significantly compared to the worst-case perfor-

mance of the best online algorithm if all the experts have

large prediction errors.

The ski rental problem. In the ski rental problem, a skier

needs to decide between buying skis at cost b and renting

them at the cost of 1 per day. It is easy to see that if the

ski season last more than b days, then the skier should buy

skis at the start of the season; else, she should rent skis

throughout the season. But, the skier does not know the

length of the ski season in advance, and only learns it once

the season ends. It is well-known that the best deterministic

strategy for the skier is to rent for b days and buy after that

if the ski season continues longer. This algorithm achieves a

competitive ratio of 2.1 Our goal is to use experts (e.g., ML

algorithms) that provide estimates of the length of the season

to improve the performance of this online algorithm. The

1The competitive ratio of an online algorithm is the worst case
ratio of the algorithm’s cost to the optimal cost.
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ski-rental problem (Karlin et al., 1994; Lotker et al., 2008;

Khanafer et al., 2013; Kodialam, 2014) and its many vari-

ations such as TCP acknowledgment (Karlin et al., 2003),

the parking permit problem (Meyerson, 2005), and snoopy

caching (Karlin et al., 1988) model the rent or buy question

that is at the heart of decision making in many different

settings, and have consequently been extensively studied in

the literature.

Consistency and Robustness. Following (Lykouris & Vas-

silvitskii, 2018; Kumar et al., 2018), we use the notions of

consistency and robustness to evaluate our algorithms. We

say that an algorithm alg is α-consistent if alg ≤ α · opt
provided at least one of the k experts provides the correct

prediction. (Note that the algorithm does not know the iden-

tity of the correct predictor.) More generally, if the best

expert has a prediction error of ∆, i.e., the absolute differ-

ence between her prediction and the actual outcome is ∆,

then an α-consistent algorithm ensures alg ≤ α · (opt+∆).
For robustness, we use the standard notion of competitive

ratio: i.e., an algorithm is β-robust if for all outcomes,

alg ≤ β · opt. We call α and β the consistency factor and

robustness factor respectively. Observe that the classical

online algorithm that does not use predictions has consis-

tency and robustness factors of 2. Our goal is to improve the

consistency factor without degrading the robustness factor

significantly.

Related work. Our study borrows the concepts of robust-

ness and consistency from (Lykouris & Vassilvitskii, 2018)

and motivation for a thorough understanding of the ski-

rental problem with predictions from (Kumar et al., 2018).

The former considered the online caching problem with

predictions. It extends the Marking algorithm to incorpo-

rate predictions ensuring both robustness and consistency.

The latter extends the models to analyze non-clairvoyant

scheduling using predictions of the job lengths. As noted

above, we differ from these studies in one significant way by

considering predictions from multiple experts which makes

the problem considerably more challenging. Moreover, we

obtain matching upper and lower bounds for our setting,

thereby deriving the precise values of the optimal consis-

tency and robustness factors.

Other well-studied models of computation under uncertainty

include robust optimization (e.g., (Kouvelis & Yu, 2013))

and stochastic optimization (e.g., (Bubeck & Slivkins, 2012;

Mirrokni et al., 2012; Mahdian et al., 2012)). While the for-

mer focuses on providing provable guarantees for solutions

to particular realizations of uncertain input, the latter gener-

ally aims to provide provably good algorithms for stochastic

input or input from some known distributions. In contrast,

in our study, we make no assumptions on the input.

Our Contributions. Our main contribution in this paper is

to develop algorithms that achieve consistency and robust-

ness for the ski rental problem in the presence of predictions

provided by multiple experts.

• We first consider the idealized scenario where the best

expert makes the correct prediction. For every value

of k, we precisely obtain the best deterministic consis-

tency ratio achievable in this setting by giving matching

upper and lower bounds. We also show that similar

techniques lead to tight results for randomized algo-

rithms as well. (Section 2)

• Next, we extend the above analysis to show that

a slightly modified version of this algorithm also

achieves the best consistency ratio in the more real-

istic scenario of non-zero prediction errors. (Section 3)

• We then incorporate robustness into our algorithm. We

slightly modify the algorithm such that it continues to

have a consistency ratio that almost matches the opti-

mal value, but also guarantees robustness in the form of

a worst-case competitive ratio that is only marginally

worse than 2, which is the best ratio in the absence of

expert advice.

• Finally, we evaluate these algorithms experimentally

and show that for natural models of prediction error,

our algorithms achieve near-optimal competitive ratios.

We also demonstrate the benefits of using multiple

experts over a single expert, and empirically prescribe

the “right” number of ML predictions to use in this

setting.

The Benefit of Using Multiple Experts: Lowering Pre-

diction Error. We close this section by justifying the use

of multiple experts in our setting. In particular, we show

that even the use of two experts significantly reduces the

prediction error compared to a single expert, thereby com-

pensating for the slightly weaker consistency bounds. To

illustrate the dependence of the prediction error on the num-

ber of experts, let us consider a simple setting where the

prediction of an input parameter made by each individual

expert has an independent, additive Gaussian noise given by

the standard normal variate N (0, 1). If there is only a single

expert, then the prediction error is given by the half-normal

distribution

f(x) =

√

2

π
exp

(

−x2

2

)

for 0 ≤ x < ∞

whose mean is

√

2
π

. Now, consider the setting of two ex-

perts, and let X1 and X2 be their respective prediction er-

rors, which are independent half normal variates. Since the

algorithm competes with the best expert, the overall pre-

diction error of this ensemble of two experts is given by
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min(X1, X2) which is distributed as follows:

f(x) = 2

√

2

π
exp

(

−x2

2

)

(

∫ ∞

y=x

√

2

π
exp

(

−y2

2

)

dy

)

dx.

The mean prediction error is then given by

2

√

2

π

∫ ∞

x=0

x exp

(

−x2

2

)(

1− erf

(

x√
2

))

dx,

which evaluates to
2(

√
2−1)

√
π

. Therefore, for independent

standard Gaussian noise, the mean prediction error de-

creases by a factor of
√
2

2(
√
2−1)

≈ 1.707 when a single expert

is supplemented with a second independent expert. Adding

more experts decreases the mean prediction error further.

A simple analysis, which we also empirically verify in our

experiments later, shows that the prediction error rapidly

decreases up to around 3 − 5 experts and then decreases

slowly thereafter (to the eventual limiting value of 0). This

suggests that it might be sufficient to use 3− 5 ML predic-

tors in many practical scenarios for lowering the prediction

error to a small value.

2. Ideal Prediction Scenario: An Expert with

Zero Prediction Error

In this section, we design algorithms for the ski-rental prob-

lem in the idealized scenario where the best expert predicts

the input correctly. This is an easy case for the single expert

scenario treated previously in the literature: since the pre-

diction of the solitary expert must be correct, the problem

is equivalent to the corresponding offline problem where

the input is known to the algorithm. But, as the number

of experts increases, this increases the uncertainty in the

input since the algorithm has to choose from a larger set

of different predictions, only one of which is correct. Note

that the identity of the correct expert is unknown to the

algorithm. Hence, the consistency ratio of the algorithm

gradually worsens from 1 for a single expert to the eventual

limiting value of 2 with an infinite number of experts (which

is equivalent to the worst-case online setting as discussed

earlier). Our goal is to find the best algorithm if there are k
experts providing advice, for any finite k.

Even if there are only two experts, the situation is already

somewhat complicated. In this case, the algorithm does not

know which of the experts is making the accurate prediction.

Let us call their respective predictions a1 and a2. There are

three possible scenarios:

• Both a1 ≥ b and a2 ≥ b: In this case, irrespective

of which expert is correct, the algorithm has a unique

optimal strategy, that of buying at time 0. Clearly,

alg = opt.

• Both a1 < b and a2 < b: Again, irrespective of which

of expert is correct, the algorithm has a unique optimal

strategy of always renting. As in the previous case, we

get alg = opt.

• a1 < b but a2 ≥ b: This is the interesting case, since

the two experts are providing predictions that would

make the algorithm behave differently. The first expert

is advising the algorithm to always rent while the sec-

ond expert is suggesting that the algorithm should buy

at time 0. Our first observation is that neither of these

two strategies, by themselves, yields a bounded consis-

tency factor. If the algorithm decides to rent always,

and the second expert is correct, then alg = a2 while

opt = b, which has an unbounded ratio. On the other

hand, if the algorithm decides to buy at time 0 and

the first expert is correct, then alg = b and opt = a1,

which also has an unbounded ratio.

To get some intuition for our algorithm, let us consider

two extreme cases. For both cases, assume that a2 >>
b, say a2 > 2b. First, consider the scenario where

a1 = b−ǫ (think of ǫ > 0 as a small number compared

to b). In this case, if the algorithm decides to rent till

a1, and the second expert turns out to be correct, then

alg ≥ min(a1 + b, a2) = 2b − ǫ irrespective of the

algorithm’s strategy after time a1. Since opt = b, the

consistency ratio is ≈ 2 and the algorithm fails to take

advantage of the learned advice it receives from the

two experts. Therefore, in this case, the algorithm

should buy before a1. Since either a1 or a2 is corrects,

once the algorithm decides to buy before a1, there is no

incentive for it to buy at any time other than 0. Hence,

in this case, the algorithm should buy at time 0, which

yields a consistency ratio of b
a1

. Now, consider the

second extreme case of a1 = ǫ. In this case, if the

algorithm decides to buy at time 0, then alg = b. But,

opt = ǫ if the first expert turns out to the correct, which

makes the consistency ratio unbounded. Therefore, in

this case, the algorithm should buy at time a1 rather

than at time 0, which has a consistency ratio of b+a1

b
.

Our general strategy is to balance these two ratios aris-

ing in the two extreme situations. More precisely, sup-

pose x is the solution to

b

x
=

b+ x

b
. (1)

The algorithm follows different strategies based on the

value of a1: if a1 ≥ x, then the algorithm buys at

time 0, whereas if a1 < x, then the algorithm rents

till time a1 and then buys if the input is larger than a1.

Note that the algorithm ignores the precise value of

a2, as long as a2 ≥ b. The following theorem is an

easy consequence of the above case analysis; hence,

we omit the proof for brevity.
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Theorem 1. For the case of zero prediction error, the

above algorithm achieves a consistency ratio of φ =
√
5+1
2 = 1.618 . . . for two experts.

Remark: φ is also known as the golden ratio, and arises

in a surprisingly wide range of settings in nature and

mathematics!

Interestingly, this consistency ratio is also the best

achievable by any deterministic algorithm for two ex-

perts. To see this, consider an instance of the problem

where a1 = (φ− 1) · b and a2 = 2b. In this case, the

choices available to the algorithm are to buy at time 0
or at time a1. (Any other choice is strictly dominated

by these two choices: if the algorithm buys at a time

between 0 and a1, that is strictly worse than buying at

time 0; and, if the algorithm buys at a time after a1,

that is strictly worse than buying at time a1.) Now,

consider the following adversary strategy: if the algo-

rithm buys at time 0, then, the correct prediction is a1,

and if the algorithm buys at time a1, then the correct

prediction is a2. A simple calculation now shows that

the consistency ratio in either of these cases is φ.

Theorem 2. For the case of zero prediction error, no

deterministic algorithm can achieves a consistency

ratio that is strictly better than φ =
√
5+1
2 = 1.618 . . .

for two experts.

Our main result in this section is to generalize the algorithm

above to k experts. The algorithm first partitions the seg-

ment of the number line [0, b) into k disjoint segments using

a set of k − 1 breakpoints x1, x2, . . . , xk−1. These break-

points are derived as the solution to the following system of

equations (note that b is constant, so values of xi are derived

as fractions of b):

b

x1
=

b+ x1

x2
=

b+ x2

x3
= . . . =

b+ xk−2

xk−1
=

b+ xk−1

b
.

(2)

These equations are obtained as the natural generalization

of Eq. (1) to k > 2. To obtain a closed form solution for

this system of equations, let us denote yi := xi/b. Then,

1

y1
=

1 + y1
y2

=
1 + y2
y3

= . . . =
1 + yk−2

yk−1
= 1 + yk−1.

(3)

Solving these equations yields:

yt =
t
∑

i=1

yi1 for 2 ≤ t ≤ k − 1 (4)

where y1 is given by

k
∑

i=1

yi1 = 1. (5)

x0 = 0, xk = b
for i = 1 to k − 1 do

xi = b · yi (Eqs. (4) and (5))

if there is no prediction in Si = [xi−1, xi) then

Rent till xi−1 and buy at xi−1 if the input ex-

ceeds xi−1; exit

end if

end for

Rent forever

Figure 1. The algorithm for k experts with zero error

The algorithm is now defined in terms of the solutions to

these equations, and is given in Fig. 1. The algorithm parti-

tions the range [0, b) into segments [xi−1, xi) given by the

above equations. If every segment has a prediction, then

the algorithm rents forever; else, the algorithm rents till

the beginning of the first interval that does not contain any

prediction and buys at that time if the input is longer.

Before we analyze this algorithm, let us match this descrip-

tion of the algorithm with the one we previously gave for

two experts: the intuition for k = 2 will be crucial in our

analysis of the algorithm for general k. For k = 2, the sys-

tem of equations Eq. (2) reduces to a single equation, namely

Eq. (1) that we described earlier. Suppose the solution to

this equation is x; then, our algorithm for general k creates

two segments [0, x) and [x, b), and uses the following rules:

• If neither expert predicts a value in [0, x), then the

algorithm buys at time 0.

• If at least one expert predicts a value in [0, x) but nei-

ther predicts one in [x, b], then the algorithm rents till

time x and buys at x if the input is larger than x.

• If each segment [0, x) and [x, b) has exactly one ex-

pert’s advice in it, then the algorithm always rents.

First, we reconcile the superficial dissimilarities of this al-

gorithm with the one we presented earlier for two experts.

• If both predictions are smaller than b, then the previous

algorithm always rents while the new algorithm only

does so if both segments are occupied. But, if only

the first segment [0, x) is occupied, then the fact that

one of the experts’ predictions is correct implies the

input must be smaller than x. Thus, in this case, the

algorithm ends up renting always. The only case where

the two algorithms differ in their strategy is when both

experts predict a value in [x, b). In this case, the previ-

ous algorithm always rents but the new algorithm buys

at time 0. It turns out that while the former strategy
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is optimal, the latter achieves a consistency ratio no

worse than b/x, which is the overall consistency ratio

as well. Hence, either strategy can be used in this case.

• Finally, we consider the case that one of the experts

predicts a value smaller than b and the other experts

predicts a value greater than b. The algorithmic choice

then depends on the value of the first (smaller) predic-

tion. If it is larger than x, then both algorithms buy

at time 0. However, there is a difference between the

algorithms when the value of the smaller prediction is

less than x. In this case, the previous algorithm buys at

the first prediction, while our current algorithm buys at

time x. Although the strategies differ, they achieve an

identical consistency ratio of 1+x since the prediction

can be arbitrarily close to x.

Thus, we have established that in spite of superficial dissim-

ilarities, the algorithm for k experts essentially follows the

same strategy as the algorithm for the special case of two

experts. Next, we use this intuition to derive the competitive

ratio of the general algorithm.

Theorem 3. For the case of zero prediction error, the above

algorithm achieves a competitive ratio of ηk for k experts,

where ηk is the positive real root of the following equation:

ηk =
k−1
∑

r=0

η−r
k . (6)

Remark. The solution to Eq. 6 is referred to as the k-acci

constant in mathematics. It is an increasing function of k,

starting at 1 for k = 1 and converging to 2 in the limit

of k going to ∞. It derives its name from the fact that it

is the limit of the ratio of two consecutive terms in the k-

acci sequence, which is a generalization of the well-known

Fibonacci sequence where the last k numbers are added

to obtain the next number of the sequence. (So, setting

k = 2 yields the Fibonacci sequence, and the corresponding

Fibonacci constant is the golden ratio φ that we encountered

in Theorem 1.)

Proof of Theorem 3. We do a case analysis. If all the seg-

ments are occupied and the algorithm chooses to rent always,

it is clear that alg = opt since all the predictions are smaller

than b. So, let us consider the scenario where the first un-

occupied segment is Si and the algorithm rents till time

xi−1 and buys at xi−1 if the input is larger. We consider

two cases. First, suppose the input is smaller than xi−1.

Then, clearly alg = opt since the input is smaller than b.
Next, suppose the algorithm buys at time xi−1. In this case,

the input exceeds xi−1. But, note that since Si is unoccu-

pied, and one of the predictions is correct, the input cannot

terminate in Si. Hence, it must be the case that the input

≥ xi, which is the start of the next segment. It follows

that alg = b + xi−1 while opt ≥ xi, which implies that

the consistency ratio is at most
b+xi−1

xi

. Now, we note that

Eq. (6) is obtained by rewriting Eq (5) in terms of the ratio

ηk = b/x1 = 1/y1. Therefore, ηk given by the solution to

Eq. (2) satisfies ηk = b+xi−1

xi

for all values of i in Eq. (2).

It follows that the consistency ratio of the algorithm is given

by ηk in Eq. (6), thereby proving the theorem.

Next, we show that the above consistency ratio is the best

achievable by deterministic algorithms for every value of k,

by showing matching lower bounds.

Theorem 4. For the case of zero prediction error and k ex-

perts, no deterministic algorithm can achieve a consistency

ratio that is strictly better than ηk in Eq. (6).

Proof. The main idea in the construction of this lower

bound is the same as the lower bound sketched for the

special case of two experts in Theorem 2. Namely, we cre-

ate an instance where the choices available to the algorithm

precisely realize each of the ratios given in Eq. (2). Suppose

there are k experts, and the prediction of the ith expert, for

1 ≤ i ≤ k − 1, is given by xi = b · yi, where yi satisfies

Eqs. (4) and (5). The prediction of the kth expert is 2b. In

other words, all the predictions, except that of the last expert,

are precisely at the breakpoints that we used to define the

segments in the algorithm. First, note that if the algorithm

chooses to buy at a time that is strictly inside any of the

segments, i.e., neither at a breakpoint nor at time 0, then its

solution is strictly dominated by an alternative strategy of

buying at the breakpoint at the beginning of the segment (or

at time 0 for the first segment). This is because the actual

input cannot terminate within a segment since one of the

predictions must be correct. So, if the algorithm decides to

buy at time xi−1, i.e., at the beginning of the ith segment

for any 1 ≤ i ≤ k, then the adversary uses the following

strategy: For 1 ≤ i ≤ k, the ith expert is correct and the

actual sequence is of length xi for 1 ≤ i ≤ k − 1 and of

length 2b for i = k. Note that this choice of the adversary

realizes one of the ratios in Eq. (2) as the consistency ratio,

and hence, the consistency ratio of the algorithm cannot be

better than ηk given by Eq. (6). This completes the proof of

the lower bound.

2.1. Randomized Algorithms

Although this paper primarily focuses on deterministic al-

gorithms, we make a digression here and briefly discuss

randomized algorithms for this problem. Consider the case

of k = 2, where one of the predictions is > b and the other

prediction is x ≤ b. A randomized algorithm is simply a

probability distribution over [0, b] that defines when to buy.

First, note that this distribution is discrete wlog, concen-

trated at the values 0 and x. This is because there is no
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benefit to an algorithm to buy between 0 and x – it might as

well buy at 0 – or between x and 1 – it might as well buy at x.

Let the probability of buying at 0 be p; then the probability

of buying at x is 1 − p. There are two possible outcomes:

either the actual sequence ends at x or extends beyond b.
The value of opt in these two cases are respectively x and b.
Correspondingly, the expected cost of alg in these two cases

are respectively p · b+ (1− p)x and p · b+ (1− p)(b+ x).
Setting

p · b+ (1− p)x

x
=

p · b+ (1− p)(b+ x)

b

and solving for p gives p = x2

x2−x+1 , which is the probability

distribution used by the algorithm to decide when to buy.

Then, the ratio alg

opt
= b

x2−x+1 is maximized at x = b/2 for

the range x ∈ [0, b]. Correspondingly, the maximum value

of this ratio is 4/3. The next theorem follows.

Theorem 5. For the case of zero prediction error, the above

randomized algorithm achieves a competitive ratio of 4/3
for 2 experts.

This theorem can be generalized further to more than 2
experts by using similar techniques as above, and can also

be shown to be tight in that no randomized algorithm can

perform better. We defer these results to the full version of

the paper due to space constraints.

3. Experts with Non-Zero Prediction Errors

In the previous section, we described an algorithm that ob-

tains the optimal consistency ratio for k expert predictions,

under the assumption that one of the predictions is correct.

In this section, we consider the more realistic scenario where

none of the experts is guaranteed to provide an exactly cor-

rect prediction. Naturally, the performance of our algorithm

will depend on how good the predictions are. Namely, we

define the prediction error, denoted ∆, to be the smallest

absolute difference between the prediction and the actual

outcome among all experts.

We slightly modify the partitioning of the interval [0, b) from

the previous section by defining a new set of breakpoints

z0, z1, . . . , zk as follows. First, z0 = 0 and zk = b. These

breakpoints are derived as the solution to the following

system of equations:

b

z1
=

b+ z1+z2
2

z2
= . . . =

b+ zk−2+zk−1

2

zk−1
=

b+ zk−1+b

2

b
.

(7)

The algorithm is now defined in terms of the solutions to

these equations, and is given in Fig. 2. The algorithm parti-

tions the range [0, b) into segments [zi−1, zi) given by the

above equations. If every segment has a prediction, then

the algorithm rents forever; else, the algorithm rents till

z0 = 0, zk = b
for i = 1 to k − 1 do

zi is given by Eq. (7)

if there is no prediction in [zi−1, zi) then

if i = 1 then

Buy at time 0; exit

else

Rent till
zi−1+zi

2 and buy at
zi−1+zi

2 if the

input exceeds
zi−1+zi

2 ; exit

end if

end if

end for

Rent forever

Figure 2. The algorithm for k experts with non-zero error

the middle of the first interval that does not contain any

prediction and buys at that time if the input is longer. The

only exception is that if the first interval does not contain a

prediction, then the algorithm buys at time 0.

Note that b is a constant; hence, the values of zi are obtained

from Eq. (7) as fractions of b. Let us denote the ratio ob-

tained as the solution to Eq. (7) by γk. The proof of the

next theorem is a case analysis similar to Theorem 3, and is

hence deferred to the full version of the paper due to space

constraints.

Theorem 6. For prediction error ∆ and k experts, the al-

gorithm given in Fig. 1 satisfies

alg ≤ γk · (opt+∆). (8)

We close this section by stating that the guarantee provided

by Theorem 6 is the best possible in terms of the ratio of
alg

opt+∆ for any deterministic algorithm. The proof, which

follows the same strategy as Theorem 4 is deferred to the

full version due to space constraints.

Theorem 7. For prediction error ∆ and k experts, if a

deterministic algorithm provides a guarantee alg ≤ ζ ·
(opt+∆), then ζ ≥ γk.

4. A Robust and Consistent Algorithm

Although the algorithm in Fig. 1 obtains the best achievable

guarantee of alg in terms of opt and ∆, the competitive

ratio alg/opt can be unbounded for ∆ > 0. For instance,

if there is a single expert whose prediction is larger than b,
the algorithm buys at time 0. However, if the actual input is

ǫ > 0, then alg = b and opt = ǫ, resulting in a competitive

ratio of b/ǫ which is unbounded since ǫ can be arbitrarily

small. Contrast this with the best online algorithm in the

absence of any expert advice (let us call this the “no ad-
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x0 = λb, xk = b
for i = 1 to k − 1 do

xi = b · yi (Eqs. (10) and (11)

if there is no prediction in [xi−1, xi) then

Rent till xi−1 and buy at xi−1 if the input ex-

ceeds xi−1; exit

end if

end for

Rent forever

Figure 4. The hybrid algorithm for k experts

satisfying

b+ λb

x1
=

b+ x1

x2
=

b+ x2

x3
= . . . =

b+ xk−2

xk−1
=

b+ xk−1

b
.

(9)

Denoting yi := xi/b, we have

yt =
y1(1 + yt−1)

1 + λ
for 2 ≤ t ≤ k − 1 (10)

where y1 is given by

k−1
∑

i=1

(

y1
1 + λ

)i

+
yk1

(1 + λ)k−1
= 1. (11)

Using the above equations, we now define the algorithm in

Fig. 4, which is similar to the algorithm in Fig. 1 except that

it never buys before time λb.

The next theorem, which establishes the consistency parame-

ter of the algorithm, follows the proof strategy in Theorem 3

and hence, the proof is deferred to the full version.

Theorem 8. The consistency ratio of the algorithm in Fig. 4

is given by η̃k for k experts, where η̃k is the positive real

root of the following equation:

η̃ =

k−1
∑

r=0

η̃−r + λ · η̃−k. (12)

Next, we show that the above consistency ratio is tight for de-

terministic algorithms by showing a matching lower bound

for every value of k. Again, the lower bound construction

follows the same structure as in Theorem 4 and hence, the

proof is deferred to the full version.

Theorem 9. For any deterministic algorithm with a robust-

ness ratio β ≤ 1 + 1/λ and k experts, the best consistency

ratio achievable is given by η̃k from Eq. (12).

5. Experiments

We test the efficacy of our algorithms via simulations. We

set the buying cost b = 1. (The actual value of b is unimpor-

tant because we can scale all values by b.) We choose the

actual outcome x to be a value uniformly drawn from [0, 2b].
We vary the number of experts from 1 to 8 and set their asso-

ciated predictions to x+ ǫ where ǫ is drawn from a normal

distribution of mean 0 and standard deviation σ. To verify

consistency and robustness of our algorithms, we vary σ
from 0 to 2. Finally, for the algorithm in Fig. 4, we consider

values of 0.1, 0.5, and 0.9 for the meta parameter λ. We

label the algorithm defined in Figure 1 consistent; it’s exten-

sion to handle non-zero prediction errors (see Section 3) as

robust; and the robust and consistent algorithm in Section 4

as hybrid. Figure 3 illustrates the relative performance of

our algorithms. We make three observations.

First, using more experts is better. The advantage of using

more experts is clearly illustrated in Figure 3(a). As the

number of experts increases, the consistent algorithm tends

to perform significantly better and does not even require

explicit robustness adjustments.

Second, the robust algorithm is useful when the prediction

error is large. The trade-off between the robust and consis-

tent algorithms is shown in Figure 3(b). As the consistent

algorithm tries to mimic the best expert, it’s performance

is closely tied to the best expert’s performance. On the

other hand, the robust algorithm does well in this range as

it does not depend on the expert’s advice at all. This is

clearly observed in Figure 3(b). The competitive ratio of the

robust algorithm stays constant even as the prediction error

increases.

Third, in the absence of any knowledge of the prediction

errors, the hybrid algorithm with the robust parameter λ
can help achieve good performance by choosing a suitable

value of λ. The performance of the hybrid algorithm for two

values of λ ∈ {0.1, 0.5, 0.9} is shown in Figure 3(c). Even

as the consistent algorithm outperforms the hybrid algorithm

for all values of λ for small prediction errors, the hybrid

algorithm does better as the prediction error increases.

6. Conclusions

In this paper, we initiate the study of improving the worst-

case performance of online algorithms by incorporating

predictions made by multiple experts (typically ML algo-

rithms). In particular, we study the well-known ski rental

problem in this framework. We develop algorithms that

smoothly trade off between consistency and robustness, and

also obtain tight upper and lower bounds on the consistency

ratio as a function of the number of experts k. We believe

this study, along with the others before it, will raise many

interesting questions on incorporating learned advice (e.g.,

from ML algorithms) into classical optimization problems

to improve the performance of online algorithms beyond

worst-case bounds.
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