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Abstract. Modern data centers face a key challenge of effectively serving user requests that
arrive online. Such requests are inherently multidimensional and characterized by demand vectors
over multiple resources such as processor cycles, storage space, and network bandwidth. Typically,
different resources require different objectives to be optimized, and Lr norms of loads are among the
most popular objectives considered. Furthermore, the server clusters are also often heterogeneous
making the scheduling problem more challenging. To address these problems, we consider the on-
line vector scheduling problem in this paper. Introduced by Chekuri and Khanna in 2006, vector
scheduling is a generalization of classical load balancing, where every job has a vector load instead of
a scalar load. The scalar problem, introduced by Graham in 1966, and its many variants (identical
and unrelated machines, makespan and Lr norm optimization, offline and online jobs, etc.) have
been extensively studied over the last 50 years. In this paper, we resolve the online complexity of the
vector scheduling problem and its important generalizations—for all Lr norms and in both the iden-
tical and unrelated machines settings. For an instance with m machines and d dimensions, our main
results are: For identical machines, we show that the optimal competitive ratio is Θ(log d/ log log d)
by giving an online lower bound and an algorithm with an asymptotically matching competitive
ratio. The lower bound is technically challenging, and is obtained via an online lower bound for the
minimum monochromatic clique problem using a novel online coloring game and randomized coding
scheme. Our techniques also extend to asymptotically tight upper and lower bounds for general Lr

norms. For unrelated machines, we show that the optimal competitive ratio is Θ(logm + log d) by
giving an online lower bound that matches a previously known upper bound. Unlike identical ma-
chines, however, extending these results, particularly the upper bound, to general Lr norms requires
new ideas. In particular, we use a carefully constructed potential function that balances the indi-
vidual Lr objectives with the overall (convexified) min-max objective to guide the online algorithm
and track the changes in potential to bound the competitive ratio.

Key words. multidimensional, vector scheduling, makespan, identical machines, unrelated
machines, various norms, competitive analysis
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1. Introduction. A key algorithmic challenge in modern data centers is the
scheduling of online resource requests on the available hardware. Such requests are
inherentlymultidimensional and simultaneously ask for multiple resources such as pro-
cessor cycles, network bandwidth, and storage space [23, 27, 36] (see also multidimen-
sional load balancing in virtualization [28, 33]). In addition to the multidimensionality
of resource requests, another challenge is the heterogeneity of server clusters because
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of incremental hardware deployment and the use of dedicated specialized hardware
for particular tasks [1, 24, 46]. As a third source of nonuniformity, the objective of the
load balancing exercise is often defined by the application at hand and the resource
being allocated. In addition to the traditional goals of minimizing maximum (L\infty 
norm) and total (L1 norm) machine loads, various intermediate Lr norms1 are also
important for specific applications. For example, the L2 norm of machine loads is
suitable for disk storage [17, 20] while the Lr norm for r between 2 and 3 is used for
modeling energy consumption [3, 40, 45].

In the algorithmic literature, the (single dimensional) load balancing problem,
also called list scheduling, has a long history since the pioneering work of Graham
in 1966 [26]. However, the multidimensional problem, introduced by Chekuri and
Khanna [18] and called vector scheduling (vs), remains less understood. In the sim-
plest version of this problem, each job has a vector load and the goal is to assign
the jobs to machines so as to minimize the maximum machine load over all dimen-
sions. As an example of our limited understanding of this problem, we note that the
approximation complexity of this most basic version is not resolved yet—the current
best approximation factor is O(log d/ log log d) (e.g., [30]), where d is the number of
dimensions, while only an \omega (1) lower bound is known [18]. In this paper, we consider
the online version of this problem, i.e., where the jobs appear in a sequence and have
to be assigned irrevocably to a machine on arrival. Note that this is the most common
scenario in the data center applications that we described earlier, and in other real
world settings. In addition to the basic setting described above, we also consider more
general scenarios to capture the practical challenges that we outlined. In particular,
we consider this problem in both the identical and unrelated machines settings, the
latter capturing the nonuniformity of servers. Furthermore, we also consider all Lr

norm objectives of machine loads in addition to the makespan (L\infty ) objective. In this
paper, we completely resolve the online complexity of all these variants of the vector
scheduling problem.

Formally, there are n jobs (denoted J) that arrive online and must be immediately
and irrevocably assigned on arrival to one among a fixed set of m machines (denoted
M). We denote the d-dimensional load vector of job j on machine i by pi,j = \langle pi,j(k) :
k \in [d]\rangle , which is revealed on its online arrival. For identical machines, the load of
job j in dimension k is identical for all machines i, and we denote it by pj(k). Let us
denote the assignment function of jobs to machines by f : J \rightarrow M . An assignment f
produces a load of Λi(k) =

\sum 

j:f(j)=i pi,j(k) in dimension k of machine i; we succinctly

denote the machine loads in dimension k by an m-dimensional vector Λ(k). (Note
that for the scalar problem, there is only one such machine load vector.)

The makespan norm. The objective for the vs problem for the makespan norm
(denoted vsmax) is defined as follows.

Definition 1.1. vsmax: The objective is the maximum load over all machines

and all dimensions, i.e.,

max
k
\| Λ(k)\| \infty = max

k,i\in M
Λi(k).

We consider this problem in both the identical machines (denoted vsmax-i) and
the unrelated machines (denoted vsmax-u) settings. First, we state our result for
identical machines. Recall that we say an algorithm has competitive ratio \alpha if for

1Our Lr norms are typically referred to as p-norms or Lp norms. We use Lr norms to reserve
the letter p for job processing times.
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TIGHT BOUNDS FOR ONLINE VECTOR SCHEDULING 95

all instances, the objective of the algorithm is at most \alpha times the objective of the
optimal solution.

Theorem 1.2. There is a lower bound of Ω (log d/ log log d) on the competitive

ratio of online algorithms for the vsmax-i problem. Moreover, there is an online

algorithm whose competitive ratio asymptotically matches this lower bound.

The upper bound is a slight improvement over the previous best O(log d) [8,
37], but the only lower bound known previously was NP-hardness of obtaining an
O(1)-approximation for the offline problem [18]. We remark that while the offline
approximability remains unresolved, the best offline algorithms currently known (see
[8, 37], and this paper) are in fact online. Also, our lower bound is information-
theoretic, i.e., relies on the online model instead of computational limitations.

For unrelated machines (vsmax-u), an O(logm + log d)-competitive algorithm
was given by Meyerson, Roytman, and Tagiku [37]. We show that this is the best
possible.

Theorem 1.3. There is a lower bound of Ω(logm+log d) on the competitive ratio

of online algorithms for the vsmax-u problem.

Extensions to other Lr norms. As we briefly discussed earlier, there are many
applications where an Lr norm (for some r \geq 1) is more suitable than the makespan
norm. First, we consider identical machines, where we aim to optimize all norms

simultaneously (denoted vsall-i). In particular, the objective for a particular Lr

norm in dimension k is given as follows.

Definition 1.4. vsall-i: For dimension k and norm Lr, r \geq 1, the objective is

\| Λ(k)\| r =

\biggl( 

\sum 

i\in M

Λr
i (k)

\biggr) 1/r

.

For vsall-i, an algorithm is said to have competitive ratio \alpha r under the Lr norm
if \| Λ(k)\| r \leq \alpha r\| Λ\ast 

r(k)\| r for every dimension k and for every possible load vector Λ\ast 
r

resulting from a feasible assignment. The next theorem extends Theorem 1.2 to an all
norms optimization. Namely, we obtain an algorithm that produces a single solution
that is \alpha r-competitive for all r \geq 1 (i.e., \alpha r is a function of r). We note that this
result assumes that the algorithm is aware a priori of both the final volume of all jobs
on each dimension and the largest load over all dimensions and jobs.

Theorem 1.5. There is an online algorithm for the vsall-i problem that obtains

a competitive ratio of O
\bigl( 

(log d/ log log d)1 - 1/r
\bigr) 

, simultaneously for all Lr norms.

Moreover, these competitive ratios are tight, i.e., there is a matching lower bound

for every individual Lr norm.2

For unrelated machines, there is a polynomial lower bound for simultaneously
optimizing multiple Lr norms, even with scalar loads [35], which rules out an all
norms approximation. Therefore, we focus on an any norm approximation, where
the algorithm is given norms r1, r2, . . . , rd (where 1 \leq rk \leq logm),3 and the goal is
to minimize the Lrk norm for dimension k. The same lower bound also rules out

2We note that our upper bound holds even against a stronger benchmark, where Λ∗
r(k) is defined

as the load vector in dimension k of the assignment that minimizes the Lr norm of dimension k.
3For any m-dimensional vector x, \| x\| ∞ = Θ(\| x\| logm). Therefore, for any rk > logm, an

algorithm can instead use a Llogm norm to approximate an Lrk norm objective up to constant
distortion. Thus, in both our upper and lower bound results we restrict 1 \leq rk \leq logm.
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the possibility of the algorithm being competitive against the optimal value of each
individual norm in their respective dimensions. We use a standard trick in multi-
objective optimization to circumvent this impossibility: we only require the algorithm
to be competitive against any given feasible target vector T = \langle T1, . . . , Td\rangle .4 Now, we
are ready to define the vs problem with arbitrary Lr norms for unrelated machine—we
call this problem vsany-u.

Definition 1.6. vsany-u: For dimension k, the objective is

\| Λ(k)\| rk =

\biggl( 

\sum 

i\in M

Λrk
i (k)

\biggr) 1/rk

.

An algorithm is said to be \alpha rk -competitive under the Lrk norm if \| Λ(k)\| rk \leq 
\alpha rkTk for every dimension k. Note the (necessary) difference between the definitions of
vsall-i and vsany-u: in the former, the algorithm must be competitive in all norms
in all dimensions simultaneously, whereas in vsany-u, the algorithm only needs to be
competitive against a single norm in each dimension that is specified in the problem
input. We obtain the following result for the any norm problem.

Theorem 1.7. There is an online algorithm for the vsany-u problem that simul-

taneously obtains a competitive ratio of O(rk +log d) for each dimension k, where the

goal is to optimize the Lrk norm in the kth dimension. Moreover, these competitive

ratios are tight, i.e., there is a matching lower bound for any given set of Lrk norms.

1.1. Our techniques. First, we outline the main techniques used for the identi-
cal machines setting. At a high level, we leverage the connection with vertex coloring
that was initially observed by Chekuri and Khanna [18]. However, the lower bound
of Halldórsson and Szegedy [29] for online vertex coloring cannot be used to exploit
this connection (we discuss why we need new approaches in detail in section 2.1.3),
we therefore derive a lower bound of Ω(

\surd 
t) for the online problem of minimizing

the size of the largest monochromatic clique given a fixed set of colors, where t is
the number of colors. To the best of our knowledge, this problem was not studied
before and we believe this result should be of independent interest.5 As is typical
in establishing online lower bounds, the construction of the lower bound instance is
viewed as a game between the online algorithm and the adversary. Our main goal
is to force the online algorithm to grow cliques while guaranteeing that the optimal
(offline) solution can color vertices in a way that limits clique sizes to a constant. The
technical challenge is to show that the optimal solution does not form large cliques
across the cliques that the algorithm has created. For this purpose, we develop a
novel randomized code that dictates the choices of the optimal solution and restricts
those of the online algorithm. Using the probabilistic method on this code, we are
able to show the existence of codewords that always lead to a good optimal solution
and an expensive algorithmic one. We also show that the same idea can be used to
obtain a lower bound for any Lr norm.

4A target vector \langle T1, . . . , Td\rangle is feasible if there is an assignment such that for every dimension
k, the value of the Lrk norm in that dimension is at most Tk. Our results do not rely on the exact
feasibility of the target vector; if there is a feasible solution that violates targets in all dimensions by
at most a factor of β, then our results hold with an additional factor of β in the competitive ratio.

5In [39], the problem of coloring vertices without creating certain monochromatic subgraphs
was studied, which is different from our goal of minimizing the largest monochromatic clique size.
Furthermore, this previous work was only for random graphs and the focus was on whether the
desirable coloring is achievable online depending on the parameters of the random graph.
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We now turn our attention to our second main result which is in the unrelated
machines setting: an upper bound for the vsany-u problem. Our algorithm is greedy
with respect to a potential function (as are algorithms for all special cases studied
earlier [4, 6, 15, 37]), and the novelty lies in the choice of the potential function. For
each individual dimension k, we use the Lrk

rk
norm as the potential (following [4, 15]).

The main challenge is to combine these individual potentials into a single potential.
We use a weighted linear combination of the individual potentials for the different
dimensions. This is somewhat counterintuitive since the combined potential can pos-
sibly allow a large potential in one dimension to be compensated by a small poten-
tial in a different one—indeed, a näıve combination only gives a competitive ratio of
O(maxk rk+log d) for all k. However, we observe that we are aiming for a competitive
ratio of O(rk + log d) which allows some slack compared to scalar loads if rk < log d.
Suppose qk = rk + log d; then we use weights of q - qk

k in the linear combination after
changing the individual potentials to Lqk

rk
. Note that as one would expect, the weights

are larger for dimensions that allow a smaller slack. We show that this combined po-
tential simultaneously leads to the asymptotically optimal competitive ratio on every
individual dimension.

Finally, we briefly discuss our other results. Our slightly improved upper bound
for the vsmax-i problem follows from a simple random assignment and redistributing
“overloaded” machines. We remark that derandomizing this strategy is relatively
straightforward. Although this improvement is very marginal, we feel that this is
somewhat interesting since our algorithm is simple and perhaps more intuitive yet
gives the tight upper bound. For the vsall-i problem, we give a reduction to vsmax-

i by structuring the instance by “smoothing” large jobs and then arguing that for
structured instances, a vsmax-i algorithm is also optimal for other Lr norms.

1.2. Related work. Due to the large volume of related work, we will only
sample some relevant results in online scheduling and refer the interested reader to
more detailed surveys (e.g., [7, 41, 42]) and textbooks (e.g., [13]).

Scalar loads. Since the (2  - 1/m)-competitive algorithm by Graham [26] for
online (scalar) load balancing on identical machines, a series of papers [2, 10, 34] have
led to the current best ratio of 1.9201 [22]. On the negative side, this problem was
shown to be NP-hard in the strong sense by Faigle, Kern, and Tuŕan [21] and has
since been shown to have a competitive ratio of at least 1.880 [2, 11, 25, 31]. For
other norms, Avidor, Avar, and Sgall [5] obtained competitive ratios of

\sqrt{} 

4/3 and

2 - O
\bigl( 

log r
r

\bigr) 

for the L2 and general Lr norms, respectively.
For unrelated machines, Aspnes et al., [4] obtained a competitive ratio of O(logm)

for makespan minimization, which is asymptotically tight [9]. Scheduling for the L2

norm was considered by [17, 20], and Awerbuch et al., [6] obtained a competitive
ratio of 1+

\surd 
2, which was shown to be tight [16]. For general Lr norms, Awerbuch et

al., [6] (and Caragiannis [15]) obtained a competitive ratio of O(r) and showed that
it is tight up to constants. Various intermediate settings such as related machines
(machines have unequal but job-independent speeds) [4, 12] and restricted assignment
(each job has a machine-independent load but can only be assigned to a subset of
machines) [9, 16, 19, 43] have also been studied for the makespan and Lr norms.

Vector loads. The vsmax-i problem was introduced by Chekuri and Khanna [18],
who gave an offline approximation of O(log2 d) and observed that a random assign-
ment has a competitive ratio of O

\bigl( 

log dm
log log dm

\bigr) 

. Azar et al., [8] and Meyerson, Roytman,

and Tagiku [37] improved the competitive ratio to O(log d) using deterministic online
algorithms. An offline \omega (1) lower bound was also proved in [18], and it remains open
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as to what the exact dependence of the approximation ratio on d should be. Our on-
line lower bound asserts that a significantly sublogarithmic dependence would require
a radically different approach from all the known algorithms for this problem.

For unrelated machines, Meyerson, Roytman, and Tagiku [37] noted that the
natural extension of the algorithm of Aspnes et al., [4] to vector loads has a competitive
ratio of O(log dm) for makespan minimization; in fact, for identical machines, they
used exactly the same algorithm but gave a tighter analysis. For the offline vsmax-u

problem, Harris and Srinivasan [30] recently showed that the dependence on m is not
required by giving a randomized O(log d/ log log d) approximation algorithm.

2. Identical machines. First, we consider the online vs problem for identical
machines. In this section, we obtain tight upper and lower bounds for this problem,
both for the makespan norm (Theorem 1.2) and for arbitrary Lr norms (Theorem 1.5).

2.1. Lower bounds for vsmax-i and vsall-i. In this section, we will prove
the lower bound in Theorem 1.2, i.e., show that any online algorithm for the vsmax-

i problem can be forced to construct a schedule such that there exists a dimension
where one machine has load Ω(log d/ log log d), whereas the optimal schedule has O(1)
load on all dimensions of all machines. This construction will also be extended to all
Lp norms (vsall-i) in order to establish the lower bound in Theorem 1.5.

We give our lower bound for vsmax-i in two parts. First in section 2.1.1, we
define a lower bound instance for an online graph coloring problem, which we call
monochromatic clique. Next, in section 2.1.2, we show how our lower bound
instance for monochromatic clique can be encoded as an instance for vsmax-i in
order to obtain the desired Ω(log d/ log log d) bound. We then close this subsection by
discussing in section 2.1.3 why the previous work is not sufficient towards establishing
lower bounds.

2.1.1. Lower bound for monochromatic clique. The monochromatic

clique problem is defined as follows.
Monochromatic clique. We are given a fixed set of t colors. The input graph is

revealed to an algorithm as an online sequence of n vertices v1, . . . , vn that arrive one at
a time. When vertex vj arrives, we are given all edges between vertices v1, v2, . . . , vj - 1

and vertex vj . The algorithm must then assign vj to one of the t colors before it sees
the next arrival. The objective is to minimize the size of the largest monochromatic
clique in the final coloring.

The goal of the section will be to prove the following lemma, which we will use
later in section 2.1.2 to establish our lower bound for vsmax-i.

Theorem 2.1. The competitive ratio of any online algorithm for monochro-

matic clique is Ω(
\surd 
t), where t is the number of available colors.

More specifically, for any online algorithm A, there is an instance on which A
produces a monochromatic clique of size

\surd 
t, whereas the optimal solution can color

the graph such that the size of the largest monochromatic clique is O(1).
We will frame the lower bound as a game between an adversary and the online

algorithm. At a high level, the instance is designed as follows. For each new arriving
vertex v and color c, the adversary connects v to every vertex in some currently
existing monochromatic clique of color c. Since we do this for every color, this ensures
that regardless of the algorithm’s coloring of v, some monochromatic clique grows by
1 in size (or the first vertex in a clique is introduced). Since this growth happens
for every vertex, the adversary is able to quickly force the algorithm to create a
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monochromatic clique of size
\surd 
t.

The main challenge now is to ensure that the adversary can still obtain a good
offline solution. Our choice for this solution will be näıve: the adversary will simply
properly color the monochromatic cliques it attempted to grow in the algorithm’s
solution. Since the game stops once the algorithm has produced a monochromatic
clique of size

\surd 
t, and there are t colors, such a proper coloring of every clique is

possible. The risk with this approach is that a large monochromatic clique may now
form in the adversary’s coloring from edges that cross these independently grown
cliques (in other words, properly colored cliques in the algorithm’s solution could now
become monochromatic cliques for the adversary). This may seem hard to avoid since
each vertex is connecting to some monochromatic clique for every color. However, in
our analysis we show that if on each step the adversary selects which cliques to grow in
a carefully defined random fashion, then with positive probability, all properly colored
cliques in the algorithm’s solution that hurt the adversary’s näıve solution are of size
O(1).

Instance construction. We adopt the standard terminology used in online
coloring problems (see, e.g., [29]). Namely, the algorithm will place each vertex in
one of t bins to define its color assignments, whereas we will use colors to refer to
the color assignment in the optimal solution (controlled by the adversary). For each
vertex arrival, the game is defined by the following 3-step process:

1. The adversary issues a vertex vj and defines vj ’s adjacencies with vertices
v1, . . . , vj - 1.

2. The online algorithm places vj in one of the available t bins.
3. The adversary selects a color for the vertex.

We further divide each bin into
\surd 
t slots 1, 2, . . . ,

\surd 
t. These slots will only be

used for the adversary’s bookkeeping. Correspondingly, we partition the t colors into\surd 
t color sets C1, . . . , C\surd 

t, each of size
\surd 
t. Each vertex will reside in a slot inside

the bin chosen by the algorithm, and all vertices residing in slot i across all bins will
be colored by the optimal solution using a color from Ci. The high-level goal of the
construction will be to produce properly colored cliques inside each slot of every bin.

Consider the arrival of vertex vj . Inductively assume the previous vertices v1, . . . ,
vj - 1 have been placed in the bins by the algorithm, and that every vertex within a
bin lies in some slot. Further, assume that all of the vertices in any particular slot of
a bin form a properly colored clique.

To specify the new adjacencies formed by vertex vj for step 1, we will use a t-
length

\surd 
t-ary string sj , where we connect vj to every vertex in slot sj [k] of bin k, for

all k = 1, 2, . . . , t. Next, for step 2, the algorithm places vj in some bin bj . We say
that vj is then placed in slot qj = sj [bj ] in bin bj . Finally for step 3, the adversary
chooses an arbitrary color for vj from the colors in Cqj that have not yet been used
for any vertex in slot qj of bin bj . The adversary will end the instance whenever
there exists a slot in some bin that contains

\surd 
t vertices. This ensures that as long

as the game is running, there is always an unused color in every slot of every bin.
Also observe that after this placement, the clique in slot qj in bin bj has grown in size
by 1 but is still properly colored. So, this induction is well defined. This completes
the description of the instance (barring our choice for each adjacency string sj). See
Figure 2.1 for illustrations of the construction.

Instance analysis. The following lemma follows directly from the construction.

Lemma 2.2. Any online algorithm produces a monochromatic clique of size
\surd 
t by

the end of the instance.

D
o
w

n
lo

ad
ed

 0
3
/1

3
/2

0
 t

o
 1

5
2
.3

.1
3
6
.1

9
8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

100 S. IM, N. KELL, J. KULKARNI, AND D. PANIGRAHI

Fig. 2.1. Depiction of the three-step lower-bound game for Lemma 2.1. For simplicity, the only
adjacencies shown for vertices issued before vj are those between vertices in the same bin-slot pair
(in reality, other adjacencies also exist). Also for simplicity, the only adjacencies shown for vj are
those it has with vertices in bins 13 through 16 (dictated by the bold substring “3213” in sj). Again
note that in reality, vj will also be adjacent to vertices in bins 1 through 12 due to the remaining
prefix “142122213434.”

Proof. After t2 vertices are issued, there will exist some bin b containing at least
t vertices, and therefore some slot in bin b containing at least

\surd 
t vertices forming a

clique of size
\surd 
t. Since all of the vertices in the clique are in the same bin, there

exists a monochromatic clique of size
\surd 
t in the algorithm’s solution.

Thus, it remains to show that there exists a sequence of
\surd 
t-ary strings of length

t2 (recall that these strings define the adjacencies for each new vertex) such that the
size of the largest monochromatic clique in the optimal coloring is O(1). For brevity,
we call such a sequence a good sequence.

First, observe that monochromatic edges (i.e., edges between vertices of the same
color) cannot form between vertices in slots s and s\prime \not = s (in the same or in different
bins) since the color sets used for the slots are disjoint. Moreover, monochromatic
edges cannot form within the same slot in the same bin since these vertices always form
a properly colored clique. Therefore, monochromatic edges can only form between two
adjacent vertices vj and vj\prime such that qj = qj\prime and bj \not = bj\prime , i.e., vertices in the same
slot but in different bins. Relating back to our earlier discussion, these are exactly
the edges that are properly colored in the algorithm’s solution that could potentially
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TIGHT BOUNDS FOR ONLINE VECTOR SCHEDULING 101

form monochromatic cliques in the adversary’s solution; we will refer to such edges
as bad edges.

Thus, in order to define a good sequence of t2 strings, we need to ensure our
adjacency strings do not induce large cliques of bad edges. To do this, we first need a
handle on what structure must exist across the sequence in order for bad-edge cliques
to form. This undesired structure is characterized by the following lemma.

Lemma 2.3. Suppose K = \{ u\phi (1), . . . , u\phi (w)\} is a w-sized monochromatic clique
of color c \in C\ell that forms during the instance, where \phi : [w] \rightarrow [t2] maps k \in [w] to
the index of the kth vertex to join K (note, from the above discussion, that b\phi (j) are
different for all j \in [w]). Then

s\phi (j)[b\phi (i)] = \ell \forall j \in \{ 1, . . . , w\} , \forall i \in \{ 1, . . . , j  - 1\} .

Proof. Consider vertex u\phi (j) (the jth vertex to join K). Since K is a clique, u\phi (j)

must be adjacent to vertices u\phi (1), . . . , u\phi (j - 1). Since all of these vertices are colored
with c \in C\ell , they must have been placed in slot \ell in their respective bins. Therefore,
the positions in s\phi (j) that correspond to these bins must also be \ell , i.e., s\phi (j)[b\phi (i)] = \ell 
for all previous vertices u\phi (i).

In the remainder of the proof, we show that the structure in Lemma 2.3 can be
avoided with nonzero probability for constant sized cliques if we generate our strings
uniformly at random, thus implying the existence of a good set of t2 strings.

Specifically, suppose the adversary picks each sj uniformly at random, i.e., for
each character in sj we pick w \in [

\surd 
t] with probability t - 1/2. We define the following

notation:
\bullet Let K20 be the event that the adversary creates a monochromatic clique of
size 20 or greater.6

\bullet Let K20(S, c) be the event that a monochromatic clique K of color c and size
20 or greater forms such that the first ten vertices to join K are placed in the
bins specified by the set of ten indices S.

\bullet Let Pj(S, q) be a random variable that is 1 if sj [i] = q \forall i \in S and 0 otherwise.

Let P (S, q) =
\sum t2

j=1 Pj(S, q).

\bullet Let q(c) \in [
\surd 
t] be the index of the color set to which color c belongs (i.e.,

c \in Cq(c)).

\bullet Let [n]k :=
\bigl( 

[n]
k

\bigr) 

denote the set of all size-k subsets of [n].
The next lemma follows from standard Chernoff–Hoeffding bounds, which we

state first for completeness.

Theorem 2.4 (Chernoff–Hoeffding bounds (e.g., [38])). Let X1, X2, . . . , Xn be

independent binary random variables, and let a1, a2, . . . , an be coefficients in [0, 1].
Let X =

\sum 

i aiXi. Then,

\bullet For any \mu \geq E[X] and any \delta > 0, Pr[X > (1 + \delta )\mu ] \leq 
\Bigl( 

eδ

(1+\delta )(1+δ)

\Bigr) \mu 

.

\bullet For any \mu \leq E[X] and \delta > 0, Pr[X < (1 - \delta )\mu ] \leq e - \mu \delta 2/2.

We are now ready to state and prove the lemma.

Lemma 2.5. Let S \in [t]10, and let r \in [
\surd 
t]. If the adversary picks each sj

uniformly at random, then Pr[P (S, r) \geq 10] < t - 30.

620 is an arbitrarily chosen large enough constant.
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Proof. First, we observe that for any set S \in [t]10 and any r \in [
\surd 
t], we have

Pr[Pj(S, r) = 1] = (1/
\surd 
t)10 = t - 5 for any string sj . Therefore, by linearity of

expectation, we have

E[P (S, r)] = E

\left[ 

 

t2
\sum 

j=1

Pj(S, r)

\right] 

 = t2 \cdot t - 5 = t - 3.(2.1)

Applying Theorem 2.4 to P (S, r) with Xi = Pi(S, r), ai = 1, \delta = 10t3 - 1, and \mu = t - 3

from (2.1), we get

Pr[P (S, r) \geq 10] \leq 
\Biggl( 

e10t
3 - 1

(10t3)10t3

\Biggr) t - 3

\leq 
\biggl( 

e10

1010

\biggr) 

\cdot 
\biggl( 

1

t30

\biggr) 

< t - 30.

This completes the proof.

Using Lemmas 2.3 and 2.5, we argue that there exists an offline solution with no
monochromatic clique of super constant size.

Lemma 2.6. There exists an offline solution where every monochromatic clique

is of size O(1).

Proof. To show the existence of a good set of t2 strings, it is sufficient to show
that Pr[K20] < 1. Using Lemma 2.5, we in fact show this event occurs with low
probability. Observe that

(2.2) Pr[K20] \leq 
\sum 

c\in [
\surd 
t]

\sum 

S\in [t]10

Pr[K20(S, c)] \leq 
\sum 

c\in [
\surd 
t]

\sum 

S\in [t]10

Pr[P (S, q(c)) \geq 10].

The first inequality is a straightforward union bound. The second inequality follows
Lemma 2.3. If the event K20(S, c) occurs, then Lemma 2.3 implies sj [bi] = q(c) for
j = 11, . . . , 20, i \in S.

Since there are
\surd 
t possible colors and | [t]10| < t10, applying both (2.2) and Lemma

2.5 we get

Pr[K20] \leq 
\sum 

c\in [
\surd 
t]

\sum 

S\in [t]10

Pr[P (S, q(c)) \geq 10]

\leq 
\sum 

c\in [
\surd 
t]

\sum 

S\in [t]10

t - 30 \leq t1/2 \cdot t10 \cdot t - 30 = t - 39/2 < 1

for all t > 1. Therefore, there is a coloring which has no monochromatic clique of size
more than 20.

Theorem 2.1 now follows directly from Lemmas 2.2 and 2.6.

2.1.2. vsmax-i and vsall-i lower bound using monochromatic clique.
We are now ready to use Theorem 2.1 to show an Ω(log d/ log log d) lower bound for
vsmax-i. We will describe a lower bound instance for vsmax-i whose structure is
based on an instance of monochromatic clique. This will allow us to use the lower
bound instance from Theorem 2.1 as a black box to produce the desired lower bound
for vsmax-i.

We first set the problem definition of monochromatic clique to be for m colors
where m is also the number of machines used in the vsmax-i instance. Let IC be the
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lower-bound instance for this problem given by Theorem 2.1. This produces a graph
G of m2 vertices such that the algorithm forms a monochromatic clique of size

\surd 
m,

whereas the largest monochromatic clique in the optimal solution is of size O(1). Let
Gj = (Vj , Ej) be the graph in IC after vertices v1, . . . , vj have been issued (and so
Gn = G). We define the corresponding lower bound instance for vsmax-i as follows
(see Figures 2.2 and 2.3 for an illustration):

\bullet There are m2 jobs, which correspond to vertices v1, . . . , vm2 from IC .

\bullet Each job has d =
\bigl( 

m2
\surd 
m

\bigr) 

dimensions, where each dimension corresponds to

a specific
\surd 
m-sized vertex subset of the m2 vertices. Let S1, . . . , Sd be an

arbitrary ordering of these subsets.
\bullet Job vectors will be binary. Namely, the kth vector entry for job j is 1 if vj \in Sk

and the vertices in \{ v1, . . . , vj\} \cap Sk form a clique in Gj (if \{ v1, . . . , vj\} \cap Sk =
\{ vj\} , then it is considered a 1-clique); otherwise, the kth entry is 0.

\bullet Let c1, . . . , cm define an ordering on the available colors from IC . We match
each color from IC to a machine in our scheduling instance. Therefore, when
the vsmax-i algorithm makes an assignment for a job, we translate this ma-
chine assignment as the corresponding color assignment in IC . Formally, if
job j is placed on machine i in the scheduling instance, then vertex vj is
assigned color ci in IC .

Since assigning jobs to machines corresponds to colorings in IC , it follows that
the largest load in dimension k is the size of the largest monochromatic subclique
in Sk. IC is given by the construction in Theorem 2.1; therefore, at the end of the
instance, there will exist a dimension k\prime such that the online algorithm colored every
vertex in Sk\prime with some color ci. Thus, machine i will have

\surd 
m load in dimension k\prime .

In contrast, Theorem 2.1 ensures that all of the monochromatic cliques in the optimal
solution are of size O(1), and therefore, the load on every machine in dimension k\prime is
O(1).

The relationship between m and d is given as follows.

Fact 2.7. If d =
\bigl( 

m2
\surd 
m

\bigr) 

, then
\surd 
m = Ω(log d/ log log d).

Proof. We will use the following well-known bounds on
\bigl( 

n
k

\bigr) 

: for integers 0 \leq k \leq 
n,
\bigl( 

n
k

\bigr) k \leq 
\bigl( 

n
k

\bigr) 

\leq 
\bigl( 

en
k

\bigr) k
. First, we observe that

(2.3)

log d = log

\biggl( 

m2

\surd 
m

\biggr) 

\leq log

\biggl( 

em2

\surd 
m

\biggr) 

\surd 
m

= log(e
\surd 
m \cdot m(3/2)

\surd 
m) =

\surd 
m \cdot (1+ (3/2) logm).

We also have
(2.4)

log log d = log log

\biggl( 

m2

\surd 
m

\biggr) 

\geq log log

\biggl( 

m2

\surd 
m

\biggr) 

\surd 
m

\geq log((3/2)
\surd 
m logm) \geq (1/2) logm.

Hence, combining (2.3) and (2.4), we obtain

\surd 
m \geq log d

1 + (3/2) logm
\geq log d

1 + 3 log log d
,

which implies that
\surd 
m = Ω(log d/ log log d), as desired.

To end the section, we show that our lower bound for vsmax-i extends to general
Lr norms (Theorem 1.5). As before, our lower bound construction forces any algo-
rithm to schedule jobs so that there exists a dimension k\prime where at least one machine
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Fig. 2.2. Illustration of the lower bound construction for vsmax-i using the monochromatic

clique lower bound (Theorem 2.1) for an instance where m = 9 (and thus d =
\bigl( 

92√
9

\bigr) 

=
\bigl( 

81
3

\bigr) 

for

the vsmax-i instance and t = 9 for the monochromatic clique instance). Currently job 6 is being
issued; its binary load vector, which is based on the current edge structure in the monochromatic

clique instance, is given above the machines/dimensions. Observe that job 6 has load 0 in the first
three dimensions and the last dimension since 6 is not contained in any of the sets corresponding
to these dimensions (indicated below). It does have load 1 in the dimension corresponding to set
\{ 2, 3, 6\} since vertex 6 forms a clique with vertices 2 and 3 in the monochromatic clique instance;
however, it still has load 0 in the dimension corresponding to set \{ 2, 4, 6\} since vertex 6 does not
form a clique with vertices 2 and 4.

Fig. 2.3. State of the construction after job 6 is assigned to machine 3. Since black is the color
we associated with machine 3, this job assignment by the vsmax-i algorithm is translated as coloring
vertex 6 black in the monochromatic clique instance.

has load at least
\surd 
m, whereas the load on every dimension of every machine in the

optimal solution is bounded by some constant C. Since any dimension has at most\surd 
m jobs with load 1, any assignment ensures that there are at most

\surd 
m machines

with nonzero load in a given dimension. Therefore, in the optimal solution, the Lr

norm of the load vector for dimension k\prime is at most (Cr \cdot \surd m)1/r = C \cdot m1/(2r).
Thus, the ratio between the objective of the solution produced by the online

algorithm and the optimal solution is at least m1/2/(C \cdot m1/2r) = (1/C) \cdot m(r - 1)/(2r).
Using Fact 2.7, we conclude the lower bound.

2.1.3. Justification for our approach. Finally, we justify our approach by
discussing in detail why the previous work is not sufficient towards establishing a lower
bound for vsmax. As mentioned earlier, a natural starting point for lower bounds
is the online vertex coloring (vc) lower bound of Halldórsson and Szegedy [29], for
which connections to vsmax-i [18] have previously been exploited. The basic idea
is to encode a vc instance as a vsmax-i instance where the number of dimensions d
is (roughly) nB and show that an approximation factor of (roughly) B for vsmax-i

implies an approximation factor of (roughly) n1 - 1/B for vc. One may want to try
to combine this reduction and the online lower bound of Ω(n/ log2 n) for vc [29] to
get a better lower bound for vsmax-i. However, the reduction crucially relies on the
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fact that a graph with the largest clique size of at most k has a chromatic number of
(roughly) O(n1 - 1/k), and this does not imply that the graph can be colored online
with a similar number of colors.

A second seemingly plausible approach is to explore the connection of vsmax-i
with online vector bin packing (vbp), where multidimensional items arriving online
must be packed into a minimum number of identical multidimensional bins. Recently,
Azar et al. [8] obtained strong lower bounds of Ω(d1/B) where B \geq 1 is the capacity of
each bin in every dimension (the items have a maximum size of 1 on any dimension). It
would be tempting to conjecture that the inability to obtain a constant approximation
algorithm for the vbp problem unless B = Ω(log d) should yield a lower bound of
Ω(log d) for the vsmax-i problem. Unfortunately, this is false. The difference between
the two problems is in the capacity of the bins/machines that the optimal solution is
allowed to use: in vsmax-i, this capacity is 1 whereas in vbp this capacity is B, and
using bins with larger capacity can decrease the number of bins needed superlinearly
in the increased capacity. Therefore, a lower bound for vbp does not imply any lower
bound for vsmax-i. On the other hand, an upper bound of O(d1/(B - 1) log d) for the
vbp problem is obtained in [8] via an O(log d)-competitive algorithm for vsmax-i.
Improving this ratio considerably for vsmax-i would have been a natural approach
for closing the gap for vbp; unfortunately, our lower bound of Ω(log d/ log log d) rules
out this possibility.

2.2. Upper bounds for vsmax-i and vsall-i. In this section we prove the
upper bounds in Theorem 1.2 (vsmax-i) and Theorem 1.5 (vsall-i). First, we
give a randomized O(log d/ log log d)-competitive online algorithm for vsmax-i (sec-
tion 2.2.1) and then show how to derandomize it (section 2.2.2). Next, we give an

O((log d/ log log d)
r - 1
r )-competitive algorithm for vsall-i (section 2.2.3), i.e., for each

dimension k and 1 \leq r \leq logm, \| Λ(k)\| r is competitive with the optimal schedule for
dimension k under the Lr norm objective.

Throughout the section we assume that a priori the online algorithm is aware
of both the final volume of all jobs on each dimension and the largest load over
all dimensions and jobs. We note that the lower bounds claimed in Theorems 1.2
and 1.5 are robust against this assumption since the optimal makespan is always a
constant and this knowledge does not help the online algorithm. Furthermore, these
assumptions can be completely removed for our vsmax-i algorithm by updating a
threshold on the maximum job load on any dimension and the total volume of jobs that
the algorithm has observed so far. However, in order to make our presentation more
transparent and our notation simple, we present our results under these assumptions.

For each job j that arrives online, both our vsmax-i and vsall-i algorithms will
perform the following transformation:

\bullet Transformation 1. Let V = \langle V1, . . . , Vd\rangle be the volume vector given to the
algorithm a priori, where Vk denotes the total volume of all jobs for dimension k. For
this transformation, we normalize pj(k) by dividing it by Vk/m (for ease of notation,
we will still refer to this normalized value as pj(k)).

Our vsmax-i and vsall-i algorithms will also perform subsequent transforma-
tions; however, these transformations will differ slightly for the two algorithms.

2.2.1. Randomized algorithm for vsall-i. We now present our randomized
O(log d/ log log d)-competitive algorithm for vsmax-i. Informally, our algorithm works
as follows. For each job j, we first attempt to assign it to a machine i chosen uniformly
at random; however, if the resulting assignment would result in a load larger than
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O(log d/ log log d) on machine i, then we dismiss the assignment and instead assign j
greedily among other previously dismissed jobs. In general, a greedy assignment can
be as bad as Ω(d)-competitive; however, in our analysis we show that a job is dismissed
by the random assignment with low probability. Therefore, in expectation, the total
volume of these jobs is low enough to assign greedily and still remain competitive.

Instance transformations. Before formally defining our algorithm, we define
additional online transformations and outline the properties that these transforma-
tions guarantee. Note that we perform these transformations for both the random-
ized algorithm presented in this section and the derandomized algorithm presented
in section 2.2.2. These additional transformations are defined as follows (which are
performed in sequence after Transformation 1):

\bullet Transformation 2. Let T be the load of the largest job in the instance
(given a priori). If for dimension k we have T \geq Vk/m, then for each job j
we set pj(k) to be (pj(k) \cdot Vk)/(mT ). In other words, we normalize jobs in
dimension k by T instead of Vk/m.

\bullet Transformation 3. For each job j and dimension k, if

pj(k) < (1/d)max
k\prime 

pj(k
\prime ),

then we increase pj(k) to (1/d)maxk\prime pj(k
\prime ).

Observe that after we apply Transformations 1 and 2 to all jobs, we have
\sum 

j pj(k)
\leq m for all k \in [d] and 0 \leq pj(k) \leq 1 for all jobs j and k \in [d].

In Lemmas 2.8 and 2.9, we prove additional properties that Transformation 3 pre-
serves. Since Transformations 1 and 2 are simple scaling procedures, an \alpha -competitive
algorithm on the resulting scaled instance is also \alpha -competitive on the original in-
stance, if we only apply the first two transformations. In Lemma 2.8, we prove that
this property is still maintained after Transformation 3.

Lemma 2.8. After Transformations 1 and 2 have been applied, Transformation 3
increases the optimal makespan by a factor of at most 2.

Proof. Fix a machine i and a dimension k. Let OPT denote the optimal as-
signment before Transformation 3 is applied. Let J\ast (i) denote the jobs assigned to
machine i in OPT, let Λ\ast 

i (k) be the load of OPT on machine i in dimension k, and let
Λ\ast = maxi,k Λ

\ast 
i (k) denote the makespan of OPT. We will show that Transformation

3 can increase the load on machine i in dimension k by at most Λ\ast .
Let V \ast 

i =
\sum 

j\in J\ast (i)

\sum 

k\prime \in [d] pj(k
\prime ) denote the total volume of jobs that OPT

assigns to machine i. Observe that by a simple averaging argument, we have V \ast 
i /d \leq 

maxk\prime \in [d] Λ
\ast 
i (k

\prime ). Since Transformation 3 can increase the load of a job j in a fixed
dimension by at most (1/d)maxk\prime pj(k

\prime ), we can upper bound the total increase in
load on machine i in dimension k as follows:

(2.5)
\sum 

j\in J\ast (i)

(1/d)max
k\prime 

pj(k
\prime ) \leq V \ast 

i /d \leq max
k\prime \in [d]

Λ\ast 
i (k

\prime ) \leq Λ\ast ,

as desired. Note that the first inequality follows from the fact that the sum of maxi-
mum loads on a machine is at most the total volume of its jobs.

Recall that after Transformations 1 and 2,
\sum 

j pj(k) \leq m for all k \in [d]. In
Lemma 2.9, we show that this property is preserved within a constant factor after
Transformation 3.
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Lemma 2.9. After performing Transformation 3,
\sum 

j pj(k) \leq 2m for all k \in [d].

Proof. Consider any fixed dimension k \in [d]. After Transformation 3, each job j’s
load on dimension k increases by at most (1/d)maxk\prime pj(k

\prime ). Hence the total increase
in load from jobs in dimension k is at most

\sum 

j

(1/d)max
k\prime 

pj(k
\prime ) \leq (1/d)

\sum 

j

\sum 

k\prime \in [d]

pj(k
\prime ) \leq (1/d)md \leq m,

where the second inequality and the lemma follow from the fact that
\sum 

j pj(k) \leq m
before Transformation 3.

In summary, the properties that we collectively obtain from these transformations
are as follows:

\bullet Property 1. For all k \in [d],
\sum 

j pj(k) \leq 2m.
\bullet Property 2. For all j and k \in [d], 0 \leq pj(k) \leq 1.
\bullet Property 3. For all j and k \in [d], (1/d)maxk\prime pj(k

\prime ) \leq pj(k) \leq maxk\prime pj(k
\prime ).

\bullet Property 4. The optimal makespan is at least 1.
Property 1 is a restatement of Lemma 2.9. Property 2 was true after the first two

transformations, and Transformation 3 has no effect on this property. Property 3 is
a direct consequence of Transformation 3.

To see why Property 4 is true, let j be the job with the largest load T in the
instance, and let k = argmaxk\prime pj(k

\prime ) (i.e., maxk\prime pj(k
\prime ) = T ). If Transformation

2 is applied to dimension k, then pj(k) = 1 afterwards, which immediately implies
Property 4. Otherwise, only Transformations 1 and 3 are applied to dimension k
and we have

\sum 

j\prime pj\prime (k) \geq m, which again leads to Property 4 by a simple volume
argument. Thus, by Property 4 and Lemma 2.8, it is sufficient to now show that the
makespan of the algorithm’s schedule is O(log d/ log log d).

Algorithm definition. As discussed earlier, our algorithm consists of two pro-
cedures: a random assignment and greedy packing. It will be convenient to assume
that the algorithm has two disjoint sets M1, M2 of m identical machines that will
be used independently by the two procedures, respectively. Each machine in M1 is
paired with an arbitrary distinct machine in M2, and the actual load on a machine
will be evaluated as the sum of the loads on the corresponding pair of machines. In
other words, to show competitiveness it is sufficient to prove that all machines in both
M1 and M2 have load O(log d/ log log d).

Define the parameter \alpha := 10 log d
log log d . Our two procedures are formally defined as

follows.
\bullet First procedure (random assignment). Assign each job to one of the
machines in M1 uniformly at random. Let J1

j (i) denote the subset of the first
j jobs \{ 1, 2, . . . , j\} that are assigned to machine i in this procedure, and let
Λ1
i,j(k) denote the resulting load on machine i on dimension k due to jobs

in J1
j (i). If Λ1

i,j(k) \geq 2\alpha + 1 for some k \in [d], then we pass job j to the
second procedure. (However, note that all jobs are still scheduled by the first
procedure; so even if a job j is passed to the second procedure after being
assigned to machine i in the first procedure, j still contributes to the final
load of Λ1

i,n(k) for all k).
\bullet Second procedure (greedy packing). This procedure is only concerned
with the jobs J2 that are passed from the first procedure. It allocates each
job in J2 (in the order that the jobs arrive in) to one of the machines in M2

such that the resulting makespan, maxi\in M2,k\in [d] Λ
2
i,j(k) is minimized; Λ2

i,j(k)
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is analogously defined for this second procedure as above.
This completes the description of the algorithm. We will let J1(i) := J1

n(i) and
Λ1
i (k) := Λ1

i,n(k), and define J2(i) and Λ2
i (k) similarly. We emphasize again that

jobs in J2 are scheduled only on machines M2; all other jobs are scheduled on M1

machines.
Algorithm analysis. Before beginning our analysis, recall that by Property 4,

the cost of the optimal solution must be at least 1; thus, in order to establish the
upper bound in Theorem 1.2, it suffices to show that the algorithm’s objective is
O(log d/ log log d).

First, observe that it follows directly from the definition of the algorithm that
the loads on machines in M1 are at most 2\alpha + 1 = O(log d/ log log d). Therefore,
we are only left with bounding the loads on machines in M2. The following lemma
shows that the second procedure receives only a small fraction of the total volume,
which then allows us to argue that the greedy assignment in the second procedure is
\alpha -competitive.

Lemma 2.10. The probability that a job j is passed to the second procedure is at

most 1/d3, i.e., Pr[j \in J2] \leq 1/d3.

Proof. Fix a machine i, job j, and dimension k. Suppose job j was assigned to
machine i by the first procedure and is passed to the second procedure because we
would have had Λ1

i,j(k) \geq 2\alpha + 1. Since pj(k) \leq 1 due to Property 2, it follows that

Λ1
i,j - 1(k) \geq 2\alpha . Therefore, we will show

(2.6) Pr[Λ1
i,j - 1(k) \geq 2\alpha ] \leq 1/d4,

where the probability space is over the random choices of jobs 1, 2, . . . , j  - 1. Once
inequality (2.6) is established, the lemma follows from a simple union bound over all
dimensions.

To show (2.6), we use standard Chernoff–Hoeffding bounds (stated in Theorem 2.4
earlier). Note that E[Λ1

i,j - 1(k)] \leq 2 due to Property 1 and the fact that jobs are
assigned to machines uniformly at random. To apply the inequality, we define random
variables X1, X2, . . . , Xj - 1, where Xj\prime = 1 if job j\prime is assigned to machine i; otherwise,
Xj\prime = 0. Set the parameters of Theorem 2.4 as follows: aj\prime = pj\prime (k), \mu = 2, and
\delta = \alpha  - 1. Thus we have

Pr[Λ1
i,j - 1(k) \geq 2\alpha ] = Pr

\left[ 

 

\sum 

j\prime \in [j - 1]

aj\prime Xj\prime \geq \alpha \mu 

\right] 

 = Pr

\left[ 

 

\sum 

j\prime \in [j - 1]

aj\prime Xj\prime \geq (1 + \delta )\mu 

\right] 

 

\leq 
\biggl( 

e\delta 

(1 + \delta )(1+\delta )

\biggr) \mu 

\leq e\delta 

(1 + \delta )(1+\delta )

\leq 1/(5 log d/ log log d)(5 log d/ log log d)

\leq 1/d4 (for sufficiently large d),

as desired.

Next, we upper bound the makespan of the second procedure in terms of its total
volume of jobs V 2, i.e., V 2 =

\sum 

j\in J2,k\in [d] pj(k).

Lemma 2.11. maxi\in M2,k\in [d] Λ
2
i (k) \leq V 2/m+ 1.

Proof. For the sake of contradiction, suppose that at the end of the instance there
exists a dimension k and machine i such that Λ2

i (k) > V 2/m + 1. Let j be the job
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that made machine i first cross this V 2/m + 1 threshold in dimension k. For each
machine i\prime , let ki\prime = argmaxk\prime Λ2

i\prime ,j - 1(k
\prime ) denote the dimension with maximum load

on machine i\prime before j was assigned.
By Property 2 and the greediness of the algorithm, we have that Λ2

i\prime ,j - 1(ki\prime ) >

V 2/m for all i\prime . Otherwise, j would have been assigned to a machine other than
i resulting in a makespan less than V 2/m + 1 (since maxk,j pj(k) \leq 1). However,
this implies that every machine in M2 has a dimension with more than V 2/m load.
Clearly, this contradicts the definition of V 2.

We are now ready to complete the analysis. From Lemma 2.10 and linearity of
expectation, we know that

(2.7) E[V 2] \leq 1

d3

\sum 

j,k\in [d]

pj(k) \leq 
1

d3
\cdot 2dm =

m

d2
,

where the second inequality follows from Property 1. Hence, inequality (2.7) along
with Lemma 2.11 imply that the second procedure yields an expected makespan of
O(1), which completes our analysis.

2.2.2. Derandomized algorithm for vsmax-i. Our derandomization borrows
the technique developed in [14]. To derandomize the algorithm, we replace the first
procedure—a uniformly random assignment—with a deterministic assignment guided
by the following potential Φ. Let f(x) := \alpha x for notational simplicity. Recall that
\alpha := 10 log d/ log log d:

Φi,k(j) := f

\left( 

 Λ1
i,j(k) - 

\alpha 

m

\sum 

j\prime \in [j]

pj\prime (k)

\right) 

 \forall i \in M1, j \in [n], k \in [d],

Φ(j) :=
\sum 

i\in M

d
\sum 

k=1

Φi,k(j).

\bullet (New deterministic) first procedure. Each job j is assigned to a machine
i such that Φ(j) is minimized. If Λ1

i,j(k) \geq 3\alpha + 1, then j is added to queue

J2 so that it can be scheduled by the greedy second procedure.
Again, as mentioned at the beginning of section 2.2.1, our derandomized algorithm

also performs Transformations 2 and 3, and therefore, Properties 1 through 4 still hold;
therefore, it again suffices to show that the algorithm’s objective is O(log d/ log log d).
We begin by showing the following lemma.

Lemma 2.12. Φ(j) is nonincreasing in j.

Proof. Consider the arrival of job j. To structure our argument, we assume the
algorithm still assigns j to a machine in M1 uniformly at random. Our goal now is
to show that E[Φ(j)] \leq Φ(j - 1), which implies the existence of a machine i such that
assigning job j to the machine i leads to Φ(j) \leq Φ(j  - 1) (and such an assignment
is actually found by the algorithm since its assignment maximizes the decrease in
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potential). We bound E[Φi,k(j)] as follows.

E[Φi,k(j)] =
1

m
f

\left( 

 Λ1
i,j - 1 + pj(k) - 

\alpha 

m
pj(k) - 

\alpha 

m

\sum 

j\prime \in [j - 1]

pj\prime (k)

\right) 

 

+

\biggl( 

1 - 1

m

\biggr) 

f

\left( 

 Λ1
i,j - 1  - 

\alpha 

m
pj(k) - 

\alpha 

m

\sum 

j\prime \in [j - 1]

pj\prime (k)

\right) 

 

= Φi,k(j  - 1) \cdot \alpha  - α
m

pj(k) \cdot 
\biggl( 

1

m
(\alpha pj(k)  - 1) + 1

\biggr) 

\leq Φi,k(j  - 1) \cdot \alpha  - α
m

pj(k)

\biggl( 

pj(k)

m
(\alpha  - 1) + 1

\biggr) 

(2.8)

\leq Φi,k(j  - 1) \cdot exp
\biggl( 

 - (\alpha log\alpha ) \cdot pj(k)
m

\biggr) 

exp

\biggl( 

pj(k)

m
\cdot (\alpha  - 1)

\biggr) 

(2.9)

\leq Φi,k(j  - 1).

Inequality (2.8) follows since \alpha x  - 1 \leq (\alpha  - 1)x for x \in [0, 1], and pj(k) \leq 1 due to
Property 2. Inequality (2.9) follows from the fact that x + 1 \leq ex. Therefore, by
linearity of expectation, we have E[Φ(j)] \leq Φ(j  - 1), thereby proving the lemma.

The next corollary follows from Lemma 2.12 and the simple observation that
Φ(0) = md.

Corollary 2.13. Φ(n) \leq md.

As in section 2.2.1, it is straightforward to see that the algorithm forces ma-
chines in M1 to have makespan O(\alpha ), so we again focus on the second procedure
of the algorithm. Here, we need a deterministic bound on the total volume V 2 =
\sum 

j\in J2

\sum 

k\in [d] pj(k) that can be scheduled on machines in M2. Lemma 2.14 provides
us with such a bound.

Lemma 2.14. V 2 \leq m/d.

Proof. Consider a job j \in J2 that was assigned to machine i in the first procedure.
Let k(j) be an arbitrary dimension k with Λ1

i,j \geq 3\alpha + 1 (such a dimension exists

since j \in J2). Let J2
i (k) = \{ j : j \in J1(i) \cap J2 and k(j) = k\} denote the set of jobs

j \in J2 that were assigned to machine i by the first procedure and are associated with
dimension k. We upper bound V 2 as follows:

V 2 =
\sum 

j\in J2

\sum 

k\prime \in [d]

pj(k
\prime )

=
\sum 

i\in M1,k\in [d]

\sum 

j\in J2
i (k)

\sum 

k\prime \in [d]

pj(k
\prime )

(since we associate job j \in J2 with a unique dimemsion k(j))

\leq 
\sum 

i\in M1,k\in [d]

\sum 

j\in J2
i (k)

d2pj(k) (by Property 3)

\leq d2
\sum 

i\in M1

\sum 

k\in [d]

(Λ1
i (k) - 3\alpha )+.

(2.10)
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To see why the last inequality holds, recall that Λ1
i,j(k) \geq 3\alpha + 1 when j \in J1(i)

and k = k(j). This can happen only when Λ1
i,j - 1(k) \geq 3\alpha since pj(k) \leq 1 due to

Property 2. Since Λ1
i,j\prime (k) is nondecreasing in j\prime , the sum of pj(k) over all such jobs

j is at most (Λ1
i (k) - 3\alpha )+; here (x)+ := max\{ 0, x\} .

We claim that for all i \in M1, k \in [d],

Φi,k(n) \geq \alpha \alpha (Λ1
i,j(k) - 3\alpha )+.(2.11)

If Λ1
i,j(k) - 3\alpha \leq 0, then the claim is obviosuly true since Φi,k(n) is always nonnegative.

Otherwise, we have

Φi,k(n) \geq \alpha Λ1
i,n(k) - 2\alpha \geq \alpha \alpha (Λ1

i,j(k) - 3\alpha ),

where the first inequality follows from Property 1. So in either case, (2.11) holds.
By combining (2.10), (2.11), Corollary 2.13, and recalling \alpha = 10 log d

log log d , we have

V 2 \leq d2
\sum 

i

\sum 

k

(Λ1
i (k) - 3\alpha )+ \leq 

d2

\alpha \alpha 

\sum 

i

\sum 

k

Φi,k(n) \leq 
d3

\alpha \alpha 
m \leq m

d
.

By Lemma 2.11, we have maxi\in M2,k\in [d] Λ
2
i (k) \leq 1

mV 2 +1 = O(1). Thus, we have
shown that each of the two deterministic procedures yields a makespan of O(\alpha ) =
O(log d/ log log d), thereby proving the upper bound.

2.2.3. Algorithm for vsall-i. We now present our O((log d/ log log d)
r - 1
r )-

competitive algorithm for vsall-i. Throughout this section, let A denote the O(log d/
log log d)-competitive algorithm for vsmax-i defined in section 2.2.2. Our vsall-i al-
gorithm essentially works by using A as a black box; however, we will perform a
smoothing transformation on large loads before scheduling jobs with A.

Algorithm definition. We will apply the following transformation to all jobs
j that arrive online after Transformation 1 has been performed (note that this is in
replacement of Transformations 2 and 3 defined in section 2.2.1).
\bullet Transformation 2. If pj(k) > 1, we reduce pj(k) to be 1. If this load

reduction is applied in dimension k for job j, we say j is large in k; otherwise, j is
small in dimension k. On this transformed instance, our algorithm simply schedules
jobs using our vsmax-i algorithm A.

Algorithm analysis. Let \alpha = O(log d/ log log d) be the competitive ratio of
algorithm A. For our analysis in this section, let pj(k) denote the load of job j in
dimension k after only Transformation 1 is applied (in other words, Transformation
2 is only used by the algorithm). Call this instance the scaled instance. Observe that
because of Transformation 1, the scaled instance has the following property:

\bullet Property 1.
\sum 

j\in J pj(k) = m for all k \in [d].
Let OPT\prime (k, r) be the cost of the optimal solution of the scaled instance in dimension
k. In Lemma 2.15, we establish two lower bounds on OPT\prime (k, r)r.

Lemma 2.15. The following inequality holds:

OPT\prime (k, r)r \geq max

\left( 

 

\sum 

j\in J

pj(k)
r,m \cdot 

\left( 

 

\sum 

j\in J

pj(k)/m

\right) 

 

r\right) 

 = max

\left( 

 

\sum 

j\in J

(pj(k)
r) ,m

\right) 
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Proof. Consider any fixed assignment of jobs, and let J \prime (i) \subseteq J be the set of jobs
assigned to machine i. Consider any fixed k. The first lower bound (within the max
in the statement of the lemma) follows since

\sum 

i\in M

\left( 

 

\sum 

j\in J\prime (i)

pj(k)

\right) 

 

r

\geq 
\sum 

i\in M

\sum 

j\in J \prime (i)

pj(k)
r =

\sum 

j\in J

pj(k)
r.

The second lower bound is due to the convexity of xr when r \geq 1, and the last equality
follows from Property 1.

Let J(i) \subseteq J be the set of jobs assigned to machine i by the online algorithm.
Let \ell (i, k) and s(i, k) be the set of jobs assigned to machine i that are large and
small in dimension k, respectively. For brevity, let \sigma \ell (i, k) =

\sum 

j\in \ell (i,k) pj(k) and

\sigma s(i, k) =
\sum 

j\in s(i,k) pj(k). Observe that since algorithm A is \alpha -competitive on an

instance of vsmax-i (which ensures no machine has more than \alpha load), we obtain the
following additional two properties for the algorithm’s schedule:

\bullet Property 2. | \ell (i, k)| \leq \alpha for all i \in M,k \in [d].
\bullet Property 3. \sigma s(i, k) \leq \alpha for all i \in M,k \in [d].

Using these additional properties, the next two lemmas will bound the contribu-
tion of both large and small loads to the objective; namely, we need to bound both
\sigma \ell (i, k)

r and
\sum 

i \sigma s(i, k)
r in terms of \alpha . Lemma 2.16 provides this bound for large

loads, while Lemma 2.17 will be used to bound small loads.

Lemma 2.16. The following inequality holds:

\sigma \ell (i, k)
r =

\Biggl( 

\sum 

j\in \ell (i,k)

pj(k)

\Biggr) r

\leq \alpha r - 1
\sum 

j\in \ell (i,k)

pj(k)
r.

Proof. Let h = | \ell (i, k)| . Then, it follows that
\left( 

 

\sum 

j\in \ell (i,k)

pj(k)

\right) 

 

r

=

\left( 

 

1

h

\sum 

j\in \ell (i,k)

(pj(k) \cdot h)

\right) 

 

r

\leq 1

h

\sum 

j\in \ell (i,k)

(pj(k) \cdot h)r (convexity of xr)

= hr - 1
\sum 

j\in \ell (i,k)

pj(k)
r \leq \alpha r - 1

\sum 

j\in \ell (i,k)

pj(k)
r (Property 2).

Recall that by Property 1, we have that \sigma s(i, k) \leq m. Using this fact and along
with Property 3, the general statement shown in Lemma 2.17 will immediately provide
us with the desired bound on

\sum 

i \sigma s(i, k)
r (stated formally in Corollary 2.18).

Lemma 2.17. Let f(x) = xr for some r \geq 1 whose domain is defined over a set

of variables x1, . . . , xn \in [0, \alpha ] where \alpha \geq 1. If
\sum m

i=1 xi \leq m, then

m
\sum 

i=1

f(xi) \leq 2m \alpha r - 1.

Proof. Let f̃ =
\sum m

i=1 f(xi). We claim that f̃ is maximized when 0 < xi < \alpha for
at most one i \in [m]. If there are two such variables xi and xj with 0 < xi \leq xj < \alpha ,

it is easy to see that we can further increase f̃ by decreasing xi and increasing xj by
an infinitesimal equal amount (i.e., xi \leftarrow xi  - \epsilon and xj \leftarrow xj + \epsilon ) due to convexity of
f .
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Hence, f̃ is maximized when the multiset \{ xi : i \in [m]\} has \lfloor m/\alpha \rfloor copies of \alpha ,
and one copy of m - \alpha \lfloor m/\alpha \rfloor (which is at most \alpha ), which gives,

(2.12) f̃ \leq \lfloor m/\alpha \rfloor f(\alpha ) + f(m - \alpha \lfloor m/\alpha \rfloor ).

If \lfloor m/\alpha \rfloor \geq 1, then it follows that

m
\sum 

i=1

f(xi) = f̃ \leq (\lfloor m/\alpha \rfloor + 1)f(\alpha ) (by (2.12) and since m - \alpha \lfloor m/\alpha \rfloor \leq \alpha )

\leq 2(m/\alpha )\alpha r = 2m \alpha r - 1 (since \lfloor m/\alpha \rfloor \geq 1).

In the case where m < \alpha , f̃ is maximized by setting xi = m for a single i and xi\prime = 0
for all other i\prime \not = i. Therefore, f̃ \leq f(m) = mr \leq m\alpha r - 1.

Corollary 2.18. For all dimensions k,
\sum 

i\in M \sigma s(i, k)
r \leq 2m \alpha r - 1.

We are now ready to bound \| Λ(k)\| r against OPT\prime (k, r).

Lemma 2.19. For all dimensions k, \| Λ(k)\| r = O(\alpha (r - 1)/r)OPT\prime (k, r), i.e., the
Lr norm of the vector load is at most O(\alpha (r - 1)/r) times the Lr norm of the vector

load of the optimal solution.

Proof. Using Lemmas 2.15, 2.16, and Corollary 2.18, we have the following bound
for \| Λ(k)\| rr =

\sum 

i\in M

\bigl( 
\sum 

j\in J(i) pj(k)
\bigr) r
:

\sum 

i\in M

\left( 

 

\sum 

j\in J(i)

pj(k)

\right) 

 

r

=
\sum 

i\in M

\left( 

 

\sum 

j\in \ell (i,k)

pj(k) +
\sum 

j\in s(i,k)

pj(k)

\right) 

 

r

\leq 
\sum 

i\in M

\left( 

 2max

\left( 

 

\sum 

j\in \ell (i,k)

pj(k),
\sum 

j\in s(i,k)

pj(k)

\right) 

 

\right) 

 

r

\leq 2r
\sum 

i\in M

\left( 

 

\left( 

 

\sum 

j\in \ell (i,k)

pj(k)

\right) 

 

r

+

\left( 

 

\sum 

j\in s(i,k)

pj(k)

\right) 

 

r\right) 

 

\leq 2r

\left( 

 \alpha r - 1
\sum 

j\in \ell (i,k)

pj(k)
r + 2m \cdot \alpha r - 1

\right) 

 (by Lemma 2.16 and Corollary 2.18)

\leq (2r \cdot 3\alpha r - 1)OPT\prime (k, r)r (by Lemma 2.15),

which, raising both the left-hand side (LHS) and right-hand side (RHS) to 1/r, gives
us

\| Λ(k)\| r \leq 
\Bigl( 

2 \cdot 31/r\alpha (r - 1)/r
\Bigr) 

OPT\prime (k, r) = O(\alpha (r - 1)/r)OPT\prime (k, r).

This completes the proof.

The upper bound in Theorem 1.5 now follows immediately from Lemma 2.19.
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3. Unrelated machines. Now, we consider the online vector scheduling prob-
lem for unrelated machines. In this section, we obtain tight upper and lower bounds
for this problem, both for the makespan norm (Theorem 1.3) and for arbitrary Lr

norms (Theorem 1.7).

3.1. Lower bound for vsany-u. In this section we prove the lower bound in
Theorem 1.7, i.e., we show that we can force any algorithm to make an assignment
where there exists a dimension k that has cost at least Ω(log d+ rk) where 1 \leq rk \leq 
logm.

Our construction is an adaptation of the lower bounds in [15] and [6] but for a
multidimensional setting. Informally, the instance is defined as follows. We set m = d
and then associate the ith machine with the ith dimension, i.e., machine i only receives
load in the ith dimension. We then issue jobs in a series of log d+1 phases. In a given
phase, there will be a current set of active machines, which are the only machines that
can be loaded in the current phase and for the rest of the instance (so once a machine
is inactivated it stays inactive). More specifically, in a given phase we arbitrarily pair
off the active machines and then issue one job for each pair, where each job has unit
load but is defined such that it must be assigned to a unique machine in its pair.
When a phase completes, we inactivate all of the machines that did not receive load
(so we cut the number of active machines in half). This process eventually produces
a load of log d+ 1 on some machine, whereas reversing the decisions of the algorithm
gives an optimal schedule with an Lrk norm of 1 for all k \in [d].

More formally let d = 2h. The adversary sets the instance target parameters to
be Tk = 1 for all k \in [d] (it will be clear from our construction that these targets
are feasible). For each job j, let m1(j),m2(j) \in [m] denote the machine pair the
adversary associates with job j. We define j to have unit load on machines m1(j),
m2(j) in their respective dimensions and arbitrarily large load on all other machines.
Formally, pi,j(k) is defined to be

pi,j(k) =

\left\{ 

 

 

0 if i \not = k and i \in \{ m1(j),m2(j)\} ,
1 if i = k and i \in \{ m1(j),m2(j)\} ,
\infty otherwise.

As discussed above, the adversary issues jobs in h+ 1 phases. Phases 1 through
h will work as previously specified (we describe how the final (h + 1)th phase works
shortly). Let S\ell denote the active machines in phase \ell . In the \ell th phase, we issue a
set of jobs J\ell where | J\ell | = 2h - \ell . We then pair off the machines in S\ell and use each
machine pair as m1(j) and m2(j) for a unique job j \in J\ell . Clearly the algorithm must
schedule j on m1(j) or m2(j), and thus 2h - \ell machines accumulate an additional load
of 1 in phase \ell . Machines that receive jobs in phase \ell remain active in phase \ell +1; all
other machines are set to be inactive. In the final phase h+ 1, there will be a single
remaining active machine i\prime ; thus, we issue a single job j\prime with unit load that must
be scheduled on i\prime (note that this final phase is added to the instance only to make
our target vector feasible).

Based on this construction, there will exist a dimension k\prime at the end of the
instance that has load h + 1 on machine k\prime and 0 on all other machines. Observe
that the optimal schedule is obtained by reversing the decisions of the algorithm,
which places a unit load on one machine in each dimension. Namely, if j was assigned
to m1(j), then the optimal schedule assigns j to m2(j) (and vice versa), with the
exception that j\prime is assigned to its only feasible machine.
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In the case that log d \geq rk\prime , the adversary stops. Since Tk\prime = 1 and the Lrk\prime 
norm

of the algorithm in dimension k\prime is h + 1 = log d + 1, we have that the competitive
ratio of the algorithm is Ω(log d + rk). If log d < rk\prime , then the adversary stops the
current instance and begins a new instance. In the new instance, we simply simulate
the lower bound from [6] in dimension k\prime (i.e., the only dimension that receives load
is dimension k\prime ; the adversary also resets the target vectors accordingly). Here, the
adversary forces the algorithm to be Ω(rk\prime )-competitive, which, since log d < rk\prime , gives
us the desired bound of Ω(log d+ rk\prime ).

3.2. Upper bound. Our goal is to prove the upper bound in Theorem 1.7.
Recall that we are given targets Tk, and we have to show that \| Λ(k)\| rk = O(log d+
rk) \cdot Tk for all k \in [d]. (Λ(k) is the load vector in dimension k and rk is the norm
that we are optimizing.) First, we normalize pi,j(k) to pi,j(k)/Tk for all dimensions
k; to keep the notation simple, we will also denote this normalized load pi,j(k). This
ensures that the target objective is 1 in every dimension. (We assume without loss
of generality that Tk > 0. If Tk = 0, the algorithm discards all assignments that put
nonzero load on dimension k).

3.2.1. Description of the algorithm. As described in the introduction, our
algorithm is greedy with respect to a potential function defined on modified Lrk norms.
Let Lk = \| Λ(k)\| rk denote the Lrk norm of the machine loads in the kth dimension,
and qk = rk + log d denote the desired competitive ratio; all logs are base 2. We
define the potential for dimension k as Φk = Lqk

k . The potentials for the d different
dimensions are combined using a weighted linear combination, where the weight of
dimension k is \alpha k = (3qk)

 - qk . Note that dimensions that allow a smaller slack in the
competitive ratio are given a larger weight in the potential. We denote the combined
potential by Φ =

\sum d
k=1 \alpha k \cdot Φk. The algorithm assigns job j to the machine that

minimizes the increase in potential Φ.

3.2.2. Competitive analysis. Let us fix a solution satisfying the target objec-
tives, and call it the optimal solution. Let Λi(k) and Λ\ast 

i (k) be the load on the ith
machine in the kth dimension for the algorithmic solution and the optimal solution,
respectively. We also use L\ast 

k to denote the Lrk norm in the kth dimension for the
optimal solution; we have already asserted that by scaling, L\ast 

k = 1.
Similar to [4, 15], we compare the actual assignment made by the algorithm (start-

ing with zero load on every machine in every dimension) to a hypothetical assignment
made by the optimal solution starting with the final algorithmic load on every machine
(i.e., load of Λi(k) on machine i in dimension k).

We will need the following fact for our analysis, which follows by observing that all
parameters are positive, the function is continuous in the domain, and its derivative
is nonnegative.

Fact 3.1. The function f(x1, x2, . . . , xm) = (
\sum 

i(xi + ai)
w)

z  - (
\sum 

i x
w
i )

z
is non-

decreasing if for all i \in [m] we restrict the domain of xi to be [0,\infty ), w \geq 1, z \geq 1,
and ai \geq 0.

Using greediness of the algorithm and convexity of the potential function, we argue
in Lemma 3.2 that the change in potential in the former process is upper bounded by
that in the latter process.

Lemma 3.2. The total change in potential in the online algorithm satisfies
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d
\sum 

k=1

\alpha kL
qk
k = Φ(n) - Φ(0) \leq 

d
\sum 

k=1

\alpha k

\biggl( m
\sum 

i=1

\Bigl( 

Λi(k) + Λ\ast 
i (k)

\Bigr) rk
\biggr) qk/rk

 - 
d
\sum 

k=1

\alpha kL
qk
k .

Proof. Let yi,j = 1 if the algorithm assigns job j to machine i; otherwise, yi,j = 0.
Define y\ast i,j similarly but for the optimal solution’s assignments. We can express the
resulting change in potential from scheduling job j as follows.

Φ(j) - Φ(j  - 1)

=
d
\sum 

k=1

\alpha k (L
qk
k (j) - Lqk

k (j  - 1)) =
d
\sum 

k=1

\alpha k

\Biggl( \Biggl( 

m
\sum 

i=1

Λrk
i,j(k)

\Biggr) qk/rk

 - 
\Biggl( 

m
\sum 

i=1

Λrk
i,j - 1(k)

\Biggr) qk/rk\Biggr) 

=
d
\sum 

k=1

\alpha k

\Biggl( \Biggl( 

m
\sum 

i=1

\Bigl( 

Λi,j - 1(k) + pi,j(k) \cdot yi,j
\Bigr) rk

\Biggr) qk/rk

 - 
\Biggl( 

m
\sum 

i=1

Λrk
i,j - 1(k)

\Biggr) qk/rk\Biggr) 

.

(3.1)

Since the online algorithm schedules greedily based on Φ(j), using the optimal
schedule’s assignment for job j must result in a potential increase that is at least as
large. Therefore, by (3.1) we have

(3.2)

Φ(j) - Φ(j - 1) \leq 
d
\sum 

k=1

\alpha k

\Biggl( \Biggl( 

m
\sum 

i=1

\Bigl( 

Λi,j - 1(k)+pi,j(k)\cdot y\ast i,j
\Bigr) rk

\Biggr) qk/rk

 - 
\Biggl( 

m
\sum 

i=1

Λrk
i,j - 1(k)

\Biggr) qk/rk\Biggr) 

.

As loads are nondecreasing, Λi(k) \geq Λi,j - 1(k). Also note that rk \geq 1 and

qk/rk = (rk + log d)/rk > 1.

Thus, we can apply Fact 3.1 to (3.2) (setting w = rk, z = qk/rk, and ai = pi,j(k) \cdot y\ast i,j)
to obtain
(3.3)

Φ(j) - Φ(j - 1) \leq 
d
\sum 

k=1

\alpha k

\Biggl( \Biggl( 

m
\sum 

i=1

\Bigl( 

Λi(k)+pi,j(k) \cdot y\ast i,j
\Bigr) rk

\Biggr) qk/rk

 - 
\Biggl( 

m
\sum 

i=1

Λrk
i (k)

\Biggr) qk/rk\Biggr) 

.

We can again use Fact 3.1 to further bound the potential increase (using the same
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values of ai, w, and z, but now ∆xi = Λ\ast 
i,j - 1(k)):

Φ(j) - Φ(j  - 1)

(3.4)

\leq 
d
\sum 

k=1

\alpha k

\Biggl( \Biggl( 

m
\sum 

i=1

\Bigl( 

Λi(k) + Λ\ast 
i,j - 1(k) + pi,j(k) \cdot y\ast ij

\Bigr) rk

\Biggr) qk/rk

 - 
\Biggl( 

m
\sum 

i=1

\Bigl( 

Λi(k) + Λ\ast 
i,j - 1(k)

\Bigr) rk

\Biggr) qk/rk\Biggr) 

=

d
\sum 

k=1

\alpha k

\Biggl( \Biggl( 

m
\sum 

i=1

\Bigl( 

Λi(k) + Λ\ast 
i,j(k)

\Bigr) rk

\Biggr) qk/rk

 - 
\Biggl( 

m
\sum 

i=1

\Bigl( 

Λi(k) + Λ\ast 
i,j - 1(k)

\Bigr) rk

\Biggr) qk/rk\Biggr) 

.

(3.5)

Observe that for a fixed k, the RHS of (3.5) is a telescoping series if we sum over
all jobs j:

n
\sum 

j=1

αk

\Biggl( \Biggl( 

m
\sum 

i=1

\Bigl( 

Λi(k) + Λ∗
i,j(k)

\Bigr) rk

\Biggr) qk/rk

−

\Biggl( 

m
\sum 

i=1

\Bigl( 

Λi(k) + Λ∗
i,j−1(k)

\Bigr) rk

\Biggr) qk/rk
\Biggr) 

(3.6)

= αk

\Biggl( 

m
\sum 

i=1

\Bigl( 

Λi(k) + Λ∗
i (k)

\Bigr) rk

\Biggr) qk/rk

−

\Biggl( 

m
\sum 

i=1

\Bigl( 

Λi(k)
\Bigr) rk

\Biggr) qk/rk

.

We have

n
\sum 

j=1

(Φ(j) - Φ(j  - 1)) = Φ(n) - Φ(0),

since this is also a telescoping series. By definition, Φ(0) = 0 and Φ(n) =
\sum d

k=1 \alpha kL
qk
k .

Using these facts along with (3.5) and (3.6), we establish the lemma:

d
\sum 

k=1

\alpha kL
qk
k =

n
\sum 

j=1

(Φ(j) - Φ(j  - 1))

\Biggl( 

since Φ telescopes, Φ(0) = 0, and Φ(n) =

d
\sum 

k=1

\alpha kL
qk
k

\biggr) 

\leq 
d
\sum 

k=1

\alpha k

\Biggl( 

m
\sum 

i=1

\Bigl( 

Λi(k) + Λ\ast 
i (k)

\Bigr) rk

\Biggr) qk/rk

 - 
d
\sum 

k=1

\alpha kL
qk
k (by (3.5) and (3.6)).

This completes the proof.

We proceed by applying the Minkowski inequality (e.g., [44]), which states that
for any two vectors v1 and v2, we have \| v1 + v2\| r \leq \| v1\| r + \| v2\| r. Applying this
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inequality to the RHS in Lemma 3.2, we obtain

d
\sum 

k=1

\alpha kL
qk
k \leq 

d
\sum 

k=1

\alpha k

\Biggl( \Biggl( 

m
\sum 

i=1

Λrk
i (k)

\Biggr) 1/rk

+

\Biggl( 

m
\sum 

i=1

(Λ\ast 
i (k))

rk

\Biggr) 1/rk\Biggr) qk

 - 
d
\sum 

k=1

\alpha kL
qk
k

=

d
\sum 

k=1

\alpha k

\Bigl( 

Lk + L\ast 
k

\Bigr) qk
 - 

d
\sum 

k=1

\alpha kL
qk
k .(3.7)

Next, we prove a simple lemma that we will apply to inequality (3.7).

Lemma 3.3. (Lk + L\ast 
k)

qk \leq e1/2Lqk
k + (3qk \cdot L\ast 

k)
qk for all k \in [d].

Proof. First, consider the case Lk \geq 2qk \cdot L\ast 
k. Then it follows,

(Lk + L\ast 
k)

qk \leq (1 + 1/(2qk))
qk \cdot Lqk

k

\leq 
\Bigl( 

e1/(2qk)
\Bigr) qk
\cdot Lqk

k = e1/2Lqk
k .(3.8)

Otherwise, Lk < 2qk \cdot L\ast 
k, and then we have

(Lk + L\ast 
k)

qk \leq (3qk \cdot L\ast 
k)

qk .

Combining these two upper bounds completes the proof.

Thus, we can rearrange (3.7) and bound 2
\sum d

k=1 \alpha kL
qk
k as follows:

2

d
\sum 

k=1

\alpha kL
qk
k \leq 

d
\sum 

k=1

\alpha k (Lk + L\ast 
k)

qk

\leq e1/2
d
\sum 

k=1

\alpha kL
qk
k +

d
\sum 

k=1

\alpha k(3qk \cdot L\ast 
k)

qk (by Lemma 3.3)

= e1/2
d
\sum 

k=1

\alpha kL
qk
k +

d
\sum 

k=1

(L\ast 
k)

qk .(3.9)

Note that the last equality is due to the fact that \alpha  - 1
k = (3qk)

qk . By our initial
scaling, L\ast 

k = 1 for all k. Therefore, after rearranging (3.9), we obtain

\Bigl( 

2 - e1/2
\Bigr) 

d
\sum 

k=1

\alpha kL
qk
k \leq 

d
\sum 

k=1

(L\ast 
k)

qk \leq d,

which for any fixed k implies

Lk \leq 
1

\bigl( 

2 - e1/2
\bigr) 1/qk

\cdot 
\biggl( 

d

\alpha k

\biggr) 1/qk

\leq 1

2 - e1/2
\cdot 
\biggl( 

d

\alpha k

\biggr) 1/qk

=
3

2 - e1/2
\cdot 
\Bigl( 

d
1

rk+log d

\Bigr) 

qk < 10 \cdot d 1
log d \cdot qk = 20qk = O(rk + log d),

where the second inequality uses qk \geq 1 and 2  - e1/2 < 1. This completes the proof
of the upper bound claimed in Theorem 1.7.
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4. Conclusions. In this paper, we presented algorithms with tight competitive
ratios for the online vector scheduling problem in both the identical and unrelated
machines settings. To conclude the paper, we briefly mention some natural directions
for future work.

In both the unrelated and identical machines settings, our bounds are tight in
an asymptotic sense, i.e., our results apply to problem instances with a large number
of dimensions. However, in many real world settings with multidimensional jobs,
the number of dimensions is likely to be a small constant. Therefore, an interesting
direction for future work would be to obtain improved competitive ratios when the
number of dimensions is small, e.g., d = 2, 3, 4, etc. In fact, for problem instances
with a small number of dimensions, our algorithms have worse competitive ratios
than even näıve greedy algorithms. More specifically, a simple greedy strategy yields
a (d + 1)-competitive algorithm for identical machines with d dimensions, and thus
improving on this bound is a very interesting question, even for the case when d = 2.

For another natural direction, recall that we made a technical assumption in our
vsall-i algorithm; in particular, we assumed that in each dimension, the cumulative
volume across all jobs, along with the load value of the job with maximum load, are
given to the algorithm a priori at the start of the instance. Such assumptions are easy
to remove in single dimensional problems by using the so-called “guess-and-double”
strategy; however, its unclear how to remove these assumptions when scheduling
vector jobs. Therefore, an interesting technical question is determine whether we can
design an online algorithm for vsall-i that does not need to know the cumulative
volume of all jobs, nor the value of the largest load, in each dimension.
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