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1. Introduction

The quantization of energies in a one-dimensional potential well is a familiar
vehicle for introducing and illustrating semiclassical (small %) approximation
techniques, especially the WKB method [1, 2]. Here we describe a slightly more
sophisticated variant, requiring the understanding of two different kinds,of
small exponential, with the pedagogical advantage that it combines several

different kinds of asymptotics while being precisely solvable.

The variant 1s that the potential V(x) (chosen even for convenience) is

truncated at x=+L as illustrated in figure 1. Thus

(1.1)

Vwell
Xc L

Figure 1. Truneated potential, with energy less than the truncation.

The aim is to undeérstand how the truncation affects the energy levels of the
bound states E<J, in the semiclassical regime of small 7. The interest lies in
the fact that the discontinuity of slope means that the potential is nonanalytic,
whilestandard semiclassical asymptotics works for analytic potentials. The

classical turning point x., defined by E=Vyen(xc), separates the classically
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allowed region |x|<x.(E) from the classically forbidden region |x[>x.(E). Since
the truncation at x=L occurs in the classically forbidden region, and
semiclassical asymptotics for the energy levels depends on the potential and its
derivatives in the classically allowed region, the truncation 1s invisible to‘all
orders /" , 1.e. all orders of semiclassical approximation. The semiclassical
influence of truncation on the spectrum is exponentially small in %; and can be

understood only by going beyond all orders.

For explicit calculations, we choose the untruncated potential /.y to be

linear, so

(1 (<) |

= L) | "

Figure 2 shows the spectrum, calculated as explained in the next section. As L
increases, the binding increases and more levels are sucked down from the
continuum. After its birth, the influence of the truncation on each level
diminishes: the energies approach those of the untruncated potential. This is the

behaviour we aim to understand.

6L ']
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Figure 2. Red curves: even and odd energy levels in the truncated potential (1.2), for
increasing truncation distance L; dotted lines: levels of the untruncated linear potential, i.e.
zeros of A1’ (even levels) and A1 (odd levels).
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Insection2wederiveanexact  quantizationcondition,inaformwhere
theinfluenceofthetruncationisseparatedfromtheconditonforthelevelsof
theuntruncatedpotential.Section3calculatestheasymptoticsofthetruncation
terminthequantizationcondition. Awayfromthe birthsofeachlevelatthetop
ofthewell,thetruncationtermisexponentiallyweak. Thusforsemiclassical
consistencythequantizationoftheuntruncatedwellshouldalsobe
approximatedtoincludeexponentiallysmallterms;thisisdescribedinsection
4,andthetwoexponentialsarecompared  ,andpossibleextensionsdiscussed,in
theconcludingsection5 . Werecognisethatsomeoftheasymptoticanalysis
(especiallyinsection4) ischallengingandunfamiliarinmanygraduate
curricula,butwehave triedtomakei t assimpleaspossible(thoughnot

simpler,asEinsteinisreputedtohaveadvised).

2.Exactquanti zationcondition

Theenergylevelsareeigenvaluesdeterminedbytheone -dimensionaltime -
independentSchrodingerequation,whichwewrite  inconvenientunitswhere

themassis 1/2,andofcourseretainingthesemiclassicalparameter 71 ;thus
ny” (x)+(E-V{(x))w(x)=0. (2.1)

Forevenpotentials,successiveeigenstatesareevenandodd,soitis
necessarytoconsideronly x>0. For x<L,thesolutionsarelinearcombinations
ofthoseoftheuntruncatedpotential ~ Vyen. It is convenient to choose these as the
unique exact solution y (x;E) that decays exponentially in the classically
forbidden.region x.<x<L, and any exact solution y;(x;E) that grows
exponentially. The linear combinations are fixed by symmetry: at x=0, y=0 for

the odd states, and the derivative y'=0 for the even states. For x>L, the solution
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in the constant potential 77 1s a decaying exponential. Thus the even states can

be written as

Yl (0:E)=0
Y (GE)W_ (xE)-y (GE)y,(xE) (x<L)

(2:2)
;E = \I - ’
and the odd states as
Voaa (O;E) =0.
V. (GE)y_(xE)-y_(0:E)y, (xE) (x<L) 03

Vo6 E) = Cexp(——x“VL_E] (x>L)

h

The constant C can be eliminated by the fequirement that the value and
slope of the solutions of (2.1) must.be continuous at x=L. This gives the
quantization condition for the energies E;'in the form of a function Q(F) that
vanishes at the eigenvalues. After some elementary manipulations, this can be

expressed in the convenient form
O(E)=0, (E)+ Od&)= o, 24)

in which Q,, alone generates the levels of the untruncated well and QO;1s the

effect of the truncation. The two terms are
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#)=LOE) g (5= L8]

W Lven

[w(L;E)+ \/vhfg ’(L;E)J 2's)
Q;z_ A , .
; +ﬁ‘!’+(L'E

Note that the well contribution O, is different for the even and odd states, while

the O 1s independent of the symmetry.

For the model well Viipear (1.2), the decaying and growing solutions of

(2.1) are the standard Airy functions [3, 4]
(x—FE (x—FE
W_(X)=Al(wj, v, (X)=B1(W] . (26)

The turning point is x~F, and the truneation value of the potential is V;=L. An

immediate simplification is that /& can bescaled away by redefining

E L
so the semiclassical regime 18 £>>1, L >>1. (Similar rescaling eliminates 7 for

any power-law potential” Vi =[x|".) The two contributions (2.5) to the

quantization condition canmow be written explicitly:

o e 0. (8)- 2
{Al(X+ A1E(X)\ &9

where X ° L - E.

0,(x)* -

)
i)



Page 7 of 22

CO~NOYU AWk =

AUTHOR SUBMITTED MANUSCRIPT - EJP-104663.R1

For the untruncated well, the energies are zeros of the Airy functions:
Ai(—E)=0 for the odd states and A1'(—£)=0 for the even states. It is easy to
calculate the zeros of the full O(F) numerically (e.g. using the FindRoot

function in Mathematica), and that is how figure 2 was calculated.

The truncations Ly, at which levels are born can also be calculated.

These correspond to L=E, i.e. X=0 in Q. From

1
0,(0)= el 2.9)
the truncations are given by

_ Bit (Ly,y)

Aib(Lyy ) = -—— ol L = 294868934 5780550 (even)
B (2.10)

| Bi(Lyy,) |

Ai(L,,, )= — L, ©1.986352.3.825339.0 (o0dd)

For the even levels, the firstwalue of Luim corresponds to the first excited
even state, not the lowest, denoted E1 evens because this is the ground state and
exists for all purely attractive-one-dimensional potential wells, however weakly

binding [5, 6]. Thus this state exists for all L, as illustrated in figure 2.

Although not,part of the semiclassical analysis, we can understand the
behaviour of the ground state for small L by expanding the even Q,, in (2.8) for
small £, and Q/for small X, and solving for E. This is an elementary exercise

involving known small-argument formulas for the Airy functions [3], leading to

E

1 even (

L)=L-ir'+0(L). (2.11)

Figure 3 illustrates the accuracy of this formula as L increases from zero.
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Figure3 .Testofthesmallwelllimitingform(2.11)fortheground =stateenergy L1 even.

3.Asymptotictruncationexponential

Themainaimofthissectionistocalculatethesemiclassicalapproximationto

0., inordertocaptureitssmallexponential. Then€xtsectionwillconcernthe
correspondingexpo nentialin Q,. Sin¢ex=L liesintheclassicallyforbidden
region, werequiretheleadingWKBapproximatiensto ~ thegrowingand
decayingsolutionsof(2.1) ;we /choosetheuniquegrowingsolutionthat
containsnosmallexponential itscompleteasymptoticexpansion . Thesemust
connectwiththecorrespondingoseillatorysolutionsintheclassicallyallowed
region;itisconvenienttochooseth | osesolutionswhose sinusoidal oscillations
havethesame prefactor. ThisisthecelebratedWKBconnectionproblem,

whoseanalysisleadsto. [7-9]

exp +1 j dx’«/Vwe”(x’)—E
_ ()

7
W+(X;E)~ - 1/4
(Vweu(x)_E) (3.1)
exp —% J dx’ |V, ll(x')—E
y(x; E) = A2)
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From the quotient form of O; in (2.5), the exponentially growing solution
in the denominator dominates the exponentially decaying solution in the
numerator. In the denominator, the two terms add when calculated from (3.1)to
leading order n 7, that 1s, by differentiating just the exponential. But when the
same procedure 1s applied to the numerator in (2.5), the two terms cancel.
Therefore 1t 1s necessary to go one stage further, to include the deriwvative of the
prefactor in the second term of the numerator in (3.1). (It 1s not necessary to
include the first WKB correction to the approximation (3.1) for y., because its
contributions to the two terms in the numerator of (2.5) cancel:) Thus the
leading semiclassical approximation to the truncation térm in-th€ quantization

condition 1s found, after a short calculation, to be

V' (L L
QI(E)'- “"3“( ) exp —% J dx'1’Vweu(x’]—E . (3.2)

) 16(v, - E)” )

This is the first of our two small exponentials.

For the linear model potential, this.formula (or, equivalently, standard

Airy asymptotics [3] gives

7] s e (). (3.3)

Although this approaches the exact Q(X) as X increases, it fails to describe the
behaviour for smalluX,-which is necessary to understand the energy levels near
the top of the potential, where the influence of the truncation is strongest. For

this we need the small X behaviour in the first order beyond (2.9), namely
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1 26(1/3)
- XY =0.57735-1.58393. x>
Q ( )»Jg 353’66(2/3) (34)
°a-bx"°0, . (X).
A useful fit to the two extremes 1s
aexp(—%Xm) (3.5)

O combine (x) > 1+(6/a) X" +16aX™*

Figure 4 illustrates the accuracy of this fit to O« X). Using:a more
sophisticated interpolation, and higher-order approximations for large and small
X, it would be possible to obtain a closer fit, but as figure 5 shows this is
unnecessary, because the quantization condition.based'on (3.5) gives an

accurate description of the levels close to theimappeatance at Ly

0.6 ——
1
1
1
‘\
T 0.4} \
A
— A
. Y
Ql o2} N
b ‘-.._‘
O .""-_.
D
S0 ==
ﬁC‘\
QA
-02%5 2 4 6 8 10

Figure 4. Efrors in approximations to the truncation function Q. Dashed curve: large X
approximation O 1aee (3.3); red curve: approximation O, combined (3.5) fitting the large and
small X limits.

10
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;? Figure 5. Lowest levels after their appearance when L=Luir (..) (magnification of part of
28 figure 2): red curves: exact; dashed curves: using the approximation Oycombined (3.5); dotted
29 lines, levels of untruncated linear potential (1.2),4.e. zeros of Ai and Ai1'. (a) Lowest even
30 level (ground state); (b) lowest odd state; (c) first excited even state; (d) first excited odd
31 state.
32
2431 As L increases, the quantization sensitivity 0E/0L increases for states near
gg the truncation, i.e. X=L—E<<L. From2.8), and using the simple Bohr-
g; Sommerfeld formula ((4.2) te follow) for O, differentiation, and the fact that
ig Q«X)=0(1) near the truncation, leads to the estimate
4
42
43 ﬂE 1 J_( 2

== » ——L(1hofx)|~JL. (3.6)
44 =t
" 12" o5(x)
46
47 - - - - - - -
48 Thus, the highenthe truncation, the greater the sensitivity. Reinstating 7 from
49
50 (2.7), the semiclassicalsensitivity is dE /9L ~ #~"”. This exponent is for the
51
52 linear potential(1.2). If Vy=x", a similar calculation replaces the exponent —1/3
53
2‘5‘ by (n - 2) / (n (n + 2)), so the asymptotic sensitivity increases for potentials
56 : : : L :
57 increasing more slowly than quadratic, and decreases for potentials increasing
58
59 faster.
60
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4. Asymptotic semiclassical well exponential

Except near the birth of the levels at Lyim, the dominant contribution to the
quantization condition Q; in (2.4) is O,,, associated with the untruncated well
and defined in (2.5) for the even and odd states. In the WKB approximation,
this arises from oscillatory solutions between the classical turning points; and in
lowest order gives the familiar phase-corrected Bohr-Sommerfeld condition for

the phase-space area associated with energy E:

x(E)
gde\/E ~Vou(x)=4 ! dxm =(n+5)2zn 4.1)

(n=0,1,2---, even states: n even; odd states: n odd:).

Higher approximations involve increasing powers of 7 [8, 10]. But since the
truncation term (3.2) is exponentially small i, approximating O, to
comparable accuracy requires going beyond all orders in the semiclassical
series. In fact, the semiclassical power Series is divergent [8], and the small

exponential originates in the resummation of its tail, as will now be explained.

For simplicity, weddonot earry out the resummation for a general Vien
(we will return to the general case at the end of this section). Instead, we
illustrate the procedure explicitly for the odd states of the linear potential (1.2),
where the energies are the zeros of Ai(—E). For this case, (4.1), or standard Airy
asymptotics fornegative argument [3], gives, for Oy, 04 defined in (2.8), and
consistent with.(4.1),

O, ui(E)~tan(- (E) + 15 ) = 0, where - (E) © 2E™. 4.2)

4 3

12
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A convenient form for the Nth order asymptotic approximations to the
Airy functions of negative argument, that follows immediately from the

separate series for Ai and Bi1 [3], 1s

Bi, (- £)+iai, (- E) - exeli- (£) 1) s, (- (£)). 42)

JP_ FU4

where the series 1s

SN(g)zi(m—é)!(m—g)![—_i)m=1 5i 3850 “3)

& am \C) T 720 1086855
In turn this gives the quotient for O, 044 In (2.8) as
O, ieurn | E) = tan(z (E)+ 1, + ImlogS s (E))) 4.4)

We cannot immediately extend the sumto N = ¥ because it is divergent.

This follows from the large m limiting form of the cefficients

(m - %);(!m - %)!mjm(m S 4.5)
(even for m=2 this is accurate to better than 90%). Therefore (as first observed
in 1747 by Thomas Bayes for the related Stirling approximation [11, 12]), the
increase of the coefficients in (4.3) will always dominate the decrease of the
powers ™. The least term, representing optimal termination of the series, can

be estimated from (4.3) and Stirling’s formula for (m—1)!, as

N (=)= (22, (4.6)

13
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where [x]denotes the integer nearest to x. The black dots in figure 6 illustrate,

for values of {(£) corresponding to the lowest untruncated levels, how the error

Sn—S first gets smaller and then increases as N increases: the series diverges.

-1.0 -1.5p
La * b J
-12 . -2.0¢ . ol
14 () -2.5¢ . "
_— -3.0t * . °° 2
G-l.ﬁ sl
=18 o a0 e .
C/IJ 0 1 2 3 0 2 4 6. 8 10
S 2fc | N |
\-8/ 3 . o -3 e
- L ] L ]
ﬂ .. .. _4 .. ....
2—4 ... ..... -5t .. e®
o0 °® -6 foeegeee’®
-2 ‘ ® =Tt ®
0 5 10 15 0 5 10 15 20

Figure 6. Black dots: errors in the approximations, S (z (E)) (4.3) to the sum Sy (z (E))

(4.7) for successive truncations N, showing the divergence of the series; the large dots
indicate the smallest term: N=Ngpt(E). Red dots: errors when the series optimally terminated
at Nopt(E) is corrected by the resummed tail Raymmed(E) (4.14), for energies E of the four
lowest levels of the untruncated potential (1.2): (a) £=1.019 (Nop=1); (b) E=2.338 (Nopt=5);
(c) £=3.248 (Nept=9); (d) E=4.008 (Nop=12).

The formalinfinite series can be defined exactly from (4.2) as
S, (- (E))#Vme™(Bi(-E) +iai(-E)Jexp(-i(- (£) + £, ). @)

The small exponential that we seek is hidden in the remainder R(<) when the
series is'optimally terminated, defined formally by the divergent tail of the

series;

14
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e m—é!m—é!(l_ﬂm
R C R

The main result will be the small exponential in (4.14) for this remainder;

Readers interested only in this can skip the derivation that now follows:.

We need only the leading order, and Ny 1s large, so we cantuse the

approximation (4.5). Thus, also using (4.6), we need to calculate

1 < i)
R(z)z;m{;]ﬂ(m— I)I[ZJ . 4.9)
In order to estimate this sum of a divergent series, it must be interpreted.
There are several ways of doing this. The most general is to use Borel
summation [8]: replacing (m-1)! by itsdntegral repteésentation, summing the
resulting geometric series, and then approximating the integral (e.g. by the
saddle-point technique). But for the present purpose, of getting the lowest-order

approximation, a simpler method wilksuffice. With the replacement
m=[2z]+1+k, (4.10)

(4.9) becomes

~ O

—

L ¢ (i)'
ele)-of

” ;([2z]+k)!L§J . 4.11)
Next, we usethe approximation

([22f )1 [22][2- ] (4.12)

15
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based on the intuition that the value of the resummed series is determined by its

behaviour near the least term, i.e. k << [22 ] Thus (4.11) becomes

(_i\[zz]u w( 22 \k
R(z)zikzj [2] ZL J (4.13)

Summing the geometric series (on the border of its domain of convergence),

using [22 ] » 2~ for the large {'we are concerned with here, and using Stirling’s

approximation for [22 ]!, we finally get the lowest approximation

R(:)~ Ry (<) - i) oo . (4.14)

et 2(1+i)yra

This is the small exponential for the linear poetential. The simple procedure

employed here works because the phases (=i)* of the terms in (4.8) depend on .
It would fail if all the terms in the;asymptotic/series had the same sign; that
situation corresponds to the ‘Stokes phenomenon’[13, 14], and requires more

sophisticated resummation [15, 16]

The red dots in figure 6uillustrates how effectively this resummation
improves the least-termitefmination approximation, for energies of the lowest
four levels of the untruncated linear potential. Table 1 shows the numerical
errors in the sum/for the lowest five levels. The relatively large errors in the
final column reflectithe fact that (4.14) is just the lowest-order approximation to

the remainder/R, sufficient to capture the small exponential.

16
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E | Ny [ISe =S| | S = Su_| |1Sv ~Sa, ~ Resmmed| | |Rosamea ! R -1
1.019| 1 | 0.0775 | 0.0469 0.0144 0.31
2338| 5 | 0.0277 | 0.0010 1.010 "10™ 0.10
3248| 8 | 0.0174 | 3.87 "10* 2.507 "10° 0.06
4.088| 11 | 0.0124 [ 1.33°10° 6.396 “10°° 0.05
4820| 14 | 0.0098 | 539 "10°° 2.044 107 0.04

Table 1. Errors in the sum Sy (z (E )) for the lowest five levels of thesmtruncated linear

potential (1.2), corresponding to approximating by the leading term So of the series (4.3),
optimal termination Nopt, and including the resummed tail Rsummed.

The corresponding well contribution to the quantization.eondition,

including optimal termination and the approximated'résummaton, is

E)- tan(z (E) 25 + mlog|s;, (- (8))+ R - (E)))) (4.15)

Qw,linw,stmnned (

This is for the odd states. For the even states, the only change is the replacement
of tan by cot. In particular, the small exponential (4.14) is the same. Thus, the
even and odd energies of the untruncated linear potential, i.e. the zeros of Ai
and A1’ are, in this improvedisemiclassical approximation, determined by the

solutions of

$(E)+ Tmlog( S04 (£ (E)) + R s () = (=17, (n=12). (416

For a general untruncated potential V., the theory for the small
exponential corresponding to (4.14) is essentially the same. The divergence of
semiclassicallapproximations is a general phenomenon, whose origin lies in the

fact that succeéssive approximations involve successive derivatives (essentially

of ,fE - I x) ), and high derivatives diverge; this is a consequence of

Darboux’s theorem [8, 9]. For second-order differential equations of the

17
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Schrodinger type (2.1), the tail to be resummed is exactly (4.9), and the small

exponential is (4.14), after the replacement

x(E)

2:(E) P2, dxE-Vu(x) . (4.19)

0

This quantity is the difference of the exponents in the growing and decaying
solutions; in more general situations, such as the approximation‘of integrals
with several saddle-points, this difference of relevant exponents.is called the

‘singulant’[8].

5. Concluding remarks

There are two main results from this study of truncated potentials. First, the
exact quantization condition can be written in the form (2.5), in which the
contributions associated with the untruncated ‘well and the truncation are
separated. Second, the semiclassical asymptotics of the quantization condition
involves two comparable small exponentials: associated with the truncation, and

with the untruncated well. These are

truncation: et(E):exp —% j dx’ waen(x')_E
(E

x(E)
*(E)

well: ew(E)zexp —% J dx’,/E—Vwcn(x') .

0

(5.1)

For the linear potential (1.2), the exponentials are

truncation: e, (E) = exp(—%(L - E)mj , well:e (E) = exp(— %Em]. (5.2)
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Thus the truncation exponential dominates for L/2<E<L, i.e. nearer the top of
the well, and the well exponential dominates for 0<E<L/2, 1.e. near the bottom

of the well.

Our intention has been to explore a ‘minimal model’[17] of the influence

of nonanalyticity on quantization. Several extensions can be envisagedysuch as

¢ Exactly solvable model potentials different from (1.2). for examplea
harmonic well, where the exact quantization condition (2.5) would involve
parabolic cylinder functions, or the Péschl-Teller potential, involving Legendre

functions.

¢ Different forms of nonanalyticity, in which the fruncation is more gentle than
the discontinuity of slope in (1.1). We conjecture that if the lowest
discontinuous derivative of the potential is the nthythe same small exponentials
will appear, but with prefactors proportional to #" (cf. (3.2)). For a related

study, for reflections above nonanalytic petential barriers, see [18].

* More sophisticated resummations of the tails of series such as (4.8), where
approximations such as (4.5)yarecorrected by incorporating the fact that the
coefficients of high-order terms of'divergent series are related to the coefficients
of the low-order terms; this 1s the phenomenon of ‘resurgence’ [8, 12], leading
to ‘hyperasymptotic™ approximation schemes [19-21], involving successive
exponential improvements: for the first zero of Ai, the relative error is of order

1077. A less generalibut comparably accurate alternative [22] is based on

extending approximations such as (4.12) to higher orders in 1/ [22 ]
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Figurecaptions

Figurel~Truncatedpotential,withenergylessthanthetruncation.

Figare2 .Redcurves:evenandoddenergylevelsinthetruncatedpotential

(1.2),forincreasingtruncationdistance  L;dottedlines:levelsoftheuntruncated

lineatpotential,i.e.zerosofA 1’ (evenlevels)andAi(oddlevels).
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Figure 3. Test of the small well limiting form (2.11) for the ground-state energy
Eeven

Figure 4. Errors in approximations to the truncation function Q. Dashed curve:
large X approximation O 1arge (3.3); red curve: approximation O combined (3.5)

fitting the large and small X limits.

Figure 5. Lowest levels after their appearance when L=Lpim () (magnification
of part of figure 2): red curves: exact; dashed curves: using the approximation
Ot combined (3.5); dotted lines, levels of untruncated linear potential (1.2), 1.e. zeros
of A1 and A1'. (a) Lowest even level (ground state); (b) lowest'odd state; (c) first

excited even state; (d) first excited odd state.

Figure 6. Black dots: errors in the approximations S, (z (E )) (4.3) to the sum

Sy (z (E )) (4.7) for successive truncations N, showing the divergence of the

series; the large dots indicate the smallest termi’N=Nq(E). Red dots: errors
when the series optimally terminated at Nog(E) is corrected by the resummed
tail Rymmed(E) (4.14), for energies E of the four lowest levels of the untruncated
potential (1.2): (a) E=1.019 (Nepe=1); (b) £=2.338 (Nop=5); () £E=3.248
(Nop=9); (d) E=4.008 (Nop=12).

Table 1. Errors in the'sumySy (z (E )) for the lowest five levels of the

untruncated linearpotential (1.2), corresponding to approximating by the
leading term Sy 'of the series (4.3), optimal termination N, and including the

resummed tail/Rsuhmed.
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