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Abstract

Density-corrected density functional theory (DC-DFT) is enjoying substantial success in improving semilocal DFT calcula-
tions in a wide variety of chemical problems. This paper provides the formal theoretical framework and assumptions for the
analysis of any functional minimization with an approximate functional. We generalize DC-DFT to allow comparison of
any two functionals, not just comparison with the exact functional. We introduce a linear interpolation between any two
approximations, and use the results to analyze global hybrid density functionals. We define the basins of density-space in
which this analysis should apply, and give quantitative criteria for when DC-DFT should apply. We also discuss the effects
of strong correlation on density-driven error, utilizing the restricted HF Hubbard dimer as an illustrative example.

I. Introduction and background

Kohn-Sham density functional theory (KS DFT) [1] is widely
popular as an electronic structure method [2]. Despite the
proliferation of choices of approximate functionals, most cal-
culations use one of a few standard approximations that have
been available for the past twenty years, namely generalized
gradient approximations (GGAs) or global hybrids, with some
enhancements, such as van der Waals corrections [3] or range
separation [4]. While moderately accurate for many useful
properties, these functionals suffer from well-known deficien-
cies, including unbound anions, poorly positioned eigenvalues,
incorrect molecular dissociation curves, underestimation of re-
action barriers, and many others [5, 6]. Thus the never-ending
search for improved functionals.

Over the years, many pioneers have shown in specific cases
that use of approximate functionals on Hartree-Fock (HF)
densities can yield surprisingly accurate results. This includes
the early work of Gordon and Kim for weak forces [7], Janesko
and Scuseria for reaction barriers and other properties [8, 9],
and the original works of Gill et al. testing GGA’s and hybrids
for main group chemistry that led to the adoption of DFT for
widespread use in chemistry [10]. Even the prototype of KS-
DFT, the X−α-method of Slater [11], was designed to yield
approximations to HF potentials, which led to an inconsistency
between the associated energy functional and its derivative,
the potential (see Ref. [12] for a recent discussion on this
topic). Analysis of this difficulty was part of the impetus for
the KS paper.

The errors made in DFT calculations were formally separated
into two contributions, a functional error and a density-driven
error, thereby yielding a formal framework in which the two
errors could be analyzed independently [13]. This led to the
theory of density-corrected DFT (DC-DFT), which explains
the success of the early work, and has provided a simple proce-

dure for significantly improving the results of semi-local DFT
calculations in many situations. For example, for Halogen and
Chalcogen weak bonds, which have been used in databases
to train van der Waals functionals, the errors are dominated
by density-driven errors in the semilocal functional, so such
databases cannot be used for that purpose without a correc-
tion [14]. In addition to the standard semilocal functionals, it
has been recently shown that in specific situations, the ener-
getic accuracy of other density functionals, such as the nonlocal
functionals based on adiabatic connection models [15], can be
greatly improved by using the HF density and orbitals [16, 17].

Thus, DC-DFT, especially in the form of HF-DFT, in which
the Hartree-Fock density is used in place of the exact density,
is an extremely practical procedure for improving energetics of
abnormal DFT calculations, i.e., those dominated by density-
driven errors, but in which the approximate functional is still
highly accurate.

Here, we give a detailed formal analysis of the differences
that arise between the self-consistent solutions of two distinct
density functionals. We consider any two functionals, including
the possibility of two different approximations. Thus, DC-DFT
is a special case of this more general analysis. We also consider
other special cases, including the one-electron case, for which
we can calculate all the quantities arising from our analysis that
require access to the exact functional and the exact density.
The accuracy of PBE for the H-atom is due to a spurious
cancellation of both density and functional errors, as well as
exchange and correlation errors. We extend our analysis to
energy differences, that are of the key importance in chemistry.
We also construct measures for the abnormality character of
DFT calculations.
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II. Density functional analysis

In KS DFT [1, 2, 6, 18, 19], the ground state energy and
density of a system with an external potential v are given by:

Ev = min
n
{F [n] + n · v} , (1)

where n · v =
∫
d3r n(r)v(r), and where F [n] is the universal

part of the functional commonly partitioned as:

F [n] = TS [n] + UH[n] +EXC [n], (2)

TS [n] is the KS noninteracting kinetic energy functional, UH[n]
the Hartree energy and EXC [n] is the exchange-correlation
(XC) functional, which for practical calculations must be ap-
proximated. Starting from a given approximate or exact XC
functional EXC [n], we can write the corresponding approxi-
mate universal functional as:

F [n] = FSH [n] +EXC [n], (3)

where FSH [n] is the universal functional within the Hartree
approximation, which neglects exchange and correlation effects:
FSH [n] = TS [n] + UH[n]. The total energy functional is then
given by:

Ev [n] = F [n] + n · v, (4)

As usual, the corresponding ground state energy is obtained
from the following minimization over all N -representable den-
sities:

Ev = min
n
Ev [n], (5)

and the density that achieves the minimum in Eq 5 we denote
by nv. We define an energetic measure of any arbitrary density
difference from nv as:

Dv [∆n] = Ev [nv + ∆n]−Ev ≥ 0, (6)

where Eq. 5 ensures that Dv [∆n] ≥ 0 for any isoelectronic
change in nv (i.e.

∫
d3r ∆n(r) = 0). We refer to this as

the energetic distance from the minimum. We can use this
measure to say that n is sufficiently close to nv, if:

Dv [n− nv ] ≤ ∆c, (7)

provided that ∆c is sufficiently small.
Throughout this work, we encounter simple quadratic density

functionals, which correspond to normal forms in algebra, and
we write:

A[∆n] =
∫
d3r′

∫
d3r A(r, r′)∆n(r)∆n(r′). (8)

To gain more insight into the Dv [∆n] functional, we can
expand Ev [n] around its minimum in a Taylor series: [20]

Ev [nv + ∆n] = Ev +
1
2Kv [∆n] +O(∆n3), (9)

where ∆n(r) = n(r)− nv(r), and Kv(r, r′) is given by:

Kv(r, r′) = δ2Ev [n]

δn(r′)δn(r)

∣∣∣∣
n=nv

. (10)

Combining Eqs. 3, 4 and 10, we can write Kv(r, r′) as:

Kv(r, r′) = fSH [nv ](r, r′) + fXC [nv ](r, r′), (11)

where

fSH [n](r, r′) =
δ2TS [n]

δn(r′)δn(r)︸ ︷︷ ︸
fS(r,r′)

,+ 1
|r− r′| (12)

and

fXC [n](r, r′) =
δ2EXC [n]

δn(r′)δn(r) (13)

is the static XC kernel. Combining now Eqs. 6 and 9,
for arbitrary and sufficiently small density difference (i.e.
Dv [∆n] ≤ ∆c), we can write Dv [∆n] as:

Dv [∆n] ≈
1
2Kv [∆n]. (14)

For any ∆n(r), satisfying
∫
d3r ∆n(r) = 0, we define:

∆nβ(r) = β∆n(r). (15)

In this way, we can see how far one can go away from nv(r),
in the ∆n(r) ’direction’, and yet stay within ∆c energeti-
cally. Plugging Eq. 15 into Eq. 14, we can easily find the
β = βc parameter at the boundary (i.e., the one satisfying:
Dv [∆nβ ] = ∆c), and it is given by:

βc =

√
2∆c

Kv [∆n]
. (16)

The principal goal of the theory outlined here is to carefully
analyze the origin of the energy difference that arises between
a pair of different density functionals, when applied to the
same system/process. For a given pair of approximate (or one
approximate and the other exact) XC functionals: E(0)

XC and
E

(1)
XC , we define their difference as:

∆EXC [n] = E(1)
XC [n]−E

(0)
XC [n]. (17)

For a given v(r), the difference in the two ground state energies
arising from a pair of different functionals is:

∆Ev = E
(1)
v [n

(1)
v ]−E(0)

v [n
(0)
v ]. (18)

By simply adding and subtracting E(1)
v [n

(0)
v ] from the r.h.s.

of Eq. 18, we find:

∆Ev = −D
(1)
v [−∆nv ] + ∆EXC [n

(0)
v ] (19)
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where ∆nv(r) = n
(1)
v (r)− n(0)v (r). Reversing the choice of 1

and 0, we also find:

∆Ev = ∆EXC [n
(1)
v ] +D

(0)
v [∆nv ]. (20)

Given that D(j)
v ≥ 0, Eqs. 19 and 20 dictate the following

chain of inequalities:

∆EXC [n
(1)
v ] ≤ ∆Ev ≤ ∆EXC [n

(0)
v ]. (21)

ΔEv

nv
(1)nv

(0)Ev
(1)

Ev
(0)

ΔExcnv
(0)

ΔExcnv
(1)

-cv
(1)[-Δnv]

cv
(0)[Δnv]

�

ΔEv

nv
(1)nv

(0)Ev
(1)

Ev
(0)

ΔExcnv
(0)

ΔExcnv
(1)

-cv
(1)[-Δnv]

cv
(0)[Δnv]

�

Figure 1: Cartoon showing the density-driven and functional-
driven contributions to ∆Ev (Eqs. 19 and 20) in an energy-driven
difference (top panel) and a density-driven difference (bottom
panel)

By virtue of Eq. 17, the ∆EXC [n
(i)
v ] quantity represents the

difference between the two functionals evaluated on each den-
sity. Therefore, we can identify ∆EXC [n

(1)
v ] and ∆EXC [n

(0)
v ] of

Eqs. 19 and 20 as functional-driven terms. On the other hand,
D

(0)
v [n

(1)
v ] and D(1)

v [n
(0)
v ] are the density-driven terms, as they

are given by the difference between the same energy functional
evaluated on different densities. Generalizing the ideas of
DC-DFT [13, 14, 21, 22, 23, 24, 25], for any pair of density
functionals, we classify a ∆Ev energy difference as energy- or
density-driven. We consider energy-driven ∆Ev as ones whose
functional-driven terms in Eqs. 19 and 20 strongly dominate

the density-driven terms (i.e.
∣∣∣∆EXC [n

(0)
v ]
∣∣∣ >> D

(1)
v [−∆nv ]

and
∣∣∣∆EXC [n

(1)
v ]
∣∣∣ >> D

(0)
v [∆nv ]). On the other hand, in

density-driven cases the density-driven terms are no longer
negligible. In Figure 1, we show the two density-driven and the
two functional-driven contributions to their energy difference in
a cartoon representing an energy-driven difference (top panel)
and a density-driven difference (bottom panel). Measures that
quantify density-driven character in a given system (again for
a given pair of functionals) will be introduced and discussed
in Section V.

III. Density functional interpolation

To derive an exact expression for ∆Ev by smoothly connecting
E

(0)
XC [n] to E

(1)
XC [n], we introduce the α-parameter dependent

XC functional:

E(α)
XC [n] = E(0)

XC [n] + α∆EXC [n]. (22)

The corresponding total energy functional reads as:

E
(α)
v [n] = FSH [n] + n · v +E(0)

XC [n]︸ ︷︷ ︸
E

(0)
v [n]

+α∆EXC [n] (23)

and achieves its minimum at n(α)v (r). Thus its ground state
energy is given by E(α)

v = E
(α)
v [n

(α)
v ]. More generally, we

consider the following energy difference:

∆E(α)
v = E

(α)
v −E(0)

v = E
(α)
v [n

(α)
v ]−E0

v [n
(0)
v ]. (24)

Writing:

∆E(α)
v =

∫ α

0
dα′

∂E
(α′)
v

∂α′
, (25)

from Eq. 23, via the Hellmann-Feynman theorem, it follows:

∂E
(α)
v

∂α
= ∆EXC [n

(α)
v ]. (26)

Plugging Eq. 26 into Eq. 25, we find:

∆E(α)
v =

∫ α

0
dα′ ∆EXC [n

(α′)
v ]. (27)

Equation 27 is analogous to, but different from, the adiabatic
connection formula for the correlation energy in DFT [26, 27,
28]. When α = 1, Eq. 27 becomes:

∆Ev =
∫ 1

0
dα∆EXC [n

(α)
v ]. (28)

This shows that the energy difference between two KS calcula-
tions with different XC functionals can be found knowing only
the difference functional and the interpolating ground-state
density. Obtaining ∆Ev from Eq. 28 requires knowledge of

3



n
(α)
v (r) for all α values between 0 and 1. To find n(α)v (r), we

write the corresponding Euler equation:

v(0)SHXC [n](r) + α∆vXC [n](r) + v(r) = µ. (29)

where v(0)SHXC [n](r) = δF (0)[n]/δn(r), and where µ is the
chemical potential. The role of µ is not relevant here, as we
always keep the number of electrons fixed. The density that
satisfies Eq. 29 is n(α)v (r), and by expanding it around n(0)v (r):
n
(α)
v (r) = n

(0)
v (r) + α∆n(α)v (r), we can write Eq. 29 as:

v(0)SHXC [n
(0)
v ](r) + α

[
K

(0)
v · ∆n

(α)
v

]
(r)

+ α
(

∆vXC [n
(0)
v ](r) + α

[
∆fXC

[
n
(0)
v

]
· ∆n(α)v

]
(r)
)
+ v(r)

= µ, (30)

where we simplified the notation for the following integral:

[A · ∆n] (r) =
∫
d3r′A(r, r′)∆n(r′). (31)

At α = 0, Eq. 29 becomes:

v(0)SHXC [n
(0)
v ](r) + v(r) = µ (32)

Plugging Eq. 32 into Eq. 30 gives:[
K

(0)
v [n

(0)
v ] · ∆n(α)v

]
(r) + ∆vXC [n

(0)
v ](r)

+ α
[
∆fXC [n

(0)
v ] · ∆n(α)v

]
(r) = 0. (33)

Also plugging K
(α)
v (r, r′) = K

(0)
v (r, r′) + α∆fXC(r, r′)

(Eqs. 11 and 23) into Eq 33, we obtain:∫
d3r′K

(α)
v [n

(0)
v ](r, r′)∆n(α)v (r′) = −∆vXC [n

(0)
v ](r).

(34)

In principle, ∆nαv (r′) can be obtained by solving Eq. 34, and
we can write the solution in terms of the inverse of K(α)

v [n
(0)
v ]:

∆n(α)v (r) = −
∫
d3r′

{
K

(α)
v

}−1
[n

(0)
v ](r, r′)∆vXC [n

(0)
v ](r′).

(35)

We expect that ∆n(α)v (r) of Eq. 35 can be fairly approximated
by ∆nv and this is equivalent to approximating n(α)v via the
following linear interpolation:

n
(α)
v (r) ≈ n(0)v (r) + α∆nv(r). (36)

To explore in what situation the approximation of Eq. 36
becomes exact, we now write n(α)v as : n(α)v (r) = n

(1)
v (r)−

ᾱ∆n(α)
′

v , where ᾱ = 1− α. Repeating the steps given by
Eqs. 29 to 35, we find:

∆n(α)
′

v (r) = −
∫
d3r′

{
K

(α)
v

}−1
[n

(1)
v ](r, r′)∆vXC [n

(1)
v ](r′).

(37)

In this way, when ∆n(α)
′

v (r) is equal to ∆n(r) of Eq. 35, then
the exact n(α)v is indeed given by the r.h.s of Eq. 36.

To obtain the leading order of E(α)
v in powers of α, we set

again: nαv (r) = n
(0)
v (r) + α∆n(α)v (r). Then, E(α)

v becomes:

E
(α)
v [n

(α)
v ] =FSH [n

(0)
v + α∆n(α)v ] + n

(0)
v · v

+ α∆n(α)v · v +E(0)
XC [n

(0)
v + α∆n(α)v ]

+ α∆EXC [n
(0)
v + α∆n(α)v ]. (38)

We can expand E(α)
v [n

(0)
v +α∆n(α)v ] around n(0)v (r), and write

E
(α)
v in powers of α:

E
(α)
v =E

(0)
v [n

(0)
v ] + α∆EXC [n

(0)
v ]

+ α
(
v(0)SHXC [n

(0)
v ] + v

)
· ∆n(α)v

+ α2
(

∆vXC [n
(0)
v ] · ∆n(α)v +

1
2K

(0)
v

[
∆n(α)v

])
+O(α3) (39)

Combining Eqs. 32 and 39, the third term on the r.h.s of
Eq. 39 vanishes:

E
(α)
v =E

(0)
v [n

(0)
v ] + α∆EXC [n

(0)
v ]

+ α2
(

1
2K

(0)
v

[
∆n(α)v

]
+ ∆vXC [n

(0)
v ] · ∆n(α)v

)
+O(α3). (40)

Using Eq. 34, we can further simplify Eq. 40:

E
(α)
v =E

(0)
v [n

(0)
v ] + α∆EXC [n

(0)
v ] +

α2

2 ∆vXC [n
(0)
v ] · ∆n(α)v

+O(α3). (41)

From Eq. 41, we can see that to leading order in α, the α-
dependence of the minimizing energies is quadratic, and it
can be found from the xc energies and xc potentials at the
endpoints. We can also use the following functional expansion:

∆EXC

[
n
(0)
v +

α

2 ∆n(α)v

]
=

∆EXC

[
n
(0)
v

]
+
α

2 ∆vXC

[
n
(0)
v

]
· ∆n(α)v +O(α2), (42)

and plug it into Eq. 41 to finally obtain:

E
(α)
v = E

(0)
v

[
n
(0)
v

]
+ α∆EXC

[
n
(0)
v +

α

2 ∆n(α)v

]
+ . . . (43)

Similarly, writing n(α)v = n
(1)
v (r)− ᾱ∆n(α)v (r), we can expand

E
(α)
v around n(1)v to obtain:

E
(α)
v = E

(1)
v

[
n
(1)
v

]
− ᾱ∆EXC

[
n
(1)
v −

ᾱ

2 ∆n(α)v

]
+ . . . (44)

Both results are consistent with applying Eq. 27 and expanding
only the density to first order in α. In Section IVC, we will
illustrate the usefulness of the formalism developed in this
section for connecting a global hybrid functional to its parent
GGA.
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IV. Specific cases

A. Quantifying errors with DC-DFT
There has been recent great interest in quantifying the errors
in densities in DFT [29, 30, 31, 32]. However, in Ref [25], it
was shown that the theory of DC-DFT provides a natural and
unambiguous measure of density error. With that measure,
it was not possible to distinguish the densities of empirical
and non-empirical functionals based on their self-consistent
densities alone.
To understand the background to this, we first must dis-

tinguish ground-state KS DFT from other areas of electronic
structure. The primary purpose of such calculations is to
produce the ground-state energy as a function of nuclear co-
ordinates. Indeed, in principle, one can deduce the density
(and hence any integral over it) from a sequence of such cal-
culations, via the functional derivative with respect to the
potential. Of course, such calculations produce KS potentials,
orbitals, and eigenvalues, as well as densities and ground-state
energies, and all such quantities can be compared (for systems
for which the calculation is feasible) to their exact counterparts
extracted from a more accurate quantum solver [33, 34, 35].
These are of great interest as inputs to response calculations,
such as in linear-response TDDFT or GW methods, and such
procedures might be extremely sensitive to such inputs. But
in ground-state DFT, the main prediction is the energy of
the many-body system, for which the KS scheme is simply a
brilliant construct that balances efficiency and accuracy.

Intuitively, one feels that a ’better’ XC potential must yield
a ’better’ density, and in turn, a ’better’ density must yield
a better energy. After all, the Hohenberg-Kohn (HK) theo-
rem tells us that we reach the ground-state energy only with
the exact density and exact KS potential. But such formal
statements give no measure of the quality of a density or a
potential. Even a well-defined mathematical norm between
two densities that vanishes as the exact density is approached
does not really provide what we wish for, as an infinity of
arbitrarily different norms can be constructed. All can tell
us when we have found the exact density, but give differing
results for how far away we are from it. A deep part of the
problem is that both potentials and densities are functions of
r, and so are not characterized by a single number.
As mentioned in Ref [25], the basic theorems of DFT give

us an ideal solution to this dilemma, via density-corrected
DFT. To write this measure in the language of the den-
sity functional analysis, we consider now the specific case
where E(0)

XC [n] = EXC [n] is the exact XC functional and where
E

(1)
XC [n] = ẼXC [n] is an approximate functional. Note also

that this is the basis of all DC-DFT applications. For a given
v(r), the difference between the two corresponding ground
state energies becomes the error in the approximate ground-
state energy:

∆Ẽv = Ẽv −Ev. (45)

For this special case, Eq. 20 becomes:

∆Ẽv = Ẽv [ñv ]−Ev [ñv ]︸ ︷︷ ︸
∆ẼXC [ñv ]

+ Ev [ñv ]−Ev [nv ]︸ ︷︷ ︸
∆Eideal[∆ñv ]=Dv [∆ñv ]

. (46)

where ∆ñv = ñv − nv. For any system, ∆Eideal[∆ñv ] is
a positive energy for any ñv(r) and vanishes only for the
exact density. This choice is ideal because (a) there are no
human choices within the measure to argue over, and (b) the
measurement is in terms of the energetic consequences. Thus
it even provides a scale for density differences. For example,
if this measure yields results in the microHartree range, why
would one even care about errors in the density? Given that
it is very difficult in practice to evaluate the exact functional
on an approximate density (but see e.g., Refs. [36] and [37]),
DC-DFT procedures use the following equation instead:

∆Ẽv = Ẽv [ñv ]− Ẽv [nv ]︸ ︷︷ ︸
∆ED=−D̃v [−∆ñv ]

+∆ẼXC [nv ]︸ ︷︷ ︸
∆EF

. (47)

Equation 47 allows us to decompose ∆Ẽv, the total error

Δ���
(α)[�� ]=Δ��

(α)

Δ�(α)

��
(α)[Δ�

˜
�
(α)]

�
˜
�

(α)
[-Δ�

˜
�
(α)]=-Δ��

(α)

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

α

�
�
�
��
�
/
�
�
�

Figure 2: Various errors of Eqs. 52 and 53 for the α-BLYP
calculations of the hydrogen atom as a function of amount of
exact exchange mixing

made by ẼXC [n] and ñv, into the functional error ∆EF =
∆ẼXC [nv ] and the density-driven error ∆ED = −D̃v [−∆ñv ],
which is much more practical than the ideal, as it needs only be
evaluated on the approximate functional. We can in fact expect
∆ED to be a practical proxy for the intractable Eideal[∆ñv ]
measure. When the approximate density is sufficiently close to
its exact counterpart (more precisely, when the two inequalities
hold: Dv [∆ñv ] ≤ ∆c and D̃v [−∆ñv ] ≤ ∆c), we can write
∆Eideal[∆ñv ] as:

∆Eideal[∆ñv ] ≈
1
2Kv [∆ñv ], (48)

and D̃v [−∆nv ] as:

D̃v [−∆ñv ] ≈
1
2K̃v [∆ñv ] (49)
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From Eqs. 48 and 49, we can see that if the approximate func-
tional has accurate curvature, D̃v [−∆ñv ] = −∆ED measure
is very similar to ∆Eideal[∆ñv ].

B. Illustration
Figure 2 illustrates many aspects of the analysis described
so far. Here we consider the hydrogen atom and the BLYP
GGA [38, 39]. We choose this example carefully, because
(a) we have easy access to the exact density, since this is
a one-electron case, and (b) our functional correctly has no
correlation energy (as LYP correlation vanishes for all fully
spin-polarized systems). Thus, when we interpolate between
BLYP and HF, we create a global hybrid with a fraction α of
exact exchange (EXX):

Ẽ(α)
XC [n] = Ẽ

GGA

XC [n] + α
(
EX [n]− Ẽ

GGA

X [n]
)

. (50)

For this specific cases Ẽ(α)
XC [n] reduces to:

Ẽ(α)
XC [n] = ẼB88

X [n] + α
(
EX [n]− Ẽ

B88
X [n]

)
, (51)

where EB88
X [n] stands for the exchange functional of Becke [38].

For the ∆Ẽ(α)
v = Ẽ

(α)
v −Ev energy difference (i.e. the error

of the hybrids functional), we can rewrite Eq. 47 as:

∆Ẽ(α)
v = −D̃(α)

v [−∆ñ(α)v ]︸ ︷︷ ︸
∆E(α)

D

+ ∆Ẽ(α)
XC [nv ]︸ ︷︷ ︸

∆E(α)
F

, (52)

where ∆ñ(α)v = ñ
(α)
v − nv. In Eq. 52, we can recognize α-

dependent density-driven and functional errors. In the same
manner, we can re-write Eq. 46:

∆Ẽ(α)
v = ∆Ẽ(α)

XC [ñ
(α)
v ] +Dv [∆ñ

(α)
v ]. (53)

In this case, all error contributions (Eqs. 52 and 53), shown in
Figure 2, vanish at α = 1. On the extreme left (α = 0), we see
the functional error exceeds the self-consistent error, and the
density-driven error is negative, as it should be. The functional
error is exactly linear, going to zero as α→ 1. Notice that the
density-driven error must always behave parabolically around
α = 1.

We also compare the two choices of reference for Dv (blue
and red), finding that they are almost identical. This is telling
us that the BLYP density is sufficiently close to the exact
density that the expansion to second-order is fine. Moreover,
note that as α→ 1, the blue and red merge datapoints, and
both are on top of a perfect parabola whose curvature is given
by Kv [∆n] (again as α→ 1). Since the self-consistent error
is the sum of the functional and density-driven errors, we can
deduce its curve just from the values at α = 0. Thus the black
line is always a parabola if the densities are sufficiently similar,
as is the case here. Note that we can see that the energetic

difference between the Dv values (blue and red plots) is rather
low, showing that they are indeed sufficiently close that there
are no significant energetic consequences to approximating all
such curves as parabolas.

Finally, we note that, relative to DC-DFT, we have chosen
the two functionals in the reverse order: 0 denotes the approx-
imate functional, 1 the exact answer. This is to make these
results more readily comparable to other results for hybrids.
Simply replace α by 1− α to make Fig. 2 in the form for
DC-DFT.

C. Self-interaction error and one-electron systems
For one-electron systems:

F [n] = TS [n], EX [n] = −UH[n], EC = 0 (N = 1).
(54)

Standard DFT approximations typically do not satisfy all the
conditions of Eq 54, and for this reason, they suffer from
one-electron self-interaction error (SIE) [6, 40]. On the other
hand, the HF method is exact for one-electron systems, and
thus we can use the HF method to calculate the functional-
and density-driven term of SIE. This has been already done in
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Δ�� �α (α-�����)

Δ�α(α-�����)

��� ��� ��� ��� ��� ���
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-���

���

���

���

���

α

�
�
�
��
�
/
�
�
�

Figure 3: Density-driven and functional errors for the α-PBExc
(Eq. 55) calculations of the hydrogen atom as a function of
amount of exact exchange mixing

Figure 2 for the BLYP hybrids, and in Figure 3 we apply the
same analysis to hybrids from the PBE functional [41]. The
PBE correlation energy, unlike that of LYP, does not vanish
for one-electron systems. For this reason, in the case of the
PBE functional we modify Eq. 50:

Ẽ(α)
XC [n] = Ẽ

PBE

XC [n] + α (EX [n]− Ẽ
PBE

XC [n]), (55)

In this way, we ensure that the error of the PBE hybrid of
Eq. 55 (hereinafter α-PBExc) vanishes at α = 1 Note that this
does not include PBE0 [42], as this PBExc has only 0.75 of
PBE correlation at α = 1/4. In Figure 3, we show the density-
driven and functional error of α-PBExc for the hydrogen atom.
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First, note that the scale of the errors is minuscule. We can
also see that both |∆E(α)

F | and |∆E
(α)
D | errors of α-PBExc

decrease with α. Nonetheless, its total ∆E(α) error peaks
at α ≈ 0.5 and nearly vanishes for the PBE functional (the
α = 0 case). The fact that the PBE gives almost exact energy
for the hydrogen atom relies on a cancellation between the
functional and density-driven errors (as well as a cancellation
between exchange and correlation errors).
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Figure 4: Density-driven and functional errors for the α-PBE
(Eq.50) calculations of the hydrogen atom as a function of amount
of exact exchange mixing

The same plot for the hydrogen atom obtained with the
regular α-PBE hybrid (Eq. 50) is shown in Figure 4. Note that
now the α = 1/4 point represents the PBE0 functional. We
can see from Figure 4 that as α approaches 1, the functional er-
ror strongly dominates its functional-driven counterpart. Note
here the much larger scale: The self-interaction error in the
PBE correlation functional error yields much larger total energy
errors than in the previous figure, illustrating the increased
error when semilocal correlation functionals are combined with
exact exchange. We can also note that ED gets very close to
0 as α approaches 1, although the PBE correlation potential
does not vanish for N = 1 systems.

D. The Hartree approximation
Another special case is the Hartree approximation, i.e., solution
of the KS equations with XC set to zero. Here, we compare
any non-zero ẼXC with pure Hartree. We choose Hartree
to be α = 0, so that α then represents the fraction of ẼXC

included in the calculation. While Hartree calculations are
certainly too inaccurate for chemical purposes [43, 44], one
would expect them to have the greatest delocalization error of
any approximate functional, since not even LDA exchange is
opposing the Hartree energy. They might thus prove useful in
creating a non-empirical measure of delocalization to be used
in DC-DFT.

If the reference is the exact XC energy, then the functional
difference is just the XC energy itself, while the density-driven
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Figure 5: Density-driven, the ideal, and functional errors for
the hydrogen atom calculation with the Ẽ(α)

XC [n] = αẼ
(α)
X [n] func-

tional.

error is just: ∆ED = −1
2fSH[n

(0)
v , ∆n]. In this case, one

would expect ED to be different from the ideal, which includes
the XC contributions. However, as we will show below the two
quantities are nearly the same for the hydrogen atom.

To give an illustration, we consider the following functional:
Ẽ

(α)
XC [n] = αEX [n], which for one-electron systems connects

the Hartree approximation (α = 0) to the exact functional
(α = 1). In Figure 5, we show the errors of this functional as
a function of α for the hydrogen atom. As expected, the scale
of errors is much larger than those shown in Figures 2-4. We
find it interesting that the −∆Eideal datapoints in Figure 5
are hardly distinguishable from their ∆ED counterparts. Thus,
at λ = 0 we have:

fS[nv, ∆n]︸ ︷︷ ︸
−2∆Eideal

∼ fSH[n
(0)
v , ∆n]︸ ︷︷ ︸

−2∆ED

(H atom), (56)

where fS(r, r′) is the kinetic component of fSH(r, r′) (see
Eq. 12).

E. Pure density functionals
So far, we have considered only approximations to XC within
the KS scheme, as this is the most common DFT calculation
today by far. However, there is much interest in developing
orbital-free functionals, especially in contexts when the KS
scheme becomes too cumbersome.
Since the entire functional F [n] is approximated in such

a scheme, the density is often much poorer than in a KS
calculation. In fact, estimates suggest that simple orbital-
free approximations, such as those used in Thomas-Fermi
theory [45, 46, 47], produce sufficiently poor densities that
their errors are dominated by errors in the density, i.e., the
density-driven error is much larger than the functional error
in most calculations. This is seen in total energy calculations
of atoms and of one-dimensional fermions in a flat box [23].
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Figure 6: Plots showing quantities that involve the density-
driven and functional errors of the Thomas-Fermi method
(Eq. 58) with Z for a range of small atoms.

The simplest DC-DFT in orbital-free DFT is to apply the
approximation on the exact density to eliminate the density-
driven error.
To exemplify the error analysis of orbital-free functionals,

we consider here the TF energy functional, whose universal
part reads as:

F
TF

[n] = T
TF

S [n]︸ ︷︷ ︸
A

TF ∫
d3r n(r)5/3

+U [n], (57)

with ATF
= 3

10
(
3π2) 2

3 . The total TF error can be, analo-
gously to eq 47, partitioned as:

∆E
TF
v = E

TF
v [n

TF
v ]−ETF

v [nv ]︸ ︷︷ ︸
∆ETF

D

+∆FTF[nv ]︸ ︷︷ ︸
∆ETF

F

, (58)

where ∆FTF[n] = ∆ETF
v [n] = ∆T

TF
S [n]−EXC [n]. Here we

calculate ∆ETF
D and ∆ETF

F for alkaline earth metals and noble
gases up to krypton (Z=36). They are computed by utilizing
that for neutral atoms: ETF

Z ∼ −0.7687Z7/3 [48]. Highly
accurate energies and densities, i.e., Ev and nv entering Eq. 58
have been obtained from the PySCF software [49] at the CCSD
level within the aug-cc-pVmZ basis set [50], with the largest
m available for each of the atoms. From the plots shown
in Figure 6, we can see that the density-driven component
strongly dominates the total ∆ETF error. For example, in
the case of the neon atom (Z = 10) most of the TF error is
practically density-driven, with ETF

D /E ∼ 28.4% and ETF
F /E

being only −1.3%! We remember that for neutral atoms, as
Z →∞, the TF theory becomes relatively exact, in the sense
that it satisfies: [51, 52, 53]

lim
Z→∞

∆ETF
Z

EZ
→ 0. (59)

Thus, as Z → ∞, our blue curve in Figure 6 should vanish.
Nevertheless, in Figure 6 we are still far from this limit, as at
our largest Z value (Z = 36), ∆ETF

Z /EZ is around 1/5.
This suggests several important points regarding these func-

tionals. First, they must always be tested self-consistently,
as tests of new orbital-free approximations on KS densities
does not tell us much about their overall accuracy, given that
the density-driven errors can be very large. At the same time,
comparison of the functional on the KS density then provides
enough information to separate functional- from density-driven
errors, and we expect that even the KS densities obtained from
the (semi)local XC approximations are sufficiently accurate
for this purpose. Second, reports of failures of TF theory and
its extensions should be revisited to determine if these are
density-driven or functional-driven. If the former, one should
focus on improving the densities rather than the total energies
alone. Third, this supports efforts [54] to approximate the
Pauli potential [55, 56] directly as a density functional, without
requiring that the KS potential be a functional derivative.
In the context of the present paper, it should prove useful

when comparing two orbital-free approximations to decompose
their differences into functional- and density-driven contribu-
tions. If two different approximations differ in both contribu-
tions, this would suggest that good aspects of both might be
combined to separately minimize each error.

F. Strong correlation
In our last example, we show that density-driven errors can be-
come large when systems are strongly correlated, but need not
be. Generating a simple example is not so easy, as one needs
essentially exact densities upon which to make evaluations and
comparisons. Fortunately, the two-site two-fermion Hubbard
model is an example where all quantities can be determined
analytically. Many relevant KS-DFT quantities have been cal-
culated exactly and summarized in two recent reviews, one on
the ground-state[57] and one on linear-response TDDFT.[58]
For any two-electron system (in the absence of magnetic

fields), the restricted HF functional is:

FRHF [n] = TS[n] + UH[n]/2, (60)

as half the Hartree is canceled by exchange, and correlation is
ignored. In fact, the traditional definition of correlation energy
in quantum chemistry, is

EQCC = E −ERHF [nRHF ]. (61)

Thus the energy-driven error of RHF is:

∆EF = −EC, (62)

while the density-driven error is

∆ED = EC −EQCC . (63)
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For our 2-site model, the functional reduces to a simple func-
tion. The onsite occupations are n1 and n2, i.e., the density
is just two non-negative real numbers. Moreover, since they
always sum to 2, the density is fully represented by their differ-
ence. Likewise, we can choose the average potential to be zero
and represent the inhomogeneity in the potential by a single
number, ∆v, the on-site potential difference. If we choose the
hopping parameter t = 1/2, the only other parameter is U ,
the energy cost of double occupation of a site.

U = 1

U = 2

U = 5

0 2 4 6 8
-3

-2

-1

0

1

2

Δv

E

Figure 7: Restricted Hartree-Fock Hubbard dimer ground-state
energy (dashed line) and exact Hubbard dimer ground-state (solid
line) as functions of ∆v for varying values of U (see Ref.[57]

The error in RHF and the exact ground state energy is
explored in Figure 7 for varying levels of correlation and inho-
mogeneity. The absolute error increases with U , as expected.
The energy error in energy for each level of correlation is most
prominent in the symmetric dimer (∆v = 0), and diminishes
and rapidly vanishes beyond ∆v larger than U , where the
energy becomes linearly correlated with the on-site potential
difference. Thus the system becomes weakly correlated for
∆v > U .
The functional-driven and density-driven contributions to

this HF error were then isolated through the use of Eqs. 61, 62
and 63. The fraction of the total error attributed to the
density-driven component (∆ED/EQCC ) is shown in Figure 8
for weakly correlated dimers with values of U up to 1. As U
decreases in size, both the magnitude of total error and its
density-driven contribution decrease substantially. For U < 0.5,
there is no ∆v for which there is a density-driven contribution
greater than 5% of the total error. Of course, as U → 0,
this ratio must vanish, so this is not unexpected. But we also
see that the density-driven error vanishes at ∆v = 0 for any
value of U , no matter how large, for symmetry reasons. Thus
even a strongly correlated system might have no density-driven
error. Moreover, for ∆v > 1 + 2U , again the error is less
than 5%, due to correlation being weakened by inhomogeneity.
So for any given U , there is a maximum in the fraction of
density-driven error as a function of ∆v, and it is at non-zero

Figure 8: Fraction of error that is density-driven for moderate
values of U , with the 5% contribution contour marked by a red,
dashed line.

∆v.
The density-driven error ratio for more strongly correlated

dimers is shown in Figure 9, and has characteristics identical
to the weak correlation plot, but on a larger scale. Clearly the
maximum fractional density-driven error becomes much larger
with U and can even exceed -1. We also see that for U > 1,
the region of small density-driven error around ∆v = 0 can
even increase with U . For fixed ∆v, the fraction of density-
driven error goes down with sufficiently large U !. The relation
between RHF density-driven error and strong correlation is
clearly not trivial.

To avoid confusion, we note that this section has focused on
the density-driven error in RHF. In the more realistic calcula-
tions of weakly-correlated systems in the rest of this work, we
often assume that error is much smaller than the density-driven
error of a semilocal DFT calculation, and hence HF-DFT yields
more accurate energies in such cases. Because the Hubbard
dimer is a site model, there is no genuine correspondence with
semilocal DFT approximations to test on here.

V. Energy differences

Key chemical concepts are determined by energy differences
(e.g., atomization energies, ionization energies, barrier heights,
reaction energies, etc.). For this reason, we extend our analysis
to energy differences. For simplicity, we first look at the energy
difference of systems A and B, whose external potentials are
vA and vB , respectively. This energy difference obtained from
a total energy functional that corresponds to a given E(j)

XC is
given by:

E
(j)
AB = E

(j)
A [n

(j)
A ]−E(j)

B [n
(j)
B ]. (64)
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Figure 9: Same as Fig. 8, but zoomed out in U and ∆v. Note
the change in contour/color scale.

When two functionals are involved, we can also define the
difference between E(1)

AB and E(0)
AB :

∆EAB = E
(1)
AB −E

(0)
AB . (65)

Plugging Eq. 64 into Eq. 65 gives:

∆EAB = E
(1)
A [n

(1)
A ]−E(0)

A [n
(0)
A ]−

(
E

(1)
B [n

(1)
B ]−E(0)

B [n
(0)
B ]
)

.
(66)

Plugging Eq. 19 into Eq. 66, we can obtain the counterpart of
Eq. 19 for the energy differences between systems A and B:

∆EAB =∆EXC [n
(0)
A ]−EXC [n

(0)
B ]

−D(1)
A [−∆nA] +D

(1)
B [−∆nB ]︸ ︷︷ ︸

−D(1)
AB

. (67)

Similarly, we can also plug Eq. 20 into Eq. 66, to obtain
the counterpart of Eq. 20 for the energy differences between
systems A and B:

∆EAB =∆EXC [n
(0)
A ]− ∆EXC [n

(0)
B ]

+D
(0)
A [∆nA]−D

(0)
B [∆nB ]︸ ︷︷ ︸

D
(0)
AB

. (68)

In Eqs. 67 and 68, we recognize D(1)
AB and D(0)

AB as the density-
driven terms, pertinent to the energy differences between
systems A and B. While D(j)

v of Eq. 6, which corresponds
to the total energies is always greater or equal to 0, its
counterpart that pertains to the energy differences (Eqs. 67
and 68) does not have a definite sign. Furthermore, if we
look at D(0)

AB = D
(0)
A [∆nA] −D

(0)
B [∆nB ] (Eq. 68), where

D
(0)
A [∆nA] ≥ 0 and D(0)

B [∆nB ] ≥ 0 we can see that D(0)
AB

can easily vanish when D(0)
A [n

(1)
A ] ∼ D

(0)
B [n

(1)
B ]. Therefore,

D
(0)
AB and D(1)

AB can vanish even when n(1)A and n(1)B are dras-
tically different from n

(0)
A and n(0)B , respectively.

The shown example that involves the energy difference
between systems A and B, can be easily generalized to any en-
ergy difference of interest. For instance, consider the following
chemical reaction:

L∑
l=1

Rl →
M∑
m=1

Pm, (69)

where {Rl} is a set of reactants and {Pm} is a set of products.
Then the energy of this reaction obtained from the E(j)

v [n]
functional is:

E
(j)
ED =

M∑
m=1

E
(j)
P ,m[n

(j)
P ,m]−

L∑
l=1

E
(j)
R,l[n

(j)
R,l]. (70)

The corresponding difference in E(j)
ED between j = 0 and j = 1

functional is :
∆EED = E

(1)
ED −E

(0)
ED. (71)

Then D(0)
ED that corresponds to ∆EED is given by:

D
(0)
ED =

M∑
m=1

D
(0)
P ,m[∆nP ,m]−

L∑
l=1

D
(0)
R,l[∆nR,l], (72)

and its D(1)
ED counterpart is given by:

D
(1)
ED =

M∑
m=1

D
(1)
P ,m[−∆nP ,m]−

L∑
l=1

D
(1)
R,l[−∆nR,l]. (73)

Now that we established the density-driven terms of any
energy difference of interest, we ask the following key question:
how can we quantify the abnormality character of a given
property/system obtained from a pair of functionals? Along
these lines, we first define:

∆n = max (|D(0)|, |D(1)|). (74)

One would naturally think of the following indicator of abnor-
mality:

η =
∆n
|∆EED|

. (75)

Following this indicator, the abnormality character of a given
property of interest increases with η. However, the η indi-
cator would be problematic when |∆EED| is small, and such
properties/system will always be abnormal by default. To
fix this problem, we introduce the abnormality scale. For a
chosen property of interest (e.g., a barrier height involving
organic molecules) we calculate the abnormality scale by using
a dataset with similar systems/properties (e.g., other similar
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barrier heights involving organic molecules). We then set the
abnormality as the root-mean-square of K datapoints (i.e.
∆EED energies) that form the dataset:

∆̄ED =

√√√√ 1
K

K∑
k=1

(
∆EED,k

)2, (76)

Therefore, ¯∆ED determines our abnormality scale, and it is
specific to a given class of properties/system and to a given
pair of energy functionals. Finally, we use ∆ to define our
abnormality indicator:

η̄ =
∆n

∆̄ED
(77)

Also in the case of this indicator, the abnormality increases
with η̄. To classify systems as normal or abnormal (again
for a given pair of functionals) based on the η̄ indicator, we
introduce a cut-off, e.g., η̄c ∼ 1

3 , and consider abnormal
systems/properties those that have η̄ greater than η̄c. The
primary goal of the present work is to outline the theory behind
the density functional analysis. Therefore, showing numerical
examples where we will illustrate (ab)-normality of different
properties for different pairs of DFT approximations, we leave
for future work.
Returning to DC-DFT, where functional 1 is some approx-

imation and 0 is exact, we do not of course have access to
D(0) in order to calculate η̄, so we settle for |D(1)| alone,
which is simply the usual density-driven error. But as noted in
Ref. [25], that error would usually require knowing the exact
density, which is usually either unavailable or unaffordable. (In
normal systems, the HF density is NOT more accurate than
the self-consistent density, and so cannot be used). A generic,
practical workaround for standard approximations for use in
HF-DFT is to define the density sensitivity of a functional
as [25]:

ẼDS =
∣∣Ẽ[nLDA]− Ẽ[nHF]

∣∣ , (78)

which should always estimate |D(1)| when |D(1)| is a significant
fraction of ∆. Thus the PBE sensitivity is plotted in Fig 4 of
Ref. [14], and averaged sensitivities were used in Table I of
Ref. [25].

VI. Conclusions

We have given a detailed account of the considerations that
led to the recent successes of density-corrected DFT. We have
also generalized that theory to allow different approximate
functionals to be compared in the same way as DC-DFT al-
lows one approximation to be compared with exact results.
We have shown that typical density differences between rea-
sonably accurate functionals can be shown quantitatively to
be close enough to allow treatment via density functional
analysis expansions truncated at second order. We consider
different special cases of our analysis, and note that DC-DFT

is just one of these. For a given pair of density functional
approximations, we also construct measures for their relative
abnormality (i.e. the situation when the density-driven terms
strongly dominate the energy difference obtained with two
different approximations).

We have noted many pioneering efforts in the chemistry lit-
erature in which density-corrected calculations were performed,
usually based on intuition. We also point out that, as long ago
as 1996, Levy and Görling advocated the use of self-consistent
exact-exchange calculations, with a correction defined to pro-
duce the exact ground-state energy as a functional of the
‘wrong’ EXX density [59]. For purposes of calculating ener-
gies, the approach of Levy and Görling is nearly equivalent to
HF-DFT, given that the EXX and HF densities are probably
indistinguishable. Of course, we only advocate this procedure
for abnormal systems, as in normal systems we expect the
density from the standard semilocal approximations to be more
accurate than that of HF.
Finally, we note that of course it is highly unsettling to

run KS calculations in this non-self-consistent fashion. Many
advantages that are often taken for granted, such as the
exactness of the Hellmann-Feynman theorem in the basis-set
limit, are no longer true, and many corrections need to be
coded. But, in fact, all information about the density can be
extracted from a sequence of total energy calculations, since:

n(r) = δEv
δv(r) . (79)

Treating HF as EXX, this leads to a predicted change in the
density of a HF-DFT calculation relative to a self-consistent
DFT density:

∆n(r) = δ(EDFT [nHF]−EDFT [nDFT ])
δv(r) . (80)

Thus, in principle, one could calculate the improvement to
the density predicted by HF-DFT, and any other properties
depending only on the density.
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