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Abstract— Motivated by various distributed control applica-
tions, we consider a linear system with Gaussian noise observed
by multiple sensors which transmit measurements over a
dynamic lossy network. We characterize the stationary optimal
sensor scheduling policy for the finite horizon, discounted,
and long-term average cost problems and show that the value
iteration algorithm converges to a solution of the average
cost problem. We further show that the suboptimal policies
provided by the rolling horizon truncation of the value iteration
also guarantee geometric ergodicity and provide near-optimal
average cost. Lastly, we provide qualitative characterizations of
the multidimensional set of measurement loss rates for which
the system is stabilizable for a static network, significantly
extending earlier results on intermittent observations.

I. INTRODUCTION

Distributed systems with multiple sensors require control
of both the system as well as the scheduling of observa-
tions. This work addresses a system with both intermittent
observations and multiple sensors.

A fundamental problem with distributed sensing is ac-
counting for the possibility of lost or intermittent measure-
ments. In the seminal work of [1], it was shown that for a
discrete time linear system with appropriate Gaussian noise,
the error covariance is bounded provided the measurement
loss rate is below a particular critical value. A number of
additional studies have sought to further characterize the
behavior of the error covariance for particular systems [2],
or with additional assumptions [3]–[7].

Sensor schedules aim to maintain system stability while
optimizing system performance. Some approaches sched-
uled sensor transmissions randomly according to a pre-
determined (possibly random) schedule [8]–[10]. Dynamic
sensor scheduling, based on the information available to the
scheduler, can lead to significantly better performance but is
of course more complex [11]–[14].

The intersection of these two areas, namely optimal sensor
scheduling with intermittent network links, has been largely
neglected. Among the few papers in the literature we cite
[15]–[19].
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Fig. 1. Overview of the system detailed in Section II. An observation Yt
is lost (γt = 0) with probability λt, which depends on which sensor is
queried (Qt) and network state (St).

In this work, we consider a discrete-time linear quadratic
Gaussian (LQG) system observed by a finite number of
sensors. When queried, a sensor attempts to transmit the
measurement to the controller over a noisy network which
intermittently loses the measurement. Further, the network
has its own query-dependent stochastic dynamics, allowing
for complex congestion models. A diagram of the system is
shown in Figure 1. We make only mild assumptions on the
system structure and assume that the system is stabilizable.
This rather basic assumption of stabilizability enables us to
derive a wealth of interesting new results:
• A stationary, average-cost optimal policy exists, and

under that policy the system is geometrically ergodic.
• The value iteration algorithm (VI) converges. In addi-

tion, after finitely many steps, the sub-optimal policies
calculated via the VI render the system geometrically
ergodic, and the induced average cost converges geo-
metrically to the optimal average cost.

• Additionally, we show that a special case of our results
generalizes the original stabilizability results of [1] to
the case of multiple scheduled sensors with unique loss
rates.

Section II describes the system structure, our key assump-
tions, and some basic results on the Kalman filtering part
of the problem. The optimal control problems and results
are presented in Section III, and Section IV contains the
results on the convergence of the value iteration algorithm.
An important special case is discussed in Section V. The
proofs could not be included due to the limitation in the
number of pages. For these please consult the unabridged
version at http://users.ece.utexas.edu/∼ari/Papers/Sensors.

http://users.ece.utexas.edu/~ari/Papers/Sensors


A. Notation

The letter d refers to the dimension of the state space.
We let M+

0 (M+) denote the cone of real symmetric,
positive semi-definite (positive definite) d× d matrices. For
a matrix G ∈M+, σ(G) and σ(G) denote the smallest and
largest eigenvalues of G, respectively. Recall that the trace
of a matrix, denoted by tr(·), acts as a norm on M+

0 . For
Σ1,Σ2 ∈ Rd×d, we write Σ1 � Σ2 when Σ2 − Σ1 ∈ M+

0

or Σ1 ≺ Σ2 when Σ2 − Σ1 ∈ M+. For two real vectors
λ, φ indexed by some set I , we say λ ≤ φ or λ < φ if for
each i ∈ I , λi ≤ φi or λi < φi, respectively. A function
f : M+

0 → R is concave if for Σ1,Σ2 ∈M+
0 ,

f((1− β)Σ1 + βΣ2) ≥ (1− β)f(Σ1) + βf(Σ2) (1)

for all β ∈ [0, 1]. Concavity for functions f : M+
0 →M

+
0 is

defined in the same way, but replacing the inequality in (1)
with the ordering �. We also denote a normal distribution
with mean x and covariance matrix Σ as N (x,Σ). Given a
strictly positive real function f on S ×M+

0 , where S is a
finite set, the f -norm of a function g : S×M+

0 → R is given
by

‖g‖f := sup
(s,Σ)∈ S×M+

0

|g(s,Σ)|
f(s,Σ)

.

We denote by O(f) the set of real-valued functions on S×
M+

0 which have finite f -norm and are continuous, concave,
and non-decreasing in the second argument.

II. SYSTEM, SENSOR, AND NETWORK MODEL

We consider a linear quadratic Gaussian (LQG) system

Xt+1 = AXt +BUt +DWt , t ≥ 0

X0 ∼ N (x0,Σ0) ,
(2)

where Xt ∈ Rd is the system state, Ut ∈ Rdu is the
control, and Wt ∈ Rdw is a white noise process. We assume
that each Wt ∼ N (0, Idw) is i.i.d. and independent of X0,
and that (A,B) is stabilizable. The system is observed
via a finite number of sensors scheduled or queried by
the controller at each time step. Let {γt} be a Bernoulli
process indicating if the data is lost in the network: each
observation is either received (γt = 1) or lost (γt = 0).
A scheduled sensor attempts to send information to the
controller through the network; depending on the state of
the network, the information may be received or lost. This
behavior is modeled as

Yt = CQt−1
Xt + FQt−1

Wt , t ≥ 1, (3)

if γt = 1, otherwise no observation is received. The dimen-
sion of Yt may be variable, and naturally equals the number
of rows of Cq for q = Qt−1. The query process {Qt} takes
values in the finite set of allowable sensor queries denoted by
Q. For each query q ∈ Q, we assume that det(FqF

T
q ) 6= 0

and (primarily to simplify the analysis) that DFT
q = 0. Also

without loss of generality, we assume that rank(B) = Nu;
if not, we restrict control actions to the row space of B.

The network congestion is modeled as a random process
St, also controlled by Qt, taking values on a finite set S of
network states:

P
(
St+1 = s′ | St = s,Qt = q

)
= pq(s, s

′) , (4)

for s, s′ ∈ S, t ≥ 0, and a known initial state S0 = s0 ∈ S.
The observed information is lost with a probability that
depends on the network state and the query, i.e.,

P(γt+1 = 0) = λ(St, Qt) , (5)

where the loss rate λ : S×Q→ [0, 1]. The network state St
and the value of γt are assumed to be known to the controller
at every time step.

The running cost is the sum of a positive network cost
R : S×Q→ R and a quadratic plant cost Rp : Rd×RNu → R
given by

Rp(x, u) = xTRx+ uTMu ,

where R,M ∈M+. To help with later analysis, we choose
some distinguished network state denoted as θ ∈ S, which
satisfies

θ ∈ arg min
s∈S

(
min
q∈Q

R(s, q)
)
,

and without loss of generality assume minq∈Q R(θ, q) = 1.
At each time t, the controller takes an action

vt = (Ut, Qt), the system state evolves as in (2), and the
network state transitions according to (4). Then the obser-
vation at t + 1 is either lost or received, determined by
(3) and (5). The decision vt is non-anticipative, i.e., should
depend only on the history Ft of observations up to time
t defined by Ft := σ(s0, x0,Σ0, S1, Y1, γ1, . . . , St, Yt, γt).
Such a sequence of decisions v = {vt : t ≥ 0} is called a
policy, and we denote the set of admissible policies by V .
As customary, a policy is called Markov if vt depends only
on the current state.

For an initial condition (s0, X0) and a policy v ∈ V ,
let Pv be the unique probability measure on the trajectory
space, and Ev the corresponding expectation operator. When
necessary, the explicit dependence on (the law of) the initial
conditions or their parameters will be indicated in a subscript,
such as Pvs0,X0

or Evs0,x0,Σ0
.

A. Kalman Filter and Update Properties

We have thus far described a system given by partially
observed controlled Markov chain, which we now convert
to an equivalent completely observed model. Standard linear
estimation theory tells us that the expected value of the state
X̂t := E[Xt | Ft] is a sufficient statistic. Let Π̂t denote the
error covariance matrix given by

Π̂t = cov(Xt − X̂t) = E
[
(Xt − X̂t)(Xt − X̂t)

T
]
.

The state estimate X̂t and the error covariance matrix Π̂t

can be dynamically calculated via the Kalman filter

X̂t+1 = AX̂t +BUt

+ K̂Qt,γt+1
(Π̂t)

(
Yt+1 − CQt(AX̂t +BUt)

)
, (6)



with X̂0 = x0. The Kalman gain K̂q,γ is given by

K̂q,γ(Π̂) := Ξ(Π̂)γCT
q

(
γ2CqΞ(Π̂)CT

q + FqF
T
q

)−1
,

Ξ(Π̂) := DDT +AΠ̂AT,

and the error covariance evolves on M+
0 as

Π̂t+1 = Ξ(Π̂t)− K̂Qt,γt+1(Π̂t)CQtΞ(Π̂t) , (7)

with Π̂0 = Σ0. When an observation is lost (γt = 0), the
gain K̂q,γt = 0 and the observer (6) simply evolves without
any correction factor.

For a sensor query q ∈ Q, define Tq : M+
0 →M

+
0 by

Tq(Π̂) := Ξ(Π̂)− K̂q,1(Π̂)CqΞ(Π̂)

and an operator T̂q on functions f : S×M+
0 → R,

T̂qf(s, Π̂) =
∑
s′∈S

pq(s, s
′)
(
(1− λ(s, q))f(s′, Tq(Π̂))

+ λ(s, q)f(s′,Ξ(Π̂))
)
.

It is clear then that (St, Π̂t) forms a completely observed
controlled Markov chain on S×M+

0 , with action space Q,
and kernel T̂q . Admissible and Markov policies are defined
just as previously but with vt = Qt, since the evolution of
Π̂t does not depend on the state control Ut. Thus

T̂qf(s, Π̂) = Eq
s,Π̂

[
f(S1, Π̂1)

]
:= Eq

[
f(St+1, Π̂t+1)

∣∣ St = s , Π̂t = Π̂
]
.

We sightly abuse terminology by calling a function f
on S×M+

0 concave/continuous/monotone if f(s, ·) is con-
cave/continuous/monotone for all s ∈ S. Note that a function
onM+

0 , such as tr(·), can be naturally extended to S×M+
0 ,

but that T̂qtr(·) depends implicitly on s. The following lemma
follows easily from the definition of T̂q using standard results
from, for example, [8, Lemmas 1–2].

Lemma 2.1: T̂q preserves continuity and lower semi-
continuity of all functions, and preserves concavity and
monotonicity of non-decreasing functions (w.r.t. �).

Using the fact that the trace function is concave and non-
decreasing, one can show that

T̂qk ◦ · · · ◦ T̂q0 tr(mΠ̂) ≤ mT̂qk ◦ · · · ◦ T̂q0 tr(Π̂) (8)

for any sequence of sensor queries {q0, . . . , qk}.
Note that there is no strict separation principle between

estimation and control for the LQG model with sensor
scheduling, but the partial separation result in [20] makes op-
timal control synthesis possible, and renders the completely
observed controlled Markov chain (St, Π̂t) equivalent to the
partially observed one for control purposes.

B. Stability

A well-known necessary condition for stability is that
(A,B) is stabilizable and (C,A) is detectable, where C :=
[CT
q1 | · · · |C

T
q|Q|

]T. In the absence of intermittency it has
been shown in [20] that these conditions are also sufficient.
However, with intermittency these conditions are clearly

not sufficient, and simple algebraic sufficient conditions for
stability with intermittent observations do not seem possible,
even for a system without sensor scheduling [1]. In this work
we will simply assume that the estimation is stabilizable un-
der some scheduling policy, and then investigate the optimal
control problem under the running cost R + Rp.

Suppose that a particular query process Q, together with
some state estimation scheme are known to result in a
bounded trajectory of the error covariance matrix. It is then
clear, by the optimality of the Kalman filter, that Q together
with the Kalman filter estimator in (7) will also keep the error
covariance bounded. Moreover, since (A,B) is stabilizable
then a feedback controller can be designed so that the
variance of X stays bounded.

Assumption 2.1: The following hold:

(i) The pair (A,D) is controllable.
(ii) The controlled Markov chain governing the network

dynamics given in (4) is aperiodic (over any admis-
sible querying policy) and uniformly irreducible in the
following sense: there exists n◦ ∈ N such that for any
pair of states s, s′ ∈ S, and any sequence of n◦ queries
{qi}i∈{1,...,n◦} in Qn◦ , there exists a sequence of states
s1, . . . , sn with n < n◦ such that

pq1(s, s1) pq2(s1, s2) · · · pqn(sn, s
′) > 0 .

(iii) There exists s◦ ∈ S, Σ◦ ∈ M+
0 , and an admissible

query process Q = {Qt : t ≥ 0} such that

sup
t>0

EQ
s◦,Σ◦

[
tr(Π̂t)

]
< ∞ . (9)

One can show that Assumption 2.1(iii) generalizes to all
initial state combinations. This leads to the following lemma.

Lemma 2.2: Under Assumption 2.1, for any s ∈ S, Σ ∈
M+

0 , there exists an admissible query process Q = {Qt : t ≥
0} such that

sup
t>0

EQ
s,Σ

[
tr(Π̂t)

]
≤ c0 + c1tr(Σ) . (10)

for some positive constants c0 and c1 which does not depend
on (s,Σ).

III. OPTIMAL CONTROL

We are interested in finding admissible policies that min-
imize the long-term average cost,

Jv := lim sup
T→∞

1

T
Ev
[
T−1∑
t=0

(
R(St, Qt) + Rp(Xt, Ut)

)]
.

In approaching the average cost problem, we also consider
the α-discounted finite horizon cost for α ∈ (0, 1), given by

Jvα,n := Ev
[
n−1∑
t=0

αt
(
R(St, Qt) + Rp(Xt, Ut)

)
+ αnXT

nΠfinXn

]
, (11)



where Πfin ∈ M+
0 is a terminal cost, and the α-discounted

cost,

Jvα := Ev
[ ∞∑
t=0

αt
(
R(St, Qt) + Rp(Xt, Ut)

)]
.

In each of these problems and throughout the analysis, we
assume that S0 = s0 ∈ S and X0 ∼ N (x0,Σ0) unless
otherwise specified.

A. Optimal Control for the Finite Horizon Problem

The optimal feedback control for the finite horizon prob-
lem is well understood; detailed derivations can be found
in, for example, [21, Sec. 5.2]. For the finite horizon α-
discounted problem, given any particular sequence of n
sensor queries, the optimal control policy can be derived
directly from (11), and takes the form of the linear feedback
control Uα,t = −Kα,t E[Xt | Ft], where the feedback gain
Kα,t is determined by the backward recursion

Kα,t = α(M + αBTΠα,t+1B)−1BTΠα,t+1A ,

Πα,t = R+ αATΠα,t+1A− αATΠα,t+1BKα,t ,
(12)

with Πα,N = Πfin. However, to facilitate the study of the
infinite horizon case, we note that since (A,B) is stabiliz-
able, there exists a unique matrix Π∗α ∈M+ that solves the
algebraic Riccati equation

Π∗α = R+ αATΠ∗αA

− α2ATΠ∗αB(M + αBTΠ∗αB)−1BTΠ∗αA .

By setting Πfin = Π∗α, the backward recursion in (12) is t-
invariant and, as noted in Section II, the expected value of
the state can be dynamically calculated via the Kalman filter
estimate X̂ in (6). So the optimal control for the plant takes
the form of a linear feedback given by

U∗α,t = −K∗αX̂t ,

K∗α = (M + αBTΠ∗αB)−1αBTΠ∗αA .
(13)

Define
Π̃α := R−Π∗α + αATΠ∗αA . (14)

The following result recasts the finite horizon optimal control
problem in terms of the error covariance rather than the
system state and control.

Theorem 3.1: Let v∗α,n = {U∗α,t, Q∗α,t}0≤t≤n−1, where
U∗α,t is the linear feedback defined in (13) and {Q∗α,t}
is a selector from the minimizer in the n-step dynamic
programming equation. Define

f
(n)
t (s, Π̂) = min

q∈Q

{
R(s, q) + αT̂qf (n)

t+1(s, Π̂)
}

+ tr(Π̃αΠ̂)

for t = 0, . . . , n − 1, with f
(n)
n = 0. Then v∗α,n is optimal

for the finite horizon control problem with Πfin = Π∗α, and
we have

J
v∗α,n
α,n = inf

v∈V
Jvα,n = f

(n)
0 (s0,Σ0) + xT

0 Π∗αx0 + tr(Π̃αΣ0)

+
n∑
k=1

αktr(Π∗αDD
T) .

Before proceeding to the infinite horizon results, we show
an essential application of the bound in (10).

Lemma 3.1: There exists a positive constant cs such that
with the stabilizing query process Q̄ from Assumption 2.1,
for any n > 0 and α ∈ (0, 1)

J
v∗α,n
α,n ≤ JU

∗
α ,Q̄
α,n ≤ cs

(
‖x0‖2 +

1

1− α
+

tr(Σ0)

1− α

)
. (15)

Bounds of this form, relating optimal costs to trace, will
prove repeatedly useful as the analysis proceeds.

B. Optimal Control for the α-Discounted Problem

Once again, we can recast the optimal control problem
in terms of the error covariance rather than the state and
control processes. In the infinite horizon case, this leads to
a modified discounted optimality equation.

Theorem 3.2: For α ∈ (0, 1), there exists a unique lower
semicontinuous function f∗α : S×M+

0 → R+ that satisfies

f∗α(s, Π̂) = min
q∈Q

{
R(s, q)+αT̂qf∗α(s, Π̂)

}
+tr(Π̃αΠ̂) , (16)

with Π̃α as in (14). If q∗α : S×M+
0 → Q is a selector of the

minimizer in (16), then the Markov policy given by v∗α =
{q∗α(St, Π̂t), U

∗
α,t}t≥0 is optimal for the α-discounted infinite

horizon problem, and

J
v∗α
α (s0, x0,Σ0) = inf

v∈V
Jvα(s0, x0,Σ0)

= f∗α(s0,Σ0) + xT
0 Π∗αx0 + tr(Π̃αΣ0)

+
α

1− α
tr(Π∗αDD

T) .

Further, the querying component of any optimal stationary
Markov policy is an a.e. selector of the minimizer in (16).

C. Optimal Control for the Average Cost Problem

We use the vanishing discount approach to establish a so-
lution to the average cost problem. A critical result enabling
the vanishing discount approach is the following:

Lemma 3.2: The differential discounted value function
f̄α := f∗α − f∗α(θ, 0) is locally bounded, uniformly in α ∈
(0, 1), and the set {f̄α : α ∈ (0, 1)} is locally Lipschitz
equicontinuous on compact subsets of M+

0 .
In the course of proving Lemma 3.2, another upper bound

with trace is shown: for some positive constant κ0 we have

f̄α(s,Σ) ≤ κ0

(
1 + tr(Σ)

)
. (17)

Using this bound and the properties of trace, we characterize
solutions of the average cost problem and show that an
optimal stationary policy exists.

Theorem 3.3: There exist a constant %∗ and a continuous
function f∗ : S×M+

0 → R+ that satisfy

f∗(s, Π̂) + %∗ = min
q∈Q

{
R(s, q) + tr(Π̃∗Π̂) + T̂qf∗(s, Π̂)

}
,

(18)
with Π̃∗ := R − Π∗ + ATΠ∗A, and Π∗ ∈ M+ the unique

solution of the algebraic Riccati equation

Π∗ = R+ATΠ∗A−ATΠ∗B(M +BTΠ∗B)−1BTΠ∗A.



If q∗ : S×M+
0 → Q is a selector of the minimizer in (18),

then the policy given by v∗ = {U∗t , q∗(St, Π̂t}t≥0, with

U∗t := −K∗X̂t ,

K∗ := (M +BTΠ∗B)−1BTΠ∗A ,
(19)

and {X̂t} as in (6), is optimal, and satisfies

Jv
∗

= inf
v∈V

Jv = %∗ + tr(Π∗DDT) .

In addition, the querying part of any optimal stationary
Markov policy is an a.e. selector of the minimizer in (18).

It is worth noting that f∗ is concave and non-decreasing
in M+

0 , and that using (17) and the vanishing discount
construction of f∗, there exist constants m∗1 > 0 and m∗0 ∈ R
such that

f∗(s,Σ) ≤ m∗1 tr(Σ) +m∗0 . (20)

Furthermore, directly from (18),

f∗(s,Σ) ≥ σ(Π̃∗)tr(Σ)− %∗ ,

so f∗ must be strictly increasing in Σ.
Noting the definition of f∗ in (18), for the remainder of the

paper we consider the equivalent average cost optimization
problem with the cost function rq(s,Σ) := R(s, q)+tr(Π̃∗Σ).

Remark 3.1: For computational purposes, the unbounded
cone M+

0 is clearly impractical. However, we can approxi-
mate the process on the bounded subset

Br := S× {Σ ∈M+
0 : tr(Σ) ≤ r} , r > 0 .

First, we choose any stable control q̄. Then we construct
a function fr : S × M+

0 → R+ by solving the dynamic
programming equation

fr(s,Σ) + %r = min
q∈Q
{rq(s,Σ) + T̂qfr(s,Σ)} , (21)

for (s,Σ) ∈ Br, while for (s,Σ) ∈ Bcr we solve the Poisson
equation corresponding to (21) with q = q̄. We let qr denote
the concatenation of the control q̄ with a measurable selector
from (21). Note that fr satisfies the geometric drift condition
in the proof of Theorem 3.3. As a result the process under
qr is stable. We leave it to the reader to verify that as
r → ∞, %r → %∗, and so the truncated system is a good
approximation of the complete system.

IV. RELATIVE VALUE ITERATION

The relative value iteration (RVI) and value iteration (VI)
algorithms generate a sequence of real-valued functions on
S × M+

0 and associated constants that, as we will show,
approach solutions (f∗, %∗) of (18). For a stationary Markov
policy q̄ : S×M+

0 → Q, we adopt the notation

r q̄(s,Σ) := R(s, q̄(s,Σ)) + tr(Π̃∗Σ).

Respectively, the RVI and VI are given by

ϕn+1 = min
q∈Q

{
rq + T̂qϕn

}
− ϕn(θ, 0) , (22)

ϕn+1 = min
q∈Q

{
rq + T̂q ϕn

}
− %∗ , ϕ0 = ϕ0 , (23)

where both algorithms are initialized with the same function
ϕ0 : (S×M+

0 )→ R+.
Using the bound in (20), we can find positive constants

θ1 and θ2 such that

min
q∈Q

rq(s,Σ) ≥ θ1f
∗(s,Σ)− θ2 .

Without loss of generality we can assume θ1 < 1 to facilitate
some later estimates.

The next theorem proves that both the RVI and VI
algorithms converge. Note that the initialization requirements
are easily satisfied by, for example, ϕ0 = 0.

Theorem 4.1: If ϕ0 ∈ Of∗ , then ϕn converges to c0 + f∗

for some c0 ∈ R satisfying

− %∗ + θ2

θ1
≤ c0 ≤

%∗ + θ2

θ1
‖ϕ0‖f∗ , (24)

and ϕn converges to f∗ − f∗(θ, 0) + %∗.
Stability of the policies generated by the VI/RVI algo-

rithms is usually not guaranteed. One would hope that the
Markov policy computed at the nth stage of the value
iteration is a stable Markov policy and its performance
converges to the optimal performance as n → ∞. This
topic is commonly referred to as rolling horizon, and is well
understood for finite state MDPs [22] but it is decidedly
unexplored for nonfinite state models. Among the very few
results in the literature is the study in [23] for bounded run-
ning cost and under a simultaneous Doeblin hypothesis, and
the results in [24] under strong blanket stability assumptions.
For the model considered here there is no blanket stability;
instead, the inf-compactness of the running cost penalizes
unstable behavior. Exploiting the constructive steps of the
value iteration convergence proofs allows us to show that
the rolling horizon policies are indeed stable, as follows.

Theorem 4.2: For large n, the policy q̂n generated by
the nth stage of the VI or RVI algorithm is geometrically
stable, and the average cost obtained under q̂n converges
geometrically to %∗ as n→∞.

V. SENSOR-DEPENDENT LOSS RATES

We now turn our attention to a special case of the previous
results, with a single network state. In this case, the network
cost is simply a function of the query process {Qt}, taking
values in the finite set of allowable sensor queries Q. The
loss rate depends only on the query, so can be treated as a
vector λ in [0, 1]|Q|, indexed by the corresponding query:

P(γ = 1) = (1− λq), P(γ = 0) = λq, (25)

for q ∈ Q. We are interested in characterizing the set of loss
rates Λs ⊂ [0, 1]|Q| for which the system is stabilizable. Our
formulation generalizes the problem in [1], which analyzes
the system (2)–(3) without sensor scheduling (Cq = C) and
therefore with a single loss rate.

Recalling the discussion around Assumption 2.1, Λs = ∅
unless (A,B) is stabilizable and (C,A) is detectable. Hence,
without loss of generality, we assume (A,B) is stabilizable
and (C,A) is detectable and therefore, by the results in [20],
0 ∈ Λs.



Theorem 5.1: If the system (2)–(3) with (25) is stabiliz-
able for a loss rate λ′ ∈ [0, 1]|Q|, then it is also stabilizable
for any other loss rate λ ≤ λ′. In other words, the set Λs is
order-convex with respect to the natural ordering of positive
vectors in R|Q|.

Moreover, a lower loss rate leads to a smaller error
covariance at every time step. We continue with another
important result.

Theorem 5.2: If the system (2)–(3) with (25) is stabi-
lizable for a loss rate λ ∈ [0, 1]|Q|, there exists an open
neighborhood B ⊂ [0, 1]|Q| around λ such that the system is
stabilizable for λ′ ∈ B.

Combining these results we obtain the following corollary
concerning the structure of Λs.

Corollary 5.1: Suppose that (A,B) is stabilizable and
(C,A) is detectable. Then, there exists a critical surface W
in (0, 1]|Q| such that the system is stabilizable with loss rate
λ if and only if λ < λ′ ∈ W . More precisely, there exists a
function F : R|Q|−1 → [0, 1] which is nonincreasing in each
argument such that the system is stabilizable with loss rate
λ if and only if λ|Q| < F(λ1, . . . , λ|Q|−1). In other words,
Λs is the strict hypograph of F.

We call the set of sensor queries Q non-redundant if the
system is not detectable with any proper subset of the sensor
queries. That is, the system using only Q \ {q} for any
q ∈ Q is not stabilizable for any admissible query sequence.
When Q is non-redundant and q is a stabilizing stationary
Markov policy, the set of states where any particular query
q is chosen, Sq = {Σ ∈ M+

0 : q(Σ) = q} , satisfies
µq(Sq) > 0 for each q ∈ Q where µq is the invariant
probability measure. Furthermore, there must be a subset
Ŝq ⊂ Sq with µq(Ŝq) > 0 such that Tq(Σ̂) < Ξ(Σ̂) for
all Σ̂ ∈ Ŝq; if not, then a different sensor could be queried
instead of q and the system would still be stable.

Theorem 5.3: Suppose that the set of sensors is non-
redundant and that λ, λ′ ∈ Λs such that λ ≤ λ′ and λ 6= λ′.
Then %∗λ < %∗λ′ .

Noting that the average cost %∗λ → ∞ as the system
parameters approach the boundary of the stability region the
set Λ(κ) := {λ : %∗λ < κ} is a ray-connected neighborhood
of 0 for all κ > 0. Clearly,

⋃
κ>0 Λ(κ) = Λs.

Remark 5.1: Suppose that the loss rates depend only on
the query, as in (25), but are unknown. Then the implications
of Theorem 5.2 are remarkable. Since stability is shown to
be an open property, if one can find an estimator sequence
λ̂t → λ a.s., then the system will retain stability and the
long-term average performance would be the same as the
if the rates were known beforehand. Since the channel is
Bernoulli, recursive estimation of the loss rates leading to a.s.
convergence to the true value is rather straightforward. For
example, a maximum likelihood estimator can be employed,
as in [25].
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