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Relating incipient motion of sediments to properties of turbulent flows continues to draw
significant research attention given its relevance to a plethora of applications in ecology,
sedimentary geology, geomorphology, and civil engineering. Upon combining several data
sources, an empirical diagram between a densimetric Froude number Fdc = Uc/

√
gh� and

relative roughness N = d/h was recently reported over some six decades of N , where d is
the grain diameter, h is the overlying boundary-layer depth, Uc is the bulk velocity at which
sediment motion is initiated, g is the gravitational acceleration, � = s − 1, and s is the
specific gravity of sediments. This diagram featured three approximate scaling laws of the
form Fdc ∼ N−α with α = 1/2 at small N , α = 1/6 at intermediate N , and α = 0 at large
N . The individual α values were piecewisely recovered using a combination of (1) scaling
arguments linking bulk to local flow variables above the sediment bed and (2) assumed
exponents σ for the turbulent kinetic energy spectrum Etke(k) ∼ k−σ , where k is the wave
number or inverse eddy size. To explain the α = 1/2, the aforementioned derivation further
assumed the presence of an inverse cascade in Etke(k) at large wave number (i.e., σ = 3).
It is shown here that a single Fdc − N curve can be derived using a cospectral budget
(CSB) model formulated just above the sediment bed. For any k, the proposed CSB model
includes two primary mechanisms: (1) a turbulent stress generation formed by the mean
velocity gradient and the spectrum of the vertical velocity Eww (k) and (2) a destruction
term formed by pressure-velocity interactions. Hence, a departure from prior work is that
the proposed CSB model is driven by a multiscaled Eww (k) instead of Etke(k) characterized
by a single exponent. Also, the CSB model does not require the presence of an inverse
cascade to recover an α = 1/2. Last, the CSB approach makes it clear that the scaling
parameters linking local to bulk flow variables used in prior determinations of α at various
N must be revised to account for bed roughness effects.

DOI: 10.1103/PhysRevFluids.4.093801

I. INTRODUCTION

Incipient motion of grains by turbulent flows over a loose boundary continues to draw research
attention in erosion studies, river bank stability, ecosystem sciences, and eolian processes [1–3].
Over the course of some 100 years, such incipient motion has been described using a balance
between hydrodynamic forces exerted on particles and a stabilizing force represented by the
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FIG. 1. Sketch of a wide rough channel whose bed is covered by spherical grain particles of uniform
diameter d . The grains are entrained into the overlying turbulent flow when the surface shear stress τtb exceeds
a threshold. The green arrow depicts turbulent eddies that have multiple sizes, and the grains are represented
by brown circles. The cospectral budget (CSB) model is formulated in the roughness sublayer (black dashed
line) above the grains but below the region characterized by a logarithmic mean velocity profile (purple dashed
line). The forces acting on an individual particle are defined as follows: Fd is the drag force, Ff is the frictional
force, FG is the gravitational force related to particle weight, and FL is the lift force.

submerged particle weight as shown in Fig. 1. This force balance has been developed at the
single-particle scale [4] but extrapolated in space to account for multiparticle interactions using
probabilistic approaches [5]. Extensions to both have also been proposed and used in a number of
applications [6–8].

Operationally, incipient motion is described by the Shields diagram [9] that empirically relates a
dimensionless bed shear stress θ (labeled as the critical Shields number)

θ = u2
∗

�gd
(1)

to a roughness Reynolds number Re∗ [10–12]. It is to be noted that when the shear or friction
velocity u∗ reaches the critical shear velocity u∗c and the sediment particle is about to move, the
Shields number becomes the critical Shields number θc. Here the roughness Reynolds number is
defined as Re∗ = u∗d/ν, where � = s − 1 > 0, s = ρp/ρ f is the specific gravity of the particles,
ρp and ρ f are the particle and water densities respectively, g is the gravitational acceleration, ν is the
kinematic viscosity, u∗ = (τb/ρ f )1/2 is the friction velocity, τb is the bed shear stress, and d is the
grain diameter. Figure 2 repeats such a diagram summarizing a large corpus of experiments. This
diagram shows that at low Re∗, θc decreases with increasing Re∗, whereas θc becomes a constant
independent of Re∗ for large Re∗. While the limitations of the Shields diagram have been recognized
for some time [1,13], the data presentation inspired by the Shields diagram remains popular in
numerous fields. Its simplicity and reasonable empirical support [14,15] even in situations that fall
well outside the original domain of applicability [16–21] continue to make the θc-Re∗ representation
attractive and a test bed for other detailed models [22]. A case in point is the use of a Shields diagram
to reconstruct a number of surface features on Mars [23,24] and Titan [25].

An even more “naive” but preferable approach in large-scale hydrodynamic models is to use a
critical bulk velocity Uc formed by a flow rate per unit cross-sectional area instead of the critical
shear velocity to scale particle incipient motion. This approach gained attention after Ali and
Dey [3,26] reported a remarkable link between a densimetric Froude number Fdc = Uc/

√
�gd and

relative roughness N = d/h shown in Fig. 3, where h is the boundary layer depth (or water level in
wide channels). The reported relation appears to be valid over six decades of N with Fdc exhibiting
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FIG. 2. Modified Shields diagram fitted to the original data of Shields [9], where θc ≈ 0.06 is independent
of Re∗ when Re∗ > 400 and θc ∝ Re−1

∗ for Re∗ < 3. An intermediate region defined by Re∗ ∈ [3, 400] exists
where θ ∈ [0.02, 0.06] varies weakly and nonmonotonically with Re∗.

at least 1.5 decades of variations. Another outcome in Fig. 3 is the presence of three regimes
featuring approximate scaling laws of the form Fdc ∼ N−α: α = 1/2 for the so-called miniroughness
regime N ∈ [10−6, 10−4], α = 1/6 for the small-roughness regime N ∈ [10−4, 0.1], and α = 0 for
the large-roughness regime N ∈ [0.1, 1].

Instead of using separate arguments to explain each α value, it is shown here that a single Fdc-N
curve can be recovered from a cospectral budget (CSB) model that tracks the effects of all eddies on
τb. The proposed model is driven by the shape of the vertical velocity spectrum Eww(k) instead of the
turbulent kinetic energy spectrum Etke(k). That Eww(k) explains the Fdc-N curve is to be expected in
vertical momentum transfer studies of wall stress. Moreover, the work here shows that the presence
of an inverse cascade is not necessary provided some steepening of the Eww(k) above and beyond
its inertial scaling occurs at small scales. However, links between local variables in the roughness
sublayer above the bed and bulk variables must be revised to account for roughness effects as
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FIG. 3. The Fdc-N diagram with data reported in Refs. [3,26] along with the three scaling laws expressed
as Fdc ∼ N−α with α = 1/2, 1/6, and 0 (in dashed lines). The original data sources are described in a number
of studies, including Refs. [27–33].
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discussed elsewhere [34]. The main theoretical insights offered here are perspectives about the curve
featured in Fig. 3, the transition zones between the various roughness scaling regimes, and the links
between exponents α and the entire shape of Eww(k) that is characterized by multiple exponents.
It also offers a pragmatic approach (i.e., a single expression) to modeling incipient motion within
large-scale hydrodynamic models of sediment motion when Uc is to be used.

II. THEORY

A. Review of the analysis by Ali and Dey

The insightful analysis by Ali and Dey [3,26] to explain the three piecewise scaling laws in Fig. 3
is reviewed. At the point of incipient sediment motion (i.e., U = Uc) and from the aforementioned
definitions, it directly follows that Fdc can be linked to θc using

Fdc = Uc√
�gd

= u∗√
�gd

Uc

u∗
=

√
θc

Uc

u∗
. (2)

When Re∗ > 400 (i.e., fully rough flow regime), the Shields diagram in Fig. 2 suggests that θc

approaches a constant value independent of Re∗ and Fdc is determined entirely from Uc/u∗. The
aforementioned studies [3,26] assumed that the flow is fully rough and θc is constant for differing
N ranges. It was further assumed that u2

∗ = vlUc, where vl is a characteristic turbulent vertical
velocity [35], whereas horizontal velocity turbulent excursions scale with Uc. To determine vl , a
phenomenological model was then used given as [3,26,36]

vl ∼
[∫ ∞

l−1
Etke(k) dk

]1/2

, (3)

where l is a characteristic length scale of the eddy near the roughness bed assumed proportional to
d [3,26]. The Etke(k) is modeled with a single exponent so that Etke(k) ∝ kσ . Based on dimensional
analysis alone, Ali and Dey [3,26] argued that Etke(k) must be related to bulk variables (Uc, h) only,
and k so that

Etke(k)

U 2
c h

= Ae(kh)σ . (4)

In principle, Etke(k) must be formulated in the same plane (i.e., roughness sublayer) where τc is
acting (see Fig. 1). This colocation means that the scaling in Eq. (4) may be plausible when local
variables in this plane are linked to bulk variables without any roughness modifications. Inclusion
of roughness effects may be possible if the similarity constant Ae in Eq. (4) is made to vary with
a roughness length that depends on d . However, the work of Ali and Dey was focused on links
between σ and α and ignored this revision. Accepting their arguments leading to Eq. (4), substituting
Eq. (4) into Eq. (3), and integrating leads to

vl

Uc
∼

(
d

h

)−(1+σ )/2

. (5)

With this estimate of vl , the turbulent shear shear stress τc can be computed from

τc = ρu2
∗ ∼ ρvlUc ∼ ρU 2

c

(
d

h

)−(1+σ )/2

. (6)

Inserting Eq. (6) into Eq. (2), the densimetric Froude number can now be derived as [3],

Fdc ∼
√

θc

(
d

h

)(1+σ )/4

=
√

θc(N )(1+σ )/4; (7)

that is, α = −(1 + σ )/4. This completes the sought link between the scaling laws in the Fdc-N curve
shown in Fig. 3 and exponents describing the decay of Etke(k) with decreasing eddy sizes. The three
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scaling regimes in the Fdc-N diagram can be piecewise recovered when assuming differing energy
transfer mechanisms dominate the Etke(k):

(1) When σ = −5/3, which is the scaling law expected for the inertial subrange for locally
homogeneous and isotropic turbulence, an α = 1/6 is recovered.

(2) When σ = −1, which is the scaling law linked to attached eddies impinging on the
surface [37–40], α = 0 is recovered.

(3) When σ = −3, an α = 1/2 is recovered. Ali and Dey argued that such a scaling law in
Etke(k) may be associated with a quasi-two-dimensional (2D) turbulence occurring over a smooth
surface (i.e., small N) experiencing an inverse cascade in energy (or forward cascade in enstrophy).
While not explicitly discussed by Ali and Dey, it has been shown elsewhere that the energy spectrum
due to the presence of the enstrophy cascade leads to a new prediction for the so-called friction factor
f ∝ (u∗/Uc)2 in rough pipes. This scaling law is f ∼ N+1 at very high Reynolds number [41].
Naturally, such a friction factor prediction results in Fdc ∼ N−1/2. For three-dimensional (3D)
turbulence at very high Reynolds number, f ∼ N1/3 (Strickler scaling), again consistent with
α = −1/6.

To recap, the analysis by Ali and Dey makes use of two assumptions: (1) a scaling argument
between bulk and local flow variables just above the sediment bed that is independent of the
roughness elements [e.g., Ae in Eq. (4)] and (2) a turbulent vertical velocity transporting momentum
to the bed with its energy linked to its size by the turbulent kinetic energy spectrum Etke(k) ∝ kσ .
Last, to recover the α = 1/2, the flow above the surface covered with sediments was assumed to
be 2D with an inverse cascade. It is to be pointed out that turbulent flows even above smooth walls
are inherently 3D and are dominated by a forward energy cascade thereby prompting interest in
alternative explanations to the reported Fdc-N scaling relations, especially at small N . The CSB
model is now used to explore such an alternative.

B. The cospectral budget model

Accepting the experimental results in Fig. 3, we ask whether a single equation can be derived
that recovers the entire Fdc-N relations across all N assuming a constant θc and a generic shape for
the energy spectrum. To answer this question, a phenomenological approach is to be followed that is
based on the CSB model. The CSB model has been used to describe flow statistics in wide-ranging
applications in stratified atmospheric flows, pipe flow, and open channel flows [34,37,42–47]. In the
CSB model, the turbulent shear stress within the roughness sublayer above the bed is linked to the
cospectrum using

τt = τb = −ρ f u′w′ = −ρ f

∫ ∞

0
Fuw(k) dk, (8)

where τt is the turbulent shear stress or the momentum flux, u′ and w′ are the turbulent velocity
fluctuations in longitudinal (along x) and vertical (along z) directions, respectively, the overline
indicates averaging over coordinates of statistical homogeneity, and Fuw(k) is the cospectrum. The
CSB model must be formulated in the roughness sublayer at some z = r shown in Fig. 1 and is
given by

∂Fuw(k)

∂t
= Puw(k) + Tuw(k) + π (k) − Duw(k), (9)

with

Puw(k) = �(z)Eww(k); Duw(k) = 2νk2Fuw(k), (10)

where r is the thickness of the roughness sublayer assumed to be proportional to d , Puw(k) is a
production term responsible for generating correlations between u′ and w′ at wave number k due
to the presence of a finite mean velocity gradient �(z) = du/dz at height z = r where the CSB
model is being formulated, Eww(k) is the vertical velocity energy spectrum at z = r, Tuw(k) is the
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FIG. 4. Schematic of the vertical velocity energy spectrum Eww (k) as a function of wave number k in
double-log representation. The right-tail effect is represented with a generic power-law exponent p. Ke, Kf ,
and Kr are characteristic wave numbers delineating different energy production and transfer regimes in the
vertical velocity. To solve the CSB model without depth integration, Ke, Kf , and Kr must be linked to boundary
conditions on the flow (i.e., h and d).

momentum flux transfer term across scales, π (k) is a pressure-velocity decorrelation term often
modeled using return to isotropy principles thereby reducing the correlation strength between u′
and w′ at scale k, and Duw(k) is a viscous destruction term also responsible for decorrelating w′
from u′. The Duw(k) is significant only at scales where the action of fluid viscosity is appreciable,
which is determined by the Kolmogorov microscale η = (ν3/ε)1/4, where ε is the mean turbulent
kinetic energy dissipation rate at z = r. Adopting the Rotta closure model for the return-to-isotropy
but modified to include the isotropization of the production term [34,42,43,47] yields

π (k) = −CR
1

tr (k)
Fuw(k) − CI�(z)Eww(k), (11)

where CR ≈ 1.8, CI = 3/5 are the Rotta and isotropization of production constants [48,49], and
tr (k) is a wave number-dependent relaxation timescale reflecting the time it takes for local isotropy
to be attained for eddies of size 1/k. When ignoring Duw(k) with respect to π (k) for steady-state
conditions at high Reynolds number, this CSB model reduces to Puw(k) = π (k) allowing the
determination of the cospectrum at k:

Fuw(k) = 1 − CI

CR
�(z)Eww(k)tr (k), (12)

where a plausible model for tr (k) = [k3Eww(k)]−1/2 [50,51] is used. This tr (k) model recovers
ε−1/3k−2/3 in the so-called inertial subrange when Eww(k) ∝ k−5/3. The cospectrum can be
integrated across all turbulent scales k to yield the shear stress acting on the bed given by

u2
∗ = τt

ρ f
= 1 − CI

CR
�(z)

∫ ∞

0

[Eww(k)]1/2

k3/2
dk. (13)

To evaluate the turbulent stress, only the Eww(k) shape above the roughness elements within the
roughness sublayer is now required. A schematic of Eww(k) consistent in shape with laboratory and
field studies [52–54] is employed and summarized in Fig. 4. Figure 4 presents the main regimes
governing the shape of Eww(k): (1) A flat portion presumably due to the randomizing effects of the
boundary on the large eddies, (2) an inertial subrange regime characterized by a “−5/3” scaling,
and (3) a wall-damping regime labeled for convenience as the “p scale.” In prior studies where
the CSB model was formulated far from a boundary, a simplified flat to −5/3 spectrum appeared
sufficient at a given height z [37,43,44]. However, for the large-roughness case where the CSB model
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is formulated in the roughness sublayer with respect to bulk variables, the tail effects or p scale
become significant and offer a link to d . This tail effect has been reported in both field and laboratory
experiments [53,55,56] near porous boundaries, where a slope (p > 5/3) has been observed above
forests and gravel beds alike and even within rod canopies [56]. The aforementioned spectral
regimes describing Eww(k) are associated with the following sizes: The flat portion applies to
scales larger than c1h(=1/Ke), where c1 = 0.8 is adopted based on pipe-flow experiments discussed
elsewhere [43], the inertial scaling or −5/3 applies to a range of scales bounded by [Ke, Kf ],
where Kf < Kr , c2r(=1/Kr ), and r is, as before, the thickness of the roughness sublayer assumed
to be proportional to d with a proportionality constant of order unity. Many laboratory and field
experiments on the roughness height [57,58] show that the value of c2 ∈ [2, 5]. Here an intermediate
value of c2 = 3.5 is employed. The p scaling applies in the range of eddy sizes bounded by [Kf , Kr].
Since there is no clear formula available to specify Kf , an ad hoc geometric averaging between
h and r is adopted, i.e., Kf = 1/(c3har1−a) where a and c3 are proportionality coefficients to be
determined. Geometric averaging has been proposed for the atmospheric boundary layer when the
need arises to determine an intermediate length scale bounded by very large and very small values
impacting the flow [54]. For the inertial subrange spectrum, Ekol (k) = Ckε

2/3k−5/3 is assumed,
where Ck = (24/55)C1

k is the Kolmogorov constant for the vertical velocity and C1
k = 1.5 [49].

Energy is cascaded from the energy containing range to inertial subrange and is finally released as
heat in the dissipation region not explicitly modeled here as the d is assumed to be larger than the
Kolmogorov microscale. The Eww(k) drops off rapidly in the viscous dissipation regime so that the
overall distortions to the turbulent stress is rather minor when ignored as discussed elsewhere [34].
This assumption is valid only when expressing the CSB model sufficiently high above the roughness
elements while maintaining a high Reynolds number so that r/η 
 1, where η is, as before, the
Kolmogorov length scale. In the regime where eddies are commensurate in size to r, the continuity
of Eww(k) across scales requires that the p regime varies as Ep(k) = Cpε

2/3K p−5/3
e k−p, where Cp

is a proportionality coefficient dependent on p determined as Cp = c7Ckc5/3−p
3 cp−5/3

1 . Here c7 is a
similarity coefficient that is connected to p as discussed elsewhere [56]. For an arbitrary p, there is
no clear theoretical basis to determine a priori c7. Hence, to constrain the resulting equation and
minimize the degrees of freedom in the derivation here, one set of data from Lischtvan and Lebediev
was selected and used to compute an optimal c7(=8). This c7 value is used for the remaining data
sets and sensitivity analyses on p. Moreover, this regime is expected to be significant when the
roughness size r is large or the flow is shallow implying the magnitude of Kr is close to Ke. To
summarize, the Eww(k) proposed here is allowed to vary with both h and d and experience multiple
scaling exponents for differing k. This marks a point of departure from the Etke(k) in Eq. (4) assumed
in the derivation of Ali and Dey.

With these eddy-size limits and their connections to the boundary conditions on the flow (h and
d),

u2
∗ = τt

ρ f
= 1 − CI

CR
�(z)

∫ Kr

Ke

E1/2
ww (k)k− 3

2 dk. (14)

Adopting the spectral shape in Fig. 4 for Eww(k) results in

u2
∗ = ζ

[
C1/2

p K
3p−5

6
e

∫ Kr

Kf

k− p+3
2 dk + C1/2

k

∫ Kf

Ke

k−7/3 dk

]
,

ζ = 1 − CI

CR
�(z)ε(z)1/3. (15)

In principle, Eq. (15) requires a depth integration to arrive at an expression linking U to u∗. As
discussed in Bonetti et al. [34], analytical tractability becomes difficult, and only a numerical
solution is possible. However, an intermediate approach may be taken if ζ , which is defined by
local variables (�, ε) at z = r, can be related to bulk variables (U, h) using naive scaling arguments.
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Such intermediate approach bypasses the need for numerical integration and maintains the desired
tractability here. It was argued by Gioia and Bombardelli [35] that at z = r,

� = du

dz
= c4

U

r
; ε = (c5U )3

h
. (16)

These relations are hereafter labeled as GB02, and they have been used in Ref. [3] when connecting
the α in Fig. 3 to σ through the dimensionless Etke(k). Both c4 and c5 were originally assumed
constants independent of r in GB02, which cannot be realistic. To illustrate why, consider two pipes
with identical diameters carrying the same flow rates (or U ) but different surface roughness: one
pipe is smooth while the other is fully rough. A scaling of the form ε = (c5U )3/D would yield the
same bulk or local ε for these two pipes unless c5 includes the roughness effects. To account for such
effects, it was assumed elsewhere [34] that the product c4c5 = c6(r/h)β . When β = 0, the arguments
by GB02 can be recovered, and this limit may be expected for the range covered by the Strickler
scaling (N > 0.01). We set β to be unity and c6 = 0.01 for N < 0.01 and gradually transition to
β = 0 as N > 0.01 guided by numerical results from the CSB model reported elsewhere [34] for
rough surfaces where the “virtual Nikuradse” equation holds. However, a separate sensitivity to the
choice of β is also presented. Inserting these amended GB02 arguments into the CSB model for
β = 1, Eq. (14) can be simplified to

τt

ρ f U 2
= D1 − D2N

4
3 (1−a) + D3N

p+1
2 (1−a) − D4N

p+1
2 , (17)

where Di are coefficients given as

D1 = 3(1 − CI )C1/2
k

4CR
c6c4/3

1 ; D2 = 3(1 − CI )C1/2
k

4CR
c6c4/3

3

D3 = 2(1 − CI )

CR

C1/2
p

p + 1
c6c

5−3p
6

1 c
p+1

2
3 ; D4 = 2(1 − CI )

CR

C1/2
p

p + 1
c6c

5−3p
6

1 c
p+1

2
2 . (18)

The c3 is a coefficient determined by a and r/h, and Cp is determined by the p scale regime, and
D1 and D4 are determined according to empirical coefficients in prior discussion. Hence, only two
degrees of freedom (a and c3) are required to estimate D2 and D3 for a preset p. At the critical state
when the sediment particles are entrained and upon assuming r ≈ d , Eqs. (2) and (17) can now be
combined to yield a single curve given as

1

F 2
dc

= Dc1 − Dc2N
4
3 (1−a) + Dc3N

p+1
2 (1−a) − Dc4N

p+1
2 , (19)

where Dci = Di/θc are coefficients involving the Shields number and are assumed to be constant
(θc = 0.06) at high Re∗ as shown in Fig. 2. This is the sought result as it shows how the regimes
in the Fc-N are directly linked to the assumed shape of the vertical velocity spectrum. The links
between the vertical velocity spectrum and the bulk flow variables are explicitly derived from GB02
subject to some amendments to include roughness effects.

III. RESULTS

For comparison, different values for p are set including the p = 3 employed in Ref. [12]. Also,
intermediate values (larger than the −5/3 scaling) of p = 2, 7/3, and 8/3 are also shown to illustrate
the dependence of α on p. For each p value, the CSB model is fitted to the measurements using
nonlinear regression, and the agreement is shown in Fig. 5. The corresponding coefficients arising
from the data fitting (for each p) are listed in Table I.

Figure 5 suggests that the CSB model can describe the reported measurements in Ref. [3]
reasonably. When p = 3, which is the value associated with the inverse cascade (or wakes generated
by von Kármán streets as discussed elsewhere [59]), a “rebound” zone is identified for N ∈ [0.1, 1].
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FIG. 5. Fitting the Fdc-N derived from the CSB model to the data in Fig. 3. The inset is an enlarged frame
associated with the large-roughness regime (N > 0.1).

Similarly, when p > 5/3, similar rebounds are also predicted by the CSB model. In fact, any value
(e.g., 5/3 to 3) for p will generate a rebound in this zone. This rebound implies that when k is
close to Kr , any deviations from the classic 5/3 scaling in the vertical velocity spectrum influences
the link between N and densimetric Froude number. However, the shape of the Fdc-N curve for
N ∈ [10−6, 0.1] appears insensitive to the precise choice of p. For this reason, a sensitivity analysis
is conducted by reporting the Pearson linear correlation coefficients for a, c3,Cp, and p as shown
in Fig. 6. The Pearson coefficient measures the strength of linear association between two variables
and is bounded between −1 and +1. The analysis shows that the fitted coefficient a is sensitive to the
choice of p as expected, since the Pearson correlation between a and p is close to 1. The magnitude
of the correlation between c3 and p is also large according to Fig. 6. This finding implies that the
length scale 1/Kf is closely related to the choice of p scale, which is expected. As p increases, the
spectrum decays faster indicating the p scale influences the amount of energy in the vertical velocity
spectrum above 1/Kf . The formulation here suggests that the area under the spectrum governed by
the −5/3 inertial scaling shrinks with Kf shifting closer to Ke and a becomes larger.

Table I shows that Ke contributes more to the intermediate wave number Kf than Kr since a is
larger than (1 − a). The analysis here identifies Dc3 to be the dominant term, which suggests that
the tail effects cannot be entirely neglected when linking Fdc to N . However, Fdc in the range of
N ∈ [10−6, 0.1] appears robust to p variations when all terms are considered. Moreover, when Kr

TABLE I. Values of the relevant coefficients obtained by fitting the CSB model to the Fdc-N data in Fig. 3
assuming c1 = 0.8, c2 = 3.5, c6 = 0.01, and c7 = 8.

β p Dc1 1 − a c3 Cp Dc2 Dc3 Dc4

1 2 0.02 0.21 18.81 0.68 1.35 2.07 0.17
1 7/3 0.02 0.20 10.06 0.96 0.59 1.32 0.23
1 8/3 0.02 0.19 6.76 1.45 0.34 1.08 0.32
1 3 0.02 0.11 8.58 0.22 0.47 0.90 0.15
1 3 0.02 0.11 8.53 0.22 0.47 0.89 None
0 3 0.02 0.37 7.60 0.25 0.40 0.74 0.15

093801-9



SHUOLIN LI AND GABRIEL KATUL

FIG. 6. Pearson correlation coefficients among a, c3 and Cp corresponding to a given p. For example, the
Pearson coefficient of two random variables (X,Y ) is calculated as the covariance, cov(X,Y ) normalized by
the standard deviations of the individual variables (=σX , σY ), i.e., cov(X,Y )/(σX σY ). Strong correlations are
shown between p and a and between p and c3.

is extended to +∞, which is shown in the black dashed line, the rebound is no longer observed.
This finding indicates that the spectral distortion in the vicinity of 5/3-law play an important role in
large-scale roughness (i.e., N > 0.1), but not across all N values. According to GB02, β approaches
zero for N ∈ [10−2, 1] to be consistent with the Stickler scaling for this range of N . If such scaling
is adopted and β = 0 in Eq. (19) throughout, then

1

F 2
dc

= Dc1N−1 − Dc2N
1
3 (1−4a) + Dc3N

p
2 (1−a)− 1

2 (1+a) − Dc4N
p−1

2 . (20)

By setting p = 3, the modeled result from Eq. (20) is also shown in Fig. 5. For N ∈ [10−2, 1],
Eq. (20) also captures the data reported in Ref. [3] where a rebound does not appear. However, for
N ∈ [10−6, 10−2], Eq. (20) fails to reproduce the entire Fdc-N relation, which confirms that GB02
scaling arguments cannot be applied in the range N ∈ [10−6, 10−2] without modifications.

IV. CAUTIONARY COMMENTS AND MODEL LIMITATIONS

The CSB model proposed here by no means offers finality to explaining the Fdc-N diagram
reported by Ali and Dey [3], and its limitations are briefly reviewed. Before delving into the model
limitations, a number of cautionary comments are warranted about the processes being represented
by the data in Ref. [3]. To begin with, the connection between Uc and sediment incipient motion
across many experiments may not be as universal as implied by Fig. 3. For example, other data
sources and studies [60] contradict the entire concept of critical velocity used in Ref. [3]. A number
of laboratory measurements also suggest that no unique threshold velocity appears to be linked to
sediment movement [61]. The Reynolds number range over which θc is experimentally independent
of Re∗ must be viewed with caution. In flume experiments with water (ν = 1 × 10−6 m2 s−1),
u∗ = (ghSo)1/2, typical h = 1 m and So = 0.01 lead to an estimate of u∗ = 0.3 ms−1 as a typical
friction velocity. To maintain Re∗ > 400 requires a minimum d = 400ν/u∗ ≈ 1 × 10−3 m. Hence,
a minimum N = d/h = 1 × 10−3 can be experimentally maintained without θc being dependent
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on Re∗. This estimate is orders of magnitude larger than the N ∈ [10−6, 10−4] reported in Ref. [3]
describing the scaling relation Fdc ∝ N−1/2. The finding here implies that the Fdc-N scaling at the
finest N ∈ [10−6, 10−4] cannot be experimentally accessed for a θc strictly independent of Re∗ using
water (or air) as fluids in typical flumes (or wind tunnels). A θc that varies linearly with Re−1

∗
(expected for Re∗ � 1) may lead to an adjustment of the Fdc-N relation by a factor that scales as
d−3/4N1/4 in both the Ali and Dey and the CSB analysis. For Re∗ ∈ [3, 400], the situation may
be subtler. The θc varies from a minimum of 0.02 to a maximum of 0.06, but the variations in
(θc)1/2 are between 0.14 and 0.24, which is much smaller than the factor of 10 variations in Fdc for
N ∈ [10−6, 10−4]. So pragmatically, a near constant (θc)1/2 may still be acceptable even in the range
of N ∈ [10−6, 10−4], perhaps explaining the robustness of the α = 1/2 for this range of N in typical
flume experiments.

From a theoretical perspective, the space-time distribution of eddies on and within the bed is
needed, and formal double averaging must be used to obtain up-scaled approximations starting from
single-particle equations and its interaction with neighboring particles. The CSB model proposed
here makes no such attempt and it must be viewed only as a complementary explanation to the
insightful but piecewise analysis offered by Ali and Dey [3]. The CSB model accounted for only
two terms: a stress production and pressure decorrelation. Transfer of stresses across scales as well
as molecular effects are ignored (though they can be incorporated in principle). Moreover, the CSB
model assumed that the time for the return to isotropy at any scale can be inferred from the vertical
velocity energy content, which may not be a valid approximation (relaxation time and time to
isotropy can differ for differing k regimes). Perhaps among the most ad hoc assumptions made
in the CSB model derivation are links between local and bulk variables. While the links employed
here accommodate expected deviations from those proposed by GB02 and used in Ref. [3], they
remain questionable across the entire range of roughness values. Another ad hoc assumption is the
links between the transition zones across scales in the assumed vertical velocity spectrum and the
variables h and d . To assess how robust the findings here are to these assumed links, a sensitivity
analysis was conducted. This analysis identified the zones where assumptions about the p scale
impacted the entire Fdc-N curve.

Despite all the aforementioned criticisms, it is safe to state that the work here provides a single
expression that summarizes the data featured by Ali and Dey [3]. The theoretical argument leading to
this single expression may be viewed as naive but pragmatic. Thus, the expression derived here may
be imminently used in models aimed at describing sediment transport across large spatial domains,
a topic that is gaining prominence given the advancement in remote sensing platforms.

V. CONCLUSION

The multiscaling regimes of sediment entrainment encoded in the Fdc-N curve reported by Ali
and Dey [3] have been considered using a cospectral budget model where integration across all
turbulent scales and z are needed. A single expression that links Fdc to N was proposed using the
CSB model that recovers all six decades of N variations. The CSB model shows that the vertical
velocity spectrum Eww(k) can explain the entire Fdc-N curve, not just piecewise scaling. Moreover,
the k−3 scaling used by Ali and Dey, a signature of an enstrophy cascade dominating the spectrum,
is not necessary per se. The CSB model highlights another issue rarely considered when linking
spectral exponents to scaling laws in the Fdc-N curve: Inferring local variables from bulk variables.
This inference is by no means straightforward, especially for N values that fall outside the original
Strickler N regime. Studies using the so-called virtual Nikuradse [34,62] as well as studies dealing
with intermittency corrections to turbulent spectra [63,64] all point to deviations from the Strickler
scaling for N ∈ [10−6, 10−2.5]. These effects were partly accommodated for through a nonzero β

here.
While the CSB model can describe quantitatively the measured Fdc-N curve, its three key

parameters a, c3, and Cp cannot be predicted on theoretical grounds. To be able to predict these
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coefficients requires models that describe the shape of the vertical velocity spectrum (including any
transition zones) only as a function of d , h, and U , a topic that is better kept for future research.
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