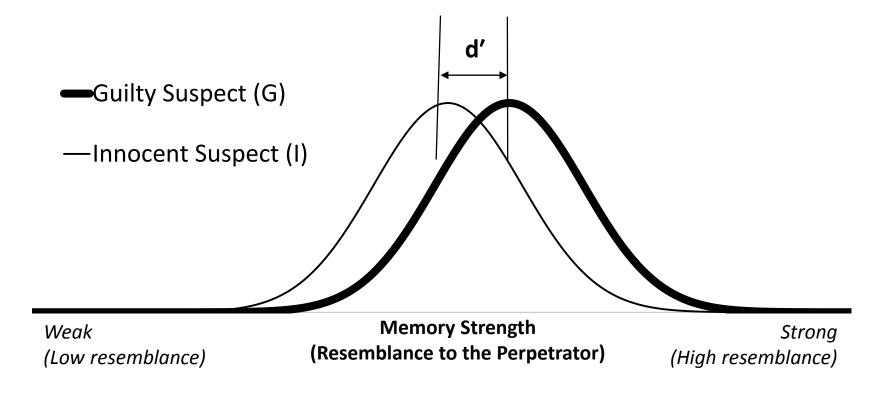
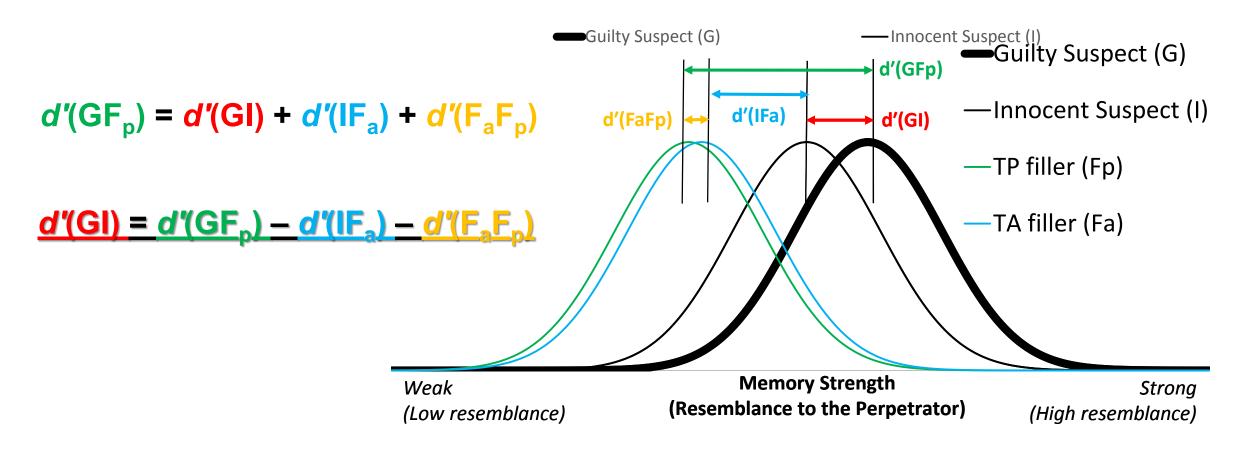
Multi-d' Model: New Signal-Detection-Theory-Based Framework for Eyewitness Performance in Lineups

Jungwon Lee (John Jay College of Criminal Justice


and the Graduate center, CUNY)

Steve D. Penrod (John Jay College of Criminal Justice, CUNY)

The present study is based upon work supported by the National Science Foundation under Grant SES-1754079. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.


Signal Detection Theory (SDT) in Eyewitness Research

- SDT explains eyewitness performance in tasks which involve the discriminability of a guilty suspect from an innocent suspect
- d' = z(guilty suspect ID rates) z(innocent suspect ID rates)
- Empirical discriminability (Wixted & Mickes, 2015b; Wixted & Mickes, 2018)

Multiple d' in Lineups

 Four different d' measures emerge by considering the memory-strength distribution of fillers

Theoretical Validation of Multi-d' Model

• Additivity of d' (Macmillan & Creelman, 2005)

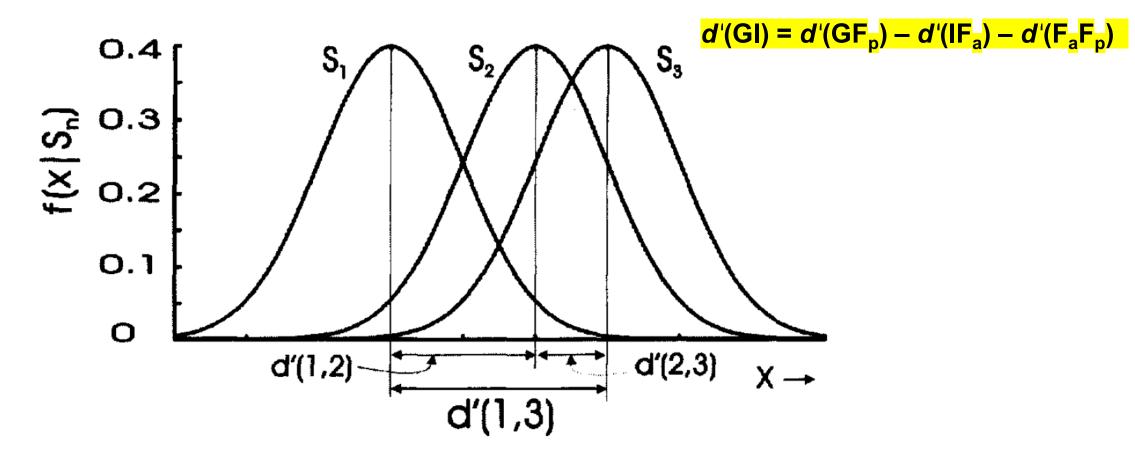


FIG. 5.1. An additivity condition (Eq. 5.1) for perceptual one-dimensionality: d'(1,3) = d'(1,2) + d'(2,3).

Empirical Validation of Multi-d' Model

 $d'(GI) = d'(GF_p) - d'(IF_a) - d'(F_aF_p)$

Study	Lineup Type	G	Fp	R_p	I	F_{a}	R_a	d'(GF _p)	d'(IF _a)	d'(F _a F _p)	d'(GI)	$d'(GF_p)$ $- d'(IF_a)$ $- d'(F_aF_p)$
Carlson & Carlson (2014)	Simul.	.32	.44	.24	.06	.64	.30	-0.30	-1.87	0.50	1.07	1.07
	Seq.	.25	.55	.20	.07	.69	.24	-0.80	-1.98	0.37	0.81	0.81
Steblay, Dysart & Wells (2011)	Simul.	.52	.25	.24	.28	.26	.46	.73	.06	.03	.64	.64
	Seq.	.44	.19	.39	.15	.17	.68	.73	08	08	.89	.89

Application of Multi-d' model to Show-ups vs. Lineups

- Duncan's signal detection model of compound decision tasks (SDT-CD, 2005)
 - ✓ eyewitnesses viewing lineups discriminate a perpetrator from fillers (identification decision) in the context of uncertainty regarding the presence of the perpetrator (detection decision)
- Identification-discriminability comprises d'(GF_p), d'(IF_a), & d'(F_aF_p)
- **Detection-discriminability** is quantified by the imbalance of rejection rates between TP and TA lineups.
 - \checkmark z(Rejection rates in TA lineups) z(Rejection rates in TP lineups) = $d'(R_aR_p)$

Application of Multi-d' model to Show-ups vs. Lineups

		Show-up		lineups		
		TP	TA	TP	TA	
	Suspect ID	.47	.23	.45	.17	
	Filler ID	NA	NA	.24	.26	
	Rejection	.53	.77	.31	.57	
	d'(GI)	0.66		0.83		
Identification	$d'(GF_p)$	NA NA		0.!		<i>ferential Filler Siphoning Effect</i> th et al., 2017; Wells, Smalarz, & Smith, 2015;
	d'(IF _a)			-0.		s, Smith, & Smalarz, 2015)
Detection —	$-$ d'($F_a F_p$)	N	А	0.0	₀₆ <mark>d'(G</mark>	$I) = d'(GF_p) - d'(IF_a) - d'(F_aF_p)$

Note. The data of Table 1 in Steblay, Dysart, Fulero, & Lindsay's meta-analysis (2003) was used.

For more details...

 Lee, J., & Penrod, S. D. (in press). New Signal-Detection-Theory-Based Framework for Eyewitness Performance in Lineups. *Law and Human Behavior*. doi: http://dx.doi.org/10.1037/lhb0000343

Contents

- Multiple d' Measures in prior eyewitness studies
- Relationships among Multiple d' Measures
- Application of the Multi-d' Model to Eyewitness Research
 - Lineup Bias
 - Filler Selection Methods (match-to-suspect vs. match-to-description)
 - Eyewitness Confidence
 - Lineup Presentation Mode (simultaneous vs. sequential)
- Email to request copies of the paper