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Objectives: Eyewitness research has adapted signal detection theory (SDT) to investigate eyewitness perfor-
mance. SDT-based measures in yes/no tasks fit well for the measurement of eyewitness performance in
show-ups, but not in lineups, because the application of the measures to eyewitness identifications neglects the
role of fillers. In the present study, we introduce a SDT-based framework for eyewitness performance in
lineups—Multi-d= Model. Method: The Multi-d= model provides multiple discriminability measures which
can be used as parameters to investigate eyewitness performance. We apply the Multi-d= model to issues in
eyewitness research, such as the comparison of eyewitness discriminability between show-ups and lineups; the
influence of lineup bias on eyewitness performance; filler selection methods (match-to-description vs.
match-to-suspect); eyewitness confidence; and lineup presentation modes (simultaneous vs. sequential line-
ups). Results: The Multi-d= model demonstrates that the discriminability of a guilty suspect from an innocent
suspect is a function of discriminability involving fillers; and underscores that the decisions that eyewitnesses
make in lineups can be regarded from two perspective—detection and identification. Conclusions: We
propose that the Multi-d= model is a useful tool to understand decisionmakers’ performance in a variety of
compound decision tasks, as well as eyewitness identifications in lineups.

Public Significance Statement
This study introduces multi-d= model, which is a framework for explaining eyewitness performance
in lineups based on signal detection theory. The multi-d= model calls attention to the role of fillers
for constructing eyewitnesses’ ability to correctly identify a guilty suspect while avoiding misiden-
tifications of an innocent suspect. The multi-d= model also provides multiple measures which can be
used as parameters to investigate eyewitness performance.
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Eyewitness research has adapted signal detection theory (SDT) to
measure eyewitness performance (Meissner, Tredoux, Parker, & Ma-
cLin, 2005; Palmer & Brewer, 2012; Wixted & Mickes, 2014). SDT

explains human performance in tasks which involve the discrimina-
tion of stimulus-presence versus stimulus-absence. For example, a
participant participates in a series of yes/no trials in which the partic-
ipant listens for a signal or a noise and must respond “Yes, it’s a
signal” when he or she hears a signal or “No, it’s not a signal” when
he or she hears only noise. That is, the participant must discriminate
signal-presence from signal-absence. The participant’s response can
be classified into a 2 � 2 matrix (see Table 1). The participant decides
whether to respond affirmatively or negatively based on stimulus
strength. If the strength of a stimulus is greater than a decision
criterion set by the participant, then he or she would respond affir-
matively. Otherwise, he or she would respond negatively. When the
participant sets a stringent criterion, the degree of stimulus strength
needed for an affirmative response is greater than the requirements
within a loose criterion. Figure 1 shows distributions of signal strength
and noise strength with the placement of a decision criterion which
must be exceeded in order for the participant to indicate he or she has
detected a signal. As shown in Figure 1, when the criterion is strin-
gent, the participant is less likely to respond affirmatively, which
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reduces both mistaken identifications of a noise as the signal (i.e.,
false alarm) and correct identifications of the signal (i.e., hit). On the
other hand, when the participant uses a loose criterion, he or she is
more likely to respond affirmatively, which increases both false
alarms and hits.

Parameters have been introduced to measure the ability to
discriminate between signal-presence and signal-absence (e.g., A=,
Pollack & Norman, 1964; Az, Swets & Pickett, 1982; d= and area
under the curve, Green & Swets, 1966). To measure discriminabil-
ity of a signal from a noise in yes/no tasks, memory studies have
frequently used indices that estimate the distance between the
mean of the signal strength distribution and the mean of the noise
strength distribution. Equations for computing the distance vary
with assumptions regarding variances of the signal and noise
distributions. When different variances are assumed between sig-
nal and noise distributions (�signal

2 � �noise
2 ), da and de= (Green &

Swets, 1966; Irwin & McCarthy, 2013) can be used to estimate the
distance between the signal and noise distributions.

da �
�signal � �noise

���signal
2 � �noise

2 �
2

de� �
�signal � �noise

(�signal � �noise)
2

When equal variance is assumed between signal and noise
distributions (�signal

2 � �noise
2 ), the equations for da and de= reduce to

the equation for d= below; and the distance between the two
distributions is estimated in standard deviation units of the
noise distribution. d= can be also calculated with the inverse
cumulative distribution function of hit and false alarm rates, as in
the following equation; d= � z(hit rate) � z(false alarm rate).1

d� �
�signal � �noise

�noise

Because basic memory recognition tasks generally demonstrate
unequal variance between signal and noise distributions (Mickes,
Wixted, & Wais, 2007; Starns & Ratcliff, 2014), d= computed from
the z-transformed hit and false alarm rates may not precisely estimate
eyewitness discriminability under the unequal variance assumption.
Nevertheless, in addition to ease of computation, we use the d= as a
primary index for the multi-d=model, for the following three reasons.

First, unlike basic memory recognition tasks which demonstrate
�signal

2 � �noise
2 , eyewitness identification data from lineup tasks often

supports equal variance models in model-recovery simulations. For
example, when performing model-recovery simulations with empiri-
cal eyewitness data, unequal variance models (vs. equal variance
models) did not produce better model fits or even produced worse
model fits (Colloff, Wade, & Strange, 2016; Wixted, Vul, Mickes, &
Wilson, 2018).

Second, the difference in the value of estimated discriminability
between equal variance and unequal variance assumptions could be
minor. To the best our knowledge, Wixted and Mickes’ (2018) study
is currently the only published eyewitness study which provided
values of theoretical discriminability under an unequal variance as-
sumption. In their study, using confidence-based ROC data from
Mickes et al. (2017), ensemble model estimated the discriminability
of a guilty suspect from an innocent suspect as 2.24 under an unequal
variance assumption, whereas the z-transformed hit rate minus the
z-transformed false alarm rate estimated the discriminability as 2.20.
In instruction-based ROC data from Mickes et al. (2017), their en-
semble model yielded the discriminability values of 2.06 for the two
extreme conditions and 2.22 for the two more neutral conditions,
while the z transformation equation produced the discriminability of
1.92 and 2.23, respectively.

Third, d= computed from z-transformed hit and false alarm rates is
regarded as an index of empirical discriminability of eyewitnesses in
lineups, which is a major interest of policymakers (Wixted & Mickes,
2015b, 2018). The implications of the distinction between empirical
discriminability and theoretical/underlying discriminability in eyewit-
ness identifications have been discussed in prior eyewitness studies
(Wells, Smalarz, & Smith, 2015; Wixted & Mickes, 2015b, 2018).
Wixted and Mickes (2018) noted that theoretical discriminability is a
major interest of theoreticians who investigate “unobservable memory
or perceptual signals from two classes of repeatedly presented stim-

1 z(p) is the inverse cumulative distribution function of a normal distri-
bution (MacMillan & Creelman, 2005). The formula in Excel program is
NORM.S.INV(hit rate) � NORM.S.INV(false alarm rate).

Table 1
A 2 � 2 Matrix of Participant Performance in Yes/No Signal
Detection Tasks

Actual status

Participant response
Presence of

signal
Absence of

signal

“Yes, it’s a signal” True positive False positive
“No, it’s not a signal” False negative True negative

Figure 1. Criterion shift and response accuracy in SDT.
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uli” (p. 2). Theoretical discriminability is generally estimated either by
simulations or by fitting models to data (Palmer & Brewer, 2012;
Smith, Wells, Smalarz, & Lampinen, 2018; Wixted et al., 2018).
However, empirical discriminability (e.g., partial area under the ROC
curve) is the measure of applied interest, and it can be influenced by
additional sources of variance over and above the memory signals that
lineup members generate (e.g., variability in criterion placement and
other latent variables). Following Mickes, Moreland, Clark, and Wixt-
ed’s (2014) recommendation, Wixted and Mickes (2018) argued that
d= computed from a pair of z-transformed hit and false alarm rates
provides a useful proxy for empirical discriminability. Used this way,
it is an important index for policymakers who mainly care about “the
degree to which participants correctly sort target and foil stimuli into
their true categories” (Wixted & Mickes, 2018, p. 2). We similarly
argue that z-transformed measures of other aspects of witness perfor-
mance can provide us with important insights into the manner in
which a forensically relevant factors influence multiple aspects of
witness performance.

Given that the purpose of the multi-d= model is not to precisely
estimate the underlying discriminability of a guilty suspect from an
innocent suspect, but to consider issues such as how fillers influence
the empirical discriminability of a guilty suspect from an innocent
suspect, we use d= computed from z-transformed hit and false alarm
rates as the distance measure of memory-strength distributions of
lineup members in multi-d= model.

Multiple Discriminability Measures of Eyewitness
Identification in Lineups

The traditional framework of SDT in yes/no tasks fits well for the
measurement of eyewitness performance in show-ups. In parallel with
the task of discriminating between signal-presence and signal ab-
sence, eyewitnesses viewing show-ups must discriminate whether a
perpetrator is present or absent in show-ups (i.e., perpetrator � signal;
innocent suspect � noise). However, when applying SDT-based
measures in yes/no tasks to eyewitness performance in lineups, the
application encounters a problem, which is caused by the presence of
fillers in lineups. Because lineups include fillers as well as a guilty/
innocent suspect, memory-strength distributions of fillers arguably
should be also drawn for eyewitnesses viewing lineups. Figure 2
illustrates that four different discriminability measures emerge by
considering the memory-strength distribution of fillers—the discrim-
inability of a guilty suspect from an innocent suspect, d=(GI); the
discriminability of a guilty suspect from fillers in target-present (TP)
lineups, d=(GFp); the discriminability of an innocent suspect from
fillers in target-absent (TA) lineups, d=(IFa); and the discriminability
of fillers in TP lineups from fillers in TA lineups, d=(FaFp). The latter
three discriminability measures arise in lineups but not in show-ups.

When an innocent suspect does not stand out from fillers in TA
lineups (i.e., a perfectly fair TA lineup), the innocent suspect and
TA filler distributions will overlap with each other. When the same
fillers are used in TP and TA lineups, one might expect that the TP
and TA filler distributions should overlap with each other. How-
ever, the TP and TA filler distributions do not necessarily overlap
with each other because guilty and innocent suspects differently
affect the memory strength of fillers. In general, the memory
strength of TP fillers is weaker than that of TA fillers because the
guilty suspect makes fillers less appealing than does an innocent
suspect2—think about the color gray. When you compare it with

black, the gray looks brighter than when you compare it with
white.

Figure 3 shows the memory-strength distributions of suspects
and fillers in empirical eyewitness studies which used either the
same fillers (Panel A and C) or different fillers (Panel B and D) in
TP and TA lineups. We analyzed Lee, Mansour, and Penrod’s
(2019) database—for more detailed descriptions of the database,
see Supplemental Material 1, assuming that the standard deviation
of all memory-strength distributions is equal to 1. In Figure 3, the
inverse cumulative distribution function of each identification (ID)
rate indicates the distance between the decision criterion and the
mean of the memory-strength distribution of the lineup member
who is associated with the ID rate. Decision criterion is computed
by �1 � {z(guilty suspect ID rate) � z(innocent suspect ID
rate)}/2 (Swets, 1973). For example, when a guilty suspect ID
rate � .50 (i.e., z(.50) � 0) and the decision criterion � 0.40, the
mean of the memory-strength distribution of the guilty suspect is
equal to 0.40 (i.e., 0.40 (the criterion) � 0 (the z-value of the guilty
suspect ID rate)). Because we are interested in the memory
strength of an average filler (rather than the total fillers) in
memory-strength distributions, we divided a filler ID rate by the
total number of fillers in the lineup and computed the z-value of
the average filler ID rate. As shown in Figure 3, filler memory-
strength distributions were different between TP and TA lineups,
even though the same fillers were used in both TP and TA lineups
(Panel A and C). In addition, Panel C and D in Figure 3 also show
that innocent suspect and TA filler memory-strength distributions
overlapped with each other for studies which assumed a fair TA
lineup (i.e., when an innocent suspect and TA fillers have the same
memory strength—denoted as average-filler studies).

The different memory-strength distributions between TP and
TA fillers for studies which used the same fillers (Panels A and C)
implies that memory-strength of lineup members is contextually
dependent. When the same fillers are used in TP and TA lineups,
the actual similarity of the fillers to the perpetrator is not different
between TP and TA lineups; but eyewitnesses perceive the fillers
to be less similar to the perpetrator in TP lineups than in TA
lineups. More importantly, the contextually dependent memory-
strength is also found for guilty and innocent suspects, not only for
fillers. The discriminability of a guilty suspect from an innocent
suspect varies with context (i.e., compared-to-what), even though
the same guilty and innocent suspects were used in the lineups
(Bruer, Fitzgerald, Therrien, & Price, 2015; Carlson, Gronlund, &
Clark, 2008). We provide an example of the contextually depen-
dent memory-strength of guilty and innocent suspects in Supple-
ment Material 2, by reanalyzing results from Carlson, Gronlund,
and Clark’s (2008) study.

2 An alternative explanation about the d= of TP fillers versus TA fillers
is present-absent criteria discrepancy theory (Smith, Wells, Lindsay, &
Myerson, 2018). According to the theory, the memory strength of TP filler
does not differ from that of TA fillers. However, looser criteria in TA
lineups (vs. TP lineups) increase TA filler ID rates relative to TP filler ID
rates, which leads to the d= of TP fillers versus TA fillers.
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Multiple Discriminability Measures in Previous
Eyewitness Research

Compared with d=(GI), the other discriminability measures in-
volving fillers have not been paid much attention in prior studies,
although eyewitness research has emphasized the importance of
fillers in lineups (Clark, Howell, & Davey, 2008; Wells, 1993).
Indeed, some studies propose that the discriminability of a guilty
suspect from an innocent suspect is of paramount practical interest,
while the discriminability of a guilty/innocent suspect from fillers
is unimportant (Wixted & Mickes, 2015a).

Although there have been attempts to incorporate filler IDs
into SDT-based discriminability measures, such as d=-
identification (Horry & Brewer, 2016) and location ROC
(LROC; Wixted & Mickes, 2015a), the attempts have limita-
tions. For example, Horry and Brewer (2016) adapted the
estimation of d= for n-alternative forced choice (nAFC; Alex-
ander, 2006) to measure the discriminability of a guilty suspect
from TP fillers, which is similar to d=(GFp) in the multi-d=
model, and labeled it d=-identification. However, because d=-
identification was originally developed for forced choice tasks,
the d= measure is not entirely apt with respect to the discrim-
inability of eyewitnesses who can reject lineups. In addition,
d=-identification focuses on only the discriminability of a guilty
suspect from TP fillers, but not the discriminability of an
innocent suspect from TA fillers. In Wixted and Mickes’
(2015b) study, LROC measures the discriminability of a guilty
suspect from an innocent suspect plus TA fillers. However, the
study adapted LROC to justify the use of ROC curves, which
focus on the discriminability of a guilty suspect from an inno-
cent suspect, rather to incorporate filler IDs into ROC curves.

Other than developing discriminability measures involving
fillers, some studies incorporate filler IDs into SDT measures
by including fillers as a parameter in model simulations to
estimate underlying d=(GI) from empirical data (Colloff et al.,
2016; Palmer & Brewer, 2012; Wixted et al., 2018). Those data
simulations estimate not only d=(GI), but also the discriminabil-
ity of a suspect from fillers. Data simulations that allow mul-
tiple discriminability measures are also found in the basic

memory literature (e.g., Lampinen, Odegard, Blackshear, &
Toglia, 2005). However, because the eyewitness researchers’
major interest is to build a best-fitting model to precisely
estimate underlying d=(GI) in empirical data, those data simu-
lations focus on the estimation of d=(GI), rather than explaining
how the discriminability involving fillers influences the con-
struction of d=(GI).

The neglect of the discriminability measures involving fillers
is partly caused by applying the 2 � 2 SDT matrix of yes/no
tasks to eyewitness performance in lineups, which is based on
a 2 � 3 matrix (Wells et al., 2015; see Table 2). Although filler
IDs are technically positive responses, studies wedded to the
2 � 2 framework had to regard them as negative responses like
rejections. By combining filler IDs and rejections into negative
responses, d=(GI) becomes the only discriminability of interest
in prior SDT-based eyewitness studies. Therefore, we propose a
new SDT framework for eyewitness performance in lineups
incorporating filler IDs; and demonstrate how the multiple
discriminability measures involving fillers are related to d=(GI).

Decomposition of d=(GI)

As mentioned earlier, Figure 2 illustrates four different discrim-
inability measures of eyewitnesses viewing lineups. The formulae
below express the relationships among the discriminability mea-
sures. Given that d= between signal distributions of two stimuli is
computed by the z-transformed ID rate of a stimuli minus the
z-transformed ID rate of another stimuli (see Footnote 1), d=(GFp)
and d=(IFa) can be expressed as Formula 1 and 2. Definitions of the
acronyms below are provided in Supplemental Material 3.

d�(GFp) � z(G) � z(Fp) (Formula 1)

d�(IFa) � z(I) � z(Fa) (Formula 2)

Considering Formula 1 and 2, d=(GFp) – d=(IFa) can be ex-
pressed as below.

d�(GFp) � d�(IFa) � {z(G) � z(Fp)} � {z(I) � z(Fa)}
d�(GFp) � d�(IFa) � z(G) � z(Fp) � z(I) � z(Fa)
d�(GFp) � d�(IFa) � z(G) � z(I) � z(Fp) � z(Fa) (Formula 3)

Figure 2. Discriminability measures of eyewitness performance in lineups.
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Because z(G) � z(I) is d=(GI), Formula 3 can be simplified as
below.

d�(GFp) � d�(IFa) � d�(GI) � z(Fp) � z(Fa)
d�(GFp) � d�(IFa) � d�(GI) � z(Fa) � z(Fp) (Formula 4)

Considering the z-transform equation (see Footnote 1), z(Fa) �
z(Fp) can be denoted as d=(FaFp). Therefore, with substitutions,
Formula 4 can be simplified as below.

d�(GFp) � d�(IFa) � d�(GI) � d�(FaFp)
d�(GFp) � d�(IFa) � d�(FaFp) � d�(GI)

Therefore, d�(GI) � d�(GFp) � d�(IFa) � d�(FaFp) (Formula 5)

Formula 5 perfectly fits the results of any empirical eyewitness
studies. For example, as shown in Table 3, when comparing the
last two columns in the table, the values of d=(GI) and d=(GFp) �
d=(IFa) � d=(FaFp) are identical to each other.

A principle of SDT also predicts Formula 5. According to the
additivity of d= in SDT, “the sensitivity statistic d= is a distance
measure, and distances along a single dimension add up . . . The
sensitivity distance between any stimulus and the endpoint stim-
ulus is a useful measure, cumulative d=, that can be computed by
adding up adjacent d= values . . . The value of cumulative d=
obtained between both endpoint stimuli represents the total sensi-
tivity of the observer to the stimulus set and is called total d=. Total

Figure 3. Memory-strength distributions of suspects and fillers in prior eyewitness studies. Innocent-suspect
studies designated an innocent suspect in TA lineups. Average-filler studies assumed a fair TA lineup and
calculated an innocent suspect ID rate by dividing the total filler ID rate in a TA lineup by the total number of
persons in the lineup. The excel spreadsheet containing the computational formulas is available on OSF website
(http://bit.ly/Multi_d).
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d= is the basic measure of observer performance on the entire
stimulus ensemble” (Macmillan & Creelman, 2005, p. 114). Given
that memory-strength distributions of lineup members are located
on the same dimension (i.e., the resemblance to the perpetrator),
distances among the distributions can be cumulated. Therefore, in
Figure 2, d=(GFp), which is the total d=, equals the sum of d=(GI),
d=(IFa), and d=(FaFp). The equation, d=(GFp) � d=(GI) � d=(IFa) �
d=(FaFp), can be transformed to Formula 5, as below.

d�(GFp) � d�(GI) � d�(IFa) � d�(FaFp)
d�(GFp) � d�(IFa) � d�(FaFp) � d�(GI)

Therefore, d�(GI) � d�(GFp) � d�(IFa) � d�(FaFp).

We suggest that d=(FaFp) reflects the differential appeal of fillers
between TP and TA lineups. In general, if the same fillers are used
in TP and TA lineups, a filler ID rate is higher for TA lineups than
for TP lineups because an innocent suspect is less likely to stand
out from fillers than the guilty suspect. If an innocent suspect is a
clone of the guilty suspect (i.e., if their actual memory-strength
distributions have the same � and �2), the value of d=(FaFp) is
zero. However, such a case is nearly impossible in the real world.
Therefore, the value of d=(FaFp) is generally positive. Of course, if
different fillers are used in TP and TA lineups, the relative appeal
of the fillers may vary more dramatically. We denote the index of
the differential appeal between TP and TA fillers by d=(FaFp) �
z(Fa) � z(Fp), rather than d=(FpFa) � z(Fp) � z(Fa), to make the
index value increase as the differential appeal grows.

In sum, the decomposition of d=(GI) demonstrates that d=(GI) is
a function of the discriminability of a suspect from fillers and the
differential appeal of fillers between TP and TA lineups.

Multiple Discriminability Measures in
Show-Ups and Lineups

Eyewitness identifications in lineups can be regarded as a com-
pound decision task, which is a combination of detection and

identification problems (Duncan, 2006). According to Duncan’s
(2006) signal detection model of compound decision tasks (SDT-
CD), eyewitnesses viewing lineups identify a perpetrator (identi-
fication decision problem) in the context of uncertainty regarding
the presence of the perpetrator (detection decision problem).

In the same vein as SDT-CD, we propose that the decisions
eyewitnesses make in lineups can be regarded from two perspec-
tive—the discrimination of the presence versus absence of a per-
petrator (i.e., detection) and the discrimination of a suspect from
fillers (i.e., identification). The second discrimination comprises
d=(GFp), d=(IFa), and d=(FaFp), which consequently yields d=(GI).
We argue that the ability relevant to the first discrimination is
quantified by the balance of rejection rates between TP and TA
lineups. That is, we calculate the discriminability of perpetrator-
presence versus perpetrator-absence in lineups as z(Ra) �
z(Rp)—we denote this parameter by d=(RaRp). Penrod (2003)
termed the difference in rejection rates a measure of the proportion
of “reliable” eyewitnesses—those who could detect the guilty
suspect in TP lineups but would reject TA lineups. Horry and
Brewer (2016) used a similar index, which was labeled as d=-
detection, to estimate eyewitnesses’ discrimination of the presence
versus absence of a perpetrator. Their index was z(1–Rp) �
z(1–Ra), which produces the same value of z(Ra) � z(Rp). We can
test the validity of d=(RaRp) by applying the parameter to eyewit-
ness performance in show-ups and lineups using meta-analytic
data from Steblay, Dysart, Fulero, and Lindsay (2003; see Table
4). Of the two types of discriminations, eyewitnesses viewing
show-ups are only involved in the discrimination of the presence
versus absence of a perpetrator (i.e., whether to reject lineups or
not), because show-ups do not include fillers. Therefore, for show-
ups, the discriminability of a guilty suspect from an innocent
suspect is identical to the discriminability of perpetrator-presence
versus perpetrator-absence. Table 4 demonstrates that d=(GI) and
d=(RaRp) are identical to each other in show-ups.

It is notable that d=(RaRp) for show-ups is approximately equal
to that for lineups. That is, eyewitnesses’ discriminability between
target-presence and target-absence was not different for show-ups
and lineups. However, compared with show-ups, lineups produced
higher discriminability of a guilty suspect from an innocent sus-
pect through the comparisons between a suspect and fillers. As
shown in Table 4, d=(GFp) was higher than d=(IFa) because of the
differential filler siphoning effect (Smith, Wells, Lindsay, & Pen-
rod, 2017; Wells et al., 2015; Wells, Smith, & Smalarz, 2015). The
effect refers to the phenomenon that fillers absorb positive IDs
more in TA lineups than in TP lineups (Smith et al., 2017; Wells
et al., 2015; Wells et al., 2015). That is, as the effect operates more
strongly, guilty suspect ID rates increase; TP filler ID rates de-

Table 2
A 2 � 3 Matrix of Eyewitness Performance in Prior
Eyewitness Studies

Actual status

Eyewitness response
Presence of
perpetrator

Absence of
perpetrator

Suspect ID True positive False positive
Filler ID False negative True negative
Rejection False negative True negative

Table 3
Application of Formula 5 to Results of Prior Eyewitness Studies

Study Lineup type G Fp Rp I Fa Ra d=(GFp) d=(IFa) d=(FaFp) d=(GI)
d=(GFp) � d=(IFa) �

d=(FaFp)

Carlson and Carlson (2014) Simultaneous .32 .44 .24 .06 .64 .30 �.30 �1.87 .50 1.07 1.07
Sequential .25 .55 .20 .07 .69 .24 �.80 �1.99 .37 .81 .81

Steblay, Dysart, and Wells (2011) Simultaneous .52 .25 .24 .28 .26 .46 .72 .06 .03 .63 .63
Sequential .44 .19 .39 .15 .17 .68 .73 �.08 �.08 .89 .89

Note. The excel spreadsheet containing the computational formulas is available on OSF website (http://bit.ly/Multi_d).
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crease; innocent suspect ID rates decrease; and TA filler ID rates
increase, which increases d=(GFp) � d=(IFa) and consequently
d=(GI). Therefore, the imbalance between d=(GFp) and d=(IFa) led
to the higher d=(GI) for lineups than for show-ups.

Relationships Among Multiple
Discriminability Measures

In this section, we examine relationships among the five d=
measures—d=(GI), d=(GFp), d=(IFa), d=(FaFp), and d=(RaRp)—with
an eyewitness database. We built the database by combining two
data sets, Table A.1 in Clark, Howell, and Davey (2008) and a
subset of the meta-analysis database of Lee and Penrod (2019)—

for more detailed descriptions of the database, see Supplemental
Material 4.

First, we looked at correlations and scatterplots of the multiple d=
measures (see Figure 4). We separated studies which designated an
innocent suspect in TA lineups (innocent-suspect studies) from stud-
ies which assumed TA lineups to be perfectly fair by calculating
innocent suspect ID rates by dividing the total filler ID rate in a TA
lineup by the number of the lineup members (average-filler studies).
The two sets of studies may represent distinct eyewitness situations.
Innocent-suspect studies may represent situations where an innocent
suspect is selected for similarity to the guilty suspect, whereas
average-filler studies represent situations in which an innocent suspect
arises for reasons other than a general match to the description of a
perpetrator (e.g., anonymous tips to police; or a fixed style of com-
mitting a crime—modus operandi [MO]). The first situation is more
likely to give rise to a biased TA lineup than the latter situation,
assuming fillers are selected to match general descriptions of the
perpetrator and the appearance of the suspect.

All correlations among the multiple d= measures were compa-
rable for both study types, except the correlation between d=(GI)
and d=(IFa). The correlation between d=(GI) and d=(IFa) was neg-
ative for innocent-suspect studies, r � �.38, p 	 .001 while being
positive for average-filler studies, r � .17, p 	 .01. This pattern
arises because innocent suspect ID rates had a negative correlation
with d=(GI) for both innocent-suspect and average-filler studies
(r � �.66 and �.45, respectively, ps 	 .001); but the correlation
of innocent suspect ID rates and d=(IFa) was positive for innocent-
suspect studies, r � .75, p 	 .001—which is not a surprise as
many of these lineups were intentionally biased for research pur-
poses; and nonsignificant for average-filler studies, r � �.10, p �

Table 4
Multiple Discriminability Measures in Show-Ups and Lineups

Discriminability
measure

Show-Up Lineups

TP TA TP TA

Suspect ID .47 .23 .45 .17
Filler ID NA NA .24 .26
Rejection .53 .77 .31 .57
d=(GI) .66 .83
d=(GFp) NA .58
d=(IFa) NA �.31
d=(FaFp) NA .06
d=(RaRp) .66 .67

Note. The data of Table 1 in Steblay, Dysart, Fulero, and Lindsay’s
(2003) meta-analysis was used. The excel spreadsheet containing the
computational formulas is available on OSF website (http://bit.ly/Multi_d).

Figure 4. Correlations and scatterplots of multiple d= measures. The left panel was generated from innocent-
suspect studies, n � 146; the right panel was generated from average-filler studies, n � 243. † p 	 .10. � p 	
.05. �� p 	 .01. ��� p 	 .001.
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.14—again, not a surprise as these lineups are analytically pre-
sumed to be fair.

The positive correlation between d=(GI) and d=(FaFp) in Figure
4 disagrees with Formula 5, which reflects the negative relation-
ship between the two d= measures. We hypothesized that multi-
collinearity among d= measures might have caused a suppression
effect, which changes the correlation sign between d=(GI) and
d=(FaFp) and conceals their relationship unless other variables are
controlled for. As shown in Table 5, when controlling for d=(GFp)
and d=(IFa), the correlation between d=(GI) and d=(FaFp) changed
from .55 to a semipartial of �.41 for innocent-suspect studies, and
from .40 to a semipartial of �.34 for average-filler studies, which
is consistent with Formula 5.

In addition, we conducted regression analyses to investigate the
relative influence of d=(GFp), d=(IFa), and d=(FaFp) on d=(GI). As
expected, the three d= predictors explained the variance of d=(GI)
completely for both innocent-suspect and average-filler studies;
R2 � 1.00 (see Table 5). When comparing 
s of the d= predictors,
d=(GFp) and d=(IFa) affected d=(GI) to a similar degree for
innocent-suspect studies, 
GFp

� 1.54 and 
IFa
� �1.43. How-

ever, for average-filler studies, when compared with d=(GFp),
d=(IFa) had less influence on d=(GI), 
GFp

� 1.56 and

IFa

� �0.54, because the average-filler practice constrains the
variability of d=(IFa), which causes a muted effect of d=(IFa) on
d=(GI).

Application of the Multi-d= Model to
Eyewitness Research

Lineup Bias

The resemblance between a suspect and fillers is a crucial factor
that influences eyewitness performance. Low resemblance can
make the suspect stand out from fillers in a lineup, which increases
suspect IDs. Although it would be desirable to construct lineups
with high similarity fillers to reduce innocent suspect ID rates,
high similarity fillers also induce a decrease in guilty suspect ID
rates. Therefore, it is important to find an optimal level of filler
similarity to maximize eyewitness performance. Luus and Wells
(1991) proposed that the effect of lineup bias on eyewitness
performance would follow an inverted U-shape—as lineups be-
come fairer, eyewitness performance increases, but only to a point,

beyond which increases in lineup bias lead to a deterioration in
eyewitness performance. In the same vein, Fitzgerald, Oriet, and
Price (2015) demonstrated that eyewitness performance was
poorer in “too fair” lineups (i.e., when fillers extremely resemble
the suspect) than in fair lineups. Putting together the notions of
Luus and Wells (1991) and Fitzgerald et al. (2015), we can
anticipate that the relationship between lineup bias and eyewitness
performance would be a skewed inverted-U shape (see Figure 5).
In addition, we need to consider a situation where fillers resemble
the perpetrator more than does the guilty or innocent suspect,
which may not be rare in the real world. Consider, for example, the
culprit had a scowled expression during a robbery. Several days
later, police officers arrest the robber; compose a lineup with the
robber and fillers who match with the victim’s descriptions of the
robber (e.g., a skinny young White man with blond hair); and
present the lineup to the victim. During the lineup procedure, one
filler has a scowled expression and others have neutral expres-
sions. In this case, compared with the robber, the scowl filler could
be more similar to the victim’s memory for the robber’s appear-
ance (i.e., a super filler).

Prior studies which have investigated the relationship between
lineup bias and eyewitness performance have produced conflicting
results (see Table 6). Some studies produced better eyewitness
performance (higher d=(GI) and DR) for high similarity lineups,
whereas others produced better eyewitness performance for low
similarity lineups. In contrast to the conflicting results in d=(GI),
d=(GFp), and d=(IFa) were generally higher for low similarity
lineups than for high similarity lineups. Given that d=(GFp) and
d=(IFa) reflect the distance between suspect and filler memory-
strength distributions (i.e., perceived lineup bias), it does make
sense that higher values of d=(GFp) and d=(IFa) were associated
with low similarity lineups.

Two factors might have caused the unstable pattern of d=(GI) in
Table 6. First, the dichotomous comparison (low similarity vs.
high similarity) may not reflect the inverted U-shape relationship
between lineup bias and eyewitness performance properly because
the high- and low-similarity of the studies may rest at different
locations on the inverted U-shape curve. Second, eyewitnesses’
memory strength of the perpetrator might have an interactive effect
with lineup bias on eyewitness performance. Imagine that Eyewit-
ness A and B view the same TP lineup. In this case, the effect of
the lineup bias on ID performance would equally operate for the
two eyewitnesses. However, when Eyewitness A has stronger
memory for the perpetrator, compared with Eyewitness B, Eye-
witness A would perceive the TP lineup as more biased, and
Eyewitness A would produce better performance (e.g., more likely
to identify the guilty suspect). Therefore, we should consider the
moderation effect of memory strength of the perpetrator on the
relationship between lineup bias and eyewitness performance. For
example, compared with other studies, Fitzgerald, Whiting, Ther-
rien, and Price (2014), Study no. 5 in Table 6, produced a much
higher d=(GFp) for both low similarity and high similarity lineups
(2.18 for low similarity and 1.68 for high similarity vs. overall
averages of 1.75 and 0.54, respectively), which indicates that
participants in the study had a strong memory for the perpetrator.
Their d=(IFa) values were comparable with the average d=(IFa)
values (0.37 for low similarity and �0.39 for high similarity vs.
the overall 0.54 and �0.66, respectively). In general, d=(IFa) is not
influenced by the memory strength of the perpetrator, because the

Table 5
Regression Analyses of d=(GI) on d=(GFp), d=(IFa), and d=(FaFp)

Predictor B SE Beta
Zero-order
correlation

Semipartial
correlation

Innocent-suspect studies
d=(GFp) 1.00 .00 1.54��� .57 .82
d=(IFa) �1.00 .00 �1.43��� �.38 �.75
d=(FaFp) �1.00 .00 �.78��� .55 �.41
R2 1.00

Average-filler studies
d=(GFp) 1.00 .00 1.56��� .89 .88
d=(IFa) �1.00 .00 �.54��� .17 �.39
d=(FaFp) �1.00 .00 �.74��� .40 �.34
R2 1.00

��� p 	 .001.
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perpetrator is replaced with an innocent suspect in TA lineups
(though if an innocent suspect closely resembles the perpetrator,
d=(IFa) could be influenced by the eyewitnesses’ memory strength
of the perpetrator). That is, in Fitzgerald et al. (2014), the eyewit-
nesses’ strong memory for the perpetrator prevented a substantial
decrease in d=(GFp) when more similar fillers replaced less-similar
fillers—but not in d=(IFa). Therefore, Fitzgerald et al. (2014)
produced higher d=(GI) for the high similarity lineup than for the
low similarity lineup.

Considering the two factors above, we reclassified the two
similarity conditions in Table 6 into four similarity conditions
controlling for eyewitnesses’ memory strength of the perpetrator.
As mentioned earlier, because d=(IFa) reflects the distance between
memory-strength distributions of an innocent suspect and TA

fillers who eyewitnesses have not seen before, d=(IFa) can be
regarded as TA lineup bias. However, d=(GFp) is the product of the
memory strength for the perpetrator and TP lineup bias. To control
for the memory strength in d=(GFp), we subtracted d=(RaRp) from
d=(GFp) because d=(RaRp), the discriminability of perpetrator-
presence versus perpetrator-absence, reflects memory strength for
the perpetrator. Therefore, we regarded d=(GFp) � d=(RaRp) as TP
lineup bias (for more details, see Supplemental Material 5).

In Table 7, we reclassified the two similarity conditions into
four similarity conditions based on the mean of d=(GFp) �
d=(RaRp) and d=(IFa)—M � 1; 1 	 M � 0; 0 	 M � �1; and
M 	 �1. We labeled the four conditions as low similarity, mod-
erate similarity, high similarity, and very high similarity condi-
tions, considering that the practical range of the discriminability of

Figure 5. The anticipated relationship between eyewitness performance and filler similarity.

Table 6
Comparisons of Eyewitness Performance Between Low Similarity and High Similarity Lineups

Study no. G Fp Rp I Fa Ra d=(GI) d=(GFp) d=(IFa) d=(FaFp) d=(RaRp) DR

Low Similarity Lineups

1 .47 .11 .42 .05 .23 .72 1.57 1.15 �.91 .49 .78 9.40
2 .80 .08 .13 .06 .12 .82 2.35 2.25 �.32 .23 2.06 12.42
3 .71 .06 .24 .64 .12 .24 .19 2.11 1.53 .38 .00 1.11
4 .44 .28 .28 .30 .12 .58 .37 .43 .65 �.59 .78 1.47
5 .76 .07 .17 .28 .17 .54 1.29 2.18 .37 .52 1.05 2.71
6 .62 .07 .31 .47 .14 .39 .38 1.78 1.01 .40 .22 1.32
7 .64 .12 .23 .32 .29 .39 .82 1.53 .11 .60 .45 1.99
8 .65 .02 .33 .40 .02 .59 .65 2.53 1.90 �.02 .66 1.64

Average .64 .10 .26 .32 .15 .53 .95 1.75 .54 .25 .75 4.01

High Similarity Lineups

1 .35 .19 .46 .08 .25 .67 1.02 .49 �.73 .20 .54 4.38
2 .53 .18 .29 .05 .36 .59 1.70 .97 �1.27 .54 .78 10.31
3 .31 .22 .47 .16 .51 .33 .50 .28 �1.02 .80 �.36 1.94
4 .16 .61 .23 .24 .38 .38 �.29 �1.27 �.40 �.58 .43 .67
5 .74 .15 .10 .15 .26 .59 1.68 1.68 �.39 .39 1.51 4.93
6 .41 .31 .28 .36 .32 .31 .13 .27 .11 .03 .09 1.14
7 .43 .29 .28 .15 .40 .46 .88 .39 �.79 .29 .48 2.96
8 .54 .07 .39 .10 .31 .59 1.36 1.54 �.77 .95 .51 5.22

Average .43 .25 .31 .16 .35 .49 .87 .54 �.66 .33 .50 3.94

Note. Results only involving simultaneous lineups and adult participants were included for a precise comparison of d= measures between low similarity
and high similarity lineups. Study no. 1: Bergold and Heaton (2018); Study no. 2: Bruer, Fitzgerald, Therrien, and Price (2015); Study no. 3: Carlson,
Gronlund, and Clark (2008); Study no. 4: Fitzgerald, Oriet, and Price (2015); Study no. 5: Fitzgerald, Whiting, Therrien, and Price (2014; Exp. 2, adults);
Study no. 6: Gronlund, Carlson, Dailey, and Goodsell (2009); Study no. 7: Key, Cash, Neuschatz, Price, Wetmore, and Gronlund (2015, young and middle
adults); and Study no. 8: Key, Wetmore, Neuschatz, Gronlund, Cash, and Lane (2017). The excel spreadsheet containing the computational formulas is
available on OSF website (http://bit.ly/Multi_d).
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a suspect from fillers (i.e., either d=(GFp) or d=(IFa)) would be
roughly between �1.91 and 4.65 (for more detailed explanations,
see Supplemental Material 6).

As expected, the filler similarity effect on eyewitness perfor-
mance followed a skewed inverted-U shape relationship. In Table
7, d=(GI) increased until reaching the high similarity lineup (0.41,
0.80, and 1.39); but decreased in the very high similarity lineup
(�0.29). The trend of d=(RaRp) and DR also followed a skewed
inverted-U shape. d=(RaRp) and DR reached the maximum value in
high similarity lineups.

The effect of lineup bias on d=(GI) could be largely accounted
for by d=(GFp) � d=(IFa). Given the multi-d= model, d=(GI) �
d=(GFp) � d=(IFa) � d=(FaFp), a larger imbalance between d=(GFp)
and d=(IFa) should be associated with higher d=(GI). In Table 7,
d=(GFp) � d=(IFa) also had the skewed inverted U-shape relation-
ship with lineup bias—the value increased until high similarity
lineup (0.66, 1.10, and 1.81); but decreased in very high similarity
lineup (�0.87). As mentioned earlier, we suggest that d=(GFp) �
d=(IFa) is an index of the differential filler siphoning effect. As the
effect operates more strongly, guilty suspect ID rates increase; TP
filler ID rates decrease; innocent suspect ID rates decrease; and TA
filler ID rates increase, which increases d=(GFp) � d=(IFa) and
consequently d=(GI). It is notable that d=(FaFp), which reflects
stronger appeals of TA fillers than TP fillers, also followed the
skewed inverted-U shape because d=(FaFp) is closely related to the
differential filler siphoning effect—as the effect operates more
strongly, d=(FaFp) increases.

Our analyses in Table 7 indicate there is an optimal level of
lineup bias, which maximizes eyewitness performance. However,

it is still unclear whether lineup bias has the anticipated relation-
ship with eyewitness performance in Figure 5, because the in-
cluded studies had a narrow range of lineup bias (the range of
d=(GFp) and d=(IFa) was from �1.27 to 2.53). Therefore, we
conducted computational simulations to investigate the relation-
ship between lineup bias and eyewitness performance with the full
range of the d= measures.

Figure 6 illustrates the actual memory strength of suspects and
a filler (Mguilty � 1, Minnocent � 0, Mfiller � �1, all SDs � 1). We
can compute the probability of positive IDs for each of the distri-
butions (i.e., shaded areas) because the memory strength distribu-
tions follow a normal distribution function. For example, when
criterion � 0, the guilty suspect ID probability � .84; the innocent
suspect ID probability � .50; and the filler ID probability � .16 �
5 � .80 (because the filler distribution reflects only one filler’s
memory strength, we multiply the filler ID probability by the
number of fillers assuming a six-person lineup). We propose that
the proportion of the filler ID probability in the total positive ID
probability reflects the filler siphoning effect. That is, in Figure 6,
fillers absorb 49% (�0.80/(0.80 � 0.84)) of the positive IDs in TP
lineups, and 61% (�0.80/[0.80 � 0.50]) of the positive IDs in TA
lineups. More importantly, the difference in the proportions of
filler ID probability in the total positive ID probability between TP
and TA lineups would reflect the differential filler siphoning effect. In
Figure 6, TA fillers (vs. TP fillers) absorb 12% (�61% � 49%) more
positive IDs.

Following this computation method, we can quantify the differ-
ential filler siphoning effect, varying the memory strength of
fillers. As shown in Figure 7, the effect grows stronger as fillers

Table 7
Comparisons of Eyewitness Performance Among the Rearranged Filler Similarity Conditions

Study no.
M of d=(GFp) � d=(RaRp)

& d=(IFa) d=(GI) d=(GFp) d=(IFa) d=(FaFp) d=(RaRp) DR d=(GFp) � d=(IFa)

Low Similarity Lineups (M � 1)

3 1.82 .19 2.11 1.53 .38 .00 1.11 .57
6 1.28 .38 1.78 1.01 .40 .22 1.32 .78
8 1.88 .65 2.53 1.90 �.02 .66 1.64 .63

Average 1.66 .41 2.14 1.48 .25 .29 1.36 .66

Moderate Similarity Lineups (1 	 M � 0)

4 .15 .37 .43 .65 �.59 .78 1.47 �.22
5 .75 1.29 2.18 .37 .52 1.05 2.71 1.81
6 .15 .13 .27 .11 .03 .09 1.14 .16
7 .60 .82 1.53 .11 .60 .45 1.99 1.43
8 .13 1.36 1.54 �.77 .95 .51 5.22 2.30

Average .36 .80 1.19 .09 .30 .58 2.51 1.10

High Similarity Lineups (0 	 M � �1)

1 �.27 1.57 1.15 �.91 .49 .78 9.40 2.06
1 �.39 1.02 .49 �.73 .20 .54 4.38 1.22
2 �.06 2.35 2.25 �.32 .23 2.06 12.42 2.57
2 �.55 1.70 .97 �1.27 .54 .78 10.31 2.24
3 �.19 .50 .28 �1.02 .80 �.36 1.94 1.30
5 �.11 1.68 1.68 �.39 .39 1.51 4.93 2.07
7 �.44 .88 .39 �.79 .29 .48 2.96 1.18

Average �.29 1.39 1.03 �.78 .42 .83 6.62 1.81

Very High Similarity Lineups (M 	 �1)

4 �1.05 �.29 �1.27 �.40 �.58 .43 .67 �.87
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more closely resemble the suspect. However, there is a tipping
point beyond which increases in fillers’ memory strength de-
creases the effect. In this simulation, when Mfiller � �1.10, the
difference in the proportion of the filler ID probability in the total
positive ID probability between TP and TA lineups reached the
maximum value (0.129). Beyond the clone similarity level (i.e.,
Mfiller � Mguilty � 1), the effect slowly decreases. The trend of the
differential filler siphoning effect in Figure 7 is similar to the
anticipated relationship between lineup bias and eyewitness per-
formance in Figure 5, except that the effect at the clone similarity
level is not as weak as that at the completely dissimilar level. We
argue that the relationship between lineup bias and eyewitness
performance would follow the trend of the differential filler si-
phoning effect in Figure 7, because eyewitness performance
(d=(GI)) is computed with d=(GFp) � d=(IFa) and d=(FaFp), which
are closely related to the effect. Therefore, the differential filler
siphoning effect is the mechanism that makes d=(GI) vary with

filler similarity when the actual memory-strength of guilty and
innocent suspects does not change.

Figure 8 and 9 illustrate the trend of the differential filler
siphoning effect, varying eyewitnesses’ criteria and the resem-
blance of guilty and innocent suspects. As shown in Figure 8,
when eyewitnesses use stringent criteria (vs. loose criteria), the
effect is stronger and more sensitive to filler similarity. When an
innocent suspect does not bear a resemblance to the perpetrator,
the effect operates more strongly (Panel B in Figure 9). However,
when an innocent suspect is a clone of the perpetrator (Panel A in
Figure 9), the effect does not occur.

Filler Selection Methods

Prior eyewitness studies have investigated which filler-selection
method (match-to-suspect vs. match-to-description) produces bet-
ter eyewitness performance (Juslin, Olsson, & Winman, 1996;

Figure 6. Actual memory-strength distributions of suspects and a filler.

Figure 7. The trends of the differential filler siphoning effect in lineups (Mguilty � 1, Minnocent � 0, all SDs �
1, and criterion � 0). The x-axis represents the memory strength of fillers. The excel spreadsheet containing the
computational formulas is available on OSF website (http://bit.ly/Multi_d).
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Tunnicliff & Clark, 2000; Wells, Rydell, & Seelau, 1993). The
match-to-suspect method selects fillers based on their similarity to
the suspect, whereas the match-to-description method selects fill-
ers based on their similarity to the eyewitnesses’ descriptions of
the perpetrator (Luus & Wells, 1991). As shown in Table 8,
Tunnicliff and Clark (2000) found higher d=(GI) for the match-to-
suspect condition, whereas d=(GI) in Juslin, Olsson, and Winman
(1996) and Wells, Rydell, and Seelau (1993) was higher for the
match-to-description condition.

To explain the conflicting results, we looked at the multiple
discriminability measures. The match-to-description method gen-
erally yielded more biased TP and TA lineups (which increase
d=(GFp) and d=(IFa)), than did the match-to-suspect method. How-
ever, the advantage of d=(GFp) for the match-to-description
method was greater in Juslin et al.’s (1996) and Wells et al.’s
(1993) studies (vs. Tunnicliff & Clark’s, 2000 studies), whereas
the advantage of d=(IFa) for the match-to-description method was
not considerably different across the four studies. Therefore,

d=(GI) was higher for the match-to-description lineups in Juslin et
al.’s (1996) and Wells et al.’s (1993) studies, but not in Tunnicliff
and Clark’s (2000) studies.

Based on these results, we hypothesize that, compared with
Juslin et al.’s (1996) and Wells et al.’s (1993) studies, Tunnicliff
and Clark’s (2000) studies may have used higher-quality descrip-
tions about the perpetrator’s appearance. With better descriptions,
the advantage of d=(GFp) for the match-to-description method
might have disappeared in Tunnicliff and Clark’s (2000) studies.
Indeed, to compose match-to-description lineups, eyewitnesses in
Tunnicliff and Clark’s (2000) studies were asked to write down
more elaborated descriptions of the perpetrator after they wrote
down their initial descriptions. In contrast, the perpetrator-
description in Juslin et al.’s (1996) study included few character-
istics—age, sex, race, hair type, and body weight. Wells et al.’s
(1993) study, which yielded the highest d=(GFp) for the match-to-
description method, disregarded photos that violated the descrip-
tion of the perpetrator from a photo pool; and then selected fillers

Figure 8. Eyewitness criteria and the trends of the differential filler siphoning effect in lineups (Mguilty � 1,
Minnocent � 0, all SDs � 1). Panel A was drawn when criterion � �1; Panel B was drawn when criterion � 2.
The excel spreadsheet containing the computational formulas is available on OSF website (http://bit.ly/Multi_d).
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who least resembled the perpetrator from the remaining photos to
compose the match-to-description lineup.

Therefore, the multi-d= model indicates that the effect of filler-
selection methods on eyewitness performance will vary with the
quality of the descriptions. Results from the four studies also raise
the question of what the optimal level of resemblance between a
suspect and fillers is to maximize d=(GI). We expect our multiple
discriminability measures could be useful metrics to estimate the
resemblance among a suspect and fillers, to identify optimal levels
and to specify the effects of more and less-optimal similarities.

Eyewitness Confidence

SDT explains that discriminability is independent of criterion
(Swets, 1973). That is, unlike Bayesian measures (e.g., DR),
SDT-based discriminability measures (e.g., d=) do not vary with
criteria. We can illustrate and qualify these points using data from

Evelo, Lee, Modjadidi, and Penrod (2018)—for more detailed
descriptions of the database, see Supplemental Material 7. In Table
9, we collapse across the independent variables (except the target
presence in lineups) and present the eyewitness performance mea-
sures, which were produced from about 16,000 identification tasks
(2,000 participants � 8 lineups).

As shown in Table 9 (where judgments cumulate starting with
the percentage of participants making judgments at 100% confi-
dence, then the percent at 90% or higher, 80% and higher and so
on), the criterion parameter (c) varied with eyewitnesses’ confi-
dence levels—as eyewitnesses were less confident, the value of c
decreased as expected. Compared with DR, d=(GI) and d=(RaRp)
were, as expected, relatively stable across confidence levels. How-
ever, the three other discriminability measures were influenced by
eyewitnesses’ criteria and produced countervailing effects. Eye-
witnesses’ looser criteria were associated with lower discrim-

Figure 9. The resemblance between guilty and innocent suspects and the trends of the differential filler
siphoning effect in lineups (criterion � 0). Panel A was drawn when Mguilty � 0, Minnocent � 0; Panel B was
drawn when Mguilty � 2, Minnocent � �2. The excel spreadsheet containing the computational formulas is
available on OSF website (http://bit.ly/Multi_d).
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inability of a guilty/innocent suspect from fillers. d=(GFp) and
d=(IFa) decreased as eyewitnesses were less confident. Higher
d=(FaFp) values were also associated with lower confidence levels
because the stronger appeal of fillers relative to suspects in TA
lineups than in TP lineups is more likely to occur for eyewitnesses
who make their decisions by guessing/less reliable memories (i.e.,
eyewitnesses at low confidence levels).

Figure 10 is an area graph which cumulates values of
d=(GFp), �d=(IFa), and �d=(FaFp) at each level of confidence in
Table 9. The area graph illustrates how the different components
make varying contributions to d=(GI) over different confidence
levels—as eyewitnesses use a looser criterion, the contribution of
d=(GFp) decreases; and the contribution of d=(IFa) increases. d=(GI)
at the level of 100% confidence was 1.09, which comprised
d=(GFp) of 0.77; d=(IFa) of �0.36; and d=(FaFp) of 0.03 (i.e.,
1.09 � 0.77 � (�0.36) � 0.03). That is, d=(GI) at the highest level
of confidence was largely accounted for by high d=(GFp). Al-
though d=(GI) at the level of 0% confidence (0.97) was comparable
with that at the level of 100% confidence (1.09), eyewitnesses with
0% confidence achieved the d=(GI) mostly by low d=(IFa); d=(GI)
at the level of 0% confidence comprised d=(GFp) of �0.10; d=(IFa)
of �1.29; and d=(FaFp) of 0.22 (i.e., 0.97 � �0.10 � (�1.29) �
0.22).

In sum, eyewitnesses show stable d=(GI) across confidence
levels. However, the quality of d=(GI) is varied by confidence
levels. Eyewitnesses with high confidence achieve good d=(GI) by
their good discriminability of a guilty suspect from fillers, whereas
those with low confidence show the same d=(GI) by their poor

discriminability of an innocent suspect from fillers (their “guess-
ing” protects the innocent suspect and thereby increases d=(GI)),
rather than a good discriminability of a guilty suspect from fillers.

Lineup Presentation Mode

Eyewitness studies have traditionally used Bayesian measures,
such as DR or conditional probability, to assess eyewitness accu-
racy. Prior studies using Bayesian probabilities supported the
superiority of sequential lineups to simultaneous lineups by show-
ing higher DRs for sequential lineups (e.g., Cutler & Penrod, 1989;
Lindsay et al., 1991; Steblay, Dysart, & Wells, 2011). The supe-
riority of sequential lineups has been challenged recently by stud-
ies based on a different form of a diagnostic measure—receiver
operating characteristic (ROC) analysis (e.g., Gronlund, Carlson,
Dailey, & Goodsell, 2009; Mickes, Flowe, & Wixted, 2012).
Skeptics of the superiority of sequential lineups assert that sequen-
tial lineups (vs. simultaneous lineups) produce higher DR because
eyewitnesses in sequential lineups are more likely to make their
decisions at stringent criteria. Therefore, researchers began to
compare eyewitness diagnosticity in both lineups across multiple
criteria using ROC analysis.

In this section, we propose that the multi-d= model is a useful
tool to compare the underlying process of eyewitness performance
between simultaneous and sequential lineups. Because both Bayes-
ian measures and ROC analysis focus on guilty and innocent
suspect IDs only, they have rarely paid attention to the underlying
process of eyewitness performance involving fillers. Table 10

Table 8
Eyewitness Performance in Match-to-Suspect and Match-to-Description Lineups

Study Method G Fp Rp I Fa Ra d=(GI) d=(GFp) d=(IFa) d=(FaFp) d=(RaRp)

Tunnicliff and Clark (2000) Exp. 1 Suspect-Match .53 .25 .22 .03 .31 .66 1.94 .75 �1.38 .19 1.18
Description-Match .53 .16 .31 .13 .34 .53 1.23 1.09 �.75 .61 .57

Tunnicliff and Clark (2000) Exp. 2 Suspect-Match .33 .27 .40 .08 .19 .73 .95 .18 �.50 �.28 .87
Description-Match .31 .25 .44 .19 .35 .46 .40 .19 �.51 .30 .05

Juslin, Olsson, and Winman (1996) Suspect-Match .44 .20 .35 .09 .17 .73 1.19 .69 �.39 �.11 1.00
Description-Match .52 .11 .38 .09 .12 .78 1.39 1.28 �.17 .05 1.08

Wells, Rydell, and Seelau (1993) Suspect-Match .21 .43 .36 .12 .48 .40 .37 �.63 �1.12 .13 .11
Description-Match .67 .07 .26 .12 .31 .57 1.61 1.92 �.68 .98 .82

Note. The excel spreadsheet containing the computational formulas is available on OSF website (http://bit.ly/Multi_d).

Table 9
Eyewitness Performance and Criteria Across Confidence Levels (Frequencies in Parentheses)

Confidence levels G Fp Rp I Fa Ra d=(GI) d=(GFp) d=(IFa) d=(FaFp) d=(RaRp) DR c

100% .03 (243) .004 (33) .02 (123) .002 (12) .005 (36) .04 (304) 1.09 .77 �.36 .03 .39 20.25 2.42
90% .05 (415) .01 (66) .03 (235) .003 (25) .01 (82) .06 (511) 1.11 .77 �.42 .08 .37 16.60 2.18
80% .09 (710) .02 (186) .05 (398) .01 (77) .03 (237) .10 (826) .99 .64 �.45 .10 .38 9.22 1.84
70% .13 (1,046) .05 (416) .08 (613) .02 (128) .07 (527) .15 (1,204) 1.02 .50 �.64 .12 .39 8.17 1.63
60% .17 (1,391) .10 (768) .10 (821) .02 (191) .12 (933) .20 (1,558) 1.04 .37 �.79 .11 .41 7.28 1.46
50% .22 (1,769) .16 (1,270) .15 (1,201) .04 (296) .19 (1,551) .26 (2,082) 1.02 .23 �.92 .14 .39 5.98 1.28
40% .25 (1,998) .21 (1,652) .18 (1,423) .05 (384) .26 (2,051) .30 (2,373) .99 .14 �1.01 .16 .39 5.20 1.17
30% .28 (2,256) .26 (2,058) .21 (1,652) .06 (456) .33 (2,601) .34 (2,718) 1.00 .08 �1.13 .20 .41 4.95 1.08
20% .31 (2,444) .31 (2,439) .23 (1,860) .07 (542) .38 (3,046) .37 (2,984) .98 .00 �1.19 .21 .41 4.51 1.00
10% .32 (2,567) .34 (2,713) .26 (2,043) .07 (596) .42 (3,372) .41 (3,235) .98 �.05 �1.25 .22 .42 4.31 .95
0% .33 (2,622) .37 (2,922) .31 (2,437) .08 (632) .45 (3,613) .47 (3,735) .97 �.10 �1.29 .22 .43 4.15 .93

Note. The excel spreadsheet containing the computational formulas is available on OSF website (http://bit.ly/Multi_d).
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includes eyewitnesses’ response rates and multiple discriminabil-
ity measures for simultaneous and sequential lineups, which were
retrieved from Steblay, Dysart, and Wells’ (2011) meta-analysis
dataset and Lee and Penrod’s (2019) meta-analysis dataset (for
more detailed descriptions of the database, see Supplemental Ma-
terial 8). We separated innocent-suspect studies from average-filler
studies to examine differences between both lineup presentation
modes.

As shown in Table 10, for innocent-suspect studies, eyewitness
performance in sequential lineups was better than that in simulta-
neous lineups in terms of d=(GI), d=(RaRp), and DR, which are
indicators of overall eyewitness performance. Eyewitnesses in
simultaneous lineups (vs. those in sequential lineups) were slightly
better at discriminating the guilty suspect from fillers (d=(GFp) �
0.95 vs. 0.91); but were substantially more likely to misidentify an
innocent suspect from fillers (d=(IFa) � �0.04 vs. �0.24), which
consequently yielded lower d=(GI) in simultaneous lineups. Given
that lineups in innocent-suspect studies were more biased than
those in average-filler studies (for more detailed explanations, see
Supplemental Material 9), the superiority of sequential lineups to
simultaneous lineups for innocent-suspect studies might arise be-
cause sequential lineups produce better eyewitness performance
when lineups are biased. Compared with simultaneous lineups,

sequential lineups are more likely to reduce lineup bias (Lindsay et
al., 1991) and consequently the discriminability of a suspect from
fillers—indeed, in Table 10, d=(GFp) and d=(IFa) for innocent-
suspect studies were lower in sequential lineups (0.91 and �0.24,
respectively) than simultaneous lineups (0.95 and �0.04, respec-
tively). It is notable that sequential lineups reduce the discrim-
inability of a suspect from fillers more in TA lineups compared
with TP lineups, because the presence of the perpetrator in TP
lineups protects against the decrease in d=(GFp). As expected,
when comparing sequential lineups to simultaneous lineups,
d=(GFp) decreased by 0.04 (�0.95 � 0.91) while d=(IFa) decreased
by 0.20 (��0.04 � (�0.24)). Therefore, in innocent-suspect
studies, sequential lineups produced superior d=(GI) compared to
simultaneous lineups.

For average-filler studies which used fairer lineups than did
innocent-suspect studies (see Supplemental Material 9), d=(GI) and
d=(RaRp) were higher for simultaneous lineups than for sequential
lineups. Although d=(GFp) was higher in simultaneous lineups than
in sequential lineups for both innocent-suspect and average-filler
studies, the difference in d=(GFp) between the two lineup modes
was larger for average-filler studies (0.95 vs. 0.91 for innocent-
suspect studies; 0.89 vs. 0.63 for average-filler studies). That is,
the superiority of simultaneous lineups in d=(GFp) increases for
fairer lineups. d=(IFa) for average-filler studies was lower in simul-
taneous lineups than in sequential lineups because the average-filler
practice makes sequential lineups produce higher d=(IFa)—the
average-filler practice makes lineups with higher rejection rates
produce higher d=(IFa), regardless of the lineup bias. As mentioned
in Supplemental Material 6, when using the average-filler practice
(i.e., dividing the total filler ID rate by the number of members in
the lineup), d=(IFa) in a lineup gradually increases as the rejection
rate increases. For example, when a rejection rate is zero, d=(IFa)
is �1.91; when a rejection rate is .10, d=(IFa) is �1.71; when a
rejection rate is .20, d=(IFa) is �1.57. Indeed, when applying the
average-filler practice to innocent-suspect studies (see debiased
studies in Table 10 where it is analytically assumed TA arrays are
unbiased), d=(IFa) was higher for sequential lineups (�1.12) than
for simultaneous lineups (�1.25), although simultaneous TA line-

Figure 10. The contribution of each d= measure to d=(GI).

Table 10
Eyewitness Performance in Simultaneous and Sequential Lineups (SDs in Parentheses)

Eyewitness
performance

Innocent-suspect studies Average-filler studies Debiased studies

Simultaneous Sequential Simultaneous Sequential Simultaneous Sequential

TP TA TP TA TP TA TP TA TP TA TP TA

Suspect ID .54 (.14) .28 (.12) .47 (.16) .19 (.13) .55 (.17) .08 (.02) .40 (.16) .05 (.02) .54 (.14) .09 (.02) .47 (.16) .07 (.04)
Filler ID .22 (.14) .29 (.16) .21 (.15) .25 (.18) .23 (.09) .41 (.09) .20 (.13) .27 (.10) .22 (.14) .47 (.12) .21 (.15) .37 (.18)
Rejection .24 (.08) .44 (.15) .32 (.15) .56 (.22) .22 (.13) .50 (.11) .40 (.16) .67 (.12) .24 (.08) .44 (.15) .32 (.15) .56 (.22)
d=(GI) .76 (.64) .95 (.74) 1.51 (.51) 1.36 (.52) 1.43 (.48) 1.45 (.64)
d=(GFp) .95 (.85) .91 (.95) .89 (.69) .63 (.74) .95 (.85) .91 (.95)
d=(IFa) �.04 (.81) �.24 (.80) �1.18 (.11) �1.00 (.13) �1.25 (.17) �1.12 (.24)
d=(FaFp) .24 (.43) .20 (.42) .55 (.27) .26 (.28) .77 (.38) .57 (.39)
d=(RaRp) .55 (.42) .71 (.64) .82 (.51) .78 (.49) .55 (.42) .71 (.64)
d=(GFp) � d=(RaRp) .40 (.70) .20 (.65) .07 (.49) �.15 (.63) .40 (.70) .20 (.65)
DR 3.79 (7.46) 5.06 (5.71) 7.11 (3.42) 8.94 (5.22) 6.55 (3.93) 10.79 (13.89)
c .28 (.28) .53 (.32) .64 (.23) .96 (.22) .62 (.16) .78 (.20)
N 21 21 20 20 21 21

Note. Eyewitness performance in debiased studies were computed by applying the average-filler practice to innocent suspect and TA filler ID rates in
innocent-suspect studies. For example, TA suspect ID rates in simultaneous lineups for debiased studies were computed by (.28 � .29)/6 � .09.
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ups were actually more biased than sequential TA lineups for
innocent-suspect studies. Because sequential lineups, compared to
simultaneous lineups, induce more stringent criteria (see c in Table
10), sequential lineups yield higher rejection rates and conse-
quently higher d=(IFa) when using the average-filler practice.
Therefore, as expected, d=(IFa) was higher for sequential lineups
(�1.00) than for simultaneous lineups (�1.18).

In sum, as shown in Figure 11, for innocent-suspect studies,
simultaneous lineups (vs. sequential lineups) produced a slightly
higher d=(GFp) and substantially higher d=(IFa), which yielded
lower d=(GI) in simultaneous lineups. For average-filler studies,
the advantage of d=(GFp) in simultaneous lineups (vs. sequential
lineups) increased; and the average-filler practice led to lower
d=(IFa) in simultaneous lineups, which consequently yielded
higher d=(GI) in simultaneous lineups.

Conclusions

Eyewitness studies have leveraged SDT to investigate eyewit-
ness performance. The traditional SDT-based measures in yes/no
tasks properly captures eyewitness performance in show-ups, but
not in lineups, because the application of the measures to eyewit-
ness identifications was based on the 2 � 2 matrix, which led to
the neglect of the role of fillers in lineups. Although there have
been attempts to incorporate filler IDs into SDT-based measures,
most prior SDT-based eyewitness studies have focused on d=(GI),
ignoring other discriminability measures involving fillers; and
have limited our understanding of the role of fillers in eyewitness
performance.

In the current research, we introduced a SDT-based framework
for eyewitness performance in lineups—the multi-d= model. The
model demonstrates that d=(GI) is a function of discriminability
involving fillers. Furthermore, eyewitnesses’ discriminability in
lineups can be assessed at two levels—detection and identification
levels. At the detection level, an eyewitness discriminates the
presence versus absence of the perpetrator in a lineup (i.e.,
d=(RaRp)), and makes a decision on whether to reject the lineup or
not. At the identification level, the eyewitness is comparing lineup
members to choose a person who is most likely to be the perpe-
trator. At the identification level, discriminability measures involv-
ing fillers (i.e., d=(GFp), d=(IFa), and d=(FaFp)) operate and yield
the most commonly reported parameter, d=(GI).

Show-Ups and Lineups in the Multi-d= Model

We have demonstrated that the multi-d= model can be applied to
issues in eyewitness research and provides useful parameters to
investigate eyewitness performance. For example, the multi-d=
model explains how different eyewitness performance is in show-
ups and lineups. According to the multi-d= model, eyewitnesses’
discriminability of the presence versus absence of a perpetrator is
not different between show-ups and lineups. However, eyewit-
nesses in lineups are better at discriminating a guilty suspect from
an innocent suspect than those in show-ups, through the differen-
tial filler siphoning effect. These findings are consistent with prior
studies which suggested the superiority of lineups over show-ups,
on the basis of the differential filler siphoning effect. The origin of
the superiority of lineups goes back to the idea that eyewitnesses
rely on relative judgments to make their decisions in lineups
(Wells, 1984). An eyewitness in a show-up has to decide whether
to identify the suspect as the perpetrator by comparing the sus-
pect’s appearance to the eyewitness’ memory for the perpetrator
(i.e., absolute judgment), whereas an eyewitness in a lineup com-
pares lineup members with each other and identifies the lineup
member who most resembles the eyewitness’ memory for the
perpetrator (i.e., relative judgment). Because of the relative judg-
ment in lineups, positive identifications in lineups are distributed
to fillers and the suspect whereas all positive identifications in
show-ups load up on the suspect (Wells, 2001). Given that this
filler siphoning effect in lineups grows stronger in TA lineups than
TP lineups (i.e., the differential filler siphoning effect), lineups are
more likely to reduces the risk of innocent suspect IDs than
show-ups (Wells et al., 2015; Wells et al., 2015).

Lineup Bias in the Multi-d= Model

The multi-d= model explains how lineup bias affects eyewitness
performance. According to the model, the effect of lineup bias on
eyewitness performance follows a skewed inverted U-shape. Eye-
witness performance, reflected in d=(GI), d=(RaRp), and DR, in-
creases gradually until high similarity lineups are reached; but
performance decreases in very high similarity lineups. Results
from prior studies and computational simulations demonstrated
that the trend of d= measures which are relevant to the differential
filler siphoning effect (i.e., d=(GFp) � d=(IFa), and d=(FaFp)) has

Figure 11. The contribution of each d= measure to d=(GI) in Lineup Mode (simultaneous lineups vs. sequential
lineups) � Study Type (innocent-suspect studies vs. average-filler studies). Formula 5, d=(GI) � d=(GFp) �
d=(IFa) � d=(FaFp), was applied to each condition.
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the same skewed inverted-U shape with eyewitness performance.
These results suggest that the effect of lineup bias on eyewitness
performance can be accounted for by the differential filler siphon-
ing effect. This conclusion is consistent with findings from the
prior studies on the effect (Smith et al., 2017; Wells et al., 2015;
Wells et al., 2015). Those prior studies have suggested that the
differential filler siphoning effect grows stronger as lineups be-
come fairer, because good fillers (vs. poor fillers) are more likely
to absorb false-positive errors and reduces innocent suspect ID
rates more effectively.

Filler Selection Methods in the Multi-d= Model

The multi-d= model explains that the effect of filler-selection
methods on eyewitness performance will vary with the quality of
eyewitnesses’ descriptions of the perpetrator. Compared with the
match-to-suspect method, the match-to-description method gener-
ally produces more biased TP and TA lineups. However, when
lineups are composed by very precise descriptions of the perpe-
trator, the TP lineups are no longer more biased than TP lineups
composed by the match-to-suspect method; but the match-to-
description TA lineups are still more biased than TA lineups
composed by the match-to-suspect method. Therefore, d=(GI) is
lower in lineups composed by precise descriptions of the perpe-
trator than in lineups composed by the match-to-suspect method.
These findings raise the question of how detailed descriptions of
the perpetrator in real cases are. Depending on how detailed they
are, we might prefer one versus the other method of filler selection.

Eyewitness Confidence in the Multi-d= Model

The multi-d= model explains relationships between the multiple
d= measures and decision criteria. As predicted by SDT, the discrim-
inability of perpetrator-presence versus perpetrator-absence and the
discriminability of the perpetrator from an innocent suspect are
relatively stable across eyewitnesses’ confidence levels. However,
different d= measures involving fillers make varying contributions
to d=(GI) over different confidence levels. Eyewitnesses with high
confidence produce good d=(GI) by their good discriminability of
a guilty suspect from fillers, whereas those with low confidence
show the same d=(GI) by their poor discriminability of an innocent
suspect from fillers. Given that pairs of guilty and innocent suspect
ID rates over different confidence levels are data points on the

ROC curve, the varying contributions of discriminability measures
involving fillers to d=(GI) would be reflected in producing ROC
curves.

Lineup Presentation Modes in the Multi-d= Model

The multi-d= model is useful for comparing the underlying
processes of eyewitness performance in simultaneous and sequen-
tial lineups. Our analyses demonstrated that d=(GI) was higher in
sequential lineups for innocent-suspect studies; but higher in si-
multaneous lineups for average-filler studies. In innocent-suspect
studies which used relatively biased lineups, sequential lineups
produced a slightly lower d=(GFp) and substantially lower d=(IFa),
which yielded higher d=(GI) in sequential lineups. However, the
superiority of sequential lineups in innocent-suspect studies dis-
appeared in average-filler studies which used fairer lineups. For
average-filler studies, the advantage of d=(GFp) in simultaneous
lineups (vs. sequential lineups) increased; and the average-filler
practice led to lower d=(IFa) in simultaneous lineups, which con-
sequently yielded higher d=(GI) in simultaneous lineups. The
greater d=(GI) in sequential lineups for innocent-suspect studies is
consistent with prior studies showing the superiority of sequential
lineups when using biased lineups (Carlson et al., 2008; Lindsay et
al., 1991). Therefore, these findings indicate that the proper use of
lineup modes would depend on lineup bias—determining the bias
transition point between simultaneous and sequential lineups will
require further research. Preferences for one procedure or the other
will depend on the bias levels reflected in actual lineups and the
weights policymakers give to the various outcomes from these
procedures.

Limitations and Future Directions

We note that the multi-d= model is based on simplifying as-
sumptions which may not yield precise estimates or specifications
of values. In the end our enterprise is more a series of thought
experiments in which we try to identify the impact of various study
characteristics (some manipulated and some not) on measures
which reflect different aspects of witness performance and we
ultimately rely on the relative sizes (and direction of change) in our
measures to suggest conclusions. We will leave it to modelers to
supply precision where that is desirable.

Figure 12. The application of the multi-d= model to ROC curves (data simulation: Mguilty � 1, SDguilty � 1.22,
Minnocent & filler � 0, SDinnocent & filler � 1, csimultaneous & csequential calculated from Study 2 of Mickes et al. (2012),
total 60,000 simulations for each lineup type).
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In the present study, we applied the multi-d=model to current issues
in eyewitness research. However, there remain other critical issues
that may be addressed with the model. For example, according to the
model, eyewitness performance in lineups may be measured by mul-
tiple ROC curves. Although ROC curves in prior eyewitness studies
only focused on pairs of guilty and innocent suspect ID rates (i.e.,
d=(GI)), the multi-d= model suggests that eyewitness ROC curves
could be also drawn with pairs of guilty suspect and TP filler ID rates
(i.e., d=(GFp)); pairs of innocent suspect and TA filler ID rates (i.e.,
d=(IFa)); pairs of TP and TA filler ID rates (i.e., d=(FaFp)); and pairs
of TP and TA rejection rates (i.e., d=(RaRp)). For example, plotting
ROC curves for each of the d= measures can give a clearer picture of
“where the action is” when parameters values change. In Figure 12,
we see that a simultaneous advantage reported by Mickes, Flowe, and
Wixted (2012) is associated with superior d=(GFp) and not with
d=(IFa). It would be worth investigating relationships among areas
under the multiple ROC curves and developing a multidimensional
ROC curve (or a ROC volume), which is a single index incorporating
all the multiple d= measures.

We suggest that the multi-d= model may be applied to other types
of compound decision tasks as well as eyewitness identifications in
lineups. There are tasks that require both detection and identification
decisions simultaneously in fields of engineering, medicine, educa-
tion, and so on. For example, imagine that there are two different
medical tests to make a diagnostic decision of whether a patient has
Disease X when there are several diseases which produce symptoms
similar to Disease X. Given that this task involves a detection decision
(i.e., detecting the presence of a disease) plus identification decision
(i.e., discriminating Disease X from other diseases having similar
symptoms), the multi-d= model may be applicable to compare diag-
nostic performance between the two medical tests. We hope that the
multi-d= model will be a useful tool to understand decisionmakers’
performance for a variety of compound decision tasks.
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