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ABSTRACT 

It is shown that appropriate therapeutic management at early 

stages of sepsis are crucial for preventing further deterioration 

and irreversible organ damage. Although previous studies 

considered the cellular and physiological responses as the 

components of sepsis-related predictive models, temporal 

connections among the responses have not been widely studied. 

The objective of this study is to investigate simultaneous changes 

in cellular and physiological responses represented by 16 clinical 

variables contributing to seven organ system dysfunctions in 

patients with sepsis to predict in-hospital mortality. Organ 

dysfunctions were represented by undirected weighted network 

models composed of: i) nodes (i.e., 16 clinical variables and three 

biomarkers including procalcitonin, C-reactive protein, and 

sedimentation rate), ii) edges (i.e., connection between pair of 

nodes representing simultaneous dysfunctions), and iii) weights 

representing the persistence of the co-occurrence of two 

dysfunctions. Data was collected from 13,367 adult patients 

(corresponding to 17,953 visits) admitted to the study hospital 

from July 1, 2013, to December 31, 2015. The study population 

were categorized based on clinical criteria representing sepsis 

progression to identify different subpopulations. The findings 

quantify the optimal window for defining the simultaneity of two 

dysfunctions, the network properties corresponding to different 

subpopulations, the discriminatory patterns of simultaneous 

dysfunctions among subpopulations and in-hospital mortality 

prediction. The results show that the level of persistence of 

simultaneous dysfunctions are subpopulation-specific. Insights 

from this study regarding optimal thresholds of the persistence 

and combination of simultaneous organ dysfunctions can inform 

policies to personalize the in-hospital mortality prediction. 
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1. INTRODUCTION 

Sepsis is a commonly occurring, yet under-diagnosed disease 
condition defined as a “life-threatening organ dysfunction caused 
by a dysregulated host response to infection” [1]. In a 
retrospective study including more than 2.9 million patients, 21% 
of adult inpatients with clinical manifestations of sepsis (6% of the 
study population) died in the hospital or were discharged to 
hospice [2]. Studies have shown that accurate diagnosis and 
appropriate therapeutic management at early stages on the sepsis 
spectrum are crucial for preventing further deterioration and 
irreversible organ damage [3, 4]. However, early sepsis symptoms 
are commonly overlooked by providers since the observed clinical 
manifestations may be vague or may not be specific to sepsis. For 
example, difficulty breathing or a subtle change in mental status 
could occur due to a variety of causes. Thus, uncertainty in early 
stages of sepsis results in increasing need for identifying reliable 
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clinical indicators to support the recognition of, and response to, 
sepsis. 

Biomarkers (i.e., objectively measured indicators of biological, 
pathogenic, or pharmacologic processes [5]) present a category of 
clinical indicators with a potential to inform recognition of sepsis 
in its early and critical stages when the sepsis-induced 
deterioration is still reversible. In the last decades, biomarkers 
have been shown to enhance characterization of the biological 
phenotype underlying sepsis [6] and therefore promise a new 
approach to inform timely recognition and management of sepsis. 
Biomarkers are widely studied for various infection types with the 
goal to evaluate different stages of sepsis as well as a short- or 
long-term predictor of patients’ outcome. For example, 
biomarkers are used to identify the severity of sepsis, predict type 
of infection, inform the anti-infective therapy and provide a 
measure for predicting organ dysfunction [7]. Studies focusing on 
biomarkers aim to evaluate the predictive performance or 
diagnostic and prognostic value of one, or more biomarkers in 
comparison with other biomarkers or severity of illness scoring 
systems. Some of the commonly studied blood-based biomarkers 
associated with sepsis diagnosis and treatment are lactate [8-12], 
procalcitonin (PCT) [12-14], and C-reactive protein (CRP) [11, 14-
16]. However, the proposed biomarkers are not limited to samples 
from blood. For example, Garcia-Simon et. al. [17] examines the 
short-term predictive power of 8 metabolites (ethanol, glutamine, 
methionine, arginine, phenylalanine, glucose, hippurate and an 
unknown metabolite located at 1.40–1.45 parts per million) form 
urine samples. 

Using different statistical tests, studies focus on the correlation of 
different biomarkers with different illness severity scores [11, 15, 
16, 18]. Furthermore, these studies examine if their proposed 
biomarkers can be used as an independent or complementary 
measure with other biomarkers and scores as features for 
prediction of severity of sepsis or mortality rate using different 
evaluation metrics such as receiver operating characteristic (ROC) 
curve and the area under the curve (AUC) [19-21]. However, only 
a few studies concentrate on the temporal interrelations of 
biomarkers or their relations with other lab results or vital signs. 
For example, Jiang, Feng, Gao and Zhang [14] show that 
procalcitonin at 24 hours, CRP at 48 hours, and copeptin at 72 
hours after admission to the intensive care unit (ICU) have been 
independent risk factors for in-hospital mortality, which implies 
the differential importance of biomarkers at different time points 
or different stages of sepsis. The temporal interrelationships 
among different organ systems and the consequences of their 
failures on other organ systems can inform the diagnostic and 
therapeutic decision making. Patterns of inter-organ failures can 
also inform patients’ outcome prediction and consequently 
implementation of sepsis management procedures.  

Various stochastic modeling approaches have been applied to 
capture the interrelationships among different cellular and 
physiological responses contributing to sepsis and its progression. 
For example, Shi, Wu and Ben-Arieh [22] provide a system 
dynamics mathematical model to represent the dynamics and 
interactions among variables causing the development of sepsis 
during the acute inflammatory response (AIR). Due to the 
practical limitations of traditional analytical models in the 
analysis of systems composed of large number of variables [23], 

Shi, Wu and Ben-Arieh [22] utilize agent-based modeling (ABM) 
framework to model and simulate the AIR progression at the 
interface of blood vessels and cells. The ABM is a method used for 
modeling of complex systems in which not only the components 
of the system (agents) but the relationships and interactions 
among them should be taken into consideration. These systems 
cannot be easily modeled and studied using traditional modeling 
and analytical techniques [24-26]. Using the temporal and 
dynamic Bayesian networks is another approach which has been 
used to model the interrelationships among variables contributing 
to sepsis progression. Bayesian networks are probabilistic 
graphical representations of a phenomenon of interest in which 
the nodes of the network are the variables of the system and edges 
among nodes represents the conditional dependencies among the 
variables. Orphanou, Stassopoulou and Keravnou [27] provide a 
survey of the applications of this technique in clinical contexts. 
Peelen, de Keizer, Jonge, Bosman, Abu-Hanna and Peek [28] use 
the dynamic Bayesian networks for the investigation of organ 
failures in patients admitted to the ICU. They develop three 
models, including temporal changes in severity of organ failure, 
failure occurrences in specific organs, temporal persistence of an 
organ failure and temporal development of new organ failures. 
They also use logistic regression analysis to estimate the transition 
probabilities between each pair of nodes. Nachimuthu and Haug 
[29] adopt dynamic Bayesian networks to detect sepsis after 
arrival to the Emergency Department (ED) using different time-
windows of the patients’ data. The outcome of their model is the 
detection of sepsis as a binary variable using the clinical 
symptoms. Their model shows higher specificity compared to 
sensitivity, however, they show that as more patient data becomes 
available, the sensitivity increases. In [30], a decision support 
system is proposed for prediction of the level of lactate and 
mortality in patients with sepsis using five variables as the 
measurements of the condition of the patient and two variables as 
the outcome of interest (occurrence of sepsis and mortality). To 
summarize the patients' temporal condition measurement data 
and decrease the effect of variants of measurements over time, the 
mean and median values of temperature, respiratory rate (RR), 
white blood cell count (WBC), mean arterial pressure (MAP), and 
lactate levels for each patient are used. For each summarized 
prediction model, a Bayesian network is developed and the best 
possible combination of edges in the Bayesian network are 
identified.  

Considering that sepsis is a multi-stage disease and patients 
experience various severities, few of the previously reported 
studies explicitly considered multiple sepsis stages in network 
models. Furthermore, the studies discussed above consider the 
network as an implicit construct to create the model for the 
prediction of patient outcome. Therefore, properties of the 
networks and variations in these properties among different 
subpopulations have not been widely studied. Our study 
approaches modeling sepsis as a multi-stage stochastic process 
where the manifestation of the stages (represented by organ 
failures) are subpopulation-specific. More specifically, we 
consider four subpopulations; 1) patients with infection, 2) 
patients with infection who develop sepsis without experiencing 
septic shock, 3) patients with infection who develop septic shock 
and survive, and 4) patients with infection who develop septic 
shock and die. The objectives of this study are to: i) develop 
network models to analyze the simultaneous dysfunctions 
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patterns of cellular and physiological responses; ii) compare the 
patterns and network properties among patient subpopulations; 
and iii) identify simultaneous failures in different organ systems 
and categorize these patterns in relation to other clinical 
observations (e.g., vital signs and lab values) associated with 
sepsis to predict in-hospital mortality. 

This paper is organized as follows. In the next section, the study 
population is defined, subpopulations definition criteria are 
explained, then the modeling approach and adopted statistical 
approach are discussed. In the results section, the findings of the 
analysis are presented including the properties of the networks 
and their differences among subpopulations. The significant and 
discriminatory patterns among subpopulations are shown. In the 
discussion section, the clinical relevance of the results is discussed 
in more detail, and finally, the paper concludes with key insights 
and directions for future work. 

2. MATERIAL AND METHODS 

2.1  Study population 

This study includes 13,367 adult patients admitted from July 1, 
2013, to December 31, 2015, corresponding to 17,953 visits. The 
data is sourced from a single tertiary care health care system made 
up of 2 hospitals with 1,100 total in-hospital beds. The dataset 
includes retrospectively collected Electronic Health Records 
(EHR) data with following inclusion criteria: age ≥18 at arrival, 
arrival to the hospital between July 2013 and December 2015, and 
with visit types of inpatient, ED only (outpatient), or 
observational visits. The study was approved by health systems 
Institutional Review Board.  

2.2  Subpopulations Definition 

To investigate the changes in network properties in different 
subpopulations, we considered four subpopulation-specific 

networks for patients with infection (i.e., infected population), 
patients with infection who develop sepsis without experiencing 
septic shock during hospitalization and survive (i.e., sepsis 
population), patients with infection who develop septic shock and 
survive (i.e., septic shock survivors), and patients with infection 
who develop septic shock and die. Death was defined as any-
inhospital death or discharge to hospice care. For patients with 
multiple visits, if the patient died during the study only the last 
visit is considered in this subpopulation, and previous visits are 
categorized in one of the three former subpopulations. The 
infected population was defined as patients with anti-infective 
administration for whom the anti-infective administration lasts 
for at least four days or a positive viral PCR (polymerase chain 
reaction) test for influenza [2]. The sepsis without septic shock 
population was defined as a subset of infected population. If the 
patient is discharged to hospice or died while receiving an anti-
infective but before 4 days of anti-infective administration 
elapsed, this patient would be considered a sepsis non-survivor 
[2]. To be considered as sepsis, the condition for infected 
subpopulation should hold in addition to the occurrence of organ 
dysfunction in the period of 24 hours before first anti-infective 
administration until the last administration [2]. Organ 
dysfunction is defined by meeting at least one of the criteria 
presented in Table 1 or at least one vasopressor administration 
during hospitalization, where these criteria were developed by 
synthesizing established Sepsis-3 guidelines [31] and subject 
matter experts’ input. The sepsis with septic shock population is 
defined as infected patients meeting either at least two 
cardiovascular organ dysfunction criteria listed in Table 1 with at 
least 30 minutes between the two abnormal observations (with no 
normal observation in between) and both observations within 
maximum 24 hours of each other, or for sepsis patients with any 
vasopressor administration based on clinical expert input. The 
number of visits and patients included in each subpopulation is 
shown in Table 2. 

 

Table 1. Cellular and physiological responses and biomarkers used to create simultaneous network models, and 

the criteria resulting in the corresponding organ dysfunction.  
Organ Dysfunction Response Abbrevia

tion Dysfunction criteria 

Cardiovascular  Systolic blood pressure (SBP) Sb < 90 mmHg 
SBP_max* - SBP Sd > 40 mmHg within an 8-hour period 
Mean arterial pressure (MAP) Mp < 65 mmHg 

Renal  Creatinine Cr > 1.2 mg/dL 
(Creatinine - C_base**)/(C_base) Cd > 50% from initial creatinine 
Blood Urea Nitrogen (BUN) Bu > 20 mg/dL 

Hematopoietic  White Blood Cell Count (WBC)  Wb < 4,000 cells/mL 
Platelet Pl < 100,000 cells/mL 

Metabolic  Lactate La > 2.0 mmol/L 
Gastrointestinal  Bilirubin Bi > 2 mg/dL 
Respiratory  Fraction of inspired oxygen (FiO2) Fi > 21% 

Pulse oximetry (SpO2) Px < 90% 
SpO2/FiO2 Or < 421 
Oxygen (O2) Source Os Mechanical ventilation required (bilevel positive airway pressure 

(BiPAP) or continuous positive airway pressure (CPAP) or ventilator) 
Central Nervous  Glasgow Comma Score Gc < 14 

Glasgow Best Verbal Response Gv < 5 
Three biomarkers considered Procalcitonin pc > 0.15 ng/mL 

C-Reactive Protein cr > 8 mg/L 
Erythrocyte Sedimentation Rate sr > 20 mm/hr 

*: Maximum systolic blood pressure for each observation within 8-hour windows. 
**: Initial creatinine value observed in each visit. 
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Table 2. Number of visits and patients in each sub-

population for creating of network models. 

Row 
No. Subpopulations Visits 

Count 
Patients 
Count 

1 Infected 1,574 1,487 
2 Sepsis survivor without septic shock 9409 7,536 
3 Septic shock survivor 3980 3,432 
4 Septic shock non-survivor  1,335 1,335 

Total 16,298 12,172* 
*: The number of patients and visits in each row are different because some 
of the patients have been visited multiple times. 

2.3  Network Modeling 

To investigate simultaneous changes in cellular and 
physiological responses, 19 variables available in the 
dataset were considered. These variables and their failure 
criteria are shown in Table 1. Before the creation of the 
network for each subpopulation, several data pre-
processing steps were performed, including carrying 
forward the vital and lab results, management of missing 
data, and new features creation. For the carry forward, it is 
assumed that the measured values for vital signs and lab 
results are valid for 8 and 24 hours, respectively, if there are 
no observed measurements. The mean arterial pressure 
(MAP) was calculated using the following formula: 𝑀𝐴𝑃  ∙                                                                  1   

in which, the 𝐷𝐵𝑃 and 𝑆𝐵𝑃 represent the diastolic and 
systolic blood pressure of the patient. Other derived 
variables are shown in Table 1. The simultaneous failure 
undirected weighted network models were created with the 
variables in Table 1 (responses in column three) as nodes, 
and simultaneous failure of two variables as edges. Failures 
were considered simultaneous if they co-occur within a 
150-minute period. Selection of 150 minutes as the 
appropriate duration for aggregation will be discussed in 
the Results section. The failures are defined based on the 
criteria of Table 1. In these models, nodes refer to the 16 
variables and three commonly used biomarkers shown in 
Table 1, edges refer to the simultaneous failure of each pair 
of variables, and weights refer to the persistence (as a 
measure of simultaneous failure of two variables with 
higher values representing that simultaneous failure of two 
variables is more common than each one independently) of 
the co-occurrence of simultaneous failures. For each 
observation (i.e., measured cellular or physiological 
response), all the observations occurred in less than 150 
minutes before or after the observation were considered. 
Failures in this time window were considered as 
simultaneous failures. This was repeated for all the 
observations in each visit and all the visits in the data. Thus, 
for each observation there might be none, one or more than 
one simultaneous failure of variables of Table 1.  

In the next step, for different pairs of variables shown in 
Table 1, the probability of simultaneous failure was 
calculated as the probability of simultaneous failure of the 
corresponding pair of variables divided by the probability 
of each variable’s failure, as follows: 

𝑤𝑡  𝑐 ∙ 𝑐 𝑐 𝑐𝑐 𝑐 ∙ 𝑐 𝑐                                                  2  

Here, 𝑤𝑡𝑖𝑗 represents the weight of simultaneous failure of 

two variables (𝑖 and 𝑗 represent responses listed in Table 1), 

and 𝑐𝑖𝑗𝑘𝑙 𝑘, 𝑙 ∈ 0,1 , 1: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 0: 𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  shows the 

different combinations of simultaneous states that variables 𝑖 and 𝑗 can take (for example 𝑐𝑆𝑏𝐶𝑟10  shows the count of 
observations in which the systolic blood pressure is not in 
the acceptable range, but level of creatinine is). Values of 𝑐𝑖𝑗00 were not considered in derivation of Equation (2) since 

the goal was to capture the ratio of simultaneous failures 
when at least one of the variables fail. In other words, 
Equation 2 represents the ratio of simultaneous failure of 
two variables divided by failure of each variable and 
represent the probability that each pair of responses of 
Table 1 fails simultaneously. The minimum and maximum 
values of weights 𝑤𝑡𝑖𝑗 are zero and one, expressing that two 

responses never or always fail simultaneously, 
respectively.  

2.4  Statistical analysis 

For statistical analysis purposes, we used Levene’s test for 
testing homogeneity of variance, Shapiro-Wilk for 
normality test, and Kruskal-Wallis and Wilcoxon rank sum 
tests respectively for testing whether simultaneous failure 
values are originated from the same distribution for all four 
subpopulations and for pairwise comparisons. 

2.5  Significant Simultaneous Failures 

The comparison of networks of different subpopulations 
identifies the significant simultaneous failures unique to 
that subpopulation, i.e., simultaneous failures of cellular 
and physiological responses common in one subpopulation 
but not in the others. To confirm the significance of the 
edges detected as significant in network models, we used 
generalized boosted models from gbm library in R software. 
This library is an extension and implementation of 
AdaBoost algorithm [32] and gradient boosting machine 
[33, 34]. The package technical details can be found in [35]. 
We implemented the gbm method using the same number 
of visits in two subpopulations (2,990 visits in each 
subpopulation, as the number of non-survivors was 2,990 
patients), sepsis survivors and sepsis non-survivors. The 
sepsis non-survivors group includes the fourth row of 
Table 2 (1,335 visits), and sepsis patients without septic 
shock who died or discharged to hospice (1,655 visits). For 
the gbm method, the data were randomly divided into 
training and testing data sets and 10-fold cross-validation 
was applied. To implement this method, we adopted two 
approaches. First, the gbm model was created based on all 
the possible simultaneous failures among variables of Table 
1 as features. Then, we created other gbm models using just 
the simultaneous failures considered common at different 
thresholds. The objective of this analysis is to compare the 
performance of the same method under two conditions; 
using all the simultaneous failures in comparison with 
those identified by the network analysis. 
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3. RESULTS 

3.1  Network development 

Two failures were considered simultaneous if they co-occur 
within a 150-minute period. This 150-minute aggregation 
time was obtained after the following analysis. Ten 
aggregation windows were tested ranging from 30-minute 
to 300-minute with 30 minutes intervals. Each observation 
of the patient was aggregated with other observations of 
the same patient recorded in the period of 𝑡-minutes before 
or after the observation, where 𝑡 represents the 
corresponding aggregation time. The failures of responses 
listed in Table 1 were collected for aggregated observations. 
Two networks of sepsis survivors and sepsis non-survivors 
were created. Next, using the gbm method, the prediction 
accuracy and area under operating characteristic curve 
(ROC) were collected. The highest accuracy and AUC 
combination was observed at 150-minute aggregation 
window (Figure 1). 

Then, four subpopulation-specific networks were created 
and the weights of simultaneous failure of each pair of 
variables were calculated. The maximum possible number 
of edges in each network is 171 (each of 19 variables in 
Table 1 can connect to 18 other variables). Table 3 shows 
the mean and standard deviation of weights calculated for 
the four subpopulations. In situations where there was no 
observation of simultaneous failure of a pair of variables in 
the corresponding subpopulation, we assumed that the 
weight corresponding to the edge connecting the two 
variables is zero and included that in the calculation of 
mean and standard deviation, as the lack of observation of 
the simultaneous failure also might be informative. 

Table 3. Mean and Standard deviation (SD) of 

simultaneous failure weights (wt) of edges calculated 

for four subpopulations. 

Status 
Number of edges 

(wt >0) 
 

Mean SD  

Infected  82  0.121 0.223 

Sepsis without septic shock 171  0.252 0.231 

Septic shock survivors  171  0.361 0.253 

Septic Shock non-survivors 168  0.461 0.286 

3.2  Network comparison 

Using the weights of simultaneous failures in the networks 
in different subpopulations, the following statistical 
analysis was performed. Levene’s test rejected that the 
homogeneity of variances of weights between networks are 
equal, and the Shapiro-Wilk normality test rejected the 
hypothesis of normality of weight distribution in each 
network model (both with 𝑝 𝑣𝑎𝑙𝑢𝑒 0.001). Next, 
Kruskal-Wallis and Wilcoxon rank sum tests both rejected 
that the weights calculated for different subpopulations are 
originated from the same distribution (Table 4). 

Figure 2 shows the variations in simultaneous failures in 
different subpopulations explicitly for the four 
subpopulations for several weigth thresholds, i.e. only 

keeping edges at or above that given threholds value. The 
variables in the network are color-coded based on the organ 
systems and biomarkers as it is shown in the legend at the 
top of the Figure 2. The edges with at least one node 
including a biomarker are shown in red. The weights of 
edges range between zero and one. The Figure 2 shows the 
networks of the four subpopulations for three thresholds in 
the range of 0,1 . In each row, only the edges with weights 
greater than or equal to the corresponding threshold are 
shown. By increasing the thresholds, the number of edges 
included in all the networks decreases. However, stronger 
relationships exist between the nodes in networks related 
to more severe conditions. 

 

Figure 1: Prediction accuracy for different 

aggregation times. The aggregation time 150-minute 

shows the highest prediction accuracy 

Table 4. Pairwise comparisons of weights of 

simultaneous failures in the networks in different 

subpopulations using Wilcoxon rank sum test. 

 Infected 
Sepsis without  

septic shock 
Sepsis with  
septic shock 

Sepsis without 
septic shock 

0.001 - - 

Septic Shock 
Survivor 

0.001 0.001 - 

Septic Shock 
Non-survivor 

0.001 0.001 0.001 

 
  These visualizations also can be translated to network 
density, defined as the ratio of edges included in the 
network divided by total possible edges that the network 
can have. Figure 3 shows the density of the network models 
for each of the four subpopulations at different weight 
thresholds. As illustrated, the density of the network 
decreases as the weight threshold increases for all four 
subpopulations. However, the reduction rate, the decrease 
of density by increasing the weights, is different among 
them. Having the lowest reduction rate in the sepsis non-
survivors shows that simultaneous failure are significantly 
more common in this subpopulation in comparison with 
other subpopulations. The same explanation can be 
considered for the comparison of each pair of 
subpopulations in Figure 3.
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Figure 2: Networks representing simultaneous failure of different cellular and physiological responses in four 

subpopulations. Each row shows edges in each network that has a weight greater than or equal to the corresponding 

row threshold, the edges with one end as biomarkers are shown in red (Sb (systolic blood pressure); Sd (Sb (systolic 

blood pressure); Sd (Sb_max* - SBP); Mp (MAP); Cr (Creatinine); Cd ((Creatinine - C_base**)/(C_base)); Wb (WBC); La 

(Lactate); Pl (Platelet); Bu (BUN); Bi (BiliRubin); Fi (FiO2); Px (SpO2); Or (SpO2/FiO2); Os (Oxygen Source); Gc (Glasgow 

Coma Score); Gv (Glasgow Best Verbal Response); pc (Procalcitonin); cr (CRP); sr (Sedimentation Rate). *: Maximum 

systolic blood pressure for each observation within 8-hour windows. **: Initial creatinine value observed in each 

visit) 

 

Figure 3: Networks density for the four 

subpopulations over weights 

3.3  Simultaneous failure patterns in 

subpopulations 

Further, the edges among cellular and physiological 
responses were used to predict the patients’ outcome. Thus, 
to set up the prediction experiment, 70% of visits in each 
subpopulation are selected as training data. The outcome of 
interest is survival or death in hospital. Therefore, in the 
training process, two separate networks corresponding to 
these groups were created; sepsis survivors and non-

survivors. Both networks are composed of the same set of 
variables and the weights are calculated using equation (2). 
For prediction of the outcome of interest, we identified the 
discriminatory performance of simultaneous failures which 
are unique among non-survivors but not among survivors. 
Therefore, using the networks created for the two 
subpopulations, a third network was created which was 
composed of the edges with weights calculated as the 
difference between the weights of the corresponding two 
edges in the networks of survivors and non-survivors 
(Figure 4). The rightmost network in Figure 4 shows the 
difference network of the networks of two subpopulations. 
The difference network highlights the edges with higher 
weights. These edges represent simultaneous failures 
which are more common in non-survivors. The weights of 
edges in the difference network show the difference of 
weights between the two groups. In other words, the 
weights in the difference network show the differences in 
simultaneous failures of two variables in the two 
subpopulations; higher weights indicate higher 
probabilities of simultaneous failure of the two 
corresponding variables in non-survivors in comparison 
with survivors.  The maximum value of weights in the 
difference network is about 0.4, related to the edge between 
Oxygen source and C-Reactive Protein nodes when both 
are out of the acceptable range provided in Table 1. 
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Figure 4: Networks of sepsis survivors and non-survivors at left, and difference network at right. The width of edges 

represents the relative weight of edges. ((Sb (systolic blood pressure); Sd (Sb (systolic blood pressure); Sd (Sb_max* - 

SBP); Mp (MAP); Cr (Creatinine); Cd ((Creatinine - C_base**)/(C_base)); Wb (WBC); La (Lactate); Pl (Platelet); Bu 

(BUN); Bi (BiliRubin); Fi (FiO2); Px (SpO2); Or (SpO2/FiO2); Os (Oxygen Source); Gc (Glasgow Coma Score); Gv 

(Glasgow Best Verbal Response); pc (Procalcitonin); cr (CRP); sr (Sedimentation Rate). *: Maximum systolic blood 

pressure for each observation within 8-hour windows. **: Initial creatinine value observed in each visit) 

 

Figure 5: Difference Network created by removing edges with weights less than the values shown under each 

network, we just keep edges which show simultaneous failures which are more common in patients died/discharged 

to hospice. ((Sb (systolic blood pressure); Sd (Sb (systolic blood pressure); Sd (Sb_max* - SBP); Mp (MAP); Cr 

(Creatinine); Cd ((Creatinine - C_base**)/(C_base)); Wb (WBC); La (Lactate); Pl (Platelet); Bu (BUN); Bi (BiliRubin); Fi 

(FiO2); Px (SpO2); Or (SpO2/FiO2); Os (Oxygen Source); Gc (Glasgow Coma Score); Gv (Glasgow Best Verbal Response); 

pc (Procalcitonin); cr (CRP); sr (Sedimentation Rate). *: Maximum systolic blood pressure for each observation within 

8-hour windows. **: Initial creatinine value observed in each visit)) 

Figure 5 visualizes the difference network at different 
weight thresholds. In each network in this figure, the edges 
with weights more than the corresponding threshold are 
shown. By creating and using a complete network in which 
all the 19 variables are connected, a gbm model was 
developed to predict in-hospital mortality in sepsis 
population. In addition, the edges in each of the networks 
in Figure 5 were used to create separate gbm models to 
predict subpopulation-specific in-hospital mortality. The 
ROC curves, and AUC and prediction accuracy for the 
complete network gbm model (composed of all the edges), 
and subpopulation-specific gbm models are shown in 
Figures 6 and 7. The accuracy of the gbm models developed 
for the complete network and the first network in Figure 5 
are close, both about 78% with AUC = 0.85 (their 
corresponding number of edges are 171, and 105).  

Using the edges of the network with weights more than 0.2 
does not decrease the prediction accuracy (76.5%); however, 
the number of edges decreases to 51, showing that network 
models have been able to eliminate 120 insignificant edges 

without a significant decrease in the prediction accuracy. 
Using the edges of the network with the weights more than 
0.25 decreases the accuracy to 73% using 37 edges. In other 
words, removing about 130 edges of the network results in 
5% drop in accuracy. Using the edges of the network with 
the weights more than 0.3 corresponds to prediction 
accuracy above 70% (~71.5% and AUC = 0.77) with only 18 
edges. Increasing the weights to 0.35 and 0.4 decreases the 
prediction accuracy to 60% and 50% respectively with 6 and 
3 edges in their corresponding network. The results of the 
gbm model for the complete network show that edges with 
the highest relative influence on the prediction accuracy 
are mostly those representing the simultaneous 
dysfunctions of respiratory-renal, renal-cardiovascular, 
and renal-metabolic organ systems (Figure 8).  

The edges representing such simultaneous failures are not 
present in the networks with weight threshold more than 
0.35 and 0.4 which explains the lower prediction accuracy 
in these networks compared to the networks with edges 
including weights less than 0.3. The network with weights 
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higher than 0.40 in Figure 5 shows that respiratory 
responses and C-Reactive Protein have a more than 40% 
higher probabilities to fail simultaneously in sepsis non-
survivors. Although simultaneous failure of respiratory 
responses and C-Reactive Protein are more common in 
septic shock non-survivors compared with survivors, they 
are not co-measured frequently in the study dataset. This 
might lead to the model not considering their simultaneous 
failure as a strong predictor of patients’ outcome. 

 

Figure 6: ROC curves for the gbm models developed 

using all the possible edges (weights > 0), and edges in 

the networks of Figure 6 with weights > 0.1, 0.15, 0.2, 

0.25, 0.3, 0.35, and 0.4 

 

Figure 7: AUC and prediction accuracy for the gbm 

models developed using all the possible edges 

(weights > 0), and edges in the networks of Figure 6 

with weights > 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4 

4. DISCUSSION 

This study provides an analytical framework for exploring 

simultaneous abnormalities in cellular and physiological 

responses representing organ system dysfunctions in 

patients with sepsis to predict in-hospital mortality.  

Utilizing novel undirected weighted network models, the 

key findings quantify: i) optimal window for defining the 

simultaneity of observed organ system dysfunctions, ii) 

differences in network properties corresponding to 

different subpopulations, and iii) discriminatory patterns of 

simultaneous failures and subpopulations-specific in-

hospital mortality prediction. The novelty of the approach 

is twofold. First, it shows that patterns of simultaneous 

dysfunctions are subpopulation-specific. Second, it shows 

that these differences can inform the therapeutic 

management of sepsis at different stages and in an 

individualized manner. Also, using different thresholds for 

the difference network for the purpose of sensitivity 

analysis, it was shown there are some of the simultaneous 

dysfunctions which are the main predictors of patients’ 

outcome. In the remainder of this section, we discuss the 

clinical interpretation and insights derived from the 

findings, limitations of the study as well as promising 

future research directions. 

 

 
Figure 8: Organ failure-based comparison of the 

relative importance of the edges contributing to 

accuracy of predicting in-hospital mortality. Each 

label in vertical axis represents one edge (top ten most 

important edges are shown). BUN=Blood Urea 

Nitrogen; FiO2= Fraction of inspired oxygen; MAP: 

mean arterial pressure; SBP=systolic blood pressure; 

SpO2=Pulse oximeter oxygen saturation  

4.1  Value of quantifying simultaneous 

organ dysfunction in sepsis  

In previous studies, the cellular and physiological 

responses have been considered as independent variables 

for prediction of patients’ outcome [11, 12]. Considering 

that the responses occurring in sepsis progression are not 

independent events, the temporal relationship between 

failures of responses can inform the dependency structures 

between these responses and following care delivery 

decisions. To the best of our knowledge, organ dysfunction 

within the sepsis context has not previously been 

quantified using a temporal relationship, i.e., optimal time 

window for identifying observed abnormality in responses 

relative to each other. The time window of 150 minutes to 

define simultaneity resulted in the highest combined 

accuracy and AUC (Figure 1). This approach recognizes the 

importance of considering the temporal patterns of cellular 

and physiological responses in a data-driven manner.    

Key findings of this study show that: i) the simultaneous 

dysfunctions of renal-respiratory, renal-metabolic, and 

renal-cardiovascular organ systems exhibit the highest 

relative influence on the prediction accuracy regarding in-
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hospital mortality, and ii) the simultaneous dysfunctions are 

significantly different between sepsis survivors vs non-

survivors. The simultaneous organ systems failures 

differentiating non-survivors from survivors were not the 

systems that current standard of care would commonly 

recognize, which are cardiovascular and respiratory systems. 

Failure of renal system paired with respiratory, 

cardiovascular, or metabolic system failure within 150 

minutes resulted in the highest associated predictive ability. 

Furthermore, BUN was the renal system failure biomarker 

with highest predictive value, and not the commonly 

described serum creatinine level. BUN biomarker as measure 

of renal system dysfunction within the sepsis context has 

been previously described [36, 37], but has not yet been 

studied in temporal relationship to other responses.  

4.2  Value of quantifying simultaneous 

inflammatory biomarker elevation 

with organ dysfunction in sepsis 

The inflammatory biomarkers are often used in clinical 

practice to help in diagnosing the presence of infection from 

other non-infectious causes or to monitor a patient’s 

response to therapy over time. The inflammatory biomarkers 

(procalcitonin, c-reactive protein (CRP), and erythrocyte 

sedimentation rate (ESR)) are not routinely assessed in 

clinical practice, and when they are, are not routinely re-

assessed as surrogates for organ system function. This study 

evaluated of the value of the simultaneous failure of 

inflammatory and physiologic biomarkers. Key findings of 

this study showed that simultaneous CRP-respiratory (FiO2), 

CRP-respiratory (SpO2/FiO2), and PCT-metabolic (lactate) 

were the strongest associations differentiating non-survivors 

from survivors compared to any other simultaneous organ 

system dysfunctions (Figure 5). While assessing the true 

strength of this association was limited by the relative 

infrequent measurement the inflammatory biomarkers, these 

findings can advocate for a more routine assessment of these 

inflammatory biomarkers in clinical practice.  

4.3  Translation of findings into clinical 

practice 

Clinically, multi-organ failure is treated with the goal of 

addressing shock states with blood pressure support 

(vasopressor therapy) and supplementing oxygen and 

breathing ability when deficient. Applying the findings from 

this study regarding the organ system simultaneous 

dysfunctions and inflammatory biomarker has the potential 

to inform early detection of individuals at highest risk of in-

hospital death and facilitate the best opportunity for sepsis 

patients to receive timely care. This work is aligned with a 

recent study [37] showing that respiratory and renal system 

dysfunction caries a higher risk of death from sepsis than 

other organ systems. The use of non-traditional markers 

such as BUN as a measure for renal system dysfunction has 

shown great value when it occurs simultaneously with 

respiratory, cardiovascular or metabolic system dysfunction 

in differentiating sepsis non-survivors from survivors. 

Additionally, due to the strength of the signal but relative 

infrequent assessment of inflammatory biomarkers, a more 

regular assessment of the tests is warranted in effort to better 

risk stratify sepsis patients.  

Further, severity of illness scoring systems targeting sepsis 

risk-stratification commonly treat organ system dysfunction 

as independent events when applying a weighting algorithm 

to observed dysfunctions. An incorporation of probabilistic 

weighting as demonstrated in this study could improve the 

performance of scoring systems, both in improving the 

sensitivity and specificity, and thus decreasing false alarms. 

Finally, based on the key findings, our recommendations are 

to incorporate regular directed assessment for the presence 

of the following simultaneous (150 minutes) failures in sepsis 

population: Low FiO2 and elevated BUN, Low MAP and 

elevated BUN, elevated lactate and elevated BUN, elevated 

CRP and low FiO2, elevated CRP and low SpO2/FiO2, and 

elevated PCT and elevated lactate. 

4.4  Limitations and Future Directions 

This study is based on a data derived from a single healthcare 
system which may impact the generalizability of the 
findings. Future studies can incorporate data from multiple 
healthcare systems with external validation and improved 
generalizability purposes. Another limitation is that we used 
the consensus sepsis definition [1] with a broad definition of 
organ failure based on assimilation of organ dysfunction 
thresholds defined by SOFA score [38], PIRO score [36] and 
clinical expertise. Using a different definition for sepsis may 
impact the replication of the results. Further, the undirected 
weighted networks used pairwise failure of responses, i.e. the 
edges of the networks, as independent variables in predicting 
in-hospital mortality. However, in some cases, larger 
subnetworks (composed of more than two responses failing 
simultaneously) can improve the prediction accuracy. A 
promising future research area is the application of subgraph 
mining. Subgraph mining provides an analytical approach to 
detect relevant and significant subnetworks in a set of 
networks. Finally, with regards to identifying optimal time 
windows to define temporal relationships between observed 
failure of responses, we identified the optimum aggregation 
time and then aggregated all the observations recorded in a 
fixed window before and after each specific observation. 
Another promising future research direction is using other 
methods of aggregation of temporal relationships between 
organ system failures, such as dividing the visit into discrete 
time intervals and studying time interval-specific 
simultaneous dysfunctions. 
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