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Abstract—A key characteristic of commonly deployed deep
packet inspection (DPI) systems is that they implement a simpli-
fied state machine of the network stack that often differs from that
of endhosts. The discrepancies between the two state machines
have been exploited to bypass such DPI based middleboxes.
However, most prior approaches to do so rely on manually
crafted adversarial packets, which not only are labor-intensive but
may not work well across a plurality of DPI-based middleboxes.
Our goal in this work is to develop an automated way to craft
candidate adversarial packets, targeting TCP implementations in
particular. Our approach to achieving this goal hinges on the key
insight that while the TCP state machines of DPI implementations
are obscure, those of the endhosts are well established. Thus, in
our system SYMTCP, using symbolic execution, we systematically
explore the TCP implementation of an endhost, identifying
candidate packets that can reach critical points in the code (e.g.,
which causes the packets to be accepted or dropped/ignored);
such automatically identified packets are then fed through the
DPI middlebox to determine if a discrepancy is induced and
the middlebox can be eluded. We find that our approach is
extremely effective. It can generate tens of thousands of candidate
adversarial packets in less than an hour. When evaluating against
multiple state-of-the-art DPI systems such as Zeek and Snort, as
well as a state-level censorship system, viz. the Great Firewall of
China, we identify not only previously known evasion strategies,
but also novel ones that were never previously reported (e.g.,
involving the urgent pointer). The system can be extended
easily towards other combinations of operating systems and DPI
middleboxes, and serves as a valuable tool for testing future DPIs’
robustness against evasion attempts.

I. INTRODUCTION

Deep packet inspection (DPI) has become a technology
commonly deployed in modern network security infrastruc-
tures. By assembling and checking application layer content,
DPI enables powerful functionalities that are not present in
traditional firewalls. These include malware detection [10],
remote exploit prevention [41], phishing attack detection [16],
data leakage prevention [46], government network surveil-
lance [7], [6], targeted advertising [28], [3], and traffic dif-
ferentiation for tiered services [51], [32], [20].

Unfortunately, to assemble application layer content from

stateful protocols like TCP, DPI needs to engineer the cor-
responding state machine of the protocol. This introduces a
fundamental limitation of DPI, which is a susceptibility to
protocol ambiguities. In brief, most network protocol specifi-
cations (e.g., RFCs for TCP [36]) are written in a natural lan-
guage (English), which makes them inherently ambiguous. To
make things worse, some parts of the specifications are delib-
erately left unspecified, which in turn leads to vendor-specific
implementations. Consequently, different network stack imple-
mentations (e.g., Windows and Linux) typically have inherent
discrepancies in their state machines [42], [13], [38]. In fact,
even different versions of the same network stack implemen-
tation, can have discrepancies. To ensure low overheads and
compatibility with most implementations, DPI middleboxes
usually implement their own simplified state machines, which
are bound to differ from the ones on endhosts.

As pointed out by previous works [37], [48], [29], such
discrepancies lead to certain network packets being accept-
ed/dropped by either a “DPI middlebox” or the endhost.
Exploiting this property, one can use insertion packets (i.e., a
packet which is accepted and acted upon by the DPI middlebox
to change its state, whereas the remote host drops/ignores it)
and evasion packets (i.e., a packet which is ignored by the DPI
middlebox but the remote host accepts and acts on it) [37] to
mislead the DPI’s protocol state machine. Specifically, such
packets cause the DPI to enter a different state than the one
on the endhost. Consequently, the DPI can no longer faithfully
assemble the same application layer content as the endhost,
failing to catch any malicious or sensitive payload.

To date, research on insertion and evasion packets are
based on manually crafting such packets targeting specific
DPI middleboxes [37], [48], [29]. Unfortunately, it is a labor-
intensive task to analyze each and every middlebox implemen-
tation and come up with the corresponding strategies for such
adversarial packet generation. One can potentially automate the
process by searching through all possible sequences of packets
to identify insertion and evasion packets. Unfortunately, the
search space is exponentially large, i.e., there are 2160 possi-
bilities to cover a 20-byte TCP header of even a single packet,
let alone testing a sequence of packets.

“Can we develop automated ways to construct packets that
can successfully de-synchronize the state of a DPI middlebox
from that of a (end) server?” This question is at the crux of the
work we target in this paper, answering which not only can
help test future generations of DPIs but also help stay on top
of the arms race against future censorship technologies. Our
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focus here is on TCP, since it is the cornerstone upon which
most popular application-layer protocols are built. We develop
an approach that is driven by the insight that even though
the TCP state machines of DPI middleboxes are obscure, the
implementations of TCP on the endhosts are well established
(e.g., a very large fraction of the servers run Linux operating
systems). Given this, we explore the TCP state machine of
endhosts (using symbolic execution) and generate groups of
candidate packets based on what critical points and states they
can reach, i.e., states where packets are either accepted or
dropped/ignored due to various reasons. Next, we perform
differential testing by feeding such packets through the DPI
middlebox and observe whether they induce any discrepancies,
i.e., whether the DPI middlebox can still perform its intended
function of identifying connections that contain malicious/sen-
sitive payloads.

The major contributions of the work are the following:

• We formulate the problem of automatically identifying in-
sertion and evasion packets by focusing on exploring the
TCP state machine on endhosts, and conducting differential
testing against blackbox DPIs.

• We develop SYMTCP, a complete end-to-end approach
to automatically discover discrepancies between any TCP
implementation (currently Linux) and a blackbox DPI. We
have released the source code of SYMTCP and datasets at
https://github.com/seclab-ucr/sym-tcp.

• We evaluate our approach against three DPI middleboxes,
Zeek, Snort, and Great Firewall of China (GFW), and
automatically find numerous evasion opportunities (several
are never reported in the literature). The system can extend
to other DPIs easily and serves as a useful testing tool
against future implementations of DPIs.

II. BACKGROUND

In this section, we first provide a brief background on why
eluding attacks are possible against DPI. Subsequently, we pro-
vide some background on symbolic execution and associated
techniques since these are integral to building SYMTCP.

A. Eluding Attacks against Deep Packet Inspection

DPI is specially designed to examine content related
to higher-layers, such as the application layer (e.g., HTTP,
IMAP). To examine application-layer payloads, DPI first re-
constructs data streams from network packets (TCP packets)
captured from an interface. Then it automatically assigns an
appropriate protocol parser to parse the raw data stream [19].
Finally, it performs “pattern matching” on the parsed output.
To illustrate as an example, consider the common case of
keyword-based filtering of HTTP requests (e.g., deployed on
censorship firewalls). When the DPI module (referred to as
simply DPI for ease of exposition) detects a specific keyword
in the HTTP URI, it may take follow-up actions (e.g., blocking
the connection or silently recording the behavior). Sometimes
the pattern matching signatures can be more complex, wherein
the DPI examines a combination of fields from multiple
layers and data from both directions (to and from a server)
in a sequence [44]. For example, one endhost first sends a
“HELLO” message to port 443, and then the other party
responds with an “OLLEH” message.

However, DPI suffers from the inherent vulnerability of
evasion because of discrepancies between its TCP implemen-
tation and that of the endhost (e.g., a server) arising because of
protocol ambiguities [37], [23]. An example is that Snort [43]
accepts a TCP RST packet as long as its sequence number is
within the receive window (which is too lenient), while the
latest Linux implementation will make sure that the sequence
number of the RST packet matches the next expected number
(rcv_next) exactly. This allows an attacker to send an
insertion RST packet with an intentionally marked “bad” in-
window sequence number, which terminates the connection on
Snort, whereas the remote host will actually drop/ignore such
a packet. Such discrepancies open up a gap for attackers to
elude the DPI by sending carefully crafted packets.

Besides discrepancies due to protocol implementations,
lack of knowledge of the network topology could also intro-
duce additional ambiguities. For example, it is hard for a DPI
to infer whether a packet will reach the destination. Thus, the
attacker can send a packet with a smaller TTL to cause it not to
reach the remote host, however, such a packet has an influence
on the DPI.

Previous research works [48], [29] have exploited the net-
work ambiguities and protocol implementation discrepancies
to design evasion strategies against real-world DPI systems,
such as the national censorship systems in China and Iran,
and ISPs’ traffic differentiation systems for tiered services.
Those evasion strategies are shown to have high success rates
in rendering the DPI ineffective. However, most of the common
discrepancies can be patched by the DPI devices, leading to
an arms race. In contrast, our system presents a major step
towards automating the evasion strategies, which not only can
serve as a valuable testing tool against future generations of
DPIs but also keep pace in the escalating arms race in the
context of DPI evasion.

B. Symbolic Execution vs. Concolic Execution vs. Selective
Symbolic Execution

Symbolic execution [26] is a powerful and precise soft-
ware analysis/testing technique that is widely employed for its
ability to break through complex and tight branch conditions
and reach deeper along execution paths, which is a distinct
advantage compared to other less precise techniques such
as fuzzing. In symbolic execution, instead of using concrete
values, variables are assigned symbolic values to explore the
execution space of a target program. The symbolic execution
engine simulates the program execution by interpreting each
instruction (either at an intermediate representation level like
LLVM-IR [11] or VEX [40], or at the binary level [49]),
and maintain symbolic expressions for each program vari-
able. En route, the engine collects path constraints in the
form of symbolic expressions. Whenever a branch with a
symbolic predicate is encountered, the engine checks whether
the corresponding true/false path is satisfiable (with the help
of an SMT solver); if so, it forks the execution path into
two and adds a new path constraint according to the branch
condition (true or false). The disadvantage of symbolic
execution, however, is in its efficiency or scalability. Both
simulated execution and constraint solving can be extremely
slow even with optimizations such as caching and incremental
solving [11]. Moreover, the total number of feasible execution
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paths in a common size modern software can be huge, leading
to the notorious path explosion problem.

Concolic execution [12] is a practical testing technique
that enhances symbolic execution with concrete execution.
The basic idea is to bind a concrete value to each symbolic
expression, and so, it can switch modes between symbolic
execution and concrete execution at any time. When a branch
with symbolic predicate is encountered, the concolic execution
engine first uses the concrete value to decide which path to go;
subsequently, it also tries to generate a new concrete value for
the opposite branch. When a particular part of the code or a
function may cause path explosion or if the constraint solver
is unable to or inefficient in solving, it can switch to concrete
execution which prevents forking and constraint solving, and
switch back at a later time. However, this may cause a loss in
terms of both completeness and soundness as a trade-off [4].
Most of the state-of-the-art symbolic execution engines like
Angr [40] and S2E [17] support concolic execution.

Selective symbolic execution [17] further extends the
idea of concolic execution and makes it more flexible and
practical for testing large and complex software (like an
operating system kernel). In particular, a selective symbolic
execution engine allows the testing of only a sub-system of a
program (e.g., the TCP implementation). This is achieved by
transitioning between the concrete mode (where most symbolic
variables already have concrete values) and the symbolic mode
as follows:

• Transition from concrete to symbolic: the engine symbolizes
the inputs of the scope (data coming into the scope), such
as function parameters, to offer the possibility of exploring
all execution paths within the scope at the cost of under-
constraining, i.e., losing additional constraints imposed over
the inputs from external components.

• Transition from symbolic to concrete: the engine concretizes
symbolic variables, which can cause over-constraining as we
are arbitrarily choosing one of the possible values to assign
to any symbolic variable and this can harm completeness.

S2E [17] is a representative system that combines selective
symbolic execution with whole-system emulation to test the
Linux kernel. Its performance of symbolic execution is con-
trolled by selectively running part of the code of interest
(e.g., specific functions) in symbolic mode while keeping most
other parts and the external system running in the concrete
mode. S2E provides different levels of execution consistencies
that allow trade-offs between performance, completeness, and
soundness of analyses.

In our solution, to address the complexity of real-world
TCP implementations, we employ the selective symbolic ex-
ecution feature in S2E to effectively explore the TCP imple-
mentation in the Linux kernel.

III. THREAT MODEL AND PROBLEM DEFINITION

In this section, we first describe our threat model. Subse-
quently, we formalize the problem that we set out to solve
when we design SYMTCP.

A. Threat Model

The threat model that we consider is depicted as in Fig-
ure 1. We assume that a DPI engine is located in between
the client and the server, and is capable of reading all the
packets exchanged between the client and the server. We only
focus on the TCP protocol in this work since it is arguably the
most popular transport layer protocol. By eluding DPI from
the TCP-layer, we can disrupt TCP packet reassembly of the
DPI, and therefore can allow upper-layer protocols to elude
DPI (e.g., HTTP, HTTPS).

We assume that the DPI engine has its own TCP implemen-
tation that can reassemble and cast the captured IP packets into
TCP data streams. It then performs checks on the reassembled
data streams for whatever is needed based on the function of
the middlebox (e.g., censorship, network intrusion detection,
etc.), and its behavior is deterministic. We also assume that
the inspections will lead to observable effects, e.g., blocking
or resetting of a connection, if an alarm is triggered; otherwise
we cannot tell whether an eluding attack is successful or not.

The goal of a host (e.g., client) is to elude inspection
of the DPI engine, by sending carefully crafted packets that
exploit discrepancies between the TCP implementation of a
DPI and that of the host on the other end (e.g., server),
prior to sending the sensitive content. For ease of discussion,
throughout the rest of the paper, we consider the client to be
the one attempting to elude the inspection unless otherwise
explicitly stated. We consider the DPI’s TCP implementation
to be a blackbox, and thus, the client can send only probe
packets. The responses (or lack thereof) to the probe packets
allows the client to infer the state of DPI’s TCP state machine.
We assume that the server uses a publicly available TCP stack
implementation (e.g., Linux), and thus, the client can perform
analysis as a whitebox. These assumptions also imply that the
server is not colluding with the client by using a specialized or
custom TCP stack as otherwise arbitrary covert channels can
be established [33].

B. Problem Definition

Conceptually, an evasion packet is a TCP packet that is
accepted by the server but dropped/ignored by the DPI engine.
Similarly, an insertion packet is a TCP packet that is dropped
by the server but accepted by the DPI engine. However, such
a definition is imprecise. In this section, we aim to provide a
more precise definition of the concepts we use in this work,
as well as the problem that SYMTCP solves. First, we define
what are accept and drop attributes associated with a packet.

TCP State Machine. Conceptually, each TCP implemen-
tation can be modeled as a deterministic Mealy machine,
M = (Q, q0,Σ,Λ, T,G) where

• Q is the set of states,

• q0 ∈ Q is the initial state,
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• Σ is the input alphabet, i.e., a TCP packet,

• Λ is the output alphabet, i.e., the TCP data payload,

• T : Q× Σ→ Q is the state transition function, and

• G : Q× Σ→ Λ is the output function.

Compared with a traditional deterministic finite state machine,
the output of the Mealy machine is determined by both its
current state and the current inputs. Note that in this work,
we define the output of a TCP state machine M as the
output to the buffer that stores data which will be used by the
application layer (i.e., payload), instead of the response packet.
The reasons are that (1) DPI’s detection of sensitive keywords
is strictly on the application layer payload, and (2) the TCP
layer of the DPI engine will not generate any TCP level output
like ACK packets. This model allows us to unify the definition
of state machines for both the DPI and an endhost. We also
simplify the output behavior as follows: as long as the data
payload will be output to the application layer, even in a
delayed manner, we consider that the packet generates a non-
empty output.

Definition 1: Drop. Given a TCP state machine M , a packet
P ∈ Σ is dropped if it neither causes a state change nor
generates any output. Here the state can be either the high-
level TCP states (e.g., LISTEN, ESTABLISHED), or low-
level/implementation-level states (e.g., the number of challenge
ACKs that have been sent [13]).

T (q, P ) = q ∧G(q, P ) = ε (1)

Correspondingly, we define drop paths as the program paths of
a TCP implementation that free an incoming TCP packet with-
out changing the current state of a TCP session or producing
any output. To identify drop paths in practice, we also define
drop points as the program points or statements where any path
that traverses it would become a drop path. In the Linux kernel
we analyzed, we manually labeled 38 unique drop points in
total (more details in §VIII). Note that a single drop point may
correspond to many different packet instances. For example, a
packet with “bad checksum” can have arbitrary SEQ or ACK
numbers, as well as arbitrary TCP headers.

Definition 2: Accept. Given a TCP state machine M , a packet
P ∈ Σ is accepted if it causes a state change (including both a
high-level, TCP state change and a low-level, implementation-
specific state change) or the output is not empty:

T (q, P ) 6= q ∨G(q, P ) 6= ε (2)

Correspondingly, we define accept paths as the program paths
of a TCP implementation that change the current state of a
TCP session or append the payload of a TCP packet to the
receive buffer. Technically, all paths that are not drop paths
are considered accept paths; equivalently, any path that does
not traverse any drop point is considered an accept path, and
can be therefore be identified automatically.

Next, we note that any evasion or insertion packet needs to
be sent along with other packets in a sequence (e.g., the TCP
handshake, a data packet that contains sensitive keyword), in
order to discover discrepancies. For ease of exposition, we
first define two shortcut functions for handling a sequence of
packets.

Let Ms be the TCP state machine of the server and Md be
the TCP state machine of the DPI engine. For simplicity, we
assume Ms and Md have the same input and output alphabet.
Although the set of states of Ms and Md are different, we as-
sume that their initial states (q0) are the same, i.e., the LISTEN
state. Given a state q of a TCP state machine M and a sequence
of packets P1...n ∈ Σ∗, we denote TM (q, P1...n) as the state
transition from q after handling P1...n, and GM (q, P1...n) as
the generated TCP data stream to the application layer.

Because the goal of the DPI’s TCP layer is to extract
the data stream from the monitored TCP session between the
client and the server, we define the concept of “synchronized”
for the ease of discussion.

Definition 3: Synchronized. Given a sequence of packets
P1...n ∈ Σ∗, we say that the DPI engine’s TCP state machine
Md is synchronized with the server’s state machine Ms if and
only if the generated (application) data streams from the initial
LISTEN state are the same for both i.e.,

GMs
(q0, P1...n) = GMd

(q0, P1...n) (3)

At a high-level, what insertion and evasion packets aim to
achieve is to “de-synchronize” the TCP state machine of the
server (Ms) from that of the DPI engine (Md),1 so that the
payload with sensitive information will not be output to the
application layer filters for inspection. However, because the
DPI engine is a black box in our threat model, whether the two
state machines have been de-synchronized can only be inferred
from the behavior of application layer filters (e.g., the decision
to block or reset a connection after sending a probe packet). To
model such behaviors, we define an abstracted filter function.

Definition 4: Bad Keywords and Alarm. For simplicity, we
use bad keywords to represent any content that can trigger an
alarm, and we assume that the entire content fits into a single
TCP packet for the ease of discussion (but we can also support
keywords which are split into multiple packets). Given a packet
P containing a bad keyword, a filter function F : Λ→ {0, 1}
performs arbitrary checks over its data payload.

F (G(q, P )) =

{
1 if G(q,P) contains any bad keyword
0 otherwise

(4)
The function applies to both DPIs and servers.

Definition 5: Evasion Packet. Given a sequence of packets
P1...n ∈ Σ∗, we say that the last packet Pn is an evasion
packet if the following three requirements are satisfied. 1 The
server will accept every packet P1...n (Definition 2). 2 When
handling P1...n−1, the state machine of the server and the DPI
engine are synchronized (Definition 3). 3 Once Pn is sent,
the two state machines would be “de-synchronized” as the DPI
engine will drop Pn (Definition 1) and thus fail to output the
payload of Pn or its follow-up packets (as Pn itself may not
be a data packet). Let Pn+r be the data packet that contains
the bad keywords (r = 0, 1, ...), we have:

GMs(TMs(q0, P1...n+r−1), Pn+r) 6= ε ∧
GMd

(TMd
(q0, P1...n+r−1), Pn+r) = ε

1It is also possible that a packet can be accepted differently, exerting
different effects on the server and DPI; we do find such cases in practice.
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Fig. 2. Overview of SYMTCP’s Workflow

Unfortunately, as mentioned above, we can only indirectly
infer whether the GMd

output is empty by means of the
filtering function F . Given this, we use Pn+r as the probe
packet with bad keywords in the payload, and change the
requirement 3 to:

F (GMs(TMs(q0, P1...n+r−1), Pn+r)) = 1 ∧
F (GMd

(TMd
(q0, P1...n+r−1), Pn+r)) = 0 (5)

Note that our definition of evasion is purely based on the
outputs to the application layer and thus, is more strict.
Specifically, P1...n−1 may already have triggered discrepan-
cies between Ms and Md (they are accepted and processed
differently on the DPI and server); however, without triggering
observable behavioral changes at the application layer, we
cannot ascertain that such packet(s) are evasion packet(s). Note
that the requirement 2 and 3 together explicitly exclude the
cases that P1...n−1 already ends with an evasion or insertion
packet.

Definition 6: Insertion Packet. Given a sequence of packets
P1...n ∈ Σ∗, we say that the last packet Pn is an insertion
packet if the following three requirements are satisfied. 1
The server will accept every packet P1...n−1 but will drop Pn

(Definition 1). 2 When handling P1...n−1, the state machine of
the server and the DPI engine are synchronized (Definition 3).
3 Pn will “de-synchronize” the two state machines as the
DPI will accept Pn (Definition 2), which has to be inferred
through some follow-up probe packets Pn+1...n+r where the
last packet Pn+r contains bad keywords (r = 1, 2, ...) (same
as Equation 5). Pn+1...n+r−1 are needed for the purpose of
reaching the ESTABLISHED state.

Goal. Given the above definitions, the goal of SYMTCP is
to automatically find packet sequences P1...n where the last
packet Pn is an evasion/insertion packet.

IV. WORKFLOW OF SYMTCP

An overview of SYMTCP’s workflow is depicted in Fig-
ure 2. The workflow is divided into an offline selective concolic
execution phase and an online testing phase. The inputs of the
offline phase include a set of initial seed TCP packets (e.g.,
initial SYN) that can drive the concolic execution engine, and
a manually curated list of accept and drop points of a Linux
TCP implementation (as defined earlier).

During the offline phase, by running concolic execution
on the server’s TCP implementation, we attempt to gather all
execution paths (if possible) that reach an accept or a drop

point (as defined in §III-B) at different TCP states and collect
the corresponding path constraints. Each path corresponds to
a packet sequence P1...n and the collected path constraints
are later used to generate concrete test packets for differential
testing, i.e., serving as candidate insertion/evasion packets.

Figure 3 illustrates some example packets that reach drop
points (Definition 1: the packets do not have any effect and are
simply discarded and optionally ACKed) and some example
packets that reach accept points (Definition 2: advancing the
TCP state machine or causing data to be accepted). Note that
our analysis will always start from the TCP LISTEN state
and end with the TCP ESTABLISHED state as it represents
the complete window of opportunity to inject insertion/evasion
packets. For instance, it has been reported in [48] that if a
client sends a SYN-ACK to a server in the LISTEN state,
the server will drop the packet (and send a RST) whereas
the Great Firewall of China (GFW) will be confused into
thinking that the client is the server. Such a SYN-ACK packet
is effectively an insertion packet that allows the client to
then move on with the normal three-way handshake and start
sending data unchecked (Definition 6). Another example is
a SYN packet containing a data payload, which is allowed
by the TCP standard (the payload will be buffered until
the completion of the three-way handshake), but a DPI may
incorrectly ignore it [37], making this packet an evasion packet
(Definition 5). We do not wish to advance the server’s state
beyond ESTABLISHED (e.g., TIME_WAIT) because we can
then no longer deliver data.

Offline phase: In brief, the offline concolic execution
engine first boots a running Linux kernel with a TCP socket in
the LISTEN state. Then we feed it with multiple symbolized
packets to explore the server’s TCP state machine as exhaus-
tively as possible. The primary output of this phase is the
sequence of candidate insertion/evasion packets in the form of
symbolic formulas and symbolic constraints that describe what
possible values the TCP header fields should take (including
the constraints that describe the inter-relationships between
packets). Note that each packet sequence will contain at most
one packet that reaches a drop point. This is because each
such a “drop packet” by itself does not impact the TCP state
machine whatsoever; thus, a sequence with two (successive)
“drop packets” is equivalent to two sequences each with a
single “drop packet” (i.e., splitting the original sequence).
The shorter sequences are discovered first with the symbolic
execution engine—we use a strategy similar to breadth-first
search to discover sequences of packets and limit the total
number of symbolic packets to be practical (more details
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SYN	packet	w/o	data
SYN	packet	w/	data

...

LISTEN

ACK	packet	w/	exact	SEQ	and	ACK
ACK	packet	w/	SEQ-in-window	data

...

SYN_RECV

Data	packet	w/	exact	SEQ	and	ACK	
Data	packet	w/	in-window	SEQ	and	ACK

Data	packet	w/	FIN	flag
Partial	in-window	data	packet

...

ESTABLISHED

ESTABLISHED/
Data	Recved

SYN packet w/ bad checksum
SYN packet w/ unsolicited MD5 option

SYN/FIN packet
SYN/RST packet

...

SYN packet
ACK packet w/ bad ACK number
ACK packet w/ bad SEQ number

ACK packet w/ bad timestamp
ACK/RST packet

...

Data packet w/ bad SEQ number
Data packet w/ bad ACK number
Data packet w/ bad timestamp

RST packet w/ bad SEQ number
RST packet w/ unsolicited MD5 option

...

Examples: { Pic(SYN/bad checksum) }
                  { Pec(SYN/data), Pic(ACK/bad ACK number) }
                  { Pec(SYN/no data), Pec(ACK/SEQ-in-window data), Pic(Data/unsolicited MD5 option) }

Legend
Accept packet
Drop packet

Fig. 3. Candidate packet generation with symbolic execution. Pic denotes
candidate insertion packet, Pec denotes candidate evasion packet

in §V); thus, the longer sequence containing multiple drop
packets is unnecessary and redundant. In contrast, different
paths reaching the same accept/drop point are not redundant
and can represent distinct events. For instance, as shown
in Figure 3, if the current TCP state is SYN_RECV, one can
send two types of ACK packets to advance the TCP state to
ESTABLISHED (both lead to the same accept point): (1) an
ACK packet with a 0-byte of payload (where the SEQ and
ACK number match exactly what are expected), or (2) an ACK
packet with an in-window payload (as long as the END SEQ
is greater than the expected SEQ number). They correspond
to two different accept paths that represent two distinct ways
of moving the TCP state forward. Discovering these different
paths is critical as not all paths are handled equivalently by
the DPI (thus leading to possible evasion opportunities).

An additional output of the offline symbolic execution
engine (as shown in Figure 2) is that for each sequence of
candidate packets, there is a corresponding TCP connection
state that the server will end up in after the sequence of
packets is consumed. Recording this information facilitates
the generation of follow-up probe packets. For example, if
the sequence of candidate packets is a single TCP SYN with
a bad checksum, then we know that the server will stay in
the LISTEN state; therefore a proper three-way handshake is
needed before we can send a data packet to check if the DPI
was confused by the initial candidate insertion packet.

Online phase: During the online phase, we attempt to
concretize these candidate insertion/evasion packets by adding
additional constraints (more details to follow in §VI). One such
constraint is the server’s initial sequence number (which is
randomly generated every time we probe the server). Once the
constraint solver generates the sequence of concrete candidate
insertion/evasion packets, they are fed to the DPI prober
(together with the follow-up packets).

We illustrate the process in Figure 4. For each sequence
of packets, we start from the first packet and perform probes
according to the current packet. If the current packet reaches

DPI AcceptDPI DropDPI AcceptDPI Drop

Server AcceptServer Drop

Packet #1

DPI AcceptDPI DropDPI AcceptDPI Drop

Server AcceptServer Drop

Packet #2

DPI AcceptDPI DropDPI AcceptDPI Drop

Server AcceptServer Drop
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Insertion Packet Evasion Packet

e.g. SYN packet

e.g. ACK packet

e.g. data packet

Fig. 4. Evaluation of insertion/evasion packet candidates

a drop point, we will treat it as a candidate insertion packet
and probe the DPI to see whether it causes the DPI to later
ignore the data packet with a known bad payload (Definition
6). For example, a SYN packet with bad checksum will be
considered a candidate insertion packet (while the server is in
the LISTEN state). If the current packet is one that reaches an
accept point such as a SYN packet with data (as in the example
mentioned earlier), we will feed it to the DPI and observe
whether it qualifies as an evasion packet (Definition 5). If the
DPI accepts the packet just as the server (which is the common
case as a DPI typically is lenient in accepting packets [37]), we
will move on to the next packet and repeat the process. Note
that for different sequences of packets that share the common
prefix packets, we only need to evaluate the common packets
once (as candidate insertion or evasion packets).

V. THE OFFLINE PHASE: PRACTICAL CONCOLIC
EXECUTION ON THE TCP IMPLEMENTATION

Our solution is built on top of the popular concolic execu-
tion engine S2E [17] that is capable of analyzing OS kernels.
The challenge is that a full-size TCP implementation has a
rather complicated finite state machine (especially with the
low-level states). Thus, applying concolic execution on the
same is extremely challenging. We describe how we tackle the
more detailed challenges in this section. Specifically, in §V-A,
we describe how we employ selective concolic execution to
bound the symbolic execution space. In §V-B, we describe
how we symbolize the input, i.e., the fields in the TCP header
and options. In §V-C, we discuss how we abstract checksum
functions in TCP. Finally, in §V-D, we discuss how to deal with
server-side inputs (specifically, the sequence number used by
the server) that are not known a priori.

A. Selective Concolic Execution Favoring Completeness

Because it is heavyweight, we want to run symbolic execu-
tion only on the TCP code base; for the rest of the system, we
seek to use concrete execution to reduce complexity. To realize
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this vision, we need to define the boundary between where
symbolic execution and concrete execution are applied. One
way to achieve this is to perform a fine-grained, function-level
analysis to identify those functions that are related to the TCP
logic, but this will require a prohibitively expensive manual
effort. To solve this problem, we use a more conservative,
coarse-grained boundary, which is the entire net/ipv4 compila-
tion unit (object file) in Linux. When we are inside the address
space of the net/ipv4 compilation unit, we run the code with
symbolic execution and enable forking. When we are outside
this address space, we run the code concretely with forking
disabled, but still keep the original constraints (as is supported
by S2E). The benefit of this is that we do not lose the symbolic
expressions when switching back from the concrete mode to
the symbolic mode. S2E also maintains a concrete value for
each symbolic variable and these will be used during concrete
execution. The concrete values are generated by constraint
solving at the first time they are accessed in the concrete
execution. We emphasize that this is different from applying
pure concrete execution from the beginning; switching from
the symbolic to the concrete mode still retains the symbolic
variables and propagates them during concrete execution.

By default, even when running in the concrete mode, S2E
collects path constraints as the concrete branches are taken
(standard in concolic execution [4]). The reason for doing so
is that during concrete execution, only one branch is taken,
and the result is bound to that branch. However, this will
result in the previously discussed “over-constraining” problem
(in §II), i.e., forcing certain branches to be taken (because
of the concretization when switching to concrete execution).
More importantly, our focus is on the TCP code base only, and
the executions outside of our scope are irrelevant (regardless of
which paths were taken). We therefore discard any constraints
collected during the concrete execution mode. For example,
the netfilter module outside the TCP code base will read
the symbolic TCP header fields and introduce constraints.
However, the execution results of netfilter do not affect the
main TCP logic at all, and therefore we can safely ignore those
constraints. Specifically, the netfilter ConnTrack module tracks
the TCP connections passively and maintains connection states
separately from the main TCP logic. Therefore, its execution
is insignificant — even if we ignore its constraints and force
a different execution path, it would have no consequence on
the main TCP states we are interested in exploring.

B. Symbolizing the TCP Header and Options
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Fig. 5. Symbolized TCP header and options.

Since we limit our scope to TCP-level insertion and evasion
packets, we only symbolize the TCP header of a packet (not
the IP header or the application payload) (see Figure 5).
We symbolize all TCP header fields except the source and

destination port numbers. The symbolized fields include the
sequence number, acknowledgment number, data offset, flags,
window size, checksum, and urgent pointer. In addition, we
want to symbolize TCP options, which refers to the last part
of the TCP header and has an associated variable length.

Symbolizing the TCP options field is intrinsically hard
because it consists of a list of nested TLV (Type-Value-
Length) structures. Currently there are 35 existing TCP option
related numbers assigned by IANA [24], including those that
are standard and others that are obsolete, and the number
is growing. Some options have associated fixed lengths, and
some are of variable length (e.g., SACK). Some options have
associated subtypes (e.g., MPTCP). Although the maximum
length of the TCP option field is 40 bytes, the number of
combinations of all top-level option types is still huge. The
problem worsens if we also include illegal cases (e.g., an
option appears multiple times) or also want to consider the
ordering of the options.

Linux only implements 10 TCP options using a parsing
loop, which can still easily cause the path explosion problem.
Theoretically there are at least 210 = 1024 execution paths
even if we just execute the loop once. In practice, when
it is compiled into a binary form, additional branches are
introduced; hence, the number of possible paths is much larger.
The problem is exacerbated exponentially given the already
large number of paths that exist in the TCP logic. Because of
these reasons, we need to bound the search space by limiting
the number of possible combinations of TCP options.

While we attempted to bound the loop execution times and
the number of occurrences of each TCP option, we found that
the number of paths was still prohibitively large even if we
executed the loop just once and allowed each option to occur
at most once. Hence, as a practical means to mitigate this
problem, in addition to bounding the execution times, we also
feed a specific combination of TCP options as a seed (from
traffic observed on the Internet) to our concolic execution
engine; the execution explores our seed value first and then
other values.

C. Abstracting the Checksum Function

The TCP checksum is calculated based on a pseudo-header
that includes the IP addresses, the entire TCP header and the
payload. As mentioned earlier, we do not want to symbolize
the IP header or the payload since this is likely to harm the
symbolic execution performance. Thus, instead, we abstract
the checksum validation function as follows:

f(pkt) =

{
true if header.checksum == 1

false if header.checksum == 0

where f denotes the checksum validation function and pkt
is the network packet under consideration. If the checksum
field in the TCP header is equal to 1, then it is considered to
be a valid checksum; if it is equal to 0, then it is an invalid
checksum. The constraint solver thus generates a checksum of
1 for a valid checksum case, and 0 for an invalid checksum
case. When we probe the DPI (discussed later), we fill the
checksum field with either the proper valid or an invalid check-
sum, correspondingly. By abstracting the checksum function,
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we avoid solving complex constraints on the TCP header fields
and thus improve performance.

D. Symbolizing the Server’s Initial Sequence Number

During TCP’s 3-way handshake, the server’s initial se-
quence number (ISN) is a random number generated and
sent in the SYN/ACK packet to the client. When the client
receives the SYN/ACK packet, it needs to echo the server’s
ISN by sending an ACK packet with an acknowledgment
number that is equal to the server’s ISN plus 1. Because the
server’s ISN is randomly generated for each TCP connection,
we need to symbolize the server’s ISN in the offline symbolic
execution phase and collect the path constraint that expresses
the relationship between the server’s ISN and the client’s
acknowledgment number. Then in the online probing phase
(§VI), we constrain the server’s ISN using the concrete value
obtained from the SYN/ACK packet, and generate concrete
values for the client’s packets on the fly.

E. Multi-round Symbolic Execution

As mentioned earlier in §IV, we start our symbolic execu-
tion from the LISTEN state. We symbolize multiple packets
in order to explore the state machine in more depth (up to the
ESTABLISHED state). Specifically, we choose to symbolize
3 packets in total for several reasons. First, 3 packets should
offer a reasonable coverage of the TCP state machine because
only 2 packets are needed to advance the TCP state from
LISTEN to ESTABLISHED (the SYN and ACK in a three-
way handshake); the third packet can further explore other
minor states in ESTABLISHED. Second, we prefer shorter
sequences of insertion and evasion packets as longer sequences
can be unreliable in practice (e.g., due to packet losses).

To explore different sequences of packets, we develop a
custom path searcher/scheduler to guide S2E to explore packet
sequences of 1 and 2 first (up to certain threshold), and then
allow the third packet to arrive.

As discussed later in §VIII, even though there are not many
accept and drop points in TCP, the number of possible accept
and drop paths is exponential and impossible to exhaust in our
experiments, which motivated our search strategy to balance
the exploration of sequences of different lengths.

VI. GENERATING ONLINE EVASION ATTACKS

By means of the offline concolic execution phase described
in §V, SYMTCP obtains path constraints that can be used to
generate insertion/evasion packet candidates. In this section,
we describe SYMTCP’s differential testing phase to probe the
DPI to identify behavioral discrepancies between the DPI’s
TCP implementation and that of the server.

A. Constructing insertion/evasion packet candidates

Armed with the constraints relating to each execution path
collected during the symbolic execution, as described in §V,
together with some additional constraints, we can then feed
these to a constraint solver to generate concrete values of
TCP header fields. Using those values, SYMTCP constructs
a sequence of packets, P1...n(n ≤ 3), to probe the DPI.

There are two additional constraints. The first is the server’s
initial sequence number (ISN) as mentioned in §V-D. The
second includes additional constraints on TCP flags, SEQ and
ACK numbers. These are especially necessary for candidate
insertion packets when a packet hits a drop point early (and
practically most fields are unconstrained). For example, if a
packet is dropped because of an unsolicited MD5 TCP option,
then it has no constraint on TCP flags, SEQ or ACK number.
Since the hope is that the error is ignored by the DPI (not
checking the MD5 TCP option), these other fields will have a
direct effect on how the DPI processes the packet. Our solution
in such cases is to generate these constraints to make the
packet as legitimate as possible (i.e., with the correct SEQ
and ACK number). For TCP flags, we just enumerate the
most common ones, which are more likely to be accepted
by the DPI (SYN, SYN/ACK, ACK, RST, RST/ACK, FIN,
FIN/ACK). For example, we may generate a RST packet with
an unsolicited MD5 option (with the additional constraint of
the SEQ number to match the next expected one). The server
of course will reject the packet but the DPI will accept it and
terminate the connection incorrectly, allowing subsequent data
to pass through unchecked. For candidate evasion packets, we
do the opposite by generating random values of various fields
and hope that it will be ignored by the DPI. Note that since
an evasion packet is to be accepted by the server, most of the
fields are already constrained and so we do not have much
room to select the values of different fields.

B. Constructing follow-up probe packets

As mentioned in §III-B, after sending a candidate evasion
or insertion packet, we may still need to craft additional follow-
up packets that contain bad keywords targeted by the DPI, in
order to infer if there is any state discrepancy between the DPI
and server (otherwise there is no observable feedback).

To construct follow-up packets, we need to know the
current state of the TCP connection. If the current TCP state
is not in the ESTABLISHED state, we need to send packets
that cause it to transition into it. If the current TCP state is
already the ESTABLISHED state, then we can directly send
the data packet with the correct sequence and acknowledgment
number. Due to this reason, we log the current TCP state after
processing each packet during symbolic execution. Based on
this, we use a simplified version of the TCP state machine to
generate the follow-up packets for transitioning the connection
from the specific TCP state to the ESTABLISHED state if need
be. Subsequently, we send a data packet with the sensitive
payload, and observe if it triggers any alarm on the DPI.

VII. IMPLEMENTATION

Our system is built upon S2E 2.0 [17], which uses KLEE
as its symbolic execution engine. We implement SYMTCP as
a set of S2E plugins written with around 2.5K lines of C++,
and the probing and peripheral scripts were written with around
6.5K lines of Python.

A. Selective Concolic Execution

We start the selective concolic execution whenever
tcp_v4_rcv() is entered, where the TCP header fields are
symbolized. When the current program counter is outside the
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TCP scope, i.e., it leaves the tcp_v4_rcv function or it
wades into some other territory (e.g., netfilter), we disable
forking to let S2E run in a way similar to concrete execution,
except that it still maintains and propagates symbolic variables.
In this way, we can switch from symbolic execution to concrete
execution and later switch back to symbolic execution again. In
addition, we modify KLEE to prevent it from adding branch
conditions to the path constraints when forking is disabled;
thus, it does not over-constrain the symbolic variables.

S2E only instruments basic blocks and instructions but
not the edges connecting basic blocks. However, in Linux
TCP implementations, often it is the edge that determines the
reason for acceptance or rejection; for example, an if and
goto statement can enter the same exact basic block, but
representing different reasons (acceptance or rejection). Thus,
we also instrument the edges and implement an event. Finally,
we bound the number of loops that can be traversed and the
number of occurrences of TCP options, by limiting the number
of executions of related edges of interest — we allow at most
5 TCP options in a packet, and each TCP option only occurs
once, except the NOP option. We do not encounter any other
loops where the number of iterations is symbolic.

B. Online Constraint Solving

We use the state-of-the-art Z3 [50] theorem prover as
our online constraint solver to generate concrete values of
TCP header fields. As mentioned previously, if we receive
a SYN/ACK packet from the server, we then add its initial
sequence number to the constraint and consult Z3 again to gen-
erate new concrete values for the following probing packets.
This is because the following packets will need to acknowledge
that number. Note that when we consult the constraint solver
multiple times (to generate subsequent packets), we need to
carry over the concrete values generated for the previous
packets in order to maintain consistency. For example, the
first packet has a payload of 4 bytes, and the second packet’s
sequence number needs to advance by 4.

VIII. EVALUATION

Our evaluations of SYMTCP are run on an server with
72 cores Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz, and
256GB memory. The host OS is Ubuntu 16.04 64-bit, and the
guest OS is Debian 9.2.1 64-bit. We evaluate our system with
Linux kernel version 4.9.3. We run S2E in parallel mode with
48 cores, which is the maximum number of processes S2E
currently supports.

A. Experiment Setup

Before evaluating the system, we first manually label all
the drop points reachable from tcp v4 rcv() which is the
TCP-level entry function for processing incoming packets.
Specifically, in the Linux kernel, since an incoming packet will
eventually be freed after being processed via kfree skb(),
we inspect all invocations of it in the TCP implementation
(both direct and indirect through wrapper functions kfree skb
and tcp drop), and identify the program points or the branch
statements (transitions between basic blocks such as if) that
satisfy the definition of a drop point (see §III-B).

TABLE I. A SUMMARY OF LABELED DROP POINTS

Reason Count
TCP checksum error 5
TCP header length too small 1
TCP header length too large 4
MD5 option error 2
TCP flags invalid 7
SEQ number invalid 10
ACK number invalid 3
Challenge ACK 6
Receive window closed 2
Empty data packet 1
Data overlap in OFO queue 1
PAWS check failed 2
Embryonic reset 1
TCP DEFER ACCEPT drop bare ACK 1
TCP Fastopen check request failed 1
Total number 47

TABLE II. PERFORMANCE OF OFFLINE SYMBOLIC EXECUTION

# of
pkts

20-byte TCP pkts 40-byte TCP pkts 60-byte TCP pkts
Time

to cover
Covered

drop points
Time

to cover
Covered

drop points
Time

to cover
Covered

drop points
1 5s 8 5s 9 10s 8
2 20s 16 20m 19 18m 18
3 50s 31 1h2m 39 40m 38

Time cost could vary due to randomness in path selection of symbolic execution.

We only consider drop points in the TCP LISTEN,
SYN_RECV, and ESTABLISHED states. Because we assume
the server doesn’t initiate a connection, we know that it will
not go into the SYN_SENT state. In other TCP states such
as TCP_CLOSE, the server will not accept any further data
packets. We also excluded some cases that are not practical
for insertion packets: 1) a packet dropped due to memory
allocation failures because it is rare to encounter memory
pressure on the server; 2) a packet dropped due to listen queue
overflow, which is not a common case; 3) a packet dropped
due to SELinux check failed; 4) a packet dropped due to Xfrm
check failed; 5) a packet dropped due to socket filter; 6) a
packet dropped due to route error or no route; 7) a few other
minor cases, e.g., unusual server configurations.

As a result, we eventually labeled 38 places in the source
code where a packet gets dropped without changing states.
Because S2E works on the binary level, we map the source
code lines to binary addresses, and they are mapped to 47
binary level drop points (as one source-level conditional state-
ment can be translated into multiple basic blocks in binary) as
summarized in Table I. To save space, we put the raw table in
an appendix.

Currently, we use two seed packets as inputs to the sym-
bolic execution: 1. a SYN packet with all 0s in its TCP option
fields; 2. a SYN packet with a TCP Timestamp option turned
on. In practice, with 1, we can cover most drop points and
accept points but can rarely cover the 2 drop points related
to the TCP Timestamp option. With 2 as another seed packet,
we are able to cover all drop points and accept points easily.
We believe that the complete coverage of all accept and drop
points is a good indication of our results.

We employ an HTTP request with bad keyword “ultrasurf”
in our experiment:

GET /AA...A#ultrasurf#<test_case_id>#
HTTP/1.1\r\nHost: local_test_host\r\n\r\n

“A” is used to pad the HTTP request so that the first n
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packets before the follow-up packet will not contain the bad
keyword (by definitions in §III-B the first n packets may be
accepted by the DPI). It is the follow-up packet that will carry
the bad keyword “ultrasurf” and the remaining part of the
request.

B. Symbolic Execution Results

In our experiments, we send symbolic packets with 20,
40, and 60 bytes in total, including the TCP header and
the payload. As discussed in §V-B, since we symbolize the
TCP data offset header field, the length of the TCP header is
variable. For example, if we send a TCP packet of 60 bytes,
it always has a 20-byte TCP basic header, and the length of
the TCP option can vary between 0 and 40-byte. As a result,
the rest will be the TCP payload (from 0 to 40 bytes as well).
We choose not to symbolize the length of the entire packet or
the payload because more or fewer bytes in the payload does
not really affect how TCP accepts or drops a packet.

As shown in Table II, when we send 1 symbolic packet, we
can cover only 8/9/8 drop points with a TCP packet of 20/40/60
bytes. By comparing the drop points covered, we found that
the 40-byte case can cover one more drop point than the 20-
byte case, which checks the TCP MD5 option. The 60-byte
case covers one less drop point than the 40-byte case because
it misses a drop point when the TCP data offset is larger than
the actual TCP packet size. Because the TCP data offset is by
design no more than 60, if we pick the actual size of a TCP
packet to be 60, the condition can never be satisfied. Finally,
by sending 1 symbolic packet, we can only cover drop points
in TCP LISTEN state.

When we send 2 symbolic packets, we can cover 16/19/18
drop points with 20/40/60 bytes of TCP options and payload.
The increased coverage of drop points is because we can now
cover drop points in TCP SYN_RECV and part of them in
ESTABLISHED. In addition, the 40-byte case covers 3 more
drop points related to TCP options, i.e., MD5 and Timestamp.
The 60-byte case still covers one less drop point related to
TCP data offset.

When we send 3 symbolic packets, we can cover 31/39/38
drop points with 20/40/60 bytes of TCP options and payload.
The increased coverage of drop points are because of more
drop points in ESTABLISHED state covered, and also cases
like data overlapping. The 20-byte case covers much less since
it doesn’t send packets with a payload.

We take a further look at the 8 drop points not covered by
any of our experiments. 2 of them requires the TCP receive
window size becomes 0. That means the server’s receive buffer
has to be full. This is very hard to achieve in reality and we
don’t want to flood the server. 1 drop point requires TCP Fast
Open to be enabled on the server. The other 5 drop points are
also infeasible due to various reasons. Overall, all 8 uncovered
drop points are either not of interest or cannot be reached in
reality. Furthermore, we found that 2 of the covered drop points
are reached when the TCP state is in CLOSE_WAIT, which
we ignore.

Because the 40-byte experiment can already cover all of the
drop points covered by the 20-byte and 60-byte experiments,
we use the dataset generated from the 40-byte experiment

TABLE III. IMPORTANT ACCEPT POINTS IN LINUX KERNEL V4.9.3

Source file Line # TCP State Major Reason
tcp input.c 4461 Non-LISTEN OFO: Initial out of order segment

4477 Non-LISTEN OFO: Coalesce
4533 Non-LISTEN OFO: Insert segment into RB tree
4684 Non-LISTEN In sequence. In window.
6408 LISTEN Enter SYN RECV

tcp minisocks.c 773 SYN RECV Enter ESTABLISHED

to probe the DPI. This dataset includes 56,787 test cases
generated in around one hour which covers 37 drop points
in binary (after filtering infeasible drop points).

Since the original dataset is too large, we cull out 10,000
test cases by sampling the dataset, and then use the sampled
dataset to probe the DPI. The original dataset is highly
imbalanced, ranging from 2 to 9,790 test cases for different
drop points. To make it more balanced, we undersample the
majorities while keeping the minorities intact. We order the
drop points by the number of their corresponding test cases,
and use the 50th percentile as a threshold. For the drop points
whose corresponding numbers of test cases are below the
threshold, we keep them intact; for the ones above the thresh-
old, we proportionally sample the test cases corresponding to
the overly represented drop points.

Finally, since we consider every path not reaching a drop
point as an accept path, the accept paths can be diverse and
overwhelming in number. To sample them, we explicitly label
some important accept points, as listed in Table III, which
indicates TCP state changes and data entering receive buffer.
During sampling, we group the test cases by the sets of labeled
accept/drop points they reached.

C. Evaluation against DPI

We evaluated our sampled test set of 10,000 candidate
insertion/evasion packets against 3 DPI systems, 2 open-source
NIDSes, Zeek (formerly known as Bro), Snort, and a nation-
wide censorship system, the Great Firewall of China (GFW).

We downloaded the latest version of Zeek (2.6) and Snort
(2.9.13) at the time of writing, and conducted the experiment
against the GFW on August 18, 2019.

Out of 10,000 test cases, we found 6,082 test cases can
evade Zeek, including 5,771 cases caused by insertion packets
and 311 cases caused by evasion packets; 652 test cases can
evade Snort, including 432 cases caused by insertion packets,
and 220 cases caused by evasion packets; 4,587 test cases
can evade the GFW, including 1,435 cases caused by insertion
packets and 3,152 cases caused by evasion packets. For GFW,
most of the successful test cases caused by evasion packets
are due to the “SEQ ≤ ISN” strategy listed in Table VI,
as a common condition shared by many test cases. For Zeek,
though it has a similar “SEQ < ISN” strategy, most of such
test cases are successful for different reasons, i.e., due to some
preceding packets turning into insertion packets (as Zeek has a
very loose check on incoming packets). For example, the third
packet has a SEQ number less than ISN, which is an evasion
packet, but the second packet is an insertion packet so the test
case works because of the insertion packet.

To reason about the successful test cases and abstract them
into high-level evasion strategies, we conducted postmortem
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analysis and evasion strategies summarization. For Zeek and
Snort, even though we treat them as blackboxes when generat-
ing candidate insertion/evasion packets, they are actually both
open-sourced, which allows us to pinpoint the underlying cause
of evasion. In order to expedite this process, we replay the
successful cases and record the binary execution trace of the
DPI for each case. Then, we group the cases by the execution
trace of the data packet containing the sensitive keyword which
evaded the detection of the DPI (the trace therefore explains
why this occurred), For Snort, we additionally record the trace
caused by processing the server’s ACK packet as some checks
performed on Snort are delayed until the ACK packet is seen.
In the end, we still manually verify the cases within the same
group in case they actually belong to different reasons for
evasion.

For GFW, since it is really a blackbox, we have to
make hypotheses about the success reasons from prior knowl-
edge [48] and then validate them. Specifically, we first replay
the captured packet traces and verify if the result is stable; this
eliminates the noisy results caused by random events such as
packet loss or GFW overload. Then we slightly tweak the TCP
header fields of the insertion/evasion packet and then replay
the modified packet trace. If it cannot work, then it’s likely the
discrepancy is caused by that field.

We summarize a few featured evasion strategy (not a
complete list) for each DPI in the next few sections. Overall,
we not only rediscovered already known strategies but also
found 14 novel strategies comparing with previous works using
manually crafted insertion/evasion packets.

D. Zeek (formerly known as Bro)

Zeek [34] is very liberal in accepting incoming packets.2 It
is therefore relatively easy to bypass using insertion packets.
We list some strategies in Table IV. In most cases, it only
looks at the TCP flags of a packet but does not check SEQ
or ACK number for TCP control packets, e.g., SYN, RST,
FIN. This makes many strategies that were previously reported
feasible [37], [25], [48]. For example, whenever Zeek receives
a SYN packet in an existing connection, it simply tears down
the TCB and creates a new one. But Linux doesn’t accept
out-of-window SYN packets in SYN_RECV state or any SYN
packets in ESTABLISHED state. As a result, an attacker can
easily inject a SYN packet (as insertion packet) to tear down
the TCB and recreate a TCB with a different ISN that Zeek will
keep track of, thus allowing later packets to evade detection.

Another interesting strategy which we have not seen ap-
plied (only hypothesized in [37]) in any prior work: TCP RFC
793 allows data in SYN packet to be buffered and delivered
to the user only when the connection is fully established, but
Linux doesn’t buffer data in SYN packet unless in the TCP
Fastopen cases. In this case, Zeek correctly implements the
RFC and accepts data in SYN packets. However, this allows
an attacker to attach junk payload in a SYN packet as “cover”
for the actual data sent in later packets.

In addition, we also found a novel evasion strategy that was
not mentioned in any prior work: if we send a data packet with
SEQ number less than the client ISN but has partial data in

2Zeek does log weird packets to a weird.log for offline analysis.

server’s receive window, the data will be ignored by Zeek, but
Linux will accept the data in window (an evasion packet).

E. Snort

Snort implements OS-specific TCP state machines, includ-
ing Windows, Linux, and Mac OS; its TCP implementation
is the most rigorous among the three DPIs. However, from
our results, even its Linux version still has discrepancies from
the Linux kernel we analyzed. The strategies we found are
listed in Table V. In general, Snort checks the SEQ number
for control packets but doesn’t check ACK number. Also, it
doesn’t check TCP MD5 option and accepts in-window SYN,
FIN, and RST packets too liberally. Whenever it receives
an in-window SYN or RST packet, it will tear down the
TCB (matching the behavior of older versions of Linux); and
whenever it receives an in-window FIN packet, it will mark the
connection as CLOSED and discard data which SEQ number
larger than the end SEQ number of the FIN packet. On the
contrary, the latest Linux doesn’t accept any SYN packet in
ESTABLISHED state, and requires SEQ number of FIN or
RST packet to be equal to rcv_nxt. In addition, Snort also
accepts FIN or RST packet with out-of-window ACK number
or TCP MD5 option, which will be discarded by Linux. Most
of these strategies have also been mentioned in [37] (though
not all of them are tested in practice), and the usage of TCP
MD5 option was done in [48].

Now we discover two novel strategies unique to the Snort
implementation. The first strategy is related to how Snort
implements TCP Timestamp option validation (it is the only
DPI we are aware of that attempts to perform timestamp
checks). Interestingly, we found its implementation to be
slightly different from Linux in 2 ways: 1) Snort doesn’t check
timestamp for RST packets in SYN_RECV state (as mandated
by RFC 7323) while Linux does. 2) In PAWS checking, if the
TSval in the current packet is older than that in the last packet,
it will reject the current packet. However, due to slightly
different implementations of the check of Snort and Linux, the
acceptable TSval ranges are “off by two”. As a result, say if
the first packet has a TSval of 0x80000000 and the second
packet has a TSval of 0 or 0xffffffff, then Linux will
accept the second packet, but Snort will reject it. The pseudo-
code of their implementations can be found in the appendix.

The second novel strategy is related to the urgent pointer
processing logic, which is notoriously ambiguous [36] and
often implemented incorrectly, even in major OSes such as
Linux [22]. Simply put, an urgent pointer is supposed to allow
TCP to specify some range of data in the payload to be marked
as urgent, which will be treated differently when a receiver sees
it (e.g., immediately pushed to the application layer using a
separate interface [22]). In Snort, it interprets the urgent pointer
as the offset to the last byte of the urgent data and simply
discards all of the bytes before this offset. In Linux though,
it consumes 1 byte of urgent data (right before the urgent
pointer offset) which is stored in a separate place, and leaves
the remaining payload intact. Our system initially discovered
an evasion packet with urgent flag and urgent pointer set to
a random location in a packet (which happens to point to
an insignificant padding byte), and therefore preserving the
semantic and the keyword in the HTTP request. However,
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TABLE IV. SUCCESSFUL STRATEGIES ON ZEEK V2.6

Strategy TCP state Insertion/Evasion packet Linux Zeek
† SYN with data L/SR/E (I) SYN packet with data Ignore data Accept data
† Multiple SYN SR/E (I) SYN packet with out-of-window SEQ num Discard and send ACK Reset TCB
† Pure FIN E (I) Pure FIN packet without ACK flag Discard (may send ACK) Flush and reset receive buffer
† Bad RST/FIN SR/E (I) RST or FIN packet with out-of-window SEQ num Discard (may send ACK) Flush and reset receive buffer
† Data overlapping SR/E (I) Out-of-order data packet, then overlapping in-order data packet Accept in-order data Accept first data
† Data without ACK SR/E (I) Data packet without ACK flag Discard Accept
† Data bad ACK E (I) Data packet with ACK > snd nxt or < snd una - window size Discard Accept
∗ Big gap SR/E (I) Data packet with SEQ > rcv nxt + max gap size (16384) Accept Ignore later data
∗ SEQ < ISN SR/E (E) Data packet with SEQ num < client ISN and in-window data Accept in-window data Ignore

* TCP State: L - Listen, SR - SYN RECV, E - ESTABLISHED. (I) - Insertion, (E) - Evasion. † - Old strategy, ∗ - New strategy.

TABLE V. SUCCESSFUL STRATEGIES ON SNORT V2.9.13

Strategy TCP state Insertion/Evasion packet Linux Snort
† Multiple SYN E (I) SYN packet with in-window SEQ num Discard and send ACK Teardown TCB
† In-window FIN E (I) FIN packet with SEQ num in window but 6= rcv nxt Ignore FIN (may accept data) Cut off later data
† FIN/ACK bad ACK E (I) FIN/ACK packet with ACK num > snd nxt or < snd una - window size Discard (may send ACK) Cut off later data
† FIN/ACK MD5 SR/E (I) FIN/ACK packet with TCP MD5 option Discard Cut off later data
† In-window RST E (I) RST packet with SEQ num 6= rcv nxt but still in window Discard and send ACK Teardown TCB
† RST bad timestamp SR (I) RST packet with bad timestamp Discard Teardown TCB
† RST MD5 SR/E (I) RST packet with TCP MD5 option Discard Teardown TCB
† RST/ACK bad ACK num SR (I) RST/ACK packet with ACK num 6= server ISN + 1 Discard Teardown TCB
∗ Partial in-window RST E (I) RST packet with SEQ num < rcv nxt but partial data in window Discard Teardown TCB
∗ Urgent data SR/E (E) Data packet with URG flag and urgent pointer set Consume 1 byte urgent data Ignore all data

before urgent pointer
∗ Time gap SR/E (E) Data packet timestamp = last timestamp + 0x7fffffff/0x80000000 Accept Ignore

* TCP State: L - Listen, SR - SYN RECV, E - ESTABLISHED. (I) - Insertion, (E) - Evasion. † - Old strategy, ∗ - New strategy.

Snort discards all the data before the urgent pointer offset and
fails to reconstruct the HTTP request.

F. Great Firewall of China

The GFW conducts a wide range of censorship on different
network protocols, such as HTTP/HTTPS, DNS, Tor, etc.
Although it has a relatively lenient checking on individual
packets, it’s known to have some sophisticated and robust
mechanism to thwart desynchronization attacks according to
recent research [48]. In addition to the strategies that were
previously known, we also identify several novel strategies
which we will describe below.

Interestingly, we found that the GFW ignores data packet
with a start SEQ number less than or equal to the initial
sequence number (ISN) but has in-window data, whereas
Linux accepts the in-window data. Therefore the strategy
discovered by our system is to send such an evasion packet
with a sensitive keyword as in-window data (and with padding
automatically prepended to cover the bytes that are out-of-
window).

Another interesting and surprising finding is that the GFW
ignores data segments whose sizes are less than or equal to
8 bytes. This is discovered through a small first data packet
(remember each of our packets has a maximum payload length
of 20), which is simply ignored by the GFW. Missing the
first data packet will cause the GFW to miss the fact that
it is an HTTP request and subsequently ignore the sensitive
keyword. However, we found this strategy works perfectly in
SYN_RECV state only but not ESTABLISHED. To understand
the reason, we conducted further investigation. It turns out that
in ESTABLISHED state, this strategy can only evade one type
of GFW devices that inject RST/ACK packets, but not the
ones injecting RST packets [48]. The GFW devices injecting
RST packets will establish a TCB and start monitoring payload

(including packets of 8 bytes or fewer) only after the 3-way
handshake. This explains why this strategy works perfectly in
SYN_RECV state only.

The last set of novel strategies are related to tearing down
the state on GFW. First, we found FIN packets or malformed
FIN/ACK packets with data can cause the GFW to tear down
its TCB, but without data it does not work. More interestingly,
if we first send some in-order or out-of-order data packets and
then send the FIN or malformed FIN/ACK packet, the FIN
or FIN/ACK packet does not have to have data. This seems
to indicate that GFW will agree to accept FIN packets only
after some data have been transmitted (otherwise the FIN is
suspicious and will not be accepted). Similarly, we found an
out-of-window SYN packet with data or a retransmitted SYN
packet with data can also desynchronize the GFW (causing it
to synchronize its expected sequence number to the one in the
SYN packet) but they don’t work without data. For RST packet
with a bad timestamp, it only works in SYN_RECV state since
Linux only validates timestamp on RST packet in SYN_RECV
state but not in ESTABLISHED state. None of the strategies
were reported in the latest study of GFW [48].

Comparing our strategies with previous works on GFW
with manually crafted packets [48], [29], we have rediscov-
ered all the TCP-layer strategies used in [29] (except the IP
and HTTP layer strategies which are beyond our scope). In
addition, we have rediscovered all the primitive strategies used
in [48], except that they also discovered compound strategies
that can evade multiple types of GFW devices, based on
their manually inferred GFW model. Specifically, Bad RST,
Bad Data, and Data without ACK are old strategies, and the
other strategies are all new. Strategies SEQ ≤ ISN and Small
segments are completely new, while the other new strategies
are subtle variations of known strategies that no longer work.
This demonstrates the power of an automated tool that is
capable of discovering such subtle variations.
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TABLE VI. SUCCESSFUL STRATEGIES ON THE GFW

Strategy TCP state Insertion/Evasion packet Linux GFW
† Bad RST SR/E (I) RST packet with bad checksum or TCP MD5 option Discard Teardown TCB
† Bad data SR/E (I) Data packet with bad checksum or TCP MD5 option or bad timestamp Discard Accept
† Data without ACK SR/E (I) Data packet without ACK flag Discard Accept
∗ SEQ ≤ ISN SR/E (E) Data packet with SEQ num ≤ client ISN and in-window data Accept in-window data Ignore
∗ Small segments SR (E) Data packet with payload size ≤ 8 bytes Accept Ignore
∗ FIN with data SR/E (I) FIN packet with data and without ACK flag Discard Teardown TCB
∗ Bad FIN/ACK data E (I) FIN/ACK packet with data and bad checksum or TCP MD5 option or bad timestamp Discard Teardown TCB
∗ FIN/ACK data bad ACK E (I) FIN/ACK packet with data and ACK num > snd nxt or < snd una - window size Discard Teardown TCB
∗ Out-of-window SYN data SR (I) SYN packet with SEQ num out of window and data Discard and send ACK Desynchronized
∗ Retransmitted SYN data SR (I) SYN packet with SEQ num = client ISN and data Discard Desynchronized
∗ RST bad timestamp SR (I) RST packet with bad timestamp Discard Teardown TCB
∗ RST/ACK bad ACK num SR (I) RST/ACK packet with SEQ num 6= server ISN + 1 Discard Teardown TCB

* TCP State: L - Listen, SR - SYN RECV, E - ESTABLISHED. (I) - Insertion, (E) - Evasion. † - Old strategy, ∗ - New strategy.

IX. DISCUSSION AND LIMITATIONS

Path Explosion. In our evaluation, we show that processing
only three symbolic packets can already lead to path explosion
— tens of thousands of paths (the result of handling three
packets) generated in an hour. This is because there can
be multiple different paths reaching the same drop/accept
point. Each of these paths corresponds to a unique sequence
of packets (determined by the path constraints), which may
potentially lead to various evasion and insertion strategies.

In order to tackle with path explosion, besides restricting
symbolic execution within the scope of TCP code, we have
also made some pruning decisions based on our domain
knowledge. We summarize them in one place as follows
(details discussed in §IV and §V): 1) bound occurrences of
TCP option fields by allowing each TCP option to occur only
once, since redundant options are not useful in triggering any
new code; also we only allow at most 5 TCP options in a
packet, since most of the options are independent of each other
thus complex combinations of options are unlikely useful;
2) terminate an execution path once reaching a drop point,
because packets reaching drop points don’t cause any state
changes; 3) terminate an execution path once the connection is
in a state that cannot further deliver data, e.g., CLOSE_WAIT;
4) carefully label accept and drop points, we are aiming at
covering all accept and drop points but not all execution paths,
therefore reduce the search space.

At the moment, we randomly sample from these paths with
equal probability and do not differentiate or prioritize them.
However, a better solution is to understand the relationships
among these paths and avoid visiting paths that are unlikely to
lead to any fruitful results. One example is that for different
paths reaching the same accept point, we know that they
correspond to packets accepted by the server, but we hope
that they are ignored by the DPI. In such cases we should
theoretically prefer longer paths, because they go through
more corner cases (e.g., more checks or different conditions of
acceptance) and the DPI is less likely to handle them perfectly.
Another example is that, in our evaluation, we find that there
are many packet sequences sharing the same prefix of two
accept packets, and the second packet happens to be a valid
evasion packet; this means that regardless of what the third
packet is in a sequence, it will always succeed in eluding
the DPI for the same reason (Figure 4). Unfortunately, during
the offline path exploration phase, we are unable to tell if
the second packet will be a successful evasion packet and

terminate any further exploration. We plan to use the result
we obtain from online testing to prune the offline analysis in
the future.

Handling Overlapping Data as Evasion Strategies. Our
model currently does not handle overlapping data well and
cannot generate all data overlapping strategies as done man-
ually in prior work. This is because it is necessary to model
how the TCP implementation evicts data in the buffer. For
example, in certain operating systems, if data overlapping is
detected, they prefer to discard the old copy and accept the
new one. More generally, we need to model how a packet
may retroactively change the effect of a previous packet, and
at the moment our model assumes the effect of each packet
is independently exerted and cannot be revoked. We plan to
handle this corner case by extending our model as future work.

Extending SYMTCP to Other TCP Implementations /
DPIs / Network Protocols / Server-side. Although we pick
a specific version of Linux kernel to evaluate our system, our
system is not restricted to any specific version and can be easily
applied to other versions as well. The minimal requirement is
to label all drop points, and optionally, some critical accept
points (to group accept paths), as shown in §VIII. Since
the TCP implementations doesn’t change much across kernel
version, it should take less efforts for someone with experience
to label another version. It took us less than an hour to
do the labeling on the most up-to-date Linux kernel version
(v5.4.5). In order to apply our method to another OS or TCP
implementation much different from the current one, we may
need to do more path pruning depending on the coverage,
i.e., if symbolic execution cannot cover all desired accept and
drop points, manual analysis is required to improve coverage.
Extending SYMTCP to other DPIs is easy. With results from
symbolic execution, we can immediately probe the new DPI
with the generated candidate packets; however, needed is the
manual analysis of the results. Extending SYMTCP to another
protocol is in principle possible (we believe the insertion and
evasion definitions are general). However, it can be tricky
due to protocol-specific adaptations. For example, our pruning
decisions and abstractions are specific to TCP. Furthermore,
if the protocol uses crypto functions, they must be explicitly
handled, since SMT solver is unable to solve complex con-
straints accumulated in crypto functions [5], [30]. Besides, we
need to label drop and accept points. These aspects will require
additional research.

In our demonstration, we use SYMTCP to help the client
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side to elude DPI. Our approach can be applied to the server
side as well. In that case, we will need to model the client-
side TCP implementation, i.e., run symbolic execution on the
client’s TCP implementation. For example, if the client is
using Linux, the process should be similar to what we do to
model the server-side TCP implementation. Note that, since
the client is the initiator of a TCP connection, we will need
to consider TCP states corresponding to the initiator, e.g.,
exploring execution paths related to the SYN_SENT state.

Defenses: Traffic Normalization and Per-Host Packets Re-
assembly. To mitigate DPI elusion attacks, solutions have been
proposed to normalize the traffic [23], [18], [47], where packets
are actively manipulated and sometimes additional packets are
injected to confirm the result of the previous packet. These
normalization strategies are deemed to prevent many evasion
strategies. However, they are based on a large number of
hand-crafted rules (38 rules for TCP in [23] without formal
guarantees. We believe our automated system can in fact be
a great test against these defenses. Unfortunately we are not
aware of any real-world implementations. Another strategy
is proposed in [39], where the authors argue that the DPI’s
behaviors should be tailored to each host that it is responsible
for protecting (e.g., those in intranet). In theory, this strategy is
sound, but in practice it comes with high cost, as the behavior
of the DPI needs to be customized for different operating
systems (and even across many versions). Snort is the closest
to this line of thinking; unfortunately its Linux version of TCP
state machine is shown to be clearly vulnerable. Furthermore,
in certain contexts, e.g., state-level censorship, it is simply
infeasible to build per-host profiles of the majority of machines
on the Internet.

X. RELATED WORKS

Evading Deep Packet Inspection. A major line of research on
evading deep packet inspection is unilateral traffic manipula-
tion, by injecting crafted network packets to desynchronize the
DPI system from one endhost. This attack is practical since it
needs to be deployed on only a local host, and doesn’t require
any cooperation from the remote host. The underlying idea
dates back to 1998 in a report by Ptacek et al. [37]. They
proposed the idea of insertion and evasion attacks on NIDS and
enumerated a variety of implementation-level discrepancies in
TCP and IP protocols. The discovered strategies are based on
analyzing out-of-date DPIs and operating systems (FreeBSD
2.2), and many of the strategies no longer apply. Khattak et
al. [25] and Wang et al. [48] followed the same principle
to study evasions against the Great Firewall of China and
demonstrated their effectiveness in practice. Li et al. [29]
conduct a comprehensive measurement that leverages similar
TCP and IP level discrepancies to evade a wide range of
middleboxes such as traffic classification systems in multiple
ISPs and the censorship systems in China and Iran. All of the
above research rely on manual analysis of the TCP implemen-
tations in operating systems and reverse engineering of DPIs.
In this work, we propose to make an important step towards
automating the evasion tests of DPI systems. A concurrent
work by Bock et al. [9] automates censorship evasion strategy
discovery by mutating existing packet traces. In contrast, we
propose a more principled approach to search for the evasion
strategies, by targeting the corner cases in packet processing

logic on Linux, which may be handled differently on DPIs.

Symbolic execution of network protocol implementations.
In the past decade, symbolic execution has emerged as a
powerful formal verification technique and been widely ap-
plied in the analysis and verification of network protocol and
network function implementations. For example, in [14], [15],
the authors employ symbolic execution to extract the accept
and reject paths in essential components of the TLS protocol,
i.e., X.509 certificate validation and PKCS#1 signature ver-
ification, to find semantic bugs by cross-validating different
implementations. Kothari et al. [27] use symbolic execution to
find protocol manipulation attacks where a malicious endhost
can induce a remote peer to send more packets more aggressive
than it should. Song et al. [45] explore the possibility of
sending multiple packets in symbolic execution, and they
aim at finding low-level and semantic bugs given rule-based
specifications extracted from protocol specifications.

DPI model inference. Ideally, if we can infer the DPI model
(i.e., state machine) automatically and completely, then it is
much easier to identify the discrepancies with the endhost’s
state machine. Argyros et al. [2], [1] proposed the first
algorithm that learns symbolic finite automata with enough
queries and observations of a target system. The algorithm
is applied to regular expression filters, TCP implementations
and Web Application Firewalls (WAFs), to do fingerprinting
and discover evasion attacks. Similarly, Moon et al. [31]
synthesize high-fidelity symbolic models of stateful network
functions (including TCP state machines of DPI middleboxes),
by generating queries and probes offline (albeit it requires the
availability of the network function’s binary). Unfortunately,
the completeness and accuracy of the inferred model is in-
herently dependent on the queries. Therefore, we choose to
consider the DPI a complete blackbox and do not attempt
to learn its state machine explicitly. To some extent, though,
we indeed attempt to “learn its model” by generating proper
queries to it (with the guidance of a Linux TCP state machine).

Grammar-based fuzzing and exhaustive testing. Generating
meaningful inputs guided by a grammar that describes their
formats can be beneficial to fuzzing [8], [21], [35]. However,
fuzzing tends to generate overly many inputs and in our case
will be inefficient in testing all the candidate packets. Further-
more, defining a grammar or model at the implementation-
level requires a thorough analysis of all the subtleties of TCP.
Therefore, models extracted from the specification are not
sufficiently detailed to capture the intricacies of the protocol.
In contrast, our work can be viewed as attempts to “extract”
the implementation-level model.

XI. CONCLUSION

In this paper, we explore the use of symbolic execution
to guide the generation of insertion and evasion packets at
the TCP level for automated testing against DPI middleboxes.
We developed a system from end to end following this idea
and demonstrated its effectiveness with both known and novel
strategies against three popular DPIs: Zeek (Bro), Snort, and
GFW. The system can be easily extended to other DPIs. We
believe our work is an important step towards automating the
testing of DPI middleboxes in terms of their robustness against
evasion.
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APPENDIX

A. A complete list of drop points in Linux kernel v4.9.3

All of the source-code-level drop points we labeled can be
found in Table VII.

B. TCP PAWS checking in Linux and Snort

As shown in the pseudo-code Listing 1 and Listing 2, the
acceptable TSval ranges of Linux and Snort are “off by 2”.

1 i f ( ( s i g n e d i n t ) ( l a s t p a c k e t−>t s v a l −
c u r r e n t p a c k e t−>t s v a l ) <= 1) {

2 / / PAWS check s u c c e e d e d
3 }

Listing 1. Pseudo-code of Linux PAWS (timestamp) check

1 i f ( ( s i g n e d i n t ) ( ( c u r r e n t p a c k e t−>t s v a l −
l a s t p a c k e t−>t s v a l ) + 1 ) < 0) {

2 / / PAWS check f a i l e d
3 }

Listing 2. Pseudo-code of Snort PAWS (timestamp) check
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TABLE VII. ALL DROP POINTS LABELED IN LINUX KERNEL V4.9.3

Source file Line number TCP State Major Reason Total Covered
tcp ipv4.c 1404 Non-ESTABLISHED TCP checksum error 1 1

1607 Any TCP header length <20 1 1
1609 Any TCP header length >TCP packet size 2 1
1617 Any TCP checksum error 2 1
1655 SYN RECV TCP MD5 option check failed 1 1
1672 SYN RECV ACK number != server ISN + 1 1 1
1690 Non-SYN RECV TCP MD5 option check failed 1 1

tcp input.c 3616 Non-LISTEN Challenge ACK (the ACK case) 1 1
3736 Non-LISTEN ACK number >server send next 1 1
3750 Non-LISTEN ACK number older than previous acks but still in window 1 1
4503 ESTABLISHED OFO packet overlap 1 1
4641 ESTABLISHED Empty data packet 1 1
4657 ESTABLISHED Receive window is zero 1 0
4716 ESTABLISHED End SEQ number <= rcv nxt (Retrans) 1 1
4729 ESTABLISHED SEQ >= rcv nxt + window (out of window) 1 1
4745 ESTABLISHED Receive window is zero 1 0
5195 ESTABLISHED SEQ number <copied seq (SEQ num too old) 1 1
5270 Non-LISTEN PAWS check failed (Timestamp) 1 1
5284 Non-LISTEN Challenge ACK (SYN) (out-of-window) 1 1
5291 Non-LISTEN SEQ out of window 4 3
5325 Non-LISTEN Challenge ACK (RST) 3 3
5333 Non-LISTEN Challenge ACK (SYN) 1 1
5453 ESTABLISHED Packet length <TCP header length 1 0
5487 ESTABLISHED TCP checksum error 1 1
5531 ESTABLISHED Packet size <TCP header length —— TCP checksum error 2 1
5534 ESTABLISHED No RST and no SYN and no ACK flag 1 1
5911 LISTEN ACK flag set 1 1
5914 LISTEN RST flag set 1 1
5918 LISTEN SYN and FIN flags set 1 1
5925 LISTEN No RST and no SYN and no ACK flag 1 1
5947 Non-LISTEN Fastopen tcp check req failed 1 0
5951 Non-LISTEN No RST and no SYN and no ACK flag 1 1
6141 Non-LISTEN SEQ ≥ rcv nxt 1 1

tcp minisocks.c 634 SYN RECV Retransmitted SYN 1 1
716 SYN RECV PAWS check failed —— SEQ out of window 2 2
735 SYN RECV SYN or RST flag set 1 1
745 SYN RECV No ACK flag 1 1
758 SYN RECV TCP DEFER ACCEPT drop bare ACK 1 1

Overall 47 39
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