
9244 | Soft Matter, 2019, 15, 9244--9252 This journal is©The Royal Society of Chemistry 2019

Cite this: SoftMatter, 2019,

15, 9244

The elastic Rayleigh drop

S. I. Tamim and J. B. Bostwick *

Bioprinting technologies rely on the formation of soft gel drops for printing tissue scaffolds and the

dynamics of these drops can affect the process. A model is developed to describe the oscillations of a

spherical gel drop with finite shear modulus, whose interface is held by surface tension. The governing

elastodynamic equations are derived and a solution is constructed using displacement potentials

decomposed into a spherical harmonic basis. The resulting nonlinear characteristic equation depends

upon two dimensionless numbers, elastocapillary and compressibility, and admits two types of solutions,

(i) spheroidal (or shape change) modes and (ii) torsional (rotational) modes. The torsional modes are

unaffected by capillarity, whereas the frequency of shape oscillations depend upon both the

elastocapillary and compressibility numbers. Two asymptotic dispersion relationships are derived and the

limiting cases of the inviscid Rayleigh drop and elastic globe are recovered. For a fixed polar

wavenumber, there exists an infinity of radial modes that each transition from an elasticity wave to a

capillary wave upon increasing the elastocapillary number. At the transition, there is a qualitative change

in the deformation field and a set of recirculation vortices develop at the free surface. Two special

modes that concern volume oscillations and translational motion are characterized. A new instability is

documented that reflects the balance between surface tension and compressibility effects due to the

elasticity of the drop.

1 Introduction

More than a century ago, Lord Rayleigh1 showed that an
inviscid spherical drop held by surface tension s will oscillate
with characteristic frequency

z2 = l(l � 1)(l + 2), (1)

and mode shape given by the spherical harmonic Yml (y,j) with
polar/azimtuhal [l,m] wavenumber pair.2 Here the frequency z
is scaled by the capillary time scale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR3=s

p
, where s, r, R are

the liquid surface tension, density and drop radius, respectively.
We call this the Rayleigh drop. The dispersion relationship (1)
has seen widespread use in multiple technologies, such as
spray cooling (drop atomization)3 and inkjet printing (drop
pinchoff).4,5 Bioprinting applications, e.g. 3D printing of tissue
scaffolds,6,7 utilize the fluid mechanical principles of inkjet
printing but adapted to biologically-compatible hydrogels, such
as agarose and alginate.8 These soft viscoelastic gels have a
finite elasticity and often a complex rheology.9,10 In this paper,
we develop a theoretical model to predict the dispersion
relationship for a soft spherical gel drop, which we refer to as
the elastic Rayleigh drop.

Soft gels are polymeric fluids, a sub-class of complex fluids,
which are characterized by both a viscosity and elasticity.
For capillary-driven flows, the dynamics are characterized by
three relevant time scales; the polymer relaxation time tp = l,
a viscous time scale tv = gR/s with g the viscosity, and an inertial

time scale tc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR3=s

p
.11 Typical values for the rheological

properties l, g are given in Barnes.12 The relative balance of
these time scales gives rise to dimensionless parameters that
define the flow; the Ohnesorge number Oh � tv=tc ¼ g=

ffiffiffiffiffiffiffiffiffi
rsR

p

balances viscosity and inertia, and the Deborah number

De � tp=tc ¼ l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR3=s

p
balances the polymer relaxation with

inertia. The special case De 4 1 4 Oh (tp 4 tc 4 tv)
corresponds to an ‘inviscid elastic fluid’13 which is typical of
dilute polymer concentrations, such as those typically used in
bioinks. We are interested in this limiting case in which drop
oscillations are affected by elasticity, capillarity and inertia.

Both surface tension and elasticity resist motion and that
coupling defines an elastocapillary effect which becomes
important on length scales smaller than the elastocapillary
length ce � s/E, where E is the elastic modulus. For a spherical
gel drop, the relevant length scale is the drop radius R which
allows one to define an elastocapillary number S = s/ER. Note
that bulk elastocapillarity is distinguished from bendocapillarity
in which surface tension can bend a thin object with large
elasticity. See the recent reviews by Style et al.,14 Andreotti and
Snoeijer,15 Bico et al.16 for a detailed discussion of the relevant
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scaling arguments, and a summary of the many interesting
recently observed and unexplained physics in this emerging field.
We note that gels are typically viewed as solids and the existence
of solid surface tension has been known for some time.17

Pioneering experiments by Monroy and Langevin18 were the first
to observe elastocapillary waves on planar substrates and docu-
ment the crossover between elastic and capillary waves. These
results were shown to agree well with a theory developed by
Harden et al.19 In fact, many of the classical capillary-driven
instabilities of fluid mechanics, e.g. Rayleigh–Taylor, Plateau–
Rayleigh, have been observed in soft gels.20–22 Chakrabarti and
Chaudhury23 have shown how the frequency response of sessile
hydrogel drops is affected by elasticity. More recent work by Shao
et al.24 have shown the crossover from elastic to capillary waves
on mechanically-excited Faraday waves on planar surfaces and
used the observed dispersion relationship to estimate the solid
surface tension. Our fundamental model of drop oscillations can
be viewed as an extension of the Rayleigh drop which includes
elastocapillary effects.

In general, gels exhibit frequency-dependent viscoelastic
properties (or both solid- and fluid-like properties) which
means our model could be framed from either a fluid dynamics
or elasticity perspective. We note that the most commonly used
biogel, agarose, behaves like a linear elastic solid over a large
frequency range,25 but some gels exhibit a nonlinear material
response (e.g. strain stiffening).26–29 However, we are interested
in small amplitude oscillations in the linear elastic regime and
nonlinear amplitude effects are outside the scope of this work.
The duality between solid mechanics and fluid mechanics for
our ‘inviscid elastic fluid’ means we could formulate the
problem from either perspective. We adopt the solid mechanics
perspective and assume our gel drop consists of a linear elastic
material that is characterized by two Lamé parameters l, m and
obeys the governing equations of linear elastodynamics.30

Capillary effects enter the problem through the Young–Laplace
equation on the free surface.31–33 Elastic wave propagation
on a sphere is qualitatively different from that on a plane;
Rayleigh34 waves on a semi-infinite half space are non-dispersive,
whereas waves on a sphere are dispersive and have been
observed over many different length scales, from geodynamics35

and seismology36 to nanophysics.37,38 The invariance in wave
dynamics over such a large length scale occurs because there is
only one time scale for such problems, the elastic time scale
te = (rR2/m)1/2. In our problem, we also have a capillary time scale
tc = (rR3/s)1/2 and the balance between these two time scales gives
rise to interesting dynamic elastocapillary effects.

We begin this paper by defining the elastodynamic equations
that govern the motion of the spherical gel drop. Displacement
potentials are introduced and we expand our solution in a
spherical harmonic basis to generate a nonlinear characteristic
equation for the scaled drop frequency, which depends upon
elastocapillary and compressibility dimensionless numbers. Two
mode types are reported; torsional modes have a non-deforming
interface, while spheroidal modes are associated with shape
change. Our solution recovers the limiting cases of the inviscid
Rayleigh drop and the purely elastic globe. In the intermediate

region between these two limits, we show there is a transition
between elasticity-dominated and capillary-dominated motion
and characterize the change in deformation field that occurs
there. We identify two special motions, the ‘breathing’ and
‘translational’ modes, and characterize their dynamics. Our
analysis of the breathing mode reveals a new fundamental
instability that reflects a balance between surface tension and
compressibility due to the elasticity of the drop. Lastly, some
concluding remarks are offered.

2 Mathematical formulation

Consider the spherical gel drop of equilibrium radius R shown
in Fig. 1. The interface is given a small perturbation z, which
generates a time-dependent displacement field U(x,t) in the gel,
which is assumed to be an isotropic, linear elastic material
with density r, Lamé constants l, m, and surface tension s.
Normal modes U(x,t) = u(x)eiot are assumed with o the oscillation
frequency. The displacement field is defined in the spherical
coordinate system (r,y,j).

u = ur(r,y,j)êr + uy(r,y,j)êy + uj(r,y,j)êj. (2)

2.1 Field equations

The displacement field u is governed by the elastodynamic
Navier equations,

(l + m)r(r�u) +mr2u = �ro2u. (3)

For this linear elastic material, the strain field is given by
e = (ru + ruT)/2 and the stress field by sij = lekkdij + 2meij.

Continuity of stress on the free surface r = R requires

trr ¼
s
R2

rk
2ur þ 2ur

� �
; try ¼ 0; trj ¼ 0; (4)

where

rk
2 � 1

sin y
@

@y
sin y

@

@y

� �
þ 1

sin2 y

@2

@j
(5)

Fig. 1 Definition sketch of the spherical gel drop.
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is the surface Laplacian. The normal stress condition in eqn (4)
is simply the linearized Young–Laplace equation relating the
jump in normal stress across the free surface to the mean
curvature there.

2.2 Displacement potential

The governing eqn (3) is simplified by defining the displacement
field u in terms of the scalar potentials F, T, S;

u = rF + r� (Têr) + r � r � (Sêr). (6)

Substituting (6) into (3) yields a set of uncoupled Helmholtz
equations for the potentials,

r2Fþ a2F ¼ 0; r2 T

r

� �
þ b2

T

r

� �
¼ 0;

r2 S

r

� �
þ b2

S

r

� �
¼ 0;

(7)

with a � o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
lþ 2m

r
and b � o

ffiffiffi
r
m

r
. Eqn (7) yields compressional

and shear wave solutions with velocities cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m

r

r
and

cs ¼
ffiffiffi
m
r

r
, respectively.39

The general solution of (7) can be written by expanding the
potentials F, T, S in a spherical harmonic Yml (y,j) basis;

40

F ¼
X1
l¼0

Xl

m¼�l

Alm jlðarÞYm
l ðy;jÞ;

T ¼
X1
l¼0

Xl

m¼�l

rBlm jlðbrÞYm
l ðy;jÞ;

S ¼
X1
l¼0

Xl

m¼�l

rClm jlðbrÞYm
l ðy;jÞ;

(8)

where jl is the spherical Bessel functions of the first kind. Note
that we suppress the spherical Bessel function of the second
kind in our solution, because they diverge at the origin and
are unphysical. The unknown constants Alm, Blm, Clm are deter-
mined from the boundary conditions (4). For reference, the
components of the displacement field (ur, uy, uj) are expressed
with respect to these unknown constants in Appendix A.

2.3 Characteristic equation

We scale lengths by R, time with the elastic shear wave time

scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR2=m

p
, and apply the solution (8) to (4) to yield a set of

linear equations,

AlmT11ðkZÞ þ ClmT31ðZÞ

¼ S
2
ð2� l � l2Þ AlmQ1ðkZÞ þ ClmQ2ðZÞð Þ

(9a)

AlmT12(kZ) + ClmT32(Z) = 0 (9b)

BlmT22(Z) = 0, (9c)

for the dimensionless frequency Z � oR
ffiffiffiffiffiffiffiffi
r=m

p
. Here

T11 ¼ l2 � l � 1

2
Z2

� �
jlðkZÞ þ 2kZjlþ1ðkZÞ;

T12 ¼ ðl � 1ÞjlðkZÞ � kZjlþ1ðkZÞ;

T22 ¼ ðl � 1ÞjlðZÞ � Zjlþ1ðZÞ;

T31 ¼ lðl þ 1Þ ðl � 1ÞjlðZÞ � Zjlþ1ðZÞf g;

T32 ¼ l2 � 1� 1

2
Z2

� �
jlðZÞ þ Zjlþ1ðZÞ;

Q1 ¼ ljlðkZÞ � kZjlþ1ðkZÞ; Q2 ¼ lðl þ 1ÞjlðZÞ:

(10)

Two dimensionless groups result from this choice of scaling,

k � a
b
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

lþ 2m

r
; S � s

mR
; (11)

where the compressibility number k is the ratio of compres-
sional to shear wave speeds and the elastocapillary number
S measures the relative importance of surface tension and
elasticity.

Eqn (9) admits two sets of solutions, which we will refer to as
torsional and spheroidal modes. Eqn (9c) is uncoupled and
gives the characteristic equation for the torsional modes,

(l � 1) jl(Z) � Z jl+1(Z) = 0, (12)

which is consistent with Lamb’s modal classification.41 The
spheroidal modes satisfy the set of equations

T12ðkZÞAlm þ T32ðZÞClm ¼ 0;

T11ðkZÞ �
S
2
ð2� l � l2ÞQ1ðkZÞ

� �
Alm

þ T31ðZÞ �
S
2
ð2� l � l2ÞQ2ðZÞ

� �
Clm ¼ 0:

(13)

The solvability condition generates the nonlinear characteristic
equation,

� 1

2

2l2 � l � 1

Z2
� 1

2

� �
jlðkZÞjlðZÞ

þ l3 þ l2 � 2l

Z3
� 1

2Z

� �
jlðkZÞjlþ1ðZÞ

þ l3 þ 2l2 � l � 2

Z3
� 1

Z

� �
kjlðkZÞjlþ1ðZÞ

þ 2� l � l2

Z2
kjlþ1ðkZÞjlðkZÞ

� S
2
ð2� l � l2Þ � l

2Z2
jlðkZÞjlðZÞ þ

l

Z3
jlðkZÞjlþ1ðZÞ

�

� 2l2 � l � 1

Z3
� 1

2Z

� �
kjlþ1ðkZÞjlðZÞ

� k
Z2

jlþ1ðkZÞjlþ1ðZÞ
�

¼ 0;

(14)

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
8 

O
ct

ob
er

 2
01

9.
 D

ow
nl

oa
de

d 
by

 C
le

m
so

n 
U

ni
ve

rs
ity

 o
n 

11
/2

1/
20

19
 1

:3
5:

09
 A

M
. 

View Article Online

https://doi.org/10.1039/c9sm01753d


This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 9244--9252 | 9247

for the frequency Z of the spheroidal modes. These solutions
correspond to the shape oscillations of the drop. There are an
infinite number of roots Z to eqn (14), which depend upon the
parameters S, l, k. We enumerate these solutions using the
radial mode number s that corresponds to the sth root of the
characteristic eqn (14). To summarize, we report Z = Z(s, l, S, k).
The absence of the wavenumber m implies the frequency
spectrum is degenerate with respect to m, as with the inviscid
Rayleigh drop.42 For S = 0, surface tension effects are negligible
and we recover the characteristic equation for an elastic
globe.30

2.4 Incompressible limit j - 0

Elastic materials typically have a finite compressibility, but
many soft gels of interest are often incompressible.43,44 The
characteristic eqn (14) can be greatly simplified in this limit.
To illustrate, we redefine k with respect to the Poisson ratio n,

k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2n
2ð1� nÞ

r
. For incompressible materials n = 1/2, k- 0 and

the resulting characteristic equation is

Z 2þ Z2 � l3Sþ 2lðSþ 1Þ � l2ðSþ 4Þ
� �

jlðZÞ

� 2 Z2 þ lðSþ 2Þð2� l � l2Þ
� �

jlþ1ðZÞ ¼ 0:
(15)

3 Results

Frequencies Z are readily computed from the nonlinear charac-
teristic equations for the spheroidal (14) and torsional (12)
modes, as they depend upon the polar wavenumber l, elasto-
capillary number S and compressibility number k. Recall that
frequencies are degenerate with respect to the azimuthal wave-
number m. For the spheroidal modes, the corresponding
motions are determined from (13). We note that the torsional
modes are independent of S, k, because they do not change the
shape of the sphere or have radial displacement ur that is
independent of the torsional potential T (Appendix A). Our
interest is in shape change and the spheroidal modes of
oscillation.

We begin this section by showing how the dispersion
relationship, Z against l, is effected by S and k and contrast
with the Rayleigh drop (1). For an incompressible gel drop
k = 0, we capture and describe the transition from elasticity-
dominated to capillary-dominated motion for fixed l as it
depends upon S. Asymptotic dispersion relationships are then
derived in the elasticity-dominated S - 0 and capillary-
dominated S - N limits. Lastly, we discuss the unique l = 0
‘breathing’ and l = 1 ‘translational’ modes and their depen-
dence on S, k.

3.1 Dispersion relationship

Recall that inviscid Rayleigh drops oscillate with a single
frequency given by eqn (1) for each mode number l. For the
elastic Rayleigh drop, the dispersion relationship is affected by
the elastocapillary S and compressibility k numbers. Fig. 2 plots

the frequency Z against wavenumber l for an (a) incompressible
drop with finite surface tension (k = 0, S = 1) and a (b) purely
elastic compressible drop (k = 0.5, S = 0). In contrast to the inviscid
Rayleigh drop, Fig. 2 shows there are an infinite number of
solutions for each wavenumber l that can be distinguished by a
radial number s. For each s the dispersion curve is amonotonically
increasing function of l but there are regions of faster and slower
growth depending upon S and k, which we discuss in detail next.

3.2 Frequency transition

Fig. 3(a) plots the l = 4 incompressible (k = 0) frequency against
the elastocapillary number S for the first five radial modes.
As S increases, each frequency increases from a constant
frequency plateau region to another plateau region of higher
frequency. The low and high frequency regions correspond
to elasticity-dominated and capillary-dominated behavior,
respectively, and are separated by a sharp transition region
characterized by a rapidly increasing capillary effect. Each
frequency displays only one such transition and higher mode
numbers transition at higher values of S. Similar behavior is
seen for every spheroidal mode with l Z 2.

To better understand the transition region, we plot the
displacement field u in Fig. 3(b) for various S along the
frequency curves. Note these are two-dimensional axisymmetric
m = 0 deformation fields. Consider the s = 1 case, a single layer
of recirculation vortices develops in the transition region
S = 0.3 that becomes fully-developed in the capillary-
dominated region S = 10. For the s = 2 mode, the single layer
of recirculation vortices seen in the elasticity-dominated region

Fig. 2 Dispersion relationship. Frequency Z against wavenumber l for
(a) k = 0, S = 1 and (b) k = 0.5, S = 0 for the first five radial s modes.
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S = 0.001 gets pushed to the center of the drop in the transition
region S = 1 by the emergence of an additional layer of vortices
that become fully-developed in the drop in the capillary-
dominated region S = 10. Similar transitions occur for the
s = 3 and higher order modes but at higher values of S.
In general, the number of layers of vortices changes from
s � 1 to s in the transition region and within each layer there
are 2l individual vortices.

This behavior is robust and extends to all spheroidal modes.
Recall the frequency is degenerate with respect to azimuthal
wavenumber m, but the mode deformation fields are unique.

For the axisymmetric modesm = 0, we observe the emergence of
an additional layer of vortices in the transition region (cf. Fig. 3).
We observe similar behavior in sectoral l = m and tesseral m a 0
modes. Fig. 4 plots the surface shapes for the s = 1 (4,2), (6,3), (2,2)
modes and associated deformation fields in the elasticity-
dominated and capillary-dominated regions.

3.3 Asymptotic dispersion relations

It is straightforward to obtain closed-form dispersion relation-
ships for the limiting cases S - 0 and S - N. These are the
capillary-dominated and elasticity-dominated limits, respectively.
For the capillary limit S - N, we introduce the capillary time
scale tc = (rR3/s)1/2, define z = otc, and take the first order
expansion of (17) about S = N to give

z2 ¼ lðl � 1Þðl þ 2Þ þ ð2l þ 1Þð4l þ 3Þ1
S
: (16)

Note that we recover (1) in the limit S - N, as expected. The
scaling relationship with respect to S reproduces that reported by
Chakrabarti and Chaudhury23 for sessile drops. For the elasticity-
dominated limit S - 0, we note that (15) is already scaled with
the elastic time scale te = (rR2/m)1/2 with Z = ote and we take the
first order expansion about S = 0 to give

Z2 ¼ 2ðl � 1Þð5þ 2lÞð3þ 4l þ 2l2Þ
ð2l þ 1Þð3þ 4lÞ

þ lðl � 1Þðl þ 2Þð5þ 2lÞ S
3þ 4l

:

(17)

Both (16) and (17) allow one to obtain quick frequency estimates
without having to solve a nonlinear eqn (15).

3.4 The l = 1 ‘translational’ mode

For the inviscid Rayleigh drop, eqn (1) predicts zero-frequency
l = 0 and l = 1 modes that correspond to volume conservation
and translational invariance, respectively. However, for a soft
elastic drop these produce non-trivial motions. The l = 1
‘translational’ mode corresponds to a rigid translation of the
sphere, as shown in Fig. 5(b), and is therefore independent of
S (capillary effects) as there is no shape change associated with
this motion. This can be easily seen by setting l = 1 in eqn (14).
However, compressibility ka0 does affect the oscillation
frequency for this mode. Fig. 5(a) plots the frequency Z against
compressibility number k and shows complex behavior,
whereby for fixed radial wavenumber s there are distinct
plateau regions of constant frequency separated by transition
regions where the frequency decreases with increasing k. For
reference, a typical deformation field for the s = 1 mode is
shown in Fig. 5(c).

3.5 The l = 0 ‘breathing’ mode

The l = 0 ‘breathing’ mode produces a pure volumetric shape
change in which the sphere uniformly compresses and expands
during oscillation. These pure radial motions have zero curl,
r � u = 0 (6), and associated unknown constant A00 that can be
determined from the normal stress balance (4) (the shear-free
conditions are naturally satisfied). The resulting characteristic

Fig. 3 Frequency transition for the l = 4 mode. (a) Frequency Z against
elastocapillary number S shows a transition from low frequency elasticity-
dominated motion to high frequency capillarity-dominated motion for
each radial s mode. (b) The deformation fields illustrate that in the
transition region a set of vortices develop near the interface that eventually
propagates into the bulk and becomes fully-developed in the capillary-
dominated region.
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equation T11(kZ) = SQ1(kZ) can be simplified into the
following form,

tankZ
kZ

¼ � 4þ 2S
Z2 � ð4þ 2SÞ (18)

For S = 0, the equation gives Love45 solution for an elastic
sphere which has infinite frequency when k = 0. For compres-
sible materials k 4 0, the frequency decreases with increasing
compressibility. In addition to oscillatory motions, we find
an unstable mode Re[iZ] 4 0 for finite elastocapillary number
S a 0.

Fig. 6(a) plots the l = 0 frequency Z against k for finite
elastocapillary number S = 50 and shows the oscillatory modes
as well as the unstable mode bifurcating at a critical compres-
sibility number k*. After the bifurcation, the growth rate for the
unstable mode continues to increase with k. The mode shape
and associated deformation field for the unstable mode are
shown in Fig. 6(b) and (c), respectively. Here the radius of the
drop decreases because surface tension tends to minimize the
surface area of the drop. This leads to the collapse of the drop,
as the elastic resistance is unable to counteract the increase in

Fig. 4 Typical deformation fields for modes (l,m) illustrate the transition from elasticity- to capillary-dominated motion. Corresponding 3Dmode shapes
are shown in the bottom row. Note the deformation amplitude has been exaggerated for illustration purposes.

Fig. 5 ‘Translational’ l = 1 mode. (a) Frequency Z against compressibility
number k, (b) typical mode shape and (c) associated deformation field.

Fig. 6 ‘Breathing’ l = 0mode. (a) Frequency Z against compressibility number
k displays oscillatory behavior, as well as an unstable root Re[iZ] 4 0 which
bifurcates at a critical compressibility number k* forS= 50. The unstablemode
has (b) mode shape and (c) associated deformation field for k = 0.2.
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capillary pressure as the drop radius shrinks. This runaway
process is typical of instabilities.

This instability is directly related to the compressibility of the
soft solid. Recall that drops of incompressible liquid are stable due
to the fluid pressure which resists surface tension. In contrast,
bubbles have finite compressibility related to thermodynamic
effects, but can similarly be stabilized provided the internal gas
pressure is large enough. Soft compressible gel drops are most
similar to bubbles since they also exhibit finite compressibility due
to elastic effects. With regard to the elastic drop, surface tension
exactly balances elasticity on the neutral stability curve shown
in Fig. 7(a), which plots k* against S. This boundary separates
region of instability from oscillatory (stable) behavior. For fixed k,
increasing S leads to instability. In the unstable region, the growth
rate increases with both S and k as shown in Fig. 7(b). That is,
surface tension and compressibility drive the instability.

3.6 Torsional modes

As noted above, the torsional modes are decoupled from the
spheroidal modes and satisfy the characteristic equation,

(l � 1) jl(Z) � Z jl+1(Z) = 0. (19)

These motions do not change the shape of the sphere and, as
such, are independent of compressibility k and capillary
S effects. This is evident by the absence of the potential
function T in the radial displacement ur (Appendix A). Fig. 8
plots the dispersion relationship Z against l for these modes
with sample deformation fields.

4 Conclusion

We have developed a model that describes the oscillations of a
soft spherical gel drop, which behaves as a linear elastic solid
with non-trivial surface tension. In contrast to the inviscid
Rayleigh drop, there are an infinity of radial modes s for each
polar wavenumber l and the dispersion relationship for each
depends upon the elastocapillary S and compressibility k
numbers. The nonlinear characteristic equation is independent
of the azimuthal wavenumber m and admits two classes of
solutions; (i) spheroidal and (ii) torsional modes. The spheroidal
modes are associated with droplet shape change, while the
torsional modes are not and therefore independent of S. For
the spheroidal modes, we show a transition from elasticity-
dominated to capillary-dominated motion for increasing S and
this transition is accompanied by the emergence of a set of
recirculation vortices at the drop interface that propagates into
the bulk in the capillary region. Two asymptotic dispersion
relations are developed for low and high S that recover existing
asymptotic limits, such as the Rayleigh drop. Lastly, we discuss
the special l = 0 breathing and l = 1 translational modes and
their unique dependence on S and k. Notably, we have docu-
mented an unstable l = 0 mode that leads to drop collapse and
computed the associated neutral stability curve that reflects a

Fig. 7 (a) Stability diagram for the l = 0 mode plotting the critical
compressibility number k against elastocapillary number S separates
regions of oscillatory (stable) and unstable behavior. (b) The growth rate
Re[Z] against compressibility number k and elastocapillary number S for
the unstable mode.

Fig. 8 Torsional modes. Dispersion relationship plotting frequency Z
against wavenumber l (left) and typical deformation fields for the s = 1
(2,1) and (4,2) modes (right).
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balance between surface tension and compressibility. For an
incompressible material, the drop is stable consistent with
well-known results for incompressible liquids.

Recent interest in bioprinting applications make our
results particularly timely. Specifically, bioprinting uses the
same principles of inkjet printing, such as capillary breakup,
but adapted for biologically-compatible gels, such as agarose
or alginate. These gels are typically soft (small, but finite
elasticity) and have dynamics that are affected by both elasti-
city and surface tension. Hence, the Rayleigh drop dispersion
relationship (1) can be expected to be of limited utility
in predicting the complex dynamics. Our results illustrate
elastocapillary effects in a dynamic system and contribute to
this emerging field. In fact, our model predictions could
be used as a diagnostic tool to measure the surface tension
of soft gels, similar to immiscible liquid drops46 or free drops
in microgravity.47 This technique has been recently applied
to hydrogels using mechanically-excited planar Faraday
waves24 and the oscillations of a hemispherical drop excited
by white noise.48 For a drop with a complex viscoelastic
rheology, the shear modulus m = m0 + im00 has a real part
corresponding to the storage modulus (elasticity) and an
imaginary part corresponding to the loss modulus (propor-
tional to viscosity) and these quantities often depend upon the
frequency m 0(o), m00(o). For such materials, the governing
equations depend upon the rheology and become more
complex to solve since the frequency appears in the stress–
strain relaxation equations; each problem would have to be
treated independently.

To model the dynamics that incorporates a complex
rheology one would need to consider a frequency dependent
complex shear modulus with real and imaginary parts corres-
ponding to stored and lost energy due to strain, replacing
m = m0 + im00. Here, m00 will characterize the energy lost during
the oscillation due to viscous damping.

Future directions include experimental realization of our
model predictions, adapting our model to predict other funda-
mental capillary instabilities in soft materials (Plateau–
Rayleigh, Rayleigh–Taylor), extending our basic model to include
viscoelastic effects for materials with complex rheology, and
adapting the model to account for wetting effects49,50 in sessile
gel droplets. For example, recent work by Chakrabarti and
Chaudhury23 on sessile hydrogel drops has shown that higher
order modes cannot be excited due to viscous effects; i.e. the
resonance peak disappears in a frequency response diagram
for those modes, thus highlighting the role of elasticity and
viscosity in drop oscillations. This is also seen for sessile drops
of Newtonian fluids and it is well-known that higher order
modes damp out more quickly.51 Therefore, new models of drop
oscillations in complex fluids should include both elasticity and
viscosity.
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Appendix
A Displacement components

The components of the displacement field u = (ur,uy,uz) are
given by

ur ¼ 1

r
Alm ljlðarÞ � arjlþ1ðarÞð Þ½

þClmlðl þ 1ÞjlðbrÞ�Ym
l ðy;jÞ

(20)

uy ¼ 1

r
Alm jlðarÞþClm ðlþ1ÞjlðbrÞ�brjlþ1ðbrÞð Þ½ �

� mcotyYm
l ðy;jÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞðlþmþ1Þ

p
e�ijYmþ1

l ðy;jÞ
� �

þ iBlmmjlðbrÞ
siny

Ym
l ðy;jÞ

(21)

uj ¼ im

rsiny
Alm jlðarÞþClm ðlþ1ÞjlðbrÞð½

�brjlþ1ðbrÞÞ�Ym
l ðy;jÞ�

1

r
BlmjlðbrÞ mcotyYm

l ðy;jÞ
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞðlþmþ1Þ

p
e�ijYmþ1

l ðy;jÞ
�

(22)
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