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Abstract

We answer a question, posed implicitly in [18, §11], [11, Rem. 15.44] and explicitly in [9, Problem 9.8],

showing the border rank of the Kronecker square of the little Coppersmith-Winograd tensor is the

square of the border rank of the tensor for all q > 2, a negative result for complexity theory. We

further show that when q > 4, the analogous result holds for the Kronecker cube. In the positive

direction, we enlarge the list of explicit tensors potentially useful for the laser method. We observe

that a well-known tensor, the 3×3 determinant polynomial regarded as a tensor, det3 ∈ C9
⊗C9

⊗C9,

could potentially be used in the laser method to prove the exponent of matrix multiplication is two.

Because of this, we prove new upper bounds on its Waring rank and rank (both 18), border rank

and Waring border rank (both 17), which, in addition to being promising for the laser method, are

of interest in their own right. We discuss “skew” cousins of the little Coppersmith-Winograd tensor

and indicate why they may be useful for the laser method. We establish general results regarding

border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of

tensors in C3
⊗ C3

⊗ C3.
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1 Introduction

The exponent ω of matrix multiplication is defined as

ω := inf{τ | n × n matrices may be multiplied using O(nτ ) arithmetic operations}.

The exponent is a fundamental constant governing the complexity of the basic operations in

linear algebra. It is conjectured that ω = 2. There was steady progress in the research for

upper bounds from 1968 to 1988: after Strassen’s famous ω < 2.81 [39], Bini et al. [8], using

border rank (see below), showed ω < 2.78, then a major breakthrough by Schönhage [36]

(the asymptotic sum inequality) was used to show ω < 2.55, then Strassen’s laser method
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10:2 Kronecker Powers of Tensors

was introduced and used by Strassen to show ω < 2.48, and refined by Coppersmith and

Winograd to show ω < 2.3755 [18]. Then there was no progress until 2011 when a series of

improvements by Stothers, Williams, and Le Gall [38, 45, 33] lowered the upper bound to

the current state of the art ω < 2.373.

Strassen’s 1968 result is obtained by an explicit algorithm for multiplying matrices. This

algorithm is more efficient than the standard one in practical implementation as soon as

the size of the matrices is around 1000 × 1000, see [6]. Bini et al. exhibited a matrix

multiplication algorithm that is in principle implementable exactly (at a cost of a constant

size blow-up which does not effect the exponent) but as presented is only a sequence of

algorithms that limits to an exact one. This gave rise to the notion of border rank to describe

this phenomenon. To explain border rank, it is best to adopt the language of tensors.

A bilinear map b : Ca ×Cb → Cc may be regarded as a trilinear form b̂ : Ca ×Cb×Cc → C

defined by b̂(X,Y, α) = α · b(X,Y ) where b(X,Y ) is regarded as a column vector of Cc, α is

regarded as a row vector and · is the row-column multiplication. In this language, matrix

multiplication, as a trilinear map, becomes Ml,m,n(X,Y, Z) = trace(XY Z), where X,Y, Z

are matrices of size l × m, m × n and n × l, respectively. It is known [11, §14.1] that the

complexity of performing a bilinear map is captured, up to a factor of four, by the tensor

rank of the corresponding tensor. Thus, this geometric quantity may be used to determine ω.

Let A,B,C be fixed vector spaces. A tensor T ∈ A⊗B⊗C has rank one if T = a⊗ b⊗ c

for some a ∈ A, b ∈ B, c ∈ C. The rank of T , denoted R(T ), is the smallest r such that T is

sum of r rank one tensors. The border rank of T , denoted R(T ), is the smallest r such that

T is the limit of a sequence of rank r tensors. One has R(T ) ≤ R(T) and the inequality can

be strict: Let T = a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1, then R(T) = 3 and R(T ) = 2 as

T = limt→0
1

t
[(a1 + ta2) ⊗ (b1 + tb2) ⊗ (c1 + tc2) − a1 ⊗ b1 ⊗ c1].

Bini [7] proved that the border rank of matrix multiplication also captures its complexity.

More precisely,

ω = inf{τ : R(M〈n〉) ∈ O(nτ )}.

Schönhage’s advance comes from his discovery that it can be more efficent to perform

two matrix multiplications together than one at a time. For tensors T ∈ A ⊗ B ⊗ C and

T ′ ∈ A′ ⊗ B′ ⊗ C ′, define a new tensor T ⊕ T ′ ∈ (A ⊕ A′) ⊗ (B ⊕ B′) ⊗ (C ⊗ C ′) whose

computation is equivalent to computing T and T ′. He gave explicit examples of matrix

multiplication tensors where R(T ⊕ T ′) ≪ R(T ) + R(T ′). To explain how he exploited this

we need some more definitions:

Given T ∈ A ⊗ B ⊗ C and T ′ ∈ A′ ⊗ B′ ⊗ C ′, the Kronecker product of T and T ′

is the tensor T ⊠ T ′ := T ⊗ T ′ ∈ (A ⊗ A′) ⊗ (B ⊗ B′) ⊗ (C ⊗ C ′), regarded as 3-way

tensor. Given T ∈ A⊗B ⊗ C, the Kronecker powers of T are T⊠N ∈ A⊗N ⊗B⊗N ⊗ C⊗N ,

defined iteratively. We have R(T ⊠ T ′) ≤ R(T )R(T ′), and similarly for border rank.

The matrix multiplication tensor has the following important self-reproducing property:

M〈l,m,n〉 ⊠M〈l′,m′n′〉 = M〈ll′,mm′,nn′〉.

Given T, T ′ ∈ A ⊗ B ⊗ C, we say that T degenerates to T ′ if

T ′ ∈ GL(A) ×GL(B) ×GL(C) · T , the closure of the orbit of T under the natural ac-

tion of GL(A) ×GL(B) ×GL(C) on A⊗B⊗C. Here GL(A) denote the general linear group

of invertible linear maps A → A. Border rank is upper semi-continuous under degeneration:

if T ′ is a degeneration of T , then R(T ′) ≤ R(T ).
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Schönhage observed that if one takes a high Kronecker power of (M〈l,m,n〉 ⊕M〈l′,m′,n′〉),

that because of the reproducing property, it will be a sum of matrix multiplication tensors,

some of them quite large. One can then perform a degeneration to obtain a single very large

matrix multiplication tensor and exploit the strict sub-additivity to get an upper bound on

this large matrix multiplication tensor. This is his celebrated asymptotic sum inequality.

After Schönhage, Strassen realized that the starting tensor need not be a sum of matrix

multiplication tensors, as long as some high power of it degenerates to a large matrix

multiplication tensor. This gave rise to his laser method, where the starting tensor “resembles”

the sum of disjoint matrix multiplication tensors. All upper bounds since 1984 are obtained

via Strassen’s laser method. The best starting tensor for Strassen’s method (so far) was

discovered by Coppersmith and Winograd, the big Coppersmith-Winograd tensor.

In 2014 [4] gave an explanation for the limited progress since 1988, followed by further

explanations in [3, 2, 13, 1]: there are limitations to the laser method applied to the big

Coppersmith-Winograd tensor and other auxiliary tensors. These limitations are referred

to as barriers. Our main motivation is to eventually overcome these barriers via auxilary

tensors that avoid them, or, failing that, to prove structural results explaining the failure. We

deal with the little Coppersmith-Winograd tensor, which was known to potentially avoid the

barriers and a new series of tensors that are skew versions of the little Coppersmith-Winograd

tensor that we show also potentially avoid the barriers. We are interested in two kinds of

barriers: to proving the exponent is two, and barriers to proving the exponent is less than 2.3.

◮ Remark 1. A different approach to upper bounds was introduced by Cohn and Umans [15]

using the Fourier-transform on finite groups. One can show ω < 2.41 by this method [13, 14].

Definitions and notation

Let A,B,C be complex vector spaces. We will work with tensors in A⊗B ⊗ C. Let GL(A)

denote the general linear group of invertible linear maps A → A. Unless stated otherwise,

we write {ai} for a basis of A, and similarly for bases of B and C. Often we assume that all

tensors involved in the discussion belong to the same space A⊗B ⊗C; this is not restrictive,

since we may re-embed the spaces A,B,C into larger spaces whenever it is needed. We say

that two tensors are isomorphic if they are the same up to a change of bases in A,B and C.

One may define border rank in terms of degeneration: R(T ) ≤ r if and only if M⊕r
〈1〉

degenerates to T . The border subrank of T , denoted Q(T ), is the largest q such that T

degenerates to M⊕q
〈1〉 .

The asymptotic rank of T is R
✿

(T ) := limN→∞ R(T⊠N )1/N . Thus ω = logm R
✿

(M〈m〉)

for any m > 2. The asymptotic subrank of T is Q
✿

(T ) = limN→∞ Q(T⊠N )1/N . These limits

exist and are finite, see [41]. Moreover R
✿

(T ) ≤ R(T ) and Q
✿

(T ) ≥ Q(T ).

A tensor T ∈ A ⊗ B ⊗ C is concise if the induced linear maps TA : A∗ → B ⊗ C, TB :

B∗ → A⊗C, TC : C∗ → A⊗B are injective. We say that a concise tensor T ∈ Cm ⊗Cm ⊗Cm

has minimal rank (resp. minimal border rank) if R(T ) = m (resp. R(T ) = m).

The laser method and the Coppersmith-Winograd tensors

So far, the best upper bounds for ω have been obtained using the laser method applied to

the big Coppersmith-Winograd tensor, which is

TCW,q :=

q∑

j=1

a0 ⊗ bj ⊗ cj + aj ⊗ b0 ⊗ cj + aj ⊗ bj ⊗ c0+

+ a0 ⊗ b0 ⊗ cq+1 + a0 ⊗ bq+1 ⊗ c0 + aq+1 ⊗ b0 ⊗ c0 ∈ (Cq+2)⊗3.

ITCS 2020
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It was used to obtain the current world record ω < 2.373 and all bounds below ω < 2.41.

The barrier identified in [4] said that TCW,q cannot be used to prove ω < 2.3 using the

standard laser method, and a geometric identification of this barrier in terms of asymptotic

subrank was given in [13]: Q
✿

(M〈n〉) = n2 which is maximal, which is used to show any tensor

with non-maximal asymptotic subrank cannot be used to prove ω = 2 by the laser method,

and Strassen [43] had shown Q
✿

(TCW,q) is non-maximal.

The second best tensor for the laser method so far has been the little Coppersmith-

Winograd tensor, which is

Tcw,q :=

q∑

j=1

a0 ⊗ bj ⊗ cj + aj ⊗ b0 ⊗ cj + aj ⊗ bj ⊗ c0 ∈ (Cq+1)⊗3. (1)

The laser method was used to prove the following inequality:

◮ Theorem 2. [18] For all k and q,

ω ≤ logq(
4

27
(R(T⊠k

cw,q))
3

k ). (2)

More precisely, the ingredients needed for the proof but not the statement appears in [18].

It was pointed out in [11, Ex. 15.24] that the statement holds with R(T⊠k
cw,q)

3

k replaced by

R
✿

(Tcw,q)3 and the proof implicitly uses (2). The equation does appear in [29, Thm. 5.1.5.1].

An easy calculation shows R(Tcw,q) = q+ 2 (one more than minimal). Applying Theorem

2 to Tcw,8 with k = 1 gives ω ≤ 2.41 [18]. Theorem 2 shows that, unlike TCW,q, Tcw,2 is

not subject to the barriers of [4, 3, 2, 13] for proving ω = 2, and Tcw,q, for 2 ≤ q ≤ 10 are

not subject to the barriers for proving ω < 2.3. Thus, if any Kronecker power of Tcw,q for

2 ≤ q ≤ 10 is strictly sub-multiplicative, one can get new upper bounds on ω, and if it were

the case that R
✿

(Tcw,2) = 3, one would obtain that ω is two. Hence the questions:

◮ Question 3. For given q, k, what is R(T⊠k
cw,q)? Does there exist q ∈ {2, . . . , 10} and k ∈ N

such that R(T⊠k
cw,q) < [R(Tcw,q)]k]?

◮ Remark 4. Although we know little about asymptotic rank of explicit tensors beyond

matrix multiplication, most tensors have asymptotic rank less than their border rank:

For all tensors T ∈ Cm ⊗ Cm ⊗ Cm, with m > 3, outside a set of measure zero (more

precisely, for all tensors outside a proper subvariety), Lickteig showed that R(T ) = ⌈ m3

3m−2 ⌉

[35]. Strassen [42, Lemma 3.5] implicitly showed that for any T ∈ Cm ⊗ Cm ⊗ Cm, if

R(T ) > m
2ω
3 > m1.6, then R

✿

(T ) < R(T ). It is worth recalling Strassen’s proof: any

T ∈ Cm ⊗Cm ⊗Cm is a degeneration of M〈1,m,m〉 ∈ Cm2

⊗Cm ⊗Cm, so T⊠3 is a degeneration

of M〈m2,m2,m2〉 = M〈1,m,m〉⊠M〈m,1,m〉⊠M〈m,m,1〉. In particular R(T⊠3) ≤ R(M〈m2,m2,m2〉)

and R
✿

(T )3 = R
✿

(T⊠3) ≤ R
✿

(M〈m2,m2,m2〉) = m2ω, so R
✿

(T ) ≤ m
2ω
3 . Since ω < 2.4 we

conclude. In particular, note that R
✿

(T ) ≤ m1.6 for all T ∈ Cm ⊗ Cm ⊗ Cm.

2 Results

2.1 Lower bounds for Kronecker powers of Tcw,q

We address Problem 9.8 in [9], which was motivated by Theorem 2: Is R(T⊠2
cw,q) < (q + 2)2?

We give an almost complete answer:

◮ Theorem 5. For all q > 2, R(T⊠2
cw,q) = (q + 2)2, and 15 ≤ R(T⊠2

cw,2) ≤ 16.
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We also examine the Kronecker cube:

◮ Theorem 6. For all q > 4, R(T⊠3
cw,q) = (q + 2)3.

Proofs are given in §4.

Proposition 25 below, combined with the proofs of Theorems 6 and 5, implies

◮ Corollary 7. For all q > 4 and all N ,

R(T⊠N
cw,q) ≥ (q + 1)N−3(q + 2)3,

and R(T⊠N
cw,4) ≥ 36 × 5N−2.

Previously, in [10] it had been shown that R(T⊠N
cw,q) ≥ (q + 1)N + 2N − 1 for all q,N ,

whereas the bound in Corollary 7 is (q + 1)N + 3(q + 1)N−1 + 3(q + 1)N−2 + (q + 1)N−3.

Previous to this work one might have hoped to prove ω < 2.3 simply by using the

Kronecker square of, e.g., Tcw,7. Now, the smallest possible calculation to give a new upper

bound on ω from a tensor that has been used in the laser method would be e.g., to prove the

fourth Kronecker power of a small Coppersmith-Winograd tensor achieves the lower bound

of Corollary 7 (which we do not expect to happen). Of course, one could work directly with

the matrix multiplication tensor, in which case the cheapest possible upper bound would

come from proving the border rank of the 6 × 6 matrix multiplication tensor equaled its

known lower bound of 69 from [30].

The following corollary of Theorems 5 and 6 is immediate by the semi-continuity property

of border rank, as most tensors of border rank m+ 1 in Cm ⊗ Cm ⊗ Cm may be degnerated

to Tcw,m−1, in fact the set of tensors of border rank m+ 1 is an orbit closure and Tcw,m−1

lives on the boundary of the orbit.

◮ Corollary 8. Most tensors T ∈ Cm ⊗ Cm ⊗ Cm of border rank m+ 1, satisfy R(T⊠2) =

R(T )2 = (m+ 1)2 for m ≥ 4 and R(T⊠3) = R(T )3 = (m+ 1)3 for m ≥ 6. More precisely

all tensors outside of a Zariski closed subset of the set of tensors of border rank m+ 1. In

particular the set of such is of full measure.

2.2 A skew cousin of Tcw,q

In light of the negative results for complexity theory above, one might try to find a better

tensor than Tcw,q that is also not subject to the barriers. In [16], when q is even, we introduced

a skew cousin of the big Coppersmith-Winograd tensor, which has the largest symmetry

group of any tensor in its space satisfying a natural genericity condition. However this tensor

turns out not to be useful for the laser method. Inspired by it, we introduce a skew cousin of

the small Coppersmith-Winograd tensor when q is even:

Tskewcw,q :=

q∑

j=1

a0 ⊗bj ⊗cj +aj ⊗b0 ⊗cj +

q
2∑

ξ=1

(aξ ⊗bξ+ q
2

−aξ+ q
2

⊗bξ)⊗c0 ∈ (Cq+1)⊗3. (3)

In the language of [11], Tskewcw,q has the same “block structure” as Tcw,q, which immedi-

ately implies Theorem 2 also holds for Tskewcw,q:

◮ Theorem 9. For all k,

ω ≤ logq(
4

27
(R(T⊠k

skewcw,q))
3

k ). (4)

ITCS 2020
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In particular, the known barriers do not apply to Tskewcw,2 for proving ω = 2 and to any

Tskewcw,q for q ≤ 10 for proving ω < 2.3. Unfortunately, we have

◮ Proposition 10. R(Tskewcw,q) ≥ q + 3.

Proposition 10 is proved in §4.

Thus R(Tskewcw,q) > R(Tcw,q) for all q, in particular R(Tskewcw,2) = 5, as for all

T ∈ C3 ⊗ C3 ⊗ C3, R(T ) ≤ 5.

However, unlike Tcw,2, substantial strict sub-multiplicativity holds for the Kronecker

square of Tskewcw,2:

◮ Theorem 11. R(T⊠2
skewcw,2) ≤ 17.

◮ Remark 12. Regarding border rank strict submultiplicativity of Kronecker powers for other

explicit tensors, little is known. For matrix multiplication, the only explicit drop under a

Kronecker power that is known to our knowledge is [37]: R(M⊠2
〈2〉 ) ≤ 46 < 49.

Previous to this work, we are only aware of one class of tensors other than M〈2〉 for which

any bound on the Kronecker squares other than the trivial R(T⊠2) ≤ R(T )2 is known. In

[12], they show that

TCGJ,m :=a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3 + (
∑

3

i=1
ai) ⊗ (

∑
3

j=1
bj) ⊗ (

∑
3

j=1
ck)

+ 2(a1 + a2) ⊗ (b1 + b3) ⊗ (c2 + c3) + a3 ⊗ (
∑m

s=4
bs ⊗ cs) ∈ C

3
⊗ C

m
⊗ C

m

satisfies R(TCGJ,m) = m+ 2 and R(T⊗2
CGJ,m) ≤ (m+ 2)2 − 1. Of course, for any tensor T ,

R(T⊠2) ≤ R(T⊗2), and strict inequality, e.g., with M〈2〉 is possible. This is part of a general

theory in [12] for constructing examples with a drop of one when the last non-trivial secant

variety is a hypersurface.

We also show

◮ Theorem 13. R(T⊠2
skewcw,2) ≤ 18.

Theorems 11 and 13 are proved in §5.

2.3 Two familiar tensors with no known laser method barriers

Recall from above that either R
✿

(Tcw,2) = 3 or R
✿

(Tskewcw,2) = 3 would imply ω = 2.

Let det3 ∈ (C9)⊗3 and perm3 ∈ (C9)⊗3 be the 3 × 3 determinant and permanent

polynomials considered as tensors. We observe that if either of these has minimal asymptotic

rank, then ω = 2: either R
✿

(det3) = 9 or R
✿

(perm3) = 9 would imply ω = 2. This observation

is an immediate consequence of the following lemma:

◮ Lemma 14. We have the following isomorphisms of tensors:

T⊠2
cw,2

∼= perm3

T⊠2
skewcw,2

∼= det3.

Lemma 14 is proved in §3.

Lemma 14 thus implies Theorems 11 and 13 may be restated as saying R(det3) ≤ 17

and R(det3) ≤ 18. Although it is not necessarily relevant for complexity theory, we actually

prove stronger statements, which are important for geometry:

A symmetric tensor T ∈ S3Cm ⊆ Cm ⊗ Cm ⊗ Cm has Waring rank one if T = a⊗ a⊗ a

for some a ∈ C3. The Waring rank of T , denoted RS(T ), is the smallest r such that T is

sum of r tensors of Waring rank one. The Waring border rank of T , denoted RS(T ), is the

smallest r such that T is limit of a sequence of tensors of Waring rank r.
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We actually show:

◮ Theorem 15. RS(det3) ≤ 18.

and

◮ Theorem 16. RS(det3) ≤ 17.

Proofs are respectively given in §5.1 and §5.2.

2.4 Generic tensors in C3 ⊗ C3 ⊗ C3

◮ Remark 17. A generic tensor in C3 ⊗ C3 ⊗ C3 has border rank five. Our numerical

experiments suggest that for all T ∈ C3 ⊗ C3 ⊗ C3:

R(T⊠2) ≤ 22 < 25. (5)

This is obtained by starting with a tensor whose entries are obtained from making draws

according to a uniform distribution on [−1, 1], and proving the result for that tensor. The

data to perform an example of this computation is available in Appendix A at http:

//www.math.tamu.edu/~jml/CGLVkronsupp.html.

◮ Problem 18. Write a proof of (5). Even better, give a geometric proof.

The inequality (5) is not too surprising because C3 ⊗ C3 ⊗ C3 is secant defective, in

the sense that by a dimension count, one would expect the maximum border rank of a

tensor to be 4, but the actual maximum is 5. This means that for a generic tensor, there

is a 8 parameter family of rank 5 decompositions, and it is not surprising that the naïve

64-parameter family of decompositions of the square might have decompositions of lower

border rank on the boundary.

3 Symmetries of tensors and the proof of Lemma 14

3.1 Symmetry groups of tensors and polynomials

The group GL(A) ×GL(B) ×GL(C) acts naturally on A⊗B ⊗ C. The map Φ : GL(A) ×

GL(B)×GL(C) → GL(A⊗B⊗C) has a two dimensional kernel ker Φ = {(λIdA, µIdB , νIdC) :

λµν = 1} ≃ (C∗)2.

In particular, the group (GL(A) ×GL(B) ×GL(C)) /(C∗)×2 is naturally identified with

a subgroup of GL(A⊗B ⊗ C). Given T ∈ A⊗B ⊗ C, the symmetry group of a tensor T is

the stabilizer of T in (GL(A) ×GL(B) ×GL(C)) /(C∗)×2, that is

GT := {g ∈ (GL(A) ×GL(B) ×GL(C)) /(C∗)×2 | g · T = T}. (6)

Let Sk be the permutation group on k elements. We record the following observation:

◮ Proposition 19. For any tensor T ∈ A⊗B ⊗ C, GT⊠N ⊃ SN .

Proof. Write T⊠N =
∑

I,J,K T I,J,KaI ⊗ bJ ⊗ cK where I = (i1, . . . , iN ), aI = ai1
⊗ · · · ⊗

aiN
, etc.. For σ ∈ SN , define σ · T =

∑
I,J,K T IJKaσ(I) ⊗ bσ(J) ⊗ cσ(K). Since T IJK =

T i1j1k1 · · ·T iN jN kN we have T IJK = T σ(I),σ(J),σ(K) and we conclude. ◭

◮ Remark 20. For a symmetric tensor (equivalently, a homogeneous polynomial), T ∈ SdA,

one may also consider the symmetry group Gs
T := {g ∈ GL(A) | g · T = T} where the action

is the induced action on polynomials.

ITCS 2020
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3.2 Proof of Lemma 14

Write (−1)σ for the sign of a permutation σ. Let

det3 =
∑

σ,τ∈S3

(−1)τaσ(1)τ(1) ⊗ bσ(2)τ(2) ⊗ cσ(3)τ(3),

perm3 =
∑

σ,τ∈S3

aσ(1)τ(1) ⊗ bσ(2)τ(2) ⊗ cσ(3)τ(3)

be the 3 × 3 determinant and permanent polynomials regarded as tensors in C9 ⊗ C9 ⊗ C9.

Proof of Lemma 14. After the change of basis b̃0 := −b0 and c̃1 := c2, c̃2 := −c1, we obtain

Tskewcw,2 = a0 ⊗ b1 ⊗ c̃2 − a0 ⊗ b2 ⊗ c̃1 + a2 ⊗ b̃0 ⊗ c1

− a1 ⊗ b̃0 ⊗ c̃2 + a1 ⊗ b2 ⊗ c0 − a2 ⊗ b1 ⊗ c0.

This shows that, after identifying the three spaces, Tskewcw,2 = a0 ∧ a1 ∧ a2 is the unique

(up to scale) skew-symmetric tensor in C3 ⊗ C3 ⊗ C3. In particular, Tskewcw,2 is invariant

under the action of SL3 on C3 ⊗ C3 ⊗ C3.

Consequently, the stabilizer of T⊠2
skewcw,2 in GL(C9) contains (and in fact equals) SL×2

3 ⋊

Z2. This is the stabilizer of the determinant polynomial det3. Since the determinant is

characterized by its stabilizer, we conclude.

The tensor Tcw,2 is symmetric and, after identifying the three spaces, it coincides with

a0(a2
1 + a2

2) ∈ S3C3. After the change of basis ã1 := a1 + a2, ã2 := a1 − a2, we obtain

Tcw,2 = a0ã1ã2 ∈ S3C3 is the square-free monomial of degree 3. The stabilizer of Tcw,2 under

the action of GL3 on S3C3 is TSL
3 ⋊S3, where TSL

3 denotes the torus of diagonal matrices

with determinant one, and S3 acts permuting the three basis elements.

Consequently, the stabilizer of T⊠2
cw,2 in GL(C9) contains (and in fact equals) (TSL

3 ⋊

S3)×2 ⋊Z2. This is the stabilizer of the permanent polynomial perm3. Since the permanent

is characterized by its stabilizer, we conclude. ◭

◮ Remark 21. For the reader’s convenience, here are short proofs that detm,permm are

characterized by their stabilizers: To see detm is characterized by its stabilizer, note that

SLm × SLm = SL(E) × SL(F ) acting on Sm(E ⊗ F ) decomposes it to
⊕

|π|=m

SπE ⊗ SπF

which is multiplicity free, with the only trivial module S1mE ⊗ S1mF = ΛmE ⊗ ΛmF .

To see that permm is characterized by its stabilizer, take the above decomposition and

consider the TSL(E) × TSL(F )-invariants, these are the weight zero spaces (SπE)0 ⊗ (SπF )0.

By [24], one has the decomposition of the weight zero spaces as SE
m × SF

m-modules to

(SπE)0 ⊗ (SπF )0 = [π]E ⊗ [π]F . The only such that is trivial is the case π = (d).

◮ Remark 22. Even Kronecker powers of Tskewcw,2 are invariant under SL×2k
3 , and coincide,

up to a change of basis, with the Pascal determinants (see, e.g., [27, §8.3]), T⊠2k
skewcw,2 =

PasDetk,3, the unique, up to scale, tensor spanning (Λ3C3)⊗2k ⊂ S3((C3)⊗2k).

◮ Remark 23. One can regard the 3 × 3 determinant and permanent as trilinear maps

C3 × C3 × C3 → C, where the three copies of C3 are the first, second and third column

of a 3 × 3 matrix. From this point of view, the trilinear map given by the determinant

is Tskewcw,2 as a tensor and the one given by the permanent is Tcw,2 as a tensor. This

perspective, combined with the notion of product rank, immediately provides the upper

bounds R(perm3) ≤ 16 (which is also a consequence of Lemma 14) and R(det3) ≤ 20,

see [19, 26].
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◮ Remark 24. A similar change of basis as the one performed in the second part of proof of

Lemma 14 shows that, up to a change of basis, Tskewcw,q ∈ Λ3Cq+1. In particular, its even

Kronecker powers are symmetric tensors.

4 Koszul flattenings and lower bounds for Kronecker powers

In this section we review Koszul flattenings, prove a result on propagation of Koszul flattening

lower bounds under Kronecker products, and prove Theorems 5 and 6. We give two proofs

of Theorem 5 because the first is elementary and method of the second generalizes to give

the proof of Theorem 6.

4.1 Definition

Respectively fix bases {ai}, {bj}, {ck} of the vector spaces A,B,C. Given T =
∑

ijk T
ijkai ⊗

bj ⊗ ck ∈ A⊗B ⊗ C, define the linear map

T∧p
A : ΛpA⊗B∗ → Λp+1A⊗ C

X ⊗ β 7→
∑

ijkT
ijkβ(bj)(ai ∧X) ⊗ ck.

Then [31, Proposition 4.1.1] states

R(T ) ≥
rank(T∧p

A )(
dim(A)−1

p

) . (7)

This type of lower bound has a long history: in general, one takes the space A⊗B ⊗ C

and linearly embeds it into a large space of matrices. Then if a rank one tensor maps to a

rank q matrix, a rank r tensor maps to a rank at most rq matrix, so the size rq + 1 minors

give equations testing for border rank r. In this case the size of the matrices is
(

a

p

)
b ×

(
a

p+1

)
c

and a rank one tensor maps to a matrix of rank
(

a−1
p

)
. Here a = dimA, b = dimB and

c = dimC.

In practice, one takes a subspace A′∗ ⊆ A∗ of dimension 2p+1 and restricts T (considered

as a trilinear form) to A′∗ ×B∗ ×C∗ to get an optimal bound, so the denominator
(

dim(A)−1
p

)

is replaced by
(

2p
p

)
in (7). Write φ : A → A/(A′∗)⊥ =: A′ for the projection onto the quotient:

the corresponding Koszul flattening map gives a lower bound for R(φ(T )), which, by linearity,

is a lower bound for R(T ). The case p = 1 is equivalent to Strassen’s equations [40]. There

are numerous expositions of Koszul flattenings and their generalizations, see, e.g., [27, §7.3],

[5, §7.2], [20], [28, §2.4], or [21].

Proof of Proposition 10. Write q = 2u. Fix a space A′ = 〈e0, e1, e2〉. Define φ : A → A′ by

φ(a0) = e0,

φ(ai) = e1 for i = 1, . . . , u,

φ(as) = e2 for s = u+ 1, . . . , q.

As an element of Λ3A, we have Tskewcw,q = a0 ∧
∑u

i=1 ai ∧ au+i.

We prove that if T = Tskewcw,q then rank(T∧1
A′ ) = 2(q + 2) + 1. This provides the lower

bound R(T ) ≥
⌈

2(q+2)+1
2

⌉
= q + 3.
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10:10 Kronecker Powers of Tensors

We record the images via T∧1
A′ of a basis of A′ ⊗B∗. Fix the range of i = 1, . . . , u:

T∧1
A′ (e0 ⊗ β0) = (e0 ∧ e1) ⊗

∑u
i=1cu+i − (e0 ∧ e2) ⊗

∑u
i=1ci,

T∧1
A′ (e0 ⊗ βi) = (e0 ∧ e2) ⊗ c0,

T∧1
A′ (e0 ⊗ βu+i) = (e0 ∧ e1) ⊗ c0,

T∧1
A′ (e1 ⊗ β0) = (e1 ∧ e2) ⊗

∑u
i=1cu+i,

T∧1
A′ (e1 ⊗ βi) = (e0 ∧ e1) ⊗ cu+i + e1 ∧ e2 ⊗ c0,

T∧1
A′ (e1 ⊗ βu+i) = e0 ∧ e1 ⊗ ci,

T∧1
A′ (e2 ⊗ β0) = (e1 ∧ e2) ⊗

∑u
i=1ci,

T∧1
A′ (e2 ⊗ βi) = e0 ∧ e2 ⊗ cu+i,

T∧1
A′ (e2 ⊗ βu+i) = (e0 ∧ e2) ⊗ ci − e1 ∧ e2 ⊗ c0.

Notice that the image of
∑u

i=1(e1 ⊗βi)−
∑u

i=1(e2 ⊗βu+i)−e0 ⊗β0 is (up to scale) e1 ∧e2 ⊗c0.

This shows that the image of T∧1
A′ contains

Λ2A′ ⊗ c0 + e1 ∧ e2 ⊗ 〈
∑u

i=1ci,
∑u

i=1cu+i〉 + 〈e0 ∧ e1, e0 ∧ e2〉 ⊗ 〈c1, . . . , cq〉.

These summands are in disjoint subspaces, so we conclude

rank(T∧1
A′ ) ≥ 3 + 2 + 2q = 2q + 5. ◭

4.2 Propagation of lower bounds under Kronecker products

A tensor T ∈ A⊗ B ⊗ C, with dimB = dimC is 1A-generic if T (A∗) ⊆ B ⊗ C contains a

full rank element. Here is a partial multiplicativity result for Koszul flattening lower bounds

under Kronecker products:

◮ Proposition 25. Let T1 ∈ A1 ⊗B1 ⊗ C1 with dimB1 = dimC1 be a tensor with a Koszul

flattening lower bound for border rank R(T ) ≥ r given by T1
∧p
A1

(possibly after a restriction

φ). Let T2 ∈ A2 ⊗B2 ⊗ C2, with dimB2 = dimC2 = b2 be 1A2
-generic. Then

R(T1 ⊠ T2) ≥

⌈
rank(T1

∧p
A1

) · b2(
2p
p

)
⌉
. (8)

In particular, if
rank(T1

∧p

A1
)

(2p
p )

∈ Z, then R(T1 ⊠ T2) ≥ rb2.

Proof. After applying a restriction φ as described above, we may assume dimA1 = 2p+ 1

so that the lower bound for T1 is

R(T1) ≥

⌈
rank(T1

∧p
A1

)
(

2p
p

)
⌉
.

Let α ∈ A∗
2 be such that T (α) ∈ B2 ⊗ C2 has full rank b2, which exists by 1A2

-genericity.

Define ψ : A1 ⊗ A2 → A1 by ψ = IdA1
⊗ α and set Ψ := ψ ⊗ IdB1⊗C1⊗B2⊗C2

. Then

(Ψ(T1 ⊠ T2)∧p
A1

) provides the desired lower bound.

Indeed, the linear map (Ψ(T1 ⊠ T2)∧p
A1

) coincides with T1
∧p
A1

⊠ T1(α). Since matrix rank is

multiplicative under Kronecker product, we conclude. ◭
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4.3 First proof of Theorem 5

When q = 3, the result is true by a direct calculation using the p = 2 Koszul flattening with

a sufficiently generic C5 ⊂ A∗, which is left to the reader. In what follows we treat the case

q > 3.

Write aij = ai ⊗ aj ∈ A⊗2 and similarly for B⊗2 and C⊗2. Let A′ = 〈e0, e1, e2〉 and

define the linear map φ2 : A⊗2 → A′ via

φ2(a00) = φ2(a01) = φ2(a10) = e0 + e1,

φ2(a11) = e0,

φ2(a02) = φ2(a20) = e1 + e2

φ2(a33) = φ2(a21) = e2

φ2(a0i) = φ2(ai0) = e1 for i = 3, . . . , q

φ2(aij) = 0 for all other pairs (i, j).

Write Tq := T⊠2
cw,q|A∗′⊗B∗⊗2⊗C∗⊗2 . Consider the p = 1 Koszul flattening (Tq)∧1

A′ : A′ ⊗

B⊗2∗
→ Λ2A′ ⊗ C⊗2.

We are going to prove that rank((Tq)∧1
A′ ) = 2(q + 2)2. This provides the lower bound

R(T⊠2
cw,q) ≥ (q + 2)2 and equality follows because of the submultiplicativity properties of

border rank under Kronecker product.

We proceed by induction on q. When q = 4 one does a direct computation with the p = 1

Koszul flattening, which is left to the reader, and which provides the base of the induction.

Write Wj = a0 ⊗ bj ⊗ cj + ai ⊗ b0 ⊗ cj + ai ⊗ bi ⊗ c0. Then Tcw,q =
∑q

j=1 Wj , so that

T⊠2
cw,q =

∑
ij Wi ⊠Wj .

If q ≥ 4, write Tcw,q = Tcw,q−1 +Wq, so T⊠2
cw,q = T⊠2

cw,q−1 +Tcw,q−1 ⊠Wq +Wq ⊠Tcw,q−1 +

Wq ⊠Wq. Let Sq = (Tcw,q−1 ⊠Wq +Wq ⊠ Tcw,q−1 +Wq ⊠Wq)|A′⊗B∗⊗2⊗C∗⊗2 .

Write U1 = A′ ⊗ 〈βij : i, j = 0, . . . , q − 1〉 and U2 = A′ ⊗ 〈βqi, βiq : i = 0, . . . , q〉 so

that U1 ⊕ U2 = A′ ⊗ B⊗2∗. Similarly, define V1 = Λ2A′ ⊗ 〈cij : i, j = 0, . . . , q − 1〉 and

V2 = Λ2A′ ⊗ 〈cqi, ciq : i = 0, . . . , q〉, so that V1 ⊕ V2 = Λ2A′ ⊗C⊗2. Observe that (Tq−1)∧1
A′ is

identically 0 on U2 and its image is contained in V1. Moreover, the image of U1 under (Sq)∧1
A′

is contained in V1. Representing the Koszul flattening in blocks, we have

(Tq−1)∧1
A′ =

[
M11 0

0 0

]
(Sq)∧1

A′ =

[
N11 N12

0 N22

]

therefore rank((Tq)∧1
A′ ) ≥ rank(M11 +N11) + rank(N22).

First, we prove that rank(M11 + N11) ≥ rank(M11) = 2(q + 1)2. This follows by

a degeneration argument. Consider the linear map given by pre-composing the Koszul

flattening with the projection onto U1. Its rank is semicontinuous under degeneration.

Since T⊠2
cw,q degenerates to T⊠2

cw,q−1, we deduce rank(M11 +N11) ≥ rank(M11). The equality

rank(M11) = 2(q + 1)2 follows by the induction hypothesis.

We show that rank(N22) = 2(2q + 3). The following equalities are modulo V1. More-

over, each equality is modulo the tensors resulting from the previous ones. They are all

straightforward applications of the Koszul flattening map, which in these cases, can always
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10:12 Kronecker Powers of Tensors

be performed on some copy of Wi ⊠Wj .

(Sq)∧1
A′ (e1 ⊗ βqj) ≡ e1 ∧ e0 ⊗ cqj for j = 3, . . . , q

(Sq)∧1
A′ (e1 ⊗ βjq) ≡ e1 ∧ e0 ⊗ cjq for j = 3, . . . , q

(Sq)∧1
A′ (e0 ⊗ β3q) ≡ e0 ∧ e1 ⊗ c0q

(Sq)∧1
A′ (e0 ⊗ βq3) ≡ e0 ∧ e1 ⊗ cq0

(Sq)∧1
A′ (e0 ⊗ βq1) ≡ e0 ∧ e1 ⊗ cq1

(Sq)∧1
A′ (e0 ⊗ β1q) ≡ e0 ∧ e1.⊗ c1q

Further passing modulo 〈e0 ∧ e1〉 ⊗ C, we obtain

(Sq)∧1
A′ (e0 ⊗ β0q) ≡ e0 ∧ e2 ⊗ c2q

(Sq)∧1
A′ (e0 ⊗ βq0) ≡ e0 ∧ e2 ⊗ cq2

(Sq)∧1
A′ (e0 ⊗ βq2) ≡ e0 ∧ e2 ⊗ c0q

(Sq)∧1
A′ (e0 ⊗ β2q) ≡ e0 ∧ e2 ⊗ cq0

(Sq)∧1
A′ (e1 ⊗ β20) ≡ e1 ∧ e2 ⊗ c0q

(Sq)∧1
A′ (e1 ⊗ β02) ≡ e1 ∧ e2 ⊗ cq0

(Sq)∧1
A′ (e1 ⊗ βq0) ≡ e1 ∧ e2 ⊗ c2q

(Sq)∧1
A′ (e1 ⊗ β0q) ≡ e1 ∧ e2 ⊗ cq2,

and modulo the above,

(Sq)∧1
A′ (e2 ⊗ βqj) ≡ e2 ∧ (e0 + e1) ⊗ cqj for j = 3, . . . , q

(Sq)∧1
A′ (e2 ⊗ βjq) ≡ e2 ∧ (e0 + e1) ⊗ cjq for j = 3, . . . , q

(Sq)∧1
A′ (e2 ⊗ βq1) ≡ e2 ∧ (e0 + e1) ⊗ cq1

(Sq)∧1
A′ (e2 ⊗ β1q) ≡ e2 ∧ (e0 + e1) ⊗ c1q.

Finally passing modulo 〈e1 ∧ e2〉, we have

(Sq)∧1
A′ (e2 ⊗ βq0) ≡ e2 ∧ e0 ⊗ cq1

(Sq)∧1
A′ (e2 ⊗ β0q) ≡ e2 ∧ e0 ⊗ c1q.

All the tensors listed above are linearly independent. Adding all the contributions together,

we obtain

rank((Sq)∧1
A′ ) = [2(q − 3) + 1] + 4 + 8 + 2 + [2(q − 3) + 1] + 4 = 2(2q + 3)

as desired, and since 2(q + 3)2 = 2(q + 1)2 + 2(2q + 3), this concludes the proof. ◭

4.4 A short detour on computing ranks of equivariant maps

We briefly explain how to exploit Schur’s Lemma (see, e.g., [23, §1.2]) to compute the rank

of an equivariant linear map. This is a standard technique, used extensively e.g., in [32, 25]

and will reduce the proof of Theorems 5 and 6 to the computation of the ranks of specific

linear maps in small dimension.

Let G be a reductive group. In the proof of Theorems 5 and 6, G will be the product of

symmetric groups. Let ΛG be the set of irreducible representations of G. For λ ∈ ΛG, let

Wλ denote the corresponding irreducible module.
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Suppose U, V are two representations ofG. Write U =
⊕

λ∈ΛG
W⊕mλ

λ , V =
⊕

λ∈ΛG
W⊕ℓλ

λ ,

where mλ is the multiplicity of Wλ in U and ℓλ is the multiplicity of Wλ in V . The direct

summand corresponding to λ is called the isotypic component of type λ.

Let f : U → V be a G-equivariant map. By Schur’s Lemma [23, §1.2], f decomposes

as f = ⊕fλ, where fλ : W⊕mλ

λ → W⊕ℓλ

λ . Consider multiplicity spaces Mλ, Lλ with

dimMλ = mλ and dimLλ = ℓλ so that W⊕mλ

λ ≃ Mλ ⊗ Wλ as a G-module, where G acts

trivially on Mλ and similarly W⊕ℓλ

λ ≃ Lλ ⊗Wλ.

By Schur’s Lemma, the map fλ : Mλ ⊗Wλ → Lλ ⊗Wλ decomposes as fλ = φλ ⊗ Id[λ],

where φλ : Mλ → Lλ. Thus rank(f) is uniquely determined by rank(φλ) for λ ∈ ΛG.

The ranks rank(φλ) can be computed via restrictions of f . For every λ, fix a vector

wλ ∈ Wλ, so that Mλ ⊗ 〈wλ〉 is a subspace of U . Here and in what follows, for a subset

X ⊂ V , 〈X〉 denotes the span of X. Then the rank of the restriction of f to Mλ ⊗ 〈wλ〉

coincides with the rank of φλ.

We conclude

rank(f) =
∑

λrank(φλ) · dimWλ.

The second proof of Theorem 5 and proof of Theorem 6 will follow the algorithm described

above, exploiting the symmetries of Tcw,q. Consider the action of the symmetry group Sq on

A⊗B ⊗ C defined by permuting the basis elements with indices {1, . . . , q}. More precisely,

a permutation σ ∈ Sq induces the linear map defined by σ(ai) = aσ(i) for i = 1, . . . , q and

σ(a0) = a0. The group Sq acts on B,C similarly, and the simultaneous action on the three

factors defines an Sq-action on A⊗B ⊗ C. The tensor Tcw,q is invariant under this action.

4.5 Second Proof of Theorem 5

When q = 3, as before, one uses the p = 2 Koszul flattening with a sufficiently generic

C5 ⊂ A∗.

For q ≥ 4, we apply the p = 1 Koszul flattening map to the same restriction of T⊠2
cw,q

as the first proof, although to be consistent with the code at the website, we use the less

appealing swap of the roles of a2 and a3 in the projection φ.

Since Tcw,q is invariant under the action of Sq, T⊠2
cw,q is invariant under the action of

Sq ×Sq, acting on A⊗2 ⊗B⊗2 ⊗C⊗2. Let Γ := Sq−3 ×Sq−3 where Sq−3 is the permutation

group on {4, . . . , q}, so T⊠2
cw,q is invariant under the action of Γ. Note that Γ acts trivially on

A′, so (Tq)∧1
A′ is Γ-equivariant, because in general, Koszul flattenings are equivariant under

the product of the three general linear groups, which is GL(A′)×GL(B⊗2)×GL(C⊗2) in our

case. (We remind the reader that Tq := T⊠2
cw,q|A∗′⊗B∗⊗2⊗C∗⊗2 .) We now apply the method

described in §4.4 to compute rank((Tq)∧1
A′ ).

Let [triv] denote the trivial Sq−3-representation and let V denote the standard represen-

tation, that is the Specht module associated to the partition (q − 4, 1) of q − 3. We have

dim[triv] = 1 and dimV = q − 4. (When q = 4 only the trivial representation appears.)

The spaces B,C are isomorphic as Sq−3-modules and they decompose as B = C =

[triv]⊕5 ⊕ V . After fixing a 5-dimensional multiplicity space C5 for the trivial isotypic

component, we write B∗ = C = C5 ⊗ [triv] ⊕ V . To distinguish the two Sq−3-actions, we

write B ⊗B = ([triv]⊕5
L ⊕ VL) ⊗ ([triv]⊕5

R ⊕ VR).
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Thus,

B∗⊗2 = C⊗2 =(C5 ⊗ [triv]L ⊕ VL) ⊗ (C5 ⊗ [triv]R ⊕ VR)

=(C5 ⊗ C5) ⊗ ([triv]L ⊗ [triv]R) ⊕

C5 ⊗ ([triv]L ⊗ VR) ⊕

C5 ⊗ (VL ⊗ [triv]R) ⊕

(VL ⊗ VR).

Write W1, . . . ,W4 for the four irreducible representations in the decomposition above and

let M1, . . . ,M4 be the four corresponding multiplicity spaces.

Recall from [22] that a basis of V is given by standard Young tableaux of shape (q − 4, 1)

(with entries in 4, . . . , q for consistency with the action of Sq−3); let wstd be the vector

corresponding to the standard tableau having 4, 6, . . . , q in the first row and 5 in the second

row. We refer to [22, §7] for the straightening laws of the tableaux. Let wtriv be a generator

of the trivial representation [triv].

For each of the four isotypic components in the decomposition above, we fix a vector

wi ∈ Wi and explicitly realize the subspaces Mi ⊗ 〈wi〉 of B∗⊗2 as follows:

Wi wi dimMi Mi ⊗ 〈wi〉

[triv]L ⊗ [triv]R wtriv ⊗ wtriv 25

〈βij :i,j=0,...,3〉⊕

〈
∑

q

j=4
βij :i=0,...,3〉⊕

〈
∑

q

i=4
βij :j=0,...,3〉⊕

〈
∑

q

i,j=4
βij〉

[triv]L ⊗ VR wtriv ⊗ wstd 5
〈βi5−βi4:i=0,...,3〉⊕

〈
∑

q

i=4
(βi5−βi4)〉

VL ⊗ [triv]R wstd ⊗ wtriv 5
〈β5j−β4j :j=0,...,3〉⊕

〈
∑

q

j=4
(β5j−β4j)〉

VL ⊗ VR wstd ⊗ wstd 1 〈β55 − β45 − β54 + β44〉.

The subspaces in C⊗2 are realized similarly.

Since (T⊠2
cw,q)∧1

A′ is Γ-equivariant, by Schur’s Lemma, it has the isotypic decomposition

(T⊠2
cw,q)∧1

A′ = f1 ⊕ f2 ⊕ f3 ⊕ f4, where

fi : A′ ⊗ (Mi ⊗Wi) → Λ2A′ ⊗Wi.

As explained in §4.4, it suffices to compute the ranks of the four restrictions Φi : A′ ⊗Mi ⊗

〈wi〉 → Λ2A′ ⊗Mi ⊗ 〈wi〉.

Using the bases presented in the fourth column of the table above, we write down the

four matrices representing the maps Φ1, . . . ,Φ4.

The map Φ4 is represented by the 3 × 3 matrix




−1 1 0

0 0 1

0 0 1


 ,

so rank(Φ4) = 2.
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The map Φ2 is represented by the 15 × 15 matrix (here q′ = q − 3)




0 −1 0 0 0 0 1 1 1 1 0 0 0 0 0

−1 −1 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 −1 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 −1 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 −1 q′
0 0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

−1 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 q′
0 0 0 1

0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




We prove the matrix above and those that follow are as asserted for all q in §7. The proof

goes by showing each entry must be a low degree polynomial in q, and then one simply tests

enough small cases to fix the polynomials. Thus rank(Φ2) = 12, and similarly for Φ3.

The map Φ1 is represented by a 75 × 75 matrix that can be presented in block form




−X Y 0

−Z 0 Y

0 −Z X




with X the matrix




0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




,

Y the matrix




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 q′
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 q′
0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 q′
0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 q′
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 q′
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 q′
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 q′
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 q′

0 0 0 1




,

ITCS 2020



10:16 Kronecker Powers of Tensors

and Z the matrix



0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




We compute rank(Φ1) = 72.

Although these matrices are of fixed size, they are obtained via intermediate tensors

whose dimensions depend on q, which created a computational challenge. Two ways of

addressing the challenge (including the one utilized in the code) are explained in §7.

The relevant matrices and the implementation of the method of §7 to justify them

for all q, together with the code for the computation of their ranks are available at the

website http://www.math.tamu.edu/~jml/CGLVkronsupp.html, Appendix D. The ranks

are bounded below by taking a matrix M (which has some entries depending linearly on q),

multiplying it on the left by a rectangular matrix P whose entries are rational functions

of q, and on the right by a rectangular matrix Q whose entries are constant, to obtain a

square matrix PMQ that is upper triangular with ±1 on the diagonal, and thus its rank is

its dimension. Finally one checks that the least common multiple of the denominators of the

entries of P has no integral solution when q > 4.

Adding all the contributions gives

rank(T∧1
A′ ) = 2 · dim(V ⊗ V ) + 12 · dim([triv] ⊗ V )+

+ 12 · dim(V ⊗ [triv]) + 72 · dim([triv] ⊗ [triv]) =

= 2 · (q − 4)2 + 12 · (q − 4) + 12 · (q − 4) + 72 · 1 = 2(q + 2)2.

This concludes the proof of Theorem 5.

◮ Remark 26. One might have hoped to exploit the full symmetry group Sq ×Sq to simplify

the argument further. However there is no choice of a restriction map ψ which is Sq−s ×Sq−s-

invariant for s < 3 that gives rise to a Koszul flattening map of sufficiently high rank to

prove the result.

4.6 Proof of Theorem 6

We will use a Koszul flattening with p = 2, so we need a 5 dimensional subspace of (A∗)⊗3.
Let

A
′∗

:=

〈 α000,∑q

i=1
(αi00 + α0i0 + α00i),

α001 + α010 + α012 + α102 + α110 + α121 + α200 + α211,

α022 + α030 + α031 + α100 + α103 − α120 + α210 + α212 + α300,

α002 + α004 + α011 + α014 + α020 + α023 + α032 + α040 + α100 + α122 + α220 + α303

〉
.
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Write φ3 : A⊗3 → A′ for the resulting projection map and, abusing notation, for the induced

map A⊗3 ⊗ B⊗3 ⊗ C⊗3 → A′ ⊗ B⊗3 ⊗ C⊗3. Write T = φ3(T⊠3
cw,q), suppressing the q from

the notation. Consider the Koszul flattening:

(T )∧2
A′ : Λ2A′ ⊗B∗⊗2 → Λ3A′ ⊗ C⊗2.

We will show rank((T )∧2
A′ ) = 6(q + 2)3, which implies R(T⊠3

cw,q) ≥ (q + 2)3.

In order to compute rank((T )∧2
A′ ), we follow the same strategy as before. The code

to generate these matrices is available at www.math.tamu.edu/~jml/CGLVkronsupp.html,

Appendix D. The explanation of how we proved they are as asserted is outlined in §7.

The map (T )∧2
A′ is invariant under the action of Γ = Sq−4 × Sq−4 × Sq−4 where the

first copy of Sq−4 permutes the basis elements with indices 5, . . . , q of the first factors, and

similarly for the other copies of Sq−4. Let [triv] be the trivial Sq−4-representation and let

V be the standard representation, namely the Specht module associated to the partition

(q − 5, 1). Here dimV = q − 5, so if q = 5, only the trivial representation appears.

The Sq−4-isotypic decomposition of B (and C) is C6 ⊗ [triv] ⊕ V and this induces the

decomposition of B∗⊗3 ≃ C⊗3 given by

B∗⊗3 ≃ C⊗3 =(C6)⊗3 ⊗ ([triv]1 ⊗ [triv]2 ⊗ [triv]3)⊕

(C6)⊗2 ⊗ [([triv]1 ⊗ [triv]2 ⊗ V3)⊕

([triv]1 ⊗ V2 ⊗ [triv]3)⊕

(V1 ⊗ [triv]2 ⊗ [triv]3)]⊕

(C6) ⊗ [([triv]1 ⊗ V2 ⊗ V3)⊕

(V1 ⊗ V2 ⊗ [triv]3)⊕

(V1 ⊗ [triv]2 ⊗ V3)]⊕

V1 ⊗ V2 ⊗ V3

consisting of eight isotypic components. As in the previous proof, for each of the eight

irreducible components Wi, we consider wi ∈ Wi and we compute the rank of the restriction

to Λ2A′ ⊗Mi ⊗ 〈wi〉 of the Koszul flattening; call this restriction Φi.

The ranks of the restrictions are recorded in the following table:

Wi dim(Λ2A′ ⊗Mi) rank(Φi)

[triv]1 ⊗ [triv]2 ⊗ [triv]3 63 ·
(

5
2

)
= 2160 2058

[triv]1 ⊗ [triv]2 ⊗ V3

(and permutations)
62 ·

(
5
2

)
= 360 294

[triv]1 ⊗ V2 ⊗ V3

(and permutations)
6 ·

(
5
2

)
= 60 42

V1 ⊗ V2 ⊗ V3

(
5
2

)
= 10 6

The relevant matrices and the implementation of §7 to justify them for all q, with the code

computing their ranks are available at http://www.math.tamu.edu/~jml/CGLVkronsupp.

html, Appendix D. As before, the ranks are bounded below by taking a matrix M (which has

some entries depending linearly on q), multiplying it on the left by a rectangular matrix P

whose entries are rational functions of q, and on the right by a rectangular matrix Q whose
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entries are constant, to obtain a square matrix PMQ that is upper triangular with ±1 on

the diagonal, and thus its rank is its dimension. Finally one checks that the least common

multiple of the denominators of the entries of P has no integral solution when q > 4.

Adding all the contributions together, we obtain

rank(T∧2
A′ ) =6 · dim(V ⊗ V ⊗ V )+

42 · 3 · dim([triv] ⊗ V ⊗ V )+

294 · 3 · dim([triv] ⊗ [triv] ⊗ V )+

2058 · dim([triv] ⊗ [triv] ⊗ [triv]) = 6 · (q + 2)3.

This concludes the proof.

5 Upper bounds for Waring rank and border rank of det3

5.1 Proof of Theorem 15

We give the rank 18 decomposition for det3 explicitly, as a collection of 18 linear forms

on C9 = C3 ⊗ C3 whose cubes add up to det3. The linear forms are given in coordinates

recorded in the matrices below: the 3 × 3 matrix (ζij) represents the linear forms
∑

ij ζijxij .

This presentation highlights some of the symmetries of the decomposition.

Let ϑ = exp(2πi/6) and let ϑ be its inverse. The tensor det3 = T⊠2
skewcw,2 = det(xij) ∈

S3(C3 ⊗ C3) satisfies

det3 =
18∑

1

L3
i

where L1, . . . , L18 are the 18 linear forms given by the following coordinates:

L1 =




−ϑ 0 0

0 − 1
3 0

0 0 ϑ


 L2 =




−ϑ 0 0

0 − 1
3 0

0 0 ϑ


 L3 =




−ϑ 0 0

0 1
3ϑ 0

0 0 ϑ




L4 =




−1 0 0

0 0 −ϑ

0 − 1
3ϑ 0


 L5 =



ϑ 0 0

0 0 1

0 − 1
3ϑ 0


 L6 =



ϑ 0 0

0 0 −ϑ

0 − 1
3ϑ 0




L7 =




0 1
3ϑ 0

−ϑ 0 0

0 0 1


 L8 =




0 1
3ϑ 0

−ϑ 0 0

0 0 −ϑ


 L9 =




0 1
3ϑ 0

−ϑ 0 0

0 0 1




L10 =




0 − 1
3ϑ 0

0 0 ϑ

−1 0 0


 L11 =




0 − 1
3ϑ 0

0 0 ϑ

−1 0 0


 L12 =




0 1
3 0

0 0 −1

−1 0 0




L13 =




0 0 1

−1 0 0

0 − 1
3 0


 L14 =




0 0 1

ϑ 0 0

0 1
3ϑ 0


 L15 =




0 0 1

ϑ 0 0

0 1
3ϑ 0




L16 =




0 0 ϑ

0 − 1
3ϑ 0

1 0 0


 L17 =




0 0 ϑ

0 − 1
3ϑ 0

−ϑ 0 0


 L18 =




0 0 ϑ

0 − 1
3ϑ 0

1 0 0




.

The equality can be verified by hand. A Macaulay2 file performing the calculation is

available at http://www.math.tamu.edu/~jml/CGLVkronsupp.html, Appendix B. ◭
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5.2 Proof of Theorem 16

As in the case of Theorem 15, we prove Theorem 16 by explicitly giving 17 linear forms,

depending on a parameter t, whose cubes provide a border rank 17 expression for det3. The

algebraic numbers involved are more complicated than in the previous case.

The result was achieved by numerical methods, which allowed us to sparsify the decom-

position and ultimately determine the value of the coefficients. The linear forms in the

decomposition are described below.

Consider

L1(t) =

(
z1 0 0
0 z2t 0

−1 0 0

)
L2(t) =

(
z3 0 0
z4 0 z5t
z6 0 0

)
L3(t) =

(
−z36 z7t 0
−z38 0 −z39t

0 0 t

)

L4(t) =

(
0 0 t

−z34 0 0
0 z8t −z35t

)
L5(t) =

(
0 −z19t −z20t
0 0 0

−1 0 0

)
L6(t) =

(
−z22 z9t 0
−z23 0 −z24t
−z25 0 0

)

L7(t) =

(
z10 z11t 0
z12 0 z13t
z14 0 0

)
L8(t) =

(
z15 −t 0
z16 0 z17t
z18 0 0

)
L9(t) =

(
0 z19t z20t
0 z21t 0
1 0 0

)

L10(t) =

(
−z41 0 0

0 0 0
−z44 0 0

)
L11(t) =

(
z22 0 0
z23 0 z24t
z25 0 0

)
L12(t) =

(
−z31 z26t 0

0 z27t 0
0 0 t

)

L13(t) =

(
z28 z29t 0
z30 0 −t
0 t 0

)
L14(t) =

(
z31 z32t 0
0 0 0
0 z33t −t

)
L15(t) =

(
0 0 −t

z34 0 0
0 0 z35t

)

L16(t) =

(
z36 z37t 0
z38 0 z39t
0 z40t −t

)
L17(t) =

(
z41 z42t 0
0 z43t 0

z44 0 0

)

The coefficients z1, . . . , z44 are algebraic numbers described as follows. Let y∗ be a real

root of the polynomial

x
27

− 2x
26 + 17x

25
− 29x

24 + 81x
23 + 52x

22
− 726x

21 + 3451x
20

− 10901x
19 + 25738x

18
−

50663x
17 + 72133x

16
− 72973x

15 + 10444x
14 + 138860x

13
− 308611x

12 + 427344x
11

− 267416x
10

− 196096x
9 + 762736x

8
− 1236736x

7 + 1092352x
6

− 537600x
5

− 42240x
4+

684032x
3

− 1136640x
2 + 1146880x − 520192.

For i = 1, . . . , 44, we consider algebraic numbers yj in the field extension Q[y∗], described as

a polynomial of degree (at most) 26 in y∗ with rational coefficients. Notice that all the yj ’s

are real. The expressions of the y1, . . . , y44 in terms of y∗ are provided in the file yy_exps at

http://www.math.tamu.edu/~jml/CGLVkronsupp.html, Appendix C. Let zj be the unique

real cubic root of yj .

We are going to prove that, with this choice of coefficients zj ,

t2det3 +O(t3) =

17∑

i=1

Li(t)
3. (9)

The condition t2det3 + O(t3) =
∑17

i=1 Li(t)
3 is equivalent to the fact that the degree 0

and the degree 1 components of
∑17

i=1 Li(t)
3 vanish and that the degree 2 component equals

det3. Given the sparse structure of the Li(t), this reduces to a system of 54 cubic equations

in the 44 unknowns z1, . . . , z44. Our goal is to show that the algebraic numbers described

above are a solution of this system.

We show that the zi’s satisfy each equation as follows. After evaluating the equations at

the zi’s, there are two possible cases
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1. all monomials appearing in the equation are elements of Q[y∗]; we say that this is an

equation of type 1; there are 14 such equations;

2. at least one monomial appearing in the equation is not an element of Q[y∗]; we say that

this is an equation of type 2; there are 40 such equations.

For equations of type 1, we provide expressions of each monomial in terms of y∗. To

verify that each expression is indeed equal to the corresponding monomial, it suffices to

compare the cube of the given expression and the expression obtained by evaluating the

monomial at the yj ’s. Finally, the equation can be verified in Q[y∗]. This is performed by

the file checkingType1eqns.m2.

For equations of type 2, let u be one of the monomials which do not belong to Q[y∗]. We

claim that it is possible to choose the monomial in such a way that Q[u3] = Q[y∗]. For each

equation, we choose one of the monomials and we verify the claim as follows. The element

u3 has an expression in terms of y∗ which equals the chosen monomial evaluated at the yi’s.

Let Mu be the 27 × 27 matrix with rational entries such that

(1, u3, · · · , u3·26) =
(
1, y∗, . . . , y

26
∗

)
·Mu;

Mu can be computed directly by considering the expressions of the powers of u3 in terms of

y∗. Then Q[u3] = Q[y∗] if and only if Mu is full rank.

In particular y∗ has an expression in terms of u3, which can be computed inverting the

matrix Mu. A consequence of this is that Q[u] = Q[y∗, u].

At this point, we observe that Q[u] contains the other monomials occurring in the equation

as well. To see this, we proceed as in the case of equations of type 1. For each monomial

occurring in the equation, we provide an expression in terms of u (in fact, to speed up

the calculation, we provide an expression in terms of u and y∗, which is equivalent to an

expression in u because Q[u3] = Q[y∗] and y∗ has a unique expression in terms of u3); we

compare the cube of this expression (appropriately reduced modulo the minimal polynomial

of y∗ and the relation between u3 and y∗) with the expression obtained by evaluating the

monomial at the yi’s (expressed in terms of y∗). This shows that all monomials occurring in

the expression belong to Q[u], and verifies that the given expressions are indeed equal to the

corresponding monomials. Finally, the equation is verified in Q[u] as in the case of type 1.

This is performed by the file checkingType2eqns.m2. ◭

5.2.1 Discussion of how the decomposition was obtained

Many steps were accomplished by finding solutions of polynomial equations by nonlinear

optimization. In each case, this was accomplished using a variant of Newton’s method applied

to the mapping of variable values to corresponding polynomial values. The result of this

procedure in each case is limited precision machine floating point numbers.

First, we attempted to solve the equations describing a Waring rank 17 decomposition of

det3 with nonlinear optimization, namely, det3 =
∑17

i=1(w′
i)

⊗3, where w′
i ∈ C3×3. Instead of

finding a solution to working precision, we obtained a sequence of local refinements to an

approximate solution where the norm of the defect is slowly converging to to zero, and some of

the parameter values are exploding to infinity. Numerically, these are Waring decompositions

of polynomials very close to det3.

Next, this approximate solution needed to be upgraded to a solution to equation (9).

We found a choice of parameters in the neighborhood of a solution, and then applied

local optimization to solve to working precision. We used the following method: Consider

the linear mapping M : C17 → S3(C3×3), M(ei) = (w′
i)

⊗3, and let M = UΣV ∗ be its
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singular value decomposition (with respect to the standard inner products for the natural

coordinate systems). We observed that the singular values seemed to be naturally partitioned

by order of magnitude. We estimated this magnitude factor as t0 ≈ 10−3, and wrote Σ′

as Σ where we multiplied each singular value by (t/t0)k, with k chosen to agree with this

observed partitioning, so that the constants remaining were reasonably sized. Finally, we let

M ′ = UΣ′V ∗, which has entries in C[[t]]. M ′ is thus a representation of the map M with a

parameter t.

Next, for each i, we optimized to find a best fit to the equation (ai +tbi +t2ci)
⊗3 = M ′(ei),

which is defined by polynomial equations in the entries of ai, bi and ci. The ai, bi and ci we

constructed in this way proved to be a good initial guess to optimize equation (9), and we

immediately saw quadratic convergence to a solution to machine precision. At this point, we

greedily sparsified the solution by speculatively zero-ing values and re-optimizing, rolling

back one step in case of failure. After sparsification, it turned out the ci were not needed.

The resulting matrices are those given in the proof.

To compute the minimal polynomials and other integer relationships between quantities,

we used Lenstra-Lenstra-Lovász integer lattice basis reduction [34]. As an example, let

ζ ∈ R be approximately an algebraic number of degree k. Let N be a large number inversely

proportional to the error of ζ. Consider the integer lattice with basis {ei+⌊Nζi⌋ek+1} ⊂ Zk+2,

for 0 ≤ i ≤ k. Then elements of this lattice are of the form v0e0 + · · · + vkek +Eek+1, where

E ≈ Np(ζ), p = v0 + v1x + · · ·xkx
k. Polynomials p for which ζ is an approximate root

are distinguished by the property of having relatively small Euclidean norm in this lattice.

Computing a small norm vector in an integer lattice is accomplished by LLL reduction of a

known basis.

For example, the fact that the number field of degree 27 obtained by adjoining any z3
α to

Q contains all the rest was determined via LLL reduction, looking for expressions of z3
α as a

polynomial in z3
β for some fixed β. These expressions of z3

α in a common number field can be

checked to have the correct minimal polynomial, and thus agree with our initial description

of the zα. LLL reduction was also used to find the expressions of values as polynomials in

the primitive root of the various number fields.

After refining the known value of the parameters to 10, 000 bits of precision using Newton’s

method, LLL reduction was successful in identifying the minimal polynomials. The degrees

were simply guessed, and the results checked by evaluating the computed polynomials in the

parameters to higher precision.

◮ Remark 27. With the minimal polynomial information, it is possible to check that equa-

tion (9) is satisfied to any desired precision by the parameters.

6 Tight Tensors in C3 ⊗ C3 ⊗ C3

Following an analysis started in [17], we consider Kronecker squares of tight tensors in

C3 ⊗ C3 ⊗ C3. We compute their symmetry groups and numerically provide bounds to their

tensor rank and border rank, highlighting the submultiplicativity properties.

We refer to [44, 11, 17] for an exposition of the role of tightness in Strassen’s work and in

the laser method. We point out that TCW,q and Tcw,q are tight. (If one uses the combinatorial

definition of tightness, which depends on a choice of basis, they are not tight in their standard

presentations.)

ITCS 2020
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6.1 Tight tensors

Recall the map Φ : GL(A)×GL(B)×GL(C) → GL(A⊗B⊗C) from Section 3.1 defining the

action of GL(A)×GL(B)×GL(C) on A⊗B⊗C. Its differential dΦ defines a map at the level

of Lie algebras, mapping gl(A) ⊕ gl(B) ⊕ gl(C) to a subalgebra of gl(A⊗B ⊗C), isomorphic

to (gl(A) ⊕ gl(B) ⊕ gl(C))/C2. Write gT ⊆ gl(A) ⊕ gl(B) ⊕ gl(C) for the annihilator of T

under this action.

A tensor T ∈ A⊗B⊗C is tight if gT /C
2 contains a regular semisimple element. Tightness

can be defined combinatorially with respect to a basis, see e.g. [17, Def. 1.3]. In particular,

the combinatorial definition makes it clear that tightness depends on the support of a tensor

in a given basis; we say that a support S is tight if every tensor having support S is tight.

Given concise tensors T1 ∈ A1 ⊗B1 ⊗C1 and T2 ∈ A2 ⊗B2 ⊗C2, [17, Theorem 4.1] shows

that

gT1⊠T2
⊇ gT1

⊗ IdA2⊗B2⊗C2
+ IdA1⊗B1⊗C1

⊗ gT2
; (10)

moreover if gT1
= 0 and gT2

= 0 then equality holds gT1⊠T2
= 0.

The strict containment in (10) occurs, for instance, in the case of the matrix multiplication

tensor. In [17], we posed the problem of characterizing tensors T ∈ A ⊗ B ⊗ C such that

gT ⊗ IdA⊗B⊗C + IdA⊗B⊗C ⊗ gT is strictly contained in gT⊠2 ⊂ gl(A⊗2) + gl(B⊗2) + gl(C⊗2).

Proposition 29 provides several additional examples of tensors in C3 ⊗ C3 ⊗ C3 for which

this containment is strict.

6.2 Tight supports in C3 ⊗ C3 ⊗ C3

From [17, Proposition 2.14], one obtains an exhaustive list of unextendable tight supports

for tensors in C3 ⊗ C3 ⊗ C3, up to the action of Z2 × S3, where S3 acts permuting the

factors and Z2 acts by reversing the order of the basis elements. In fact, tightness is invariant

under the action of the full S3 acting by permutation on the basis vectors. This additional

simplification, pointed out by J. Hauenstein, provides the following list of 9 unextendable

tight supports up to the action of ((S3)×3) ⋊S3.

T1 = {(1, 1, 3), (1, 2, 2), (2, 1, 2), (3, 3, 1)};

T2 = {(1, 1, 3), (1, 3, 2), (2, 3, 1), (3, 2, 2)};

T3 = {(1, 1, 3), (1, 2, 2), (1, 3, 1), (2, 1, 2), (3, 2, 1)};

T4 = {(1, 1, 3), (1, 2, 2), (2, 1, 2), (2, 3, 1), (3, 2, 1)};

T5 = {(1, 1, 3), (1, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1)};

T6 = {(1, 1, 3), (1, 3, 2), (2, 2, 2), (3, 1, 2), (3, 3, 1)};

T7 = {(1, 1, 3), (1, 2, 2), (1, 3, 1), (2, 1, 2), (2, 2, 1), (3, 1, 1)};

T8 = {(1, 1, 3), (1, 3, 2), (2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1)};

T9 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1)};

Supports S2 and S3 of [17] are equivalent to support S1 = T1; supports S8 and S10 are

equivalent to support S6 = T4.

The following result characterizes tight tensors in C3 ⊗ C3 ⊗ C3 up to isomorphism.

◮ Proposition 28. Let T ∈ C3 ⊗ C3 ⊗ C3 be a tight tensor with unextendable tight support

in some basis. Then, up to permuting the three factors, T is isomorphic to exactly one of the

following.
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T1 :=a1 ⊗ b1 ⊗ c3 + a1 ⊗ b2 ⊗ c2 + a2 ⊗ b1 ⊗ c2 + a3 ⊗ b3 ⊗ c1

T2 :=a1 ⊗ b1 ⊗ c3 + a1 ⊗ b3 ⊗ c2 + a2 ⊗ b3 ⊗ c1 + a3 ⊗ b2 ⊗ c2

T3 :=a1 ⊗ b1 ⊗ c3 + a1 ⊗ b2 ⊗ c2 + a1 ⊗ b3 ⊗ c1 + a2 ⊗ b1 ⊗ c2 + a3 ⊗ b2 ⊗ c1

T4 :=a1 ⊗ b1 ⊗ c3 + a1 ⊗ b2 ⊗ c2 + a2 ⊗ b1 ⊗ c2 + a2 ⊗ b3 ⊗ c1 + a3 ⊗ b2 ⊗ c1

T5 :=a1 ⊗ b1 ⊗ c3 + a1 ⊗ b2 ⊗ c2 + a2 ⊗ b3 ⊗ c1 + a3 ⊗ b1 ⊗ c2 + a3 ⊗ b2 ⊗ c1

T6 :=a1 ⊗ b1 ⊗ c3 + a1 ⊗ b3 ⊗ c2 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b1 ⊗ c2 + a3 ⊗ b3 ⊗ c1

T7 :=a1 ⊗ b1 ⊗ c3 + a1 ⊗ b2 ⊗ c2 + a1 ⊗ b3 ⊗ c1 + a2 ⊗ b1 ⊗ c2 + a2 ⊗ b2 ⊗ c1 + a3 ⊗ b1 ⊗ c1

T8 :=a1 ⊗ b1 ⊗ c3 + a1 ⊗ b3 ⊗ c2 + a2 ⊗ b2 ⊗ c2 + a2 ⊗ b3 ⊗ c1 + a3 ⊗ b1 ⊗ c2 + a3 ⊗ b2 ⊗ c1

T9,µ :=a1 ⊗ b2 ⊗ c3 + a1 ⊗ b3 ⊗ c2 + a2 ⊗ b1 ⊗ c3 + a2 ⊗ b2 ⊗ c2 + a2 ⊗ b3 ⊗ c1 + a3 ⊗ b1 ⊗ c2

+ µ · a3 ⊗ b2 ⊗ c1.

Proof. The result of [17, Proposition 2.14] and the discussion above shows that T is, up to

permutation of the factors, equivalent to a tensor with support Ti for some i = 1, . . . , 9.

For i = 1, . . . , 8, it is straightforward to verify that all tensors with support Ti are

isomorphic, via the change of bases given by three diagonal matrices.

The case of T9 is slightly more involved but essentially the same argument shows that a

tensor T with support T9 is isomorphic to T9,µ, for some µ.

Finally, we have to show that any two of the tensors in the statement are not isomorphic.

For tensors having distinct supports, this is a consequence of Proposition 29 below: indeed,

if T, T ′ are two of the tensors above, Proposition 29 shows that either dim gT 6= dim gT ′ or

dim gT⊠2 6= dim gT ′⊠2 .

As for the tensors with support T9, we proceed as follows. Let T = T9,µ and T ′ = T9,µ′

with µ 6= µ′. We show that T is not isomorphic to T ′. Suppose by contradiction that there

is a triple of 3 × 3 matrices g = (gA, gB , gC) ∈ GL3 ×GL3 ×GL3 with g(T ) = T ′. One sees

that in each case, gA, gB , gC have to be diagonal matrices, and an explicit calculation shows

that there is no triple of diagonal matrices such that g(T ) = T ′. ◭

We point out that T7 is isomorphic to the Coppersmith-Winograd tensor TCW,1, as well

as to the structure tensor of the algebra C[x]/(x3).

The tensors Tcw,2 and Tskewcw,2 are degenerations of T9,µ, respectively for µ = 1 and

µ = −1. In particular, they do not have an unextendable tight support in some basis.

◮ Proposition 29. For i = 1, . . . , 9, the following table records dim gTi
and dim gT⊠2

i
.

T dim gT dim gT⊠2

T1 5 22

T2 3 9

T3 5 13

T4 4 9

T5 3 7

T6 2 5

T7 6 28

T8 1 2

T9,−1 5 10

T9,µ (for µ 6= 0, −1) 1 2

In summary

dim gT⊠2 > 2 dim gT

for tight tensors in C3 ⊗ C3 ⊗ C3 with unextendable tight supports T1, . . . , T7.
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Proof. For T1, . . . , T8 and for the T9,−1, the proof follows by a direct calculation. The first part

of the file symmetryTightSupports.m2 at www.math.tamu.edu/~jml/CGLVkronsupp.html,

Appendix E computes the dimension of the symmetry algebras of interest in these cases.

The second part of the file deals with the case T9,µ when µ 6= −1. By tightness,

dim gT9,µ
≥ 1.

Consider the linear map ωT9,µ
: gl(A)+gl(B)+gl(C) → A⊗B⊗C defined by (X,Y, Z) 7→

(X,Y, Z).T9,µ. Then gT9,µ
= [ker(ωT9,µ

)]/C2, where C2 corresponds to ker dΦ.

The second part of the file symmetryTightSupports.m2 computes a matrix representation

of ωT9,µ
, depending on a parameter µ (t in the file). Let Fµ be this 27 × 27 matrix

representation. Then, it suffices to select a 24 × 24 submatrix whose determinant is a nonzero

univariate polynomial in µ. If µ is a value for which dim gT9,µ
> 1, then µ has to be a root

of this univariate polynomial.

In the example computed in the file, we select a 24 × 24 submatrix whose determinant is

(µ+ 1)6µ, showing that the only possible values of µ for which dim gT9,µ
> 1 are µ = 0 or

µ = −1. The case µ = −1 was considered separately. The case µ = 0 does not correspond

to a unextendable support, so it is not of interest. We point out that however, ωT9,0
= 24,

namely dim gT9,0
= 1.

For T⊠2
9,µ , we follow essentially the same argument. By tightness, and (10), we obtain

dim gT⊠2

9,µ
≥ 2. The third part of symmetryTightSupports.m2 computes a matrix represen-

tation of the map ωT⊠2

9,µ
, depending on a parameter µ: this is a 729 × 243 matrix of rank at

most 239.

In the example computed in the file, we select a 239 × 239 submatrix whose determinant

is the univariate polynomial µ8(µ+ 1)12. As before, we conclude. ◭

We also provide the values of the border rank of the tensors in C3 ⊗ C3 ⊗ C3 having

unextendable tight support and numerical evidence for the values of border rank of their

Kronecker square. They are recorded in the following table. The values of the border rank

for the Ti’s are straightforward to verify. The lower bounds for the Kronecker squares are

obtained via Koszul flattenings. In the cases labeled by N/A the upper bounds coincide with

the multiplicative upper bound; in the other cases, the upper bound is obtained via numerical

method, and the last column of the table records the ℓ2 distance (in the given basis) between

the tensor obtained via the numerical approximation and the Kronecker square.

T R(T ) R(T⊠2) ℓ2 error for upper bound in T⊠2 decomposition

T1 3 9 N/A

T2 4 [11, 14] 0.000155951

T3 4 [11, 14] 0.00517612

T4 4 14 0.0144842

T5 4 [11, 15] 0.0237172

T6 4 [11, 15] 0.00951205

T7 3 9 N/A

T8 4 [14, 16] N/A

T9,−1 5 [16, 19] 0.0231353

T9,µ (for µ 6= 0, −1) 4 [15, 16] N/A

7 Justification of the matrices

In this section, describe two ways of proving that the matrices appearing in the second

proof of Theorem 5 and the proof of Theorem 6 are as asserted, one of which is carried out

explicitly in the code at http://www.math.tamu.edu/~jml/CGLVkronsupp.html.
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The computational issue is that, although the sizes of the matrices are fixed, they are

obtained via intermediate matrices whose dimensions depend on q so one needs a way of

encoding such matrices and tensors efficiently. The first method of proof critically relies

on the definition of a class of tensors, which we call box parameterized, whose entries and

dimensions depend on a parameter q in a very structured way. In this proof one shows the

entries of the output matrices are low degree, say δ, polynomials in q, and then by computing

the first δ + 1 cases directly, one has proven they are as asserted for all q. The second

method, which is implemented in the code, does not rely on the structure to prove anything,

but the structure allows an efficient coding of the tensors that significantly facilitates the

computation.

A k-way sequence of tensors Tq ∈ Aq
1 ⊗ · · · ⊗ Aq

k parametrized by q ∈ N is basic box

parameterized if it is of the form

Tq = p(q)
∑

(i1,...,ik)∈Φti1,...,ik
,

where {aα,s} is a basis of Aq
α, ti1,...,ik

= a1,i1
⊗ · · · ⊗ ak,ik

, p is a polynomial, and the index

set Φ is defined by conditions fjq + hj ≤ ij ≤ gjq + dj , fj , gj ∈ {0, 1}, hj , dj ∈ Z≥0, for each

j, and any number of equalities ij = ik between indices.

We sometimes abuse notation and consider Φ to be its set of indices or the set of equations

and inequalities defining the set of indices; no confusion should arise.

Tensor products of basic box parameterized tensors are basic box parameterized:

(p1(q)
∑

(i1,...,ik)∈Φ1
ti1,...,ik

) ⊗ (p2(q)
∑

(j1,...,jl)∈Φ2
ji1,...,jl

)

= p1(q)p2(q)
∑

(i1,...,ik,j1,...,jl)∈Φ1×Φ2
ti1,...,ik,j1,...,jl

.

We next show that contraction of a basic box parameterized tensor is basic box parame-

terized when q ≥ maxi,j{|hi − hj |, |di − dj |}, where i and j range over those indices related

by equality to the ones being contracted. To do this, we first show they are closed under

summing along a coordinate (with the same restriction on q), which we may take to be i1
without loss of generality. (This corresponds to contracting with the vector

∑
i1
a∗

1,ii
∈ (Aq

1)∗.)

That is, we wish to show

p(q)
∑

(i1,...,ik)∈Φti2,...,ik

is basic box parameterized with the above restriction on q. For this consider two cases. First,

suppose there is a coordinate j 6= 1 so that i1 = ij ∈ Φ. To construct the summed tensor,

adjoin to Φ equalities ij = ik for all k for which i1 = ik ∈ Φ. Then, deleting i1 from the

indices and replacing the bounds on ij with

max(fjq + hj , f1q + h1) ≤ ij ≤ min(gjq + dj , g1q + d1)

yields the summed tensor. The max and the min can be replaced with one of their arguments

provided q ≥ max(|h1 − hj |, |d1 − dj |), so the sum is basic box parameterized with our

restriction on q. Otherwise, suppose there is no coordinate so that i1 = ij ∈ Φ. Then

the summed tensor is (g1q + d1 − f1q − h1 + 1)p(q)
∑

(i2,...,ik)∈Φti2,...,ik
, which is basic box

parameterized.

Finally, to compute the contraction, say between indices ij and ik, adjoin ij = ik as a

condition to Φ and then sum over ij and then over ik using the previous technique.

Call a tensor box parameterized if it is a finite sum of basic box parameterized tensors.

Clearly box parameterized tensors are closed under tensor products and contraction, possibly

with an easily computed restriction on q.
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Now, Tcw,q ∈ (Cq+1)⊗3 = A ⊗ B ⊗ C is clearly box parameterized as a 3-way tensor.

The tensors φ2 ∈ A′ ⊗ (A⊗2)∗ (where dimA′ = 3) and φ3 ∈ A′ ⊗ (A⊗3)∗ (where dimA′ = 5)

defining the projection maps are box parameterized as 3-way and 4-way tensors, respectively.

The tensors KF1 ∈ (A′ ⊗ B⊗2 ⊗ C⊗2)∗ ⊗ ((A′)∗ ⊗ B⊗2) ⊗ (Λ2A′ ⊗ C⊗2)) and KF2 ∈

(A′ ⊗B⊗3 ⊗ C⊗3)∗ ⊗ ((Λ2A′)∗ ⊗B⊗3) ⊗ (Λ3A′ ⊗ C⊗3)) defining the Koszul flattenings are

also box parameterized, as they are the tensor product of tensors of fixed size with identity

tensors, which are basic box parameterized. From this, we see that the corresponding Koszul

flattenings are box parameterized, viewed in A′∗ ⊗B⊗2 ⊗ Λ2A′ ⊗ C⊗2 as a 6-way tensor for

the square and Λ2A′∗ ⊗B⊗3 ⊗ Λ3A′ ⊗ C⊗3 as an 8-way tensor for the cube.

Finally, consider the change of basis map which block diagonalizes the flattening according

to Schur’s lemma. We explain the square case, the cube case is available in the Appendix.

This change of basis is the Kronecker product of the 3 × 3 identity with the Kronecker square

of the map represented by the following q + 1 × q + 1 matrix




1

1

1

1

1 1 1 1 · · · 1

−1 1

−1 1
. . . 1

−1 1




Let E0 denote the projection operator to the isotypic component of the trivial representation.

In bases, this corresponds to the first five rows of the matrix above. Let E1 denote the

projection onto the standard representation, which corresponds to the sixth row. It is easy

to see that the first 6 columns of the inverse is the matrix

1

q − 3




q − 3

q − 3

q − 3

q − 3

1 −(q − 4)

1 1
...

1 1




Write F0 for the inclusion of the trivial representation into the space in the original basis,

which is represented by the first five columns of this matrix, and F1 for the inclusion of the

standard representation which is represented by the sixth column. Write V0 for the trivial

representation of Sq−3 and V1 for the standard representation. Then,

fVi⊠Vj
= (IdA′ ⊠ Ei ⊠ Ej) ◦ (T⊗2

cw,q)∧2
A′ ◦ (IdΛ2A′ ⊠ Fi ⊠ Fj).

(These four maps were labeled f1, . . . , f4 in §4.5.) Since Ei and (q − 3)Fi are clearly box

parametrized, it follows that (q − 3)2fVi⊠Vj
is box parametrized. A similar argument shows

that the cube (q − 3)3fVi⊠Vj⊠Vk
is box parameterized.

At this point the first method shows the entries of the matrices are low degree polynomials

in q so one can conclude by checking the first few cases.
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The fact that all tensors involved are basic box parameterized guided us how to encode

these maps efficiently so that they could be computed by direct calculation, which provides

the second method and is described in Appendix D.
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