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—— Abstract
We answer a question, posed implicitly in [18, §11], [11, Rem. 15.44] and explicitly in [9, Problem 9.8],
showing the border rank of the Kronecker square of the little Coppersmith-Winograd tensor is the
square of the border rank of the tensor for all ¢ > 2, a negative result for complexity theory. We
further show that when ¢ > 4, the analogous result holds for the Kronecker cube. In the positive
direction, we enlarge the list of explicit tensors potentially useful for the laser method. We observe
that a well-known tensor, the 3 x 3 determinant polynomial regarded as a tensor, dets € C°®C°®C?,
could potentially be used in the laser method to prove the exponent of matrix multiplication is two.
Because of this, we prove new upper bounds on its Waring rank and rank (both 18), border rank
and Waring border rank (both 17), which, in addition to being promising for the laser method, are
of interest in their own right. We discuss “skew” cousins of the little Coppersmith-Winograd tensor
and indicate why they may be useful for the laser method. We establish general results regarding
border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of
tensors in C* ® C* ® C3.
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1  Introduction
The exponent w of matrix multiplication is defined as
w :=inf{7 | n X n matrices may be multiplied using O(n") arithmetic operations}.

The exponent is a fundamental constant governing the complexity of the basic operations in
linear algebra. It is conjectured that w = 2. There was steady progress in the research for
upper bounds from 1968 to 1988: after Strassen’s famous w < 2.81 [39], Bini et al. [8], using
border rank (see below), showed w < 2.78, then a major breakthrough by Schénhage [36]
(the asymptotic sum inequality) was used to show w < 2.55, then Strassen’s laser method
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was introduced and used by Strassen to show w < 2.48, and refined by Coppersmith and
Winograd to show w < 2.3755 [18]. Then there was no progress until 2011 when a series of
improvements by Stothers, Williams, and Le Gall [38, 45, 33] lowered the upper bound to
the current state of the art w < 2.373.

Strassen’s 1968 result is obtained by an explicit algorithm for multiplying matrices. This
algorithm is more efficient than the standard one in practical implementation as soon as
the size of the matrices is around 1000 x 1000, see [6]. Bini et al. exhibited a matrix
multiplication algorithm that is in principle implementable exactly (at a cost of a constant
size blow-up which does not effect the exponent) but as presented is only a sequence of
algorithms that limits to an exact one. This gave rise to the notion of border rank to describe
this phenomenon. To explain border rank, it is best to adopt the language of tensors.

A bilinear map b : C2 x CP — C° may be regarded as a trilinear form b:CaxCPxC® — C
defined by E(X, Y,a) =a-b(X,Y) where b(X,Y) is regarded as a column vector of C¢, « is
regarded as a row vector and - is the row-column multiplication. In this language, matrix
multiplication, as a trilinear map, becomes My mn(X,Y, Z) = trace(XY Z), where X,Y, Z
are matrices of size 1 x m, m x n and n x 1, respectively. It is known [11, §14.1] that the
complexity of performing a bilinear map is captured, up to a factor of four, by the tensor
rank of the corresponding tensor. Thus, this geometric quantity may be used to determine w.

Let A, B, C be fixed vector spaces. A tensor T'€ A® B® C has rank one if T = a®b®c
for some a € A, b € B, ¢ € C. The rank of T, denoted R(T), is the smallest r such that T is
sum of r rank one tensors. The border rank of T, denoted R(T), is the smallest r such that
T is the limit of a sequence of rank r tensors. One has R(T) < R(T) and the inequality can
be strict: Let T = a1 ® b1 ® ca+ a1 @ba ® ¢1 + a2 ® by ® ¢1, then R(T) =3 and R(T) = 2 as

1
T = limt_ﬂ);[(al + tCLQ) X (bl + tbg) ® (Cl + tCQ) —a1 @b ® Cl].

Bini [7] proved that the border rank of matrix multiplication also captures its complexity.
More precisely,

w=inf{7: R(M)) € O(n")}.

Schénhage’s advance comes from his discovery that it can be more efficent to perform
two matrix multiplications together than one at a time. For tensors T' € A ® B ® C and
T € A ® B'® C’, define a new tensor T® 17" € (Ad A')® (B® B') ® (C ® C') whose
computation is equivalent to computing T and T”. He gave explicit examples of matrix
multiplication tensors where R(T @ T") < R(T') + R(T”"). To explain how he exploited this
we need some more definitions:

Given T € A BRC and T € A’ ® B’ ® C’, the Kronecker product of T and T’
is the tensor TR T :=T QT € (A® A)® (B® B')® (C ®(C'), regarded as 3-way
tensor. Given T € A ® B ® C, the Kronecker powers of T are T®N e A®N g BON g C@N
defined iteratively. We have R(T K T") < R(T)R(T"), and similarly for border rank.
The matrix multiplication tensor has the following important self-reproducing property:
Mamny 8 My mmy = Moy mm’ nn) -

Given T,77 € A ® B ® C, we say that T degenerates to T’ if
T" € GL(A) x GL(B) x GL(C) - T, the closure of the orbit of T' under the natural ac-
tion of GL(A) x GL(B) x GL(C) on A® B C. Here GL(A) denote the general linear group
of invertible linear maps A — A. Border rank is upper semi-continuous under degeneration:
if 7" is a degeneration of T, then R(T") < R(T).
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Schonhage observed that if one takes a high Kronecker power of (M m ny ® M m/ n')),
that because of the reproducing property, it will be a sum of matrix multiplication tensors,
some of them quite large. One can then perform a degeneration to obtain a single very large
matrix multiplication tensor and exploit the strict sub-additivity to get an upper bound on
this large matrix multiplication tensor. This is his celebrated asymptotic sum inequality.

After Schonhage, Strassen realized that the starting tensor need not be a sum of matrix
multiplication tensors, as long as some high power of it degenerates to a large matrix
multiplication tensor. This gave rise to his laser method, where the starting tensor “resembles”
the sum of disjoint matrix multiplication tensors. All upper bounds since 1984 are obtained
via Strassen’s laser method. The best starting tensor for Strassen’s method (so far) was
discovered by Coppersmith and Winograd, the big Coppersmith- Winograd tensor.

In 2014 [4] gave an explanation for the limited progress since 1988, followed by further
explanations in [3, 2, 13, 1]: there are limitations to the laser method applied to the big
Coppersmith-Winograd tensor and other auxiliary tensors. These limitations are referred
to as barriers. Our main motivation is to eventually overcome these barriers via auxilary
tensors that avoid them, or, failing that, to prove structural results explaining the failure. We
deal with the little Coppersmith-Winograd tensor, which was known to potentially avoid the
barriers and a new series of tensors that are skew versions of the little Coppersmith-Winograd
tensor that we show also potentially avoid the barriers. We are interested in two kinds of
barriers: to proving the exponent is two, and barriers to proving the exponent is less than 2.3.

» Remark 1. A different approach to upper bounds was introduced by Cohn and Umans [15]
using the Fourier-transform on finite groups. One can show w < 2.41 by this method [13, 14].

Definitions and notation

Let A, B, C be complex vector spaces. We will work with tensors in A® B ® C. Let GL(A)
denote the general linear group of invertible linear maps A — A. Unless stated otherwise,
we write {a;} for a basis of A, and similarly for bases of B and C. Often we assume that all
tensors involved in the discussion belong to the same space A ® B ® C; this is not restrictive,
since we may re-embed the spaces A, B, C into larger spaces whenever it is needed. We say
that two tensors are isomorphic if they are the same up to a change of bases in A,B and C.

One may define border rank in terms of degeneration: R(T") < r if and only if M (ei;
degenerates to T. The border subrank of T, denoted Q(T'), is the largest ¢ such that T’

degenerates to M fi;l.

The asymptotic rank of T is R(T) := limy oo R(T®M)Y/N. Thus w = log,, R(M(m))
for any m > 2. The asymptotic subrank of T'is Q(T) = limy 00 Q(T®N)L/N. These limits
exist and are finite, see [41]. Moreover R(T') < R(T) and Q(T") > Q(T).

A tensor T' € A® B® C'is concise if the induced linear maps T4 : A* - B C, Tp :
B* - A®C,Tc : C* — A® B are injective. We say that a concise tensor 7' € C""@C™ C™
has minimal rank (resp. minimal border rank) if R(T) = m (resp. R(T) = m).

The laser method and the Coppersmith-Winograd tensors

So far, the best upper bounds for w have been obtained using the laser method applied to
the big Coppersmith-Winograd tensor, which is

q
Tew,q ::Za()@bj®Cj+aj®bo®cj+aj®bj®co+
j=1

+ a0 ®by ® cgr1 + a0 @ bgyr1 ®co+ ag41 @by ®cp € ((Cq+2)®3.
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It was used to obtain the current world record w < 2.373 and all bounds below w < 2.41.
The barrier identified in [4] said that Tcow,q cannot be used to prove w < 2.3 using the
standard laser method, and a geometric identification of this barrier in terms of asymptotic
subrank was given in [13]: Q(M(y)) = n? which is maximal, which is used to show any tensor

with non-maximal asymptotic subrank cannot be used to prove w = 2 by the laser method,
and Strassen [43] had shown Q(Tcw,) is non-maximal.

The second best tensor for the laser method so far has been the little Coppersmith-
Winograd tensor, which is

q
Tew,q = Z ap®b; ®c;+a; Rby®c;+a; ®b; Ry € (Cq+1)®3. (1)
=1

The laser method was used to prove the following inequality:

» Theorem 2. [18] For all k and g,

4 Rk |2
w < logq(ﬁ(E(Tcw,q)) k ) (2)

More precisely, the ingredients needed for the proof but not the statement appears in [18].
It was pointed out in [11, Ex. 15.24] that the statement holds with E(TE&Q)% replaced by
R(T¢w,4)? and the proof implicitly uses (2). The equation does appear in [29, Thm. 5.1.5.1].

An easy calculation shows R(T¢y,q) = ¢+ 2 (one more than minimal). Applying Theorem
2 to Tey,s with k = 1 gives w < 2.41 [18]. Theorem 2 shows that, unlike Tow g, Tew,2 is
not subject to the barriers of [4, 3, 2, 13] for proving w = 2, and T¢,, 4, for 2 < ¢ < 10 are
not subject to the barriers for proving w < 2.3. Thus, if any Kronecker power of T¢,, 4 for
2 < g < 10 is strictly sub-multiplicative, one can get new upper bounds on w, and if it were

the case that R(T¢,,2) = 3, one would obtain that w is two. Hence the questions:

» Question 3. For given q, k, what is E(Tfulfq)? Does there exist g € {2,...,10} and k € N
such that R(T2F ) < [R(Tew.q)]*]?

cw,q

» Remark 4. Although we know little about asymptotic rank of explicit tensors beyond

matrix multiplication, most tensors have asymptotic rank less than their border rank:

For all tensors T € C™ @ C™ @ C™, with m > 3, outside a set of measure zero (more
3

precisely, for all tensors outside a proper subvariety), Lickteig showed that R(T') = [ 57— |
[35]. Strassen [42, Lemma 3.5] implicitly showed that for any T € C™ @ C™ ® C™, if
R(T) > m™% > m!'S, then R(T) < R(T). It is worth recalling Strassen’s proof: any
T € C"@C™®C™ is a degeneration of M1y, m) € cm’ QC™®C™, so T™3 is a degeneration
of M2 m2 .m2y = M1,m,m) |ZM<m,17m> &M(mmhn. In particular E(T‘Xg) < E(M(m27m2,m2>)
and R(T)? = R(T™) < R(Mp2 m2.m2)) = m>, so R(T) < m™. Since w < 2.4 we

conclude. In particular, note that R(T") < m!® for all T € C™ @ C™ @ C™.

2 Results

2.1 Lower bounds for Kronecker powers of T, ,

We address Problem 9.8 in [9], which was motivated by Theorem 2: Is R(T2? ) < (¢ + 2)2?

cw,q
We give an almost complete answer:

» Theorem 5. For all ¢ > 2, R(T®? ) = (¢ +2)?, and 15 < R(T%?,) < 16.

cw,q cw,2
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We also examine the Kronecker cube:

» Theorem 6. For all ¢ > 4, R(T%?, ) = (¢ + 2)°.

cw,q

Proofs are given in §4.
Proposition 25 below, combined with the proofs of Theorems 6 and 5, implies

» Corollary 7. For all ¢ > 4 and all N,

R(TEN) > (¢ + 1)V (g +2)%,

cw,q

and R(TZN,)) > 36 x 5N =2,

cw,4

Previously, in [10] it had been shown that R(T2N) > (¢ + 1)V + 2V — 1 for all ¢, N,
whereas the bound in Corollary 7is (¢ + 1) +3(¢+ 1)V +3(¢+ )N =2 + (¢ + 1)V 3.

Previous to this work one might have hoped to prove w < 2.3 simply by using the
Kronecker square of, e.g., Tt,,7. Now, the smallest possible calculation to give a new upper
bound on w from a tensor that has been used in the laser method would be e.g., to prove the
fourth Kronecker power of a small Coppersmith-Winograd tensor achieves the lower bound
of Corollary 7 (which we do not expect to happen). Of course, one could work directly with
the matrix multiplication tensor, in which case the cheapest possible upper bound would
come from proving the border rank of the 6 x 6 matrix multiplication tensor equaled its
known lower bound of 69 from [30].

The following corollary of Theorems 5 and 6 is immediate by the semi-continuity property
of border rank, as most tensors of border rank m + 1 in C™ ® C™ ® C™ may be degnerated
to Tew,m—1, in fact the set of tensors of border rank m + 1 is an orbit closure and Ty m—1
lives on the boundary of the orbit.

» Corollary 8. Most tensors T € C™ @ C™ @ C™ of border rank m + 1, satisfy R(T®?) =
R(T)%2 = (m+1)? form >4 and R(T™?) = R(T)? = (m +1)3 for m > 6. More precisely
all tensors outside of a Zariski closed subset of the set of tensors of border rank m + 1. In
particular the set of such is of full measure.

2.2 A skew cousin of T, ,

In light of the negative results for complexity theory above, one might try to find a better
tensor than T, , that is also not subject to the barriers. In [16], when ¢ is even, we introduced
a skew cousin of the big Coppersmith-Winograd tensor, which has the largest symmetry
group of any tensor in its space satisfying a natural genericity condition. However this tensor
turns out not to be useful for the laser method. Inspired by it, we introduce a skew cousin of
the small Coppersmith-Winograd tensor when ¢ is even:

q

q 2
Tskewcw,q = Z a0®bj Kcj+a; ®bg Kcj +Z(a§®bg+% —Ogtg ®b§) ®co € (Cq+1)®3. (3)
j=1 =1

In the language of [11], Tsgewcew,q has the same “block structure” as Ty, 4, which immedi-
ately implies Theorem 2 also holds for Tsiewcw,q:

» Theorem 9. For all k,

3
k

skewcw,q ) (4)

< log (o (RU(TH  )

10:5
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In particular, the known barriers do not apply to Tsgewew,2 for proving w = 2 and to any
Tskewew,q for ¢ < 10 for proving w < 2.3. Unfortunately, we have

» Proposition 10. R(Tskewew,q) > ¢ + 3.

Proposition 10 is proved in §4.

Thus R(Tskewew,q) > R(Tew,q) for all ¢, in particular R(Tskewew,2) = 5, as for all
TeC*eC*®C? R(T) <5.

However, unlike T, 2, substantial strict sub-multiplicativity holds for the Kronecker
square of Tspewew,2:

» Theorem 11. R(T"*? ) < 17.

skewcw,2

» Remark 12. Regarding border rank strict submultiplicativity of Kronecker powers for other
explicit tensors, little is known. For matrix multiplication, the only explicit drop under a
Kronecker power that is known to our knowledge is [37]: E(Mgf) < 46 < 49.

Previous to this work, we are only aware of one class of tensors other than My, for which
any bound on the Kronecker squares other than the trivial R(7%?) < R(T)? is known. In
[12], they show that

Tecgim =a1 b1 ®@c1+a2@b2®ca+ a3 ®@b3 ®@ca+ (Zg a;) ® (ijlbj) ® (23 Ck)

i=1 j=1
+2(a1 +a2) ® (b1 +b3) ® (c2+e3) +as®@ (D7 bs ®es) €C°@C™ @ C™
satisfies R(Tcgsm) = m + 2 and E(Tg)é“,’m) < (m+2)? — 1. Of course, for any tensor T,
R(T™?) < R(T'®?), and strict inequality, e.g., with M ) is possible. This is part of a general
theory in [12] for constructing examples with a drop of one when the last non-trivial secant
variety is a hypersurface.

We also show

» Theorem 13. R(T*? ) < 18.

skewcw,2

Theorems 11 and 13 are proved in §5.

2.3 Two familiar tensors with no known laser method barriers

Recall from above that either R(T,y,2) = 3 or R(Tskewew,2) = 3 would imply w = 2.

Let dets € (C%)®3 and perm; € (C%)®3 be the 3 x 3 determinant and permanent
polynomials considered as tensors. We observe that if either of these has minimal asymptotic
rank, then w = 2: either R(dets) =9 or R(perms) = 9 would imply w = 2. This observation

is an immediate consequence of the following lemma:

» Lemma 14. We have the following isomorphisms of tensors:

X2 ~
cw,2 —

&2 Y
Tskewcw,Z = dets.

perms

Lemma 14 is proved in §3.

Lemma 14 thus implies Theorems 11 and 13 may be restated as saying R(dets) < 17
and R(det3) < 18. Although it is not necessarily relevant for complexity theory, we actually
prove stronger statements, which are important for geometry:

A symmetric tensor T € S3C™ C C™ @ C™ ® C™ has Waring rank oneif T =a®a®a
for some a € C3. The Waring rank of T, denoted Rg(T), is the smallest r such that T is
sum of r tensors of Waring rank one. The Waring border rank of T, denoted R¢(T), is the
smallest r such that 7" is limit of a sequence of tensors of Waring rank r.
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We actually show:

» Theorem 15. Rg(det3) < 18.
and

» Theorem 16. Rg(dets) < 17.

Proofs are respectively given in §5.1 and §5.2.

2.4 Generic tensors in C3 ® C3 ® C3

» Remark 17. A generic tensor in C* ® C3 ® C3 has border rank five. Our numerical
experiments suggest that for all T € C3 @ C? @ C3:

R(T™?) < 22 < 25. (5)

This is obtained by starting with a tensor whose entries are obtained from making draws
according to a uniform distribution on [—1, 1], and proving the result for that tensor. The
data to perform an example of this computation is available in Appendix A at http:
//www.math.tamu.edu/~jml/CGLVkronsupp.html.

» Problem 18. Write a proof of (5). Even better, give a geometric proof.

The inequality (5) is not too surprising because C* ® C? @ C3? is secant defective, in
the sense that by a dimension count, one would expect the maximum border rank of a
tensor to be 4, but the actual maximum is 5. This means that for a generic tensor, there
is a 8 parameter family of rank 5 decompositions, and it is not surprising that the naive
64-parameter family of decompositions of the square might have decompositions of lower
border rank on the boundary.

3 Symmetries of tensors and the proof of Lemma 14

3.1 Symmetry groups of tensors and polynomials

The group GL(A) x GL(B) x GL(C) acts naturally on A ® B® C. The map ¢ : GL(A) x
GL(B)xGL(C) - GL(A®B®C) has a two dimensional kernel ker & = {(AId 4, uldg, vIdc) :
Ay =1} =~ (C*)2.

In particular, the group (GL(A) x GL(B) x GL(C)) /(C*)*? is naturally identified with
a subgroup of GL(A® B® C). Given T € A® B ® C, the symmetry group of a tensor T is
the stabilizer of T in (GL(A) x GL(B) x GL(C)) /(C*)*2, that is

Gr = {g € (GL(A) x GL(B) x GL(C)) /(C*)*?| g-T =T}, (6)
Let &) be the permutation group on k elements. We record the following observation:
» Proposition 19. For any tensor T € A®Q B® C, Gyrax D Gy.

Proof. Write THN = > JKTI*J’Kaz ® by ®cx where I = (iy,...,in), a1 = a;, Q-+ Q
Qiy, etc.. For 0 € Gy, define o - T = >, JKT”KaU(I) ® bg(y) ® Co(k)- Since THE —
Tidtks . TiNINEN e have TT/K = 7o(:0(1),0(K) and we conclude. <

» Remark 20. For a symmetric tensor (equivalently, a homogeneous polynomial), 7' € S%A,
one may also consider the symmetry group G5 := {g € GL(A) | g - T = T} where the action
is the induced action on polynomials.

10:7
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3.2 Proof of Lemma 14

Write (—1) for the sign of a permutation o. Let

detz = Z (=1)7as(1)r(1) ® bo(2)r(2) @ Co(3)7(3)s

o,TES3

permg = Z Ao (1)r(1) ® bg2)r(2) @ Co(3)r(3)

o, 7ESS
be the 3 x 3 determinant and permanent polynomials regarded as tensors in C? @ C° ® C.
Proof of Lemma 14. After the change of basis by := —by and &, := ca, Co := —cq, We obtain

Tskewew2 = a0 @by @ & — ag @by @ & +as @by @ ¢
—Cl1®50®52+a1®bg®00—a2®b1®00.

This shows that, after identifying the three spaces, Tsiewew,2 = @o A a1 A ag is the unique
(up to scale) skew-symmetric tensor in C* @ C* ® C3. In particular, Tsgewew,2 is invariant
under the action of SL3; on C3 ® C3 @ C3.

Consequently, the stabilizer of T5Z,,.,, » in GL(C®) contains (and in fact equals) SL5*
Zso. This is the stabilizer of the determinant polynomial dets. Since the determinant is
characterized by its stabilizer, we conclude.

The tensor T, 2 is symmetric and, after identifying the three spaces, it coincides with
ao(a? + a2) € S3C3. After the change of basis @, := a; + as, G := a; — az, we obtain
Tew2 = apaiaz € S 3C3 is the square-free monomial of degree 3. The stabilizer of Ty,2 under
the action of GL3 on S2C3 is T5% x &3, where TS denotes the torus of diagonal matrices
with determinant one, and &3 acts permuting the three basis elements.

Consequently, the stabilizer of TEEQ in GL(C?) contains (and in fact equals) (T5% x
&3)*? X Zy. This is the stabilizer of the permanent polynomial perm,. Since the permanent
is characterized by its stabilizer, we conclude. |

» Remark 21. For the reader’s convenience, here are short proofs that det,,,perm,, are
characterized by their stabilizers: To see det,, is characterized by its stabilizer, note that
SLy, x SLy, = SL(E) x SL(F) acting on S™(E ® F') decomposes it to

P s-EwS.F

|7|=m

which is multiplicity free, with the only trivial module SimE ® SimF = A™E ® A™F.
To see that perm,, is characterized by its stabilizer, take the above decomposition and
consider the TSL(E) x TSL(F)_invariants, these are the weight zero spaces (SzE)o ® (SxF)o.
By [24], one has the decomposition of the weight zero spaces as &2 x &I _-modules to
(SzE)o ® (SxF)o = [r]g @ [r]F. The only such that is trivial is the case 7 = (d).

» Remark 22. Even Kronecker powers of Tspeqpew,2 are invariant under SL;zk, and coincide,
up to a change of basis, with the Pascal determinants (see, e.g., [27, §8.3]), T;E,ﬁ]fwwg =
PasDety, 3, the unique, up to scale, tensor spanning (A3C?)®2F C §3((C3)®2F),

» Remark 23. One can regard the 3 x 3 determinant and permanent as trilinear maps
C3 x C3 x C® — C, where the three copies of C3 are the first, second and third column
of a 3 x 3 matrix. From this point of view, the trilinear map given by the determinant
is Tskewcew,2 as & tensor and the one given by the permanent is Tt > as a tensor. This
perspective, combined with the notion of product rank, immediately provides the upper
bounds R(permy) < 16 (which is also a consequence of Lemma 14) and R(dets) < 20,
see [19, 26].
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» Remark 24. A similar change of basis as the one performed in the second part of proof of
Lemma 14 shows that, up to a change of basis, Tskewew,q € A3C9H!. In particular, its even
Kronecker powers are symmetric tensors.

4 Koszul flattenings and lower bounds for Kronecker powers

In this section we review Koszul flattenings, prove a result on propagation of Koszul flattening
lower bounds under Kronecker products, and prove Theorems 5 and 6. We give two proofs
of Theorem 5 because the first is elementary and method of the second generalizes to give
the proof of Theorem 6.

4.1 Definition

Respectively fix bases {a;}, {b;}, {cx} of the vector spaces A, B,C. GivenT' =}, T a; ®
b ®@cr € A® B® C, define the linear map

T)? :APA® B* - AP A C
X ®B =3, T7*B(b;)(ai A X) @ c.

Then [31, Proposition 4.1.1] states

rank (77,7
R(T) > (m((A)A; @
P

This type of lower bound has a long history: in general, one takes the space A ® B® C
and linearly embeds it into a large space of matrices. Then if a rank one tensor maps to a
rank ¢ matrix, a rank r tensor maps to a rank at most rq matrix, so the size rq + 1 minors
give equations testing for border rank r. In this case the size of the matrices is (Z)b X (pil)c
and a rank one tensor maps to a matrix of rank (a;l). Here a = dimA, b = dimB and
c = dimC.

In practice, one takes a subspace A’* C A* of dimension 2p+ 1 and restricts T’ (considered

as a trilinear form) to A" x B* x C* to get an optimal bound, so the denominator (dim(;‘)_l)

is replaced by (2;) in (7). Write ¢ : A — A/(A’")+ =: A’ for the projection onto the quotient:
the corresponding Koszul flattening map gives a lower bound for R(¢(7')), which, by linearity,
is a lower bound for R(T'). The case p =1 is equivalent to Strassen’s equations [40]. There

are numerous expositions of Koszul flattenings and their generalizations, see, e.g., [27, §7.3],
[5, §7.2], [20], [28, §2.4], or [21].

Proof of Proposition 10. Write ¢ = 2u. Fix a space A" = {(eq, €1, e2). Define ¢ : A — A’ by

dla;) =e; fori=1,...,u,

dlas) =ey fors=u+1,...,q.

As an element of A3A, we have Tskewecw,g = Go N Zle i N Gy g
We prove that if T = Tspewew,q then rank(T4') = 2(q + 2) + 1. This provides the lower
bound R(T) > [2£251] — g+ 3
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We record the images via T} of a basis of A’ ® B*. Fix the range of i = 1,...,u:
TR (eo ® o) = (e0 Aer) ® Y1y cusi — (e0 A e2) @ 3014 ciy
ThH(eo ® Bi) = (eo N e2) ® co,

Th' (eo ® Buti) = (e0 A1) ® co,
ThHer ® Bo) = (e1 A e2) @ Y1y curis

(e

(eo ANe1) ® cuyi +e1 Nea ® co,
eg N e1 ® ¢,
(e
€o

Th* (e1 ® Buyi
THH (e2 ® Bo
ThHea ® B

TA' (€2 ® Buti

e1 N\ 62) b2y Zz 1Cis
/\62 ®Cu+zy
(eo Ne2) ®c; —ep Aeg @ co.

)
)
)
)
ThHer ® Bi)
)
)
)
)

Notice that the image of Y. | (e1® ;) — > i (€2® Buti) —eo @ Bo is (up to scale) e; Aea @c¢y.
This shows that the image of T/} contains

NA®co+er Aea® (31 ¢, > i qCuri) + (€0 Aer,eg Aea) @ (e, ..., cq).
These summands are in disjoint subspaces, so we conclude

rank(T4}) > 3 +242q = 2q + 5. |

4.2 Propagation of lower bounds under Kronecker products

A tensor T € A® B® C, with dim B = dim C' is 14-generic if T(A*) C B ® C contains a
full rank element. Here is a partial multiplicativity result for Koszul flattening lower bounds
under Kronecker products:

» Proposition 25. Let T7 € A1 ® By ® Cy with dim By = dim Cy be a tensor with a Koszul
flattening lower bound for border rank R(T) > r given by Tlgf (possibly after a restriction
@). Let Ty € Ay ® By @ Cy, with dim By = dim Cy = by be 14,-generic. Then

(®)

k(Ty3P) - b
R(T,XTy) > ’an(lAl)Q—‘

()

nk (7T
In particular, if &((% € Z, then R(Ty X Ty) > rba.

Proof. After applying a restriction ¢ as described above, we may assume dim A; = 2p + 1
so that the lower bound for Ty is

A
rank(7y Azln )-‘
2p
()
Let o € A% be such that T'(a) € Bs ® Cs has full rank bg, which exists by 1 4,-genericity.
Define ¢ : A1 ® As — A1 by ¢ = Ida, ® a and set ¥ := ¢ ® Ildp,gc,@B,00,- Then
(TN X Tg)f‘f ) provides the desired lower bound.

Indeed, the linear map (¥(7} X T g)Ap ) coincides with 77" "X Ti(a). Since matrix rank is
multiplicative under Kronecker product, we conclude. |

R(Th) > ’V
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4.3 First proof of Theorem 5

When g = 3, the result is true by a direct calculation using the p = 2 Koszul flattening with
a sufficiently generic C®> C A*, which is left to the reader. In what follows we treat the case
q> 3.

Write a;; = a; @ a; € A®? and similarly for B®? and C®?. Let A’ = (eg, e1,e2) and
define the linear map ¢» : A9? — A’ via

¢2(aoo) = ¢2(ao1) = d2(aio) = €0 + €1,

Write T, =71

o G

We are going to prove that rank((7,)4') = 2(q + 2)%. This provides the lower bound
R(T Efq) > (¢ + 2)? and equality follows because of the submultiplicativity properties of
border rank under Kronecker product.

A+ B-e2gc-e2. Consider the p = 1 Koszul flattening (7;,)4} : A’ ®

We proceed by induction on gq. When ¢ = 4 one does a direct computation with the p =1
Koszul flattening, which is left to the reader, and which provides the base of the induction.

Write Wj =ag® bj ® Cj +a; ® b() ® Cj +a; ® bz & cg. Then Tcqu = Z?’:l Wj, so that
TR, =3, Wi R W

cw,q

If ¢ > 4, write Tow,q = Tew,g—1 + Wq, 80 T2, = T22 1 4 Tew,g—1 RWq + Wy R Ty g1 +
W gW LetS —( cw,q— 1‘ZW +W chwq 1+W &W)|A’®B*®2®C*®2

Write Uy = A’ @ (Bi; : 4, =0,...,g—1) and Us = A" ® (B4i,Biq : © = 0,...,q) so
that Uy & Uy = A’ ® B®**. Similarly, define Vi = A24A’ @ (¢;j : 4,5 = 0,...,q — 1) and
Vo =A2A"® (cgi,cig 11 =0,...,q), so that V; & Vo = A2A’ ® C®2. Observe that (T,—1)} is
identically 0 on U, and its image is contained in V;. Moreover, the image of Uy under (S
is contained in V;. Representing the Koszul flattening in blocks, we have

My O
(TQ*I)Q} = |: 011 0 :|

N N
Al 11 12
(SQ)A’ - |: 0 N22 :|

therefore rank((7,)’1) > rank(Mi; + N11) + rank(Nao).
First, we prove that rank(Mj; + Nij) > rank(Mi;) = 2(q + 1)2. This follows by

a degeneration argument. Consider the linear map given by pre-composing the Koszul
flattening with the projection onto U;. Its rank is semicontinuous under degeneration.
Since Tgfq degenerates to TEUQq 1, we deduce rank(My; + Ny1) > rank(My;). The equality
rank(Mi1) = 2(q + 1)? follows by the induction hypothesis.

We show that rank(Nog) = 2(2¢ + 3). The following equalities are modulo V;. More-
over, each equality is modulo the tensors resulting from the previous ones. They are all

straightforward applications of the Koszul flattening map, which in these cases, can always
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be performed on some copy of W; X W;.

(St (e1® Byj) =e1 Neg®cqy  for j=3,...,q
(Sq)ﬁl}(el QB =e1Neg®cj, forj=3,...,q
(Sq)it(eo ® Bsq) = €0 A €1 ® coq
(Sq)g} (€0 @ Bg3) = eo N e1 @ cqo
(Sq),/é\l} (0 ® Bg1) =eo Ne1 ®cq
(Sq)ﬁ}(eo ® B1q) = ep Aer. @ cig

(Sq)AA} (e0 ® Bog) = €0 N ea @ cagq
(Sq)ar (€0 ® Bgo) = €q A €2 @ cqo
(Sq)ﬁl} (€0 ® By2) = eq Nea ® coq
(Sq)ﬁl} (e0 ® Bag) = ep Nea @ cqo
(Sq)it(e1 ® Bag) = €1 A€z @ coq
(Sq)/f\l}(el ® Bo2) = e1 Aeg & cqo
(Sg)i(e1 ® Bgo) = €1 A ez @ o
(Sy)a7 (e1 ® Bog) = €1 A ea ® cyo,

(Se)at(e2® Byj) = ea A (eg+e1) gy for j=3,....¢q
(Sq)/f\l}(@ ®Pig) =eaN(eg+e)®c;q forj=3,...,q
(Sq)a7(e2 ® Bg1) = ez A (€0 + €1) ® ¢
(Sq),/f‘}(eg ® P1q) =e2 A (eg+e1) Qg

(Sq)

we2 ® Byo) =ea Aeg ® cqr
(Sq)a

(e2 ® Bog) = €2 Neg @ cig.

All the tensors listed above are linearly independent. Adding all the contributions together,
we obtain

rank((S,)41) = [2(¢—3) + 1] +4+8+2+[2(¢—3) + 1] +4=2(2¢ + 3)

as desired, and since 2(q + 3)? = 2(¢ + 1)? + 2(2¢ + 3), this concludes the proof. <

4.4 A short detour on computing ranks of equivariant maps

We briefly explain how to exploit Schur’s Lemma (see, e.g., [23, §1.2]) to compute the rank
of an equivariant linear map. This is a standard technique, used extensively e.g., in [32, 25]
and will reduce the proof of Theorems 5 and 6 to the computation of the ranks of specific
linear maps in small dimension.

Let G be a reductive group. In the proof of Theorems 5 and 6, G will be the product of
symmetric groups. Let Ag be the set of irreducible representations of G. For A € Ag, let
W) denote the corresponding irreducible module.
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Suppose U, V are two representations of G. Write U = D, WEm v = Dircae WEBZ*,
where mj is the multiplicity of W in U and £, is the multiplicity of Wy in V. The direct
summand corresponding to A is called the isotypic component of type A.

Let f: U — V be a G-equivariant map. By Schur’s Lemma [23, §1.2], f decomposes
as f = @f\, where f) : WiemA — Wfaé*. Consider multiplicity spaces My, Ly with
dim M, = m, and dim L, = /£, so that W?m* ~ M, ® W) as a G-module, where G acts
trivially on M) and similarly Wfa Y A ® Wiy

By Schur’s Lemma, the map f) : My ® Wy — Ly ® Wy decomposes as fx = ¢ ® Idy,
where ¢y : M — Ly. Thus rank(f) is uniquely determined by rank(¢,) for A € Ag.

The ranks rank(¢,) can be computed via restrictions of f. For every A, fix a vector
wy € Wi, so that My ® (w,) is a subspace of U. Here and in what follows, for a subset
X C V, (X) denotes the span of X. Then the rank of the restriction of f to My ® (wy)
coincides with the rank of ¢,.

We conclude

rank(f) = > rank(¢y) - dim W)y.

The second proof of Theorem 5 and proof of Theorem 6 will follow the algorithm described
above, exploiting the symmetries of T,, 4. Consider the action of the symmetry group &, on
A® B ® C defined by permuting the basis elements with indices {1,...,¢}. More precisely,
a permutation o € &, induces the linear map defined by o(a;) = a¢;y fori=1,...,q and
o(ag) = ap. The group &, acts on B, C similarly, and the simultaneous action on the three
factors defines an G4-action on A ® B ® C. The tensor Ty, is invariant under this action.

4.5 Second Proof of Theorem 5

When ¢ = 3, as before, one uses the p = 2 Koszul flattening with a sufficiently generic
C° c A~
For ¢ > 4, we apply the p = 1 Koszul flattening map to the same restriction of TEJQ’q

as the first proof, although to be consistent with the code at the website, we use the less
appealing swap of the roles of as and agz in the projection ¢.

Since T¢y,q is invariant under the action of &y, 7T, X2 ig invariant under the action of

cw,q
X , acting on ® & . Le = _3 X 6y_3 where _3 1s the permutation
G, x G, acti A®?2@ B®2®C%2. Let I =G, G, here &,_3 is th tati
group on {4,...,q}, so TEEH is invariant under the action of I'. Note that I' acts trivially on

A, so (Tq)g} is I'-equivariant, because in general, Koszul flattenings are equivariant under
the product of the three general linear groups, which is GL(A’) x GL(B®?) x GL(C®?) in our
case. (We remind the reader that T, := TEEQ
described in §4.4 to compute rank((7,)%}).
Let [triv] denote the trivial &,_s-representation and let V' denote the standard represen-
tation, that is the Specht module associated to the partition (¢ —4,1) of ¢ — 3. We have

dim[triv] = 1 and dimV = ¢ — 4. (When ¢ = 4 only the trivial representation appears.)

A~ @B*82gCc+®2.) We now apply the method

The spaces B,C are isomorphic as &,_s-modules and they decompose as B = C' =
[triv]®5 @ V. After fixing a 5-dimensional multiplicity space C® for the trivial isotypic
component, we write B* = C' = C° @ [triv] ® V. To distinguish the two &,_s-actions, we
write B® B = ([triv]$® @ Vi) @ ([triv]° @ Vg).
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Thus,

B*®? = 0®2 —(C° @ [triv], ® V1) ® (C° @ [triv]g @ V&)
=(C° ® C°) @ ([triv]y @ [triv]g) @
C’ @ ([triv], ® VR) @
C°® (Vi ® [trivlg) @
(VL ® V).

Write W7, ..., Wy for the four irreducible representations in the decomposition above and
let My, ..., M4 be the four corresponding multiplicity spaces.

Recall from [22] that a basis of V' is given by standard Young tableaux of shape (¢ — 4, 1)
(with entries in 4,...,q for consistency with the action of &,_3); let wsq be the vector
corresponding to the standard tableau having 4,6, ..., ¢ in the first row and 5 in the second
row. We refer to [22, §7] for the straightening laws of the tableaux. Let wyyi, be a generator
of the trivial representation [triv].

For each of the four isotypic components in the decomposition above, we fix a vector
w; € W; and explicitly realize the subspaces M; ® (w;) of B*®? a5 follows:

(Bij:1,5=0,...,3)&®

. . (Z::4 Bi;:1=0,...,3)®

[ter]L ® [ter]R Wrriv @ Wiriv 25 (Zj:4 P
(D% =aBis)

i,j=4

[tI‘iV]L ® Vg Weriv & Wstd 5 (23:4(515—31’4»
. (Bs;j —B4;:3=0,...,3)®
Vi ® [ter]R Wstd & Wiriv 5 ({ 324(55]'—,343'))
VL ® Vg Wstd @ Wstd 1 (Bss — Bas — Bsa + Paa)-

The subspaces in C®? are realized similarly.
Since (Tﬁ%q)g} is I'-equivariant, by Schur’s Lemma, it has the isotypic decomposition

(Tl%)%q),/é\l} = f1® fo ® f3 ® f4, where
fi i Ao (M @W;) — AN2A @ W;.

As explained in §4.4, it suffices to compute the ranks of the four restrictions ®; : A’ ® M; ®
Using the bases presented in the fourth column of the table above, we write down the
four matrices representing the maps @1, ..., ®4.
The map P, is represented by the 3 x 3 matrix
-1 1 0
o 0 1],
0 0 1

so rank(®,) = 2.
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q—3)

The map P, is represented by the 15 x 15 matrix (here ¢’

We prove the matrix above and those that follow are as asserted for all ¢ in §7. The proof

goes by showing each entry must be a low degree polynomial in ¢, and then one simply tests

The map @, is represented by a 75 x 75 matrix that can be presented in block form

enough small cases to fix the polynomials. Thus rank(®;) = 12, and similarly for ®3.

O <

with X the matrix

Y the matrix

co~s_ococo
S

cooococo

ITCS 2020
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and Z the matrix

C0O00OO00OO0OOHROOOHOOOOOOOOOOOO0
CO0O0O0O0O0O+RHOOOOOOOOOOOOOODO
CO0O0OO0O0OOHROOOOOOHOOO0OO0OOOOOO
OO0 O0OO0OOHOOOOOOOO0OO0O000O00O00O0
CO0OOHOOOOOO0OO0OO000O00O0OOOOOO
CO00O0O000000O000O0OHROOO0OOO0OOO0
CO0O00O000000O000000000000000R
CO0O00O0000000000000000000O00
C0O00000O00000000000O0OROOOOO
CO0O00000000000000000000000
CODO0O0OD0O0O0OOHOOOOOOOOOOROO
CO0OO00O0O00OO0OOOOROOO000ORR
CO0OD00O000O000000000O000O0OO00OOR
COD0OO0OD0O0O00O0OO0OOHOO0OO0O0O0OOOOOO
CO00O0O00O0O00OO00OOORO0O000O0OR
CO0O0O0OOHROOOOOOO0OO0O0OO0O0O0OOOORDO
CO00O0O00O000O000O0O00000O0OO0OO K
0000000000000 00O00OROR
COD0O0O0OO0O0OOHROOOOOOO0OOOOOROODO
CO00O0O00O000O0000O00000O+ROOOO
OrRrO0OO0OO0O0O0O000000000000000O000
C0O00O0000000000000000000O00
CO000O0O0000000OOOO000000000R
OO0 OrHOOO0O0O00OO0O0O0000O00000O00
C0O00O0000000000000000000O00

We compute rank(®;) = 72.

Although these matrices are of fixed size, they are obtained via intermediate tensors
whose dimensions depend on ¢, which created a computational challenge. Two ways of
addressing the challenge (including the one utilized in the code) are explained in §7.

The relevant matrices and the implementation of the method of §7 to justify them
for all ¢, together with the code for the computation of their ranks are available at the
website http://www.math.tamu.edu/~jml/CGLVkronsupp.html, Appendix D. The ranks
are bounded below by taking a matrix M (which has some entries depending linearly on g),
multiplying it on the left by a rectangular matrix P whose entries are rational functions
of ¢, and on the right by a rectangular matrix ) whose entries are constant, to obtain a
square matrix PM @ that is upper triangular with +1 on the diagonal, and thus its rank is
its dimension. Finally one checks that the least common multiple of the denominators of the
entries of P has no integral solution when ¢ > 4.

Adding all the contributions gives

rank(7T4) = 2 - dim(V ®@ V) + 12 - dim([triv] ® V)+
+ 12 - dim(V @ [triv]) + 72 - dim([triv] ® [triv]) =
=2 (q—4)?+12-(¢q—4) +12-(¢g—4) +72-1=2(q +2)*

This concludes the proof of Theorem 5.

» Remark 26. One might have hoped to exploit the full symmetry group &, x &, to simplify
the argument further. However there is no choice of a restriction map v which is G, X G4_,-
invariant for s < 3 that gives rise to a Koszul flattening map of sufficiently high rank to
prove the result.

4.6 Proof of Theorem 6

We will use a Koszul flattening with p = 2, so we need a 5 dimensional subspace of (A*)®3.
Let

@000,
Zle(aioo + @oio + @004 ),
A= < apo1 + o10 + Q12 + Q102 + 110 + Q121 + Q200 + Q211, > .
Q22 + Q30 + @31 + Q100 + 103 — Q120 + Q210 + Q212 + 300,
Q02 + o4 + Q11 + Q14 + Q020 + Q023 + Q32 + Q040 + Q100 + Q122 + 220 + 303



A. Conner, J. M. Landsberg, F. Gesmundo, and E. Ventura

Write ¢35 : A®3 — A’ for the resulting projection map and, abusing notation, for the induced
map A®? @ B®3 ® C®3 — A’ ® B®3 @ 093, Write T = ¢3 (TEU?’q), suppressing the ¢ from
the notation. Consider the Koszul flattening:

(T)x? : A2A' @ B*®? — A*A' @ C®2

We will show rank((T)4?) = 6(q + 2)?, which implies R(T2% ) > (¢ + 2)°.

cw,q
In order to compute rank((7")%7), we follow the same strategy as before. The code

to generate these matrices is available at www.math. tamu.edu/~jml/CGLVkronsupp.html,

Appendix D. The explanation of how we proved they are as asserted is outlined in §7.

The map (7))? is invariant under the action of I' = &,_4 x &,_4 x &,_4 where the
first copy of &,_4 permutes the basis elements with indices 5, ..., g of the first factors, and
similarly for the other copies of G4_4. Let [triv] be the trivial &,_4-representation and let
V be the standard representation, namely the Specht module associated to the partition
(g —5,1). Here dimV = ¢q — 5, so if ¢ = 5, only the trivial representation appears.

The &,_4-isotypic decomposition of B (and C) is C® ® [triv] & V and this induces the
decomposition of B*®3 ~ C'®3 given by

B*® ~ 0% =(C%)®3 @ ([triv]; @ [triv]y ® [triv]3)®
(C%%% @ [([triv]; ® [triv], ® V3)&
([triv]; ® Vo @ [triv]3)®
(V1 @ [triv]s ® [triv]s)]®
(C @ [([triv]: ® Vo ® V3)®
(V1 ® Vo @ [triv]s)®

(V1 @ [triv]y ® V3)|&
MealeVs

consisting of eight isotypic components. As in the previous proof, for each of the eight
irreducible components W;, we consider w; € W; and we compute the rank of the restriction
to A2A’ ® M; @ (w;) of the Koszul flattening; call this restriction ®;.

The ranks of the restrictions are recorded in the following table:

Wi dim(A%2A’ ® M;) rank(®;)

[triv]; @ [triv]s @ [triv]y 6% (3) = 2160 2058

[tI‘iV]l & [triv]g & VE;

2 (5
’ = 294
(and permutations) 6 (2) 360 9
[triv]; ® V3 ®. Vs 6 (g) e N
(and permutations)
heret (5) =10 6

The relevant matrices and the implementation of §7 to justify them for all ¢, with the code

computing their ranks are available at http://www.math.tamu.edu/~jml/CGLVkronsupp.

html, Appendix D. As before, the ranks are bounded below by taking a matrix M (which has
some entries depending linearly on ¢), multiplying it on the left by a rectangular matrix P
whose entries are rational functions of ¢, and on the right by a rectangular matrix ¢ whose
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entries are constant, to obtain a square matrix PM @ that is upper triangular with +1 on

the diagonal, and thus its rank is its dimension. Finally one checks that the least common

multiple of the denominators of the entries of P has no integral solution when ¢ > 4.
Adding all the contributions together, we obtain

rank(74?) =6 - dim(V @ V@ V)+
42 - 3 - dim([triv] @ V @ V)+
294 - 3 - dim([triv] ® [triv] @ V)+
2058 - dim([triv] @ [triv] @ [triv]) = 6 - (¢ + 2)°.

This concludes the proof.

5 Upper bounds for Waring rank and border rank of dets
5.1 Proof of Theorem 15

We give the rank 18 decomposition for dets explicitly, as a collection of 18 linear forms
on C? = C? ® C3 whose cubes add up to dets. The linear forms are given in coordinates
recorded in the matrices below: the 3 x 3 matrix ((;;) represents the linear forms , ; Gigij-
This presentation highlights some of the symmetries of the decomposition.

Let ¥ = exp(2mi/6) and let J be its inverse. The tensor dety = T%2, . = det(z;;) €
S3(C3 @ C3) satisfies l

18
det3 = Z L?
1

where L1, ..., L1g are the 18 linear forms given by the following coordinates:
-9 0 0 —J 0 0 -9 0 0
Li=|l0 -1 0 Ly=|0 -1 0 Ly={0 19 0
0o 0 9 0o 0 9 0 0 J
-1 0 0 9 0 0 9 0 0
Ly=10 0 —J Ls=10 0 1 Lg= |0 0 —
1 1 1
0 —Eﬁ 0 0 —gf 0 0 —39 0
0 39 0 0 29 0 0 %9 0
Ly=|—-9 0 0 Lg=|-9 0 0 Lo=|-9 0 0
0 0 1 0 0 -9 0 0 1
-39 0 -39 0 0 + 0
Lig=10 0o 9 Li;=10 0o 9 Lip=(0 0 -1
-1 0 0 -1 0 O -1 0 0
0 0 1 0 0 1 0 0 1
Lis=(-1 0 0 Lyu=(9 0 o0 Lis=(v 0 0
1 1 179
0 —3 9 0 39 0 B 0 39 0
0o 0 0 0o 0 0 9
Lig= |0 —%19 0 Li=1|0 —%5 0 Lig= |0 —%5 0
1 0 0 -9 0 0 1 0 0

The equality can be verified by hand. A Macaulay?2 file performing the calculation is
available at http://www.math.tamu.edu/~jml/CGLVkronsupp.html, Appendix B. <
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5.2 Proof of Theorem 16

As in the case of Theorem 15, we prove Theorem 16 by explicitly giving 17 linear forms,
depending on a parameter ¢, whose cubes provide a border rank 17 expression for detz. The
algebraic numbers involved are more complicated than in the previous case.

The result was achieved by numerical methods, which allowed us to sparsify the decom-
position and ultimately determine the value of the coefficients. The linear forms in the
decomposition are described below.

Consider
21 0 0 zz 0 0 —z36 27t 0
Lqi(t) = 0 zot O Lo(t)=| 24 0 =25t L3(t) = | —zss 0 —2z39t
-1 0 0 z6 O 0 0 t
0 0 t 0 —Zlgt —Zzot —Z22 th 0
La(t) = | —z34 0 0 Ls(t) = 0 0 0 Lg(t) = | —z23 0 —z241
0 zgt  —=z3s5t —1 0 0 —Z25 0 0
Z10 z11t 0 Z15 —t 0 0 z19t zaot
L7(t) = | z12 0 z13t Lg(t) = | z16 0 z17t Lg(t) =0 =221t 0
214 0 z1s 0 0 1 0 0
—Z41 0 0 222 0 0
ng(t) = 0 0 0 Lll(t) = | z23 0 z2at ng(t) =
—Z44 0 0 zZ25 0 0

z28  Z29t
Lis(t) = | 230 0
0 t

z31 232t 0
0 0 0
0 Z33t —t

Z36 237t 0 Z41 242t 0

238 0 z39t L17(t) = 0 z43t 0
0 z40t —t Z44 0 0

The coefficients z1, ..., z44 are algebraic numbers described as follows.
root of the polynomial

Let y, be a real

27

227 — 227 + 172% — 292 + 812 + 52222 — 72627 + 34512%° — 109012"° + 2573828 —

50663z 7 + 721332'% — 729732 + 104442 + 138860z"% — 30861122 + 4273445
—2674162"° — 1960962° + 7627362° — 123673627 + 10923522° — 5376002° — 422402 +
6840322° — 11366402 + 1146880z — 520192.

For i =1,...,44, we consider algebraic numbers y; in the field extension Q[y.], described as
a polynomial of degree (at most) 26 in y, with rational coefficients. Notice that all the y;’s
are real. The expressions of the yi, ..., 944 in terms of y, are provided in the file yy_exps at
http://www.math.tamu.edu/~jml/CGLVkronsupp.html, Appendix C. Let z; be the unique
real cubic root of y;.

We are going to prove that, with this choice of coefficients z;,

17
t2dets + O(t%) = Y Ly(t)". (9)
=1

The condition t?dets + O(t3) = leil L;(t)? is equivalent to the fact that the degree 0
and the degree 1 components of Zzl; L;(t)® vanish and that the degree 2 component equals
dets. Given the sparse structure of the L;(t), this reduces to a system of 54 cubic equations
in the 44 unknowns z1, ..., z44. Our goal is to show that the algebraic numbers described
above are a solution of this system.

We show that the z;’s satisfy each equation as follows. After evaluating the equations at
the z;’s, there are two possible cases
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1. all monomials appearing in the equation are elements of Q[y.]; we say that this is an
equation of type 1; there are 14 such equations;

2. at least one monomial appearing in the equation is not an element of Q[y.]; we say that
this is an equation of type 2; there are 40 such equations.

For equations of type 1, we provide expressions of each monomial in terms of y,. To
verify that each expression is indeed equal to the corresponding monomial, it suffices to
compare the cube of the given expression and the expression obtained by evaluating the
monomial at the y;’s. Finally, the equation can be verified in Q[y,]. This is performed by
the file checkingTypeleqns.m2.

For equations of type 2, let u be one of the monomials which do not belong to Q[y.]. We
claim that it is possible to choose the monomial in such a way that Q[u?®] = Q[y.]. For each
equation, we choose one of the monomials and we verify the claim as follows. The element
u? has an expression in terms of y, which equals the chosen monomial evaluated at the y;’s.
Let M, be the 27 x 27 matrix with rational entries such that

(laUBa e au3.26) = (Ly*v s 7936) ! Muv

M, can be computed directly by considering the expressions of the powers of u? in terms of
yx. Then Q[u?] = Q[y.] if and only if M, is full rank.

In particular v, has an expression in terms of u?, which can be computed inverting the
matrix M,. A consequence of this is that Q[u] = Q[yx, u].

At this point, we observe that Q[u] contains the other monomials occurring in the equation
as well. To see this, we proceed as in the case of equations of type 1. For each monomial
occurring in the equation, we provide an expression in terms of u (in fact, to speed up
the calculation, we provide an expression in terms of v and y,., which is equivalent to an
expression in u because Q[u®] = Q[y.] and y. has a unique expression in terms of u?); we
compare the cube of this expression (appropriately reduced modulo the minimal polynomial
of ¥, and the relation between u® and y,) with the expression obtained by evaluating the
monomial at the y;’s (expressed in terms of y,). This shows that all monomials occurring in
the expression belong to Q[u], and verifies that the given expressions are indeed equal to the
corresponding monomials. Finally, the equation is verified in Q[u] as in the case of type 1.
This is performed by the file checkingType2eqns.m2. <

5.2.1 Discussion of how the decomposition was obtained

Many steps were accomplished by finding solutions of polynomial equations by nonlinear
optimization. In each case, this was accomplished using a variant of Newton’s method applied
to the mapping of variable values to corresponding polynomial values. The result of this
procedure in each case is limited precision machine floating point numbers.

First, we attempted to solve the equations describing a Waring rank 17 decomposition of
det3 with nonlinear optimization, namely, dets = Z};(wg)m, where w! € C3*3. Instead of
finding a solution to working precision, we obtained a sequence of local refinements to an
approximate solution where the norm of the defect is slowly converging to to zero, and some of
the parameter values are exploding to infinity. Numerically, these are Waring decompositions
of polynomials very close to dets.

Next, this approximate solution needed to be upgraded to a solution to equation (9).

We found a choice of parameters in the neighborhood of a solution, and then applied
local optimization to solve to working precision. We used the following method: Consider
the linear mapping M : C17 — S3(C3*3), M(e;) = (w})®3, and let M = UXV* be its
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singular value decomposition (with respect to the standard inner products for the natural
coordinate systems). We observed that the singular values seemed to be naturally partitioned
by order of magnitude. We estimated this magnitude factor as to ~ 1073, and wrote ¥’
as ¥ where we multiplied each singular value by (t/to)*, with k chosen to agree with this
observed partitioning, so that the constants remaining were reasonably sized. Finally, we let
M’ = U¥X'V*, which has entries in C[[t]]. M’ is thus a representation of the map M with a
parameter .

Next, for each i, we optimized to find a best fit to the equation (a; +tb; +12¢;)®3 = M’ (e;),
which is defined by polynomial equations in the entries of a;, b; and ¢;. The a;, b; and ¢; we
constructed in this way proved to be a good initial guess to optimize equation (9), and we
immediately saw quadratic convergence to a solution to machine precision. At this point, we
greedily sparsified the solution by speculatively zero-ing values and re-optimizing, rolling
back one step in case of failure. After sparsification, it turned out the ¢; were not needed.
The resulting matrices are those given in the proof.

To compute the minimal polynomials and other integer relationships between quantities,
we used Lenstra-Lenstra-Lovasz integer lattice basis reduction [34]. As an example, let
¢ € R be approximately an algebraic number of degree k. Let N be a large number inversely
proportional to the error of (. Consider the integer lattice with basis {e;+| N |epy1} C ZF+2,
for 0 < i < k. Then elements of this lattice are of the form vpeg + - - - + vgeg + Fegy1, where
E ~ Np((), p = vop +viz + - - - 2,2". Polynomials p for which ¢ is an approximate root
are distinguished by the property of having relatively small Euclidean norm in this lattice.
Computing a small norm vector in an integer lattice is accomplished by LLL reduction of a
known basis.

For example, the fact that the number field of degree 27 obtained by adjoining any 23 to
Q contains all the rest was determined via LLL reduction, looking for expressions of z> as a
polynomial in zg for some fixed 3. These expressions of z3 in a common number field can be
checked to have the correct minimal polynomial, and thus agree with our initial description
of the z,. LLL reduction was also used to find the expressions of values as polynomials in
the primitive root of the various number fields.

After refining the known value of the parameters to 10, 000 bits of precision using Newton’s
method, LLL reduction was successful in identifying the minimal polynomials. The degrees
were simply guessed, and the results checked by evaluating the computed polynomials in the
parameters to higher precision.

» Remark 27. With the minimal polynomial information, it is possible to check that equa-
tion (9) is satisfied to any desired precision by the parameters.

6 Tight Tensors in C2 ® C* @ C3

Following an analysis started in [17], we consider Kronecker squares of tight tensors in
C3 ® C3 ® C3. We compute their symmetry groups and numerically provide bounds to their
tensor rank and border rank, highlighting the submultiplicativity properties.

We refer to [44, 11, 17] for an exposition of the role of tightness in Strassen’s work and in
the laser method. We point out that Tow,q and Tey, 4 are tight. (If one uses the combinatorial
definition of tightness, which depends on a choice of basis, they are not tight in their standard
presentations.)
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6.1 Tight tensors

Recall the map ® : GL(A) x GL(B) x GL(C) - GL(A® B® () from Section 3.1 defining the
action of GL(A) x GL(B)x GL(C) on AQ B®C. Its differential d® defines a map at the level
of Lie algebras, mapping gl(A) @ gl(B) @ gl(C) to a subalgebra of gl(A® B ® C), isomorphic
to (gl(A) @ gl(B) @ gl(C))/C2. Write gr C gl(A) @ gl(B) @ gl(C) for the annihilator of T
under this action.

A tensor T € A® B®C is tight if gr/C? contains a regular semisimple element. Tightness
can be defined combinatorially with respect to a basis, see e.g. [17, Def. 1.3]. In particular,
the combinatorial definition makes it clear that tightness depends on the support of a tensor
in a given basis; we say that a support S is tight if every tensor having support § is tight.

Given concise tensors 71 € A; ® B1 ® C1 and Ty € A ® By ® Cy, [17, Theorem 4.1] shows
that

IR, 2 01 ®lda,eB,00, +1da,eBi0c: @ 913 (10)

moreover if g7, = 0 and gz, = 0 then equality holds gy, g7, = 0.

The strict containment in (10) occurs, for instance, in the case of the matrix multiplication
tensor. In [17], we posed the problem of characterizing tensors T € A ® B ® C' such that
07 ® ldagpec + Idagpgc @ gr is strictly contained in g rm: C gl(A®?) + gl(B®?) + gl(C®?).

Proposition 29 provides several additional examples of tensors in C* ® C3 ® C? for which
this containment is strict.

6.2 Tight supports in C? @ C* ® C3

From [17, Proposition 2.14], one obtains an exhaustive list of unextendable tight supports
for tensors in C? ® C3 ® C3, up to the action of Zy x &3, where &3 acts permuting the
factors and Zs acts by reversing the order of the basis elements. In fact, tightness is invariant
under the action of the full &3 acting by permutation on the basis vectors. This additional
simplification, pointed out by J. Hauenstein, provides the following list of 9 unextendable
tight supports up to the action of ((&3)*3) x &3.

Ti={(1,1,3),(1,2,2),(2,1,2), (3,3, )}

To = {(1,1,3),(1,3,2),(2,3,1),(3,2,2) ;

Ts ={(1,1,3),(1,2,2),(1,3,1),(2,1,2), (3,2, 1)}
Ta={(1,1,3),(1,2,2),(2,1,2),(2,3,1), (3,2, 1) };

Ts = {(1,1,3),(1,2,2),(2,3,1),(3,1,2), (3,2, 1) };

To ={(1,1,3),(1,3,2),(2,2,2), (3,1,2), (3,3, 1) };

Tr = {(1,1,3), (1,2,2), (1,3,1),(2,1,2),(2,2,1),(3,1, 1) };

Ts ={(1,1,3),(1,3,2),(2,2,2),(2,3,1),(3,1,2),(3,2,1) };

To = {(1,2,3),(1,3,2),(2,1,3),(2,2,2),(2,3,1),(3,1,2),(3,2, 1) };

Supports Sy and Ss of [17] are equivalent to support S; = Ti; supports Ss and Sy are
equivalent to support Sg = T4.
The following result characterizes tight tensors in C? ® C3 ® C? up to isomorphism.

» Proposition 28. Let T € C? ® C3 ® C? be a tight tensor with unextendable tight support
in some basis. Then, up to permuting the three factors, T is isomorphic to exactly one of the
following.
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Th:=a1@b1 Q@c3+a1 @b ®@c2+a2@b1 ®ca+az3®b3®@cy
T =01 b1 ®c3+a1Rb3R@c2+a20b03®c1 +a3@b2®c2
T3:=01 @b1 ®c3+01@b2®c2+a1R®b3®c1 +a2Q0b1 Q2 +az3R@b2®c1
Ti:=a01 b1 ®c3+01R@b2®c2+a2®b1®c2+a2Q0b3R@c1 +az3®@b2®cy
T5 =a1 @b1 ®c3+a1 @b @c2+a2@b3®c1 +a3@b1 @ca+a3z @b @ cy
Ts :=a1 @b1 @c3+a1 Qb3 @ca+a2Q@b2®@ca+a3®@b1 @ca+ a3 b3 @ cy
T7 :=a1®b1 Q@c3+a1 Qb2 ®@c2+a1 Qb3 ®c1+a20b1 ®ca+a2Qb2®c1 +az3@b1 ®@cy
Ty :=a1®b1 Q@c3+a1 Qb3 R c2+a2Rb2®@ca+a2Q0b3Rc1 +a3Rb1 ®c2+az3@b2 ®@c1
Tou =01 Qb2 ®c3+a1 Qb3R@co+a20b1 ®cz+a2Qba®@c2+a2®@bz3®@c1 + a3 @b Ve
+ a3 @b ®cr.
Proof. The result of [17, Proposition 2.14] and the discussion above shows that 7' is, up to
permutation of the factors, equivalent to a tensor with support 7; for some i =1,...,9.
For i = 1,...,8, it is straightforward to verify that all tensors with support 7; are
isomorphic, via the change of bases given by three diagonal matrices.

The case of Ty is slightly more involved but essentially the same argument shows that a
tensor T" with support 7y is isomorphic to Ty ,, for some u.

Finally, we have to show that any two of the tensors in the statement are not isomorphic.

For tensors having distinct supports, this is a consequence of Proposition 29 below: indeed,
if T,T" are two of the tensors above, Proposition 29 shows that either dim g7 # dim g or
dim gpme 7# dim gps.

As for the tensors with support 7Ty, we proceed as follows. Let T' =Ty , and T" = Ty v
with p # /. We show that T is not isomorphic to 7. Suppose by contradiction that there
is a triple of 3 x 3 matrices g = (g4, 9B, 9c) € GL3 x GL3 x GL3 with g(T) = T’. One sees
that in each case, g4, 9B, gc have to be diagonal matrices, and an explicit calculation shows
that there is no triple of diagonal matrices such that g(T) = T". |

We point out that 7% is isomorphic to the Coppersmith-Winograd tensor Tcw,1, as well
as to the structure tensor of the algebra C[z]/(x3).

The tensors Teyw,2 and Tspewew,2 are degenerations of Ty ,,, respectively for u = 1 and
u = —1. In particular, they do not have an unextendable tight support in some basis.

» Proposition 29. Fori=1,...,9, the following table records dim g7, and dim g w-.

T dim ar dim g2
T 5 22
Ty 3 9
Ts ) 13
Ty 4 9
Ts 3 7
Ts 2 5
T 6 28
Te 1 2
T97_1 ) 10
Tg,u (for p #0,-1) 1 2

In summary
dim gyme > 2dim gr

for tight tensors in C? ® C3 @ C? with unextendable tight supports Ty, ..., Tr.
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Proof. ForT1,...,Tg and for the Ty _;, the proof follows by a direct calculation. The first part
of the file symmetryTightSupports.m2 at www.math.tamu.edu/~jml/CGLVkronsupp.html,
Appendix E computes the dimension of the symmetry algebras of interest in these cases.

The second part of the file deals with the case Ty, when p # —1. By tightness,
dim ng,# > 1.

Consider the linear map wr, , : gl(A)+gl(B)+gl(C) = A® B&C defined by (X,Y,Z) —
(X,Y,Z).Ty . Then gg, , = [ker(wr, ,)]/C?, where C? corresponds to ker d®.

The second part of the file symmetryTightSupports.m2 computes a matrix representation
of wr, ,, depending on a parameter p (t in the file). Let F, be this 27 x 27 matrix
representation. Then, it suffices to select a 24 x 24 submatrix whose determinant is a nonzero
univariate polynomial in p. If p is a value for which dim gr, , > 1, then p has to be a root
of this univariate polynomial.

In the example computed in the file, we select a 24 x 24 submatrix whose determinant is
( + 1)%u, showing that the only possible values of p for which dim 91,, > L are p=0or
u = —1. The case u© = —1 was considered separately. The case y = 0 does not correspond
to a unextendable support, so it is not of interest. We point out that however, wr, , = 24,
namely dim g, , = 1.

For ngi, we follow essentially the same argument. By tightness, and (10), we obtain
dim 9z > 2. The third part of symmetryTightSupports.m2 computes a matrix represen-
tation of the map Wz, depending on a parameter p: this is a 729 x 243 matrix of rank at
most 239.

In the example computed in the file, we select a 239 x 239 submatrix whose determinant
is the univariate polynomial 18(u + 1)'2. As before, we conclude. <

We also provide the values of the border rank of the tensors in C? ® C? ® C? having
unextendable tight support and numerical evidence for the values of border rank of their
Kronecker square. They are recorded in the following table. The values of the border rank
for the T;’s are straightforward to verify. The lower bounds for the Kronecker squares are
obtained via Koszul flattenings. In the cases labeled by N/A the upper bounds coincide with
the multiplicative upper bound; in the other cases, the upper bound is obtained via numerical
method, and the last column of the table records the /5 distance (in the given basis) between
the tensor obtained via the numerical approximation and the Kronecker square.

T R(T) R(T™2) ¢, error for upper bound in 7%? decomposition
T 3 9 N/A

T 4 [11,14] 0.000155951
T 4 [11,14] 0.00517612
Ty 4 14 0.0144842
T 4 [11,15] 0.0237172
s 4 [11,15] 0.00951205
T 3 9 N/A

T 4 [14,16] N/A

Ty 1 ) [16,19] 0.0231353
Tg’u (for p #0,—1) 4 [15, 16} N/A

7 Justification of the matrices

In this section, describe two ways of proving that the matrices appearing in the second
proof of Theorem 5 and the proof of Theorem 6 are as asserted, one of which is carried out
explicitly in the code at http://www.math.tamu.edu/~jml/CGLVkronsupp.html.
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The computational issue is that, although the sizes of the matrices are fixed, they are
obtained via intermediate matrices whose dimensions depend on g so one needs a way of
encoding such matrices and tensors efficiently. The first method of proof critically relies
on the definition of a class of tensors, which we call box parameterized, whose entries and
dimensions depend on a parameter g in a very structured way. In this proof one shows the
entries of the output matrices are low degree, say §, polynomials in ¢, and then by computing
the first § 4+ 1 cases directly, one has proven they are as asserted for all q. The second
method, which is implemented in the code, does not rely on the structure to prove anything,
but the structure allows an efficient coding of the tensors that significantly facilitates the
computation.

A k-way sequence of tensors T, € Al ® --- ® A} parametrized by ¢ € N is basic box
parameterized if it is of the form

Ty = p(Q)Z(il,...,ik)eéti17-~-,ikv

where {aq,s} is a basis of AL, t;,. ., = a14, @+ Q ak,, p is a polynomial, and the index
set ® is defined by conditions fjq+ h; <i; < gjq+d;, fj,9; € {0,1}, hj,d; € Z>o, for each
j, and any number of equalities i; = i), between indices.

We sometimes abuse notation and consider ® to be its set of indices or the set of equations
and inequalities defining the set of indices; no confusion should arise.

Tensor products of basic box parameterized tensors are basic box parameterized:

(pl(Q)Z(ih,,.,ik)E@ltilaw»ik) ® (p2(q)2(j1,.,,le)e(szilv--wjl)
= p1(q)p2(q)Z(il,...,ik,jh...,jl)e@l X o Uit syt 5eesdi

We next show that contraction of a basic box parameterized tensor is basic box parame-
terized when ¢ > max; ;j{|h; — hj|,|d; — d;|}, where i and j range over those indices related
by equality to the ones being contracted. To do this, we first show they are closed under
summing along a coordinate (with the same restriction on ¢), which we may take to be 4,
without loss of generality. (This corresponds to contracting with the vector >, a} ;. € (A{)*.)
That is, we wish to show

PO (i) b bizi

is basic box parameterized with the above restriction on ¢. For this consider two cases. First,
suppose there is a coordinate j # 1 so that i; = i; € ®. To construct the summed tensor,
adjoin to ® equalities 7; = ) for all k for which i; = i, € ®. Then, deleting ¢; from the
indices and replacing the bounds on i; with

max(f;q + hj, fig + h1) <i; <min(g;q + dj, 919 + d1)

yields the summed tensor. The max and the min can be replaced with one of their arguments
provided ¢ > max(|hy — hj|,|di — dj|), so the sum is basic box parameterized with our
restriction on g. Otherwise, suppose there is no coordinate so that i; = ¢; € ®. Then
the summed tensor is (g1q + d1 — f1g — hy + 1)p(q)2(i%.wik)eéti?“”)ik, which is basic box
parameterized.

Finally, to compute the contraction, say between indices i; and iy, adjoin i; = i}, as a
condition to ® and then sum over ¢; and then over i, using the previous technique.

Call a tensor bor parameterized if it is a finite sum of basic box parameterized tensors.
Clearly box parameterized tensors are closed under tensor products and contraction, possibly
with an easily computed restriction on q.
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Now, Tpy 4 € (CTTH®3 = A® B® C is clearly box parameterized as a 3-way tensor.
The tensors ¢o € A’ @ (A®?)* (where dimA’ = 3) and ¢3 € A’ ® (A®3)* (where dimA’ = 5)
defining the projection maps are box parameterized as 3-way and 4-way tensors, respectively.
The tensors KF, € (A’ ® B®? ® C®%)* @ ((4')* ® B®?) @ (A2A’ ® C®?%)) and KF, €
(A" ® B®3 @ C®3)* @ ((A2A")* @ B®3) @ (A3A’ @ C®3)) defining the Koszul flattenings are
also box parameterized, as they are the tensor product of tensors of fixed size with identity
tensors, which are basic box parameterized. From this, we see that the corresponding Koszul
flattenings are box parameterized, viewed in A”* ® B®2 ® A2A’ ® C®? as a 6-way tensor for
the square and A2A"" @ B®3 ® A3A’ ® C®3 as an 8-way tensor for the cube.

Finally, consider the change of basis map which block diagonalizes the flattening according
to Schur’s lemma. We explain the square case, the cube case is available in the Appendix.
This change of basis is the Kronecker product of the 3 x 3 identity with the Kronecker square
of the map represented by the following ¢ + 1 x ¢ + 1 matrix

1

-1 1

Let Ey denote the projection operator to the isotypic component of the trivial representation.
In bases, this corresponds to the first five rows of the matrix above. Let E; denote the
projection onto the standard representation, which corresponds to the sixth row. It is easy
to see that the first 6 columns of the inverse is the matrix

q—3
q—3
q—3
1 q—3
q-3 1 —(¢—4)
1 1
1 1

Write Fy for the inclusion of the trivial representation into the space in the original basis,
which is represented by the first five columns of this matrix, and F; for the inclusion of the
standard representation which is represented by the sixth column. Write V{ for the trivial
representation of &,_3 and V; for the standard representation. Then,

fvmy, = (Ida R E; R E;j) o (TS2 )47 o (Idp2 40 K F; K Fy).

cw,q

(These four maps were labeled fi,..., fy in §4.5.) Since E; and (¢ — 3)F; are clearly box
parametrized, it follows that (¢ — 3)2 fy, xv; is box parametrized. A similar argument shows
that the cube (¢ — 3) fy,gv,mv, is box parameterized.

At this point the first method shows the entries of the matrices are low degree polynomials
in g so one can conclude by checking the first few cases.
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The fact that all tensors involved are basic box parameterized guided us how to encode

these maps efficiently so that they could be computed by direct calculation, which provides
the second method and is described in Appendix D.
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