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The polar regions in a 2°C warmer world
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Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic tem-
peratures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may
reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences
of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human
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livelihoods, increased methane emissions, and extreme weather at lower latitudes. With low biodiversity, Antarctic
ecosystems may be vulnerable to state shifts and species invasions. Land ice loss in both regions will contribute
substantially to global sea level rise, with up to 3 m rise possible if certain thresholds are crossed. Mitigation
efforts can slow or reduce warming, but without them northern high latitude warming may accelerate in the next
two to four decades. International cooperation will be crucial to foreseeing and adapting to expected changes.

INTRODUCTION
Earth has warmed by approximately 0.8°C since the late 19th century,
while the Arctic has warmed by 2° to 3°C over the same period
(Fig. 1A) (1). Conversely, the Antarctic has experienced more pro-
nounced interannual and decadal variation in mean annual tempera-
ture anomalies than the Arctic, with no obvious upward trend in the
last two decades (Fig. 1A). Spatially, observed warming has been
markedly heterogeneous in both regions during the more recent in-
strumental satellite record (since 1986), with both warming and
spatial variability in warming having increased more for the Arctic
than the Antarctic over the past 13 years (Fig. 1B) (2, 3). Therefore,
despite similarities in defining characteristics such as pronounced
seasonality and the year-round presence of ice and snow, these
two regions may face different futures in response to ongoing
warming.

Having arrived at the 10th anniversary of the Fourth International
Polar Year (IPY), a milestone that intensified focus on observed and
expected changes in the polar regions, we review key environmental
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and ecological impacts of warming over the past decade. We also
review ancillary effects of polar warming at lower latitudes, for which
evidence has mounted recently. Over the past decade alone, the
Arctic has warmed by 0.75°C relative to the mean for 1951-1980,
while the Antarctic has remained comparatively stable (2009-present;
Fig. 1A). Our emphasis is on consideration of consequences for atmo-
spheric, cryospheric, and biospheric changes in the polar regions, as
Earth continues to approach 2°C global mean warming (Table 1).
Hence, we first consider the expected magnitude and pace of warm-
ing in the Arctic and Antarctic under two carbon emissions futures:
Representative Concentration Pathway (RCP) 8.5 and RCP4.5 sce-
narios. We then outline potential consequences of such warming on
the basis of recent observed changes in both regions. While our ret-
rospective assessments of warming to date (Fig. 1) refer to temperature
anomalies relative to the period covered by the instrumental record
(1880-2018) (2) and a baseline mean period (1951-1980), our projec-
tions of expected warming are presented relative to the Intergovern-
mental Panel on Climate Change (IPCC) standard baseline period
(1981-2005) (4).

The most recent generation of general circulation models in the
Coupled Model Intercomparison Project Phase 5 (CMIP5) indicates
that the Arctic is expected to continue to warm much more rapidly
than lower latitudes, even under the moderate carbon mitigation
trajectory characterized by the RCP4.5 scenario. The Arctic is expected
to achieve an additional 2°C annual mean warming above the 1981-
2005 baseline approximately 25 to 50 years before the globe as a whole
under the business-as-usual (RCP8.5) and moderate mitigation
(RCP4.5) scenarios, respectively (Fig. 2, A and B). The Antarctic, in
contrast, is expected to lag slightly a 2°C global mean warming under
the business-as-usual scenario (Fig. 2C) but reach 2°C annual mean
warming slightly earlier than the globe under the moderate mitiga-
tion scenario (Fig. 2D). Under both scenarios, Antarctic warming is
expected to outpace global mean warming only during austral late
autumn and winter months (Fig. 2, Cand D).

The Arctic may experience as much as 4°C mean annual warming
and 7°C warming in late boreal autumn, when a 2°C global mean
warming above the 1981-2005 mean is reached, regardless of which
RCP scenario is considered (Fig. 3, solid circles) (I). Particularly
notable is the 13°C Arctic warming projected for boreal late autumn
months by the end of the 21st century under a business-as-usual
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Fig. 1. Temperature trends and variability for the Arctic and Antarctic regions. (A) Annual mean anomalies of the combined Land-Ocean Temperature
Index (L-OTI) for the Arctic (64°N to 90°N), Antarctic (64°S to 90°S), and globe between 1880 and 2018 (zonal data bins defined by data acquired at https://data.
giss.nasa.gov relative to the mean period 1951-1980). Temperature anomalies for the Arctic during each of the four IPYs, the first of which was based in
the Arctic, are highlighted in purple. (B) Annual [January to December (J-D)] mean temperature change (°C) in the Northern (left) and Southern (right)
hemispheres for 1986-2005 (upper) and 1986-2018 (lower) relative to the mean period of 1951-1980. Generated from the NASA/Goddard Institute
for Space Studies (GISS) online plotting tool (2); the GISS analysis is based on updated Global Historical Climatology Network v3/SCAR (2, 3) and updates to

Analysis (v3).

scenario (RCP8.5) (1). Annual mean warming in the Antarctic is
expected to reach approximately 2°C under both scenarios, with
slightly greater warming possible under RCP8.5 during the austral
autumn and early winter (Fig. 3, open circles). Hence, mitigation of
carbon emissions with a target of constraining global annual mean
warming to 2°C may not constrain the annual mean warming in the
Arctic or Antarctic to below 2°C. However, mitigation of carbon
emissions can delay the crossing of the 2°C annual mean warming
threshold for the Arctic, as suggested by the difference in time to
annual mean 2°C warming between the RCP4.5 and RCP8.5 scenarios
in Fig. 2.

Recognizing the urgency of the magnitude and pace of ongoing
and expected future warming in the polar regions, we present
below a series of eight urgent considerations spurred by develop-
ments over the past decade. These are followed by a brief, con-
cluding overview of international agreements in the Arctic and
Antarctic as exemplars for cooperative scientific and political en-
gagement that is likely necessary for addressing the complexities
of expected climate-related changes in the polar regions. Our ob-
jectives are to catalyze consideration of potential consequences
of a 2°C warmer world for the polar regions and to thereby inform
policy considerations of these consequences. A key emergent fea-
ture of this synthesis is that direct comparisons of ongoing and
expected changes in the Arctic and Antarctic are rendered difficult
by the relative inaccessibility and data scarcity of the Antarctic
compared to the Arctic. This disparity is especially evident in our
capacity to anticipate expected changes to terrestrial ecosystems
in the Antarctic. We stress that this synthesis is not intended as
a comprehensive review of recent and growing emphases in polar
research, some notable examples of which include arctic ozone
dynamics (5, 6), Southern Ocean heat uptake from the atmosphere
(7), and associations between Southern Ocean warming and ice sheet
dynamics on land (8).
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HOW RAPIDLY IS ARCTIC SEA ICE DIMINISHING, AND WHAT ARE
LIKELY TO BE THE MOST PRESSING ECOLOGICAL
CONSEQUENCES OF CONTINUED SEA-ICE LOSS?

One of the major potential consequences of rapid and pronounced
arctic warming is the development of an ice-free summer Arctic Ocean
(9), which will have large-scale environmental consequences that
reach beyond the northern high latitudes. During the past four decades
of consistent satellite observations, Arctic sea-ice cover has undergone
significant reductions in extent (10), the proportion of perennial versus
first-year ice, the age of that perennial ice (11), and thickness (12) as
well as shifts toward an earlier onset of spring snow melt on sea ice
across much of the Arctic (13). Recent reconstructions of sea ice
back to 1850 using historical observations (ship reports, airplane
surveys, historical ice charts, and whaling log reports) (14) show
that contemporary sea-ice loss is unprecedented in the record period
(Fig. 4). In contrast, Antarctic sea-ice extent increased slightly be-
tween 1978 and 2015 (15), although record or near-record minima
were observed in the austral autumns of 2017 and 2018 (16).

Arctic sea-ice loss encompasses all calendar months, with the largest
trends in late summer and the smallest in winter. Yet, while the
largest rates of decline still occur during September (~—83,000 km*/year
from 1979 to 2018 or — 12.9% per decade relative to the 1981-2010 mean),
every month has displayed a negative linear trend for the past 40 years,
and May and November 2016 were the most anomalous months
recorded, falling nearly 4 SDs below the 1981-2010 mean (17).

Successive record minimum arctic sea-ice extents have occurred
in the past decade (10, 18). While external forcing from increasing
concentrations of CO, plays a dominant role in the long-term decline
and thinning of sea ice (19, 20), several feedback processes and internal
climate variability have contributed to persistence of recent low
summer extents. Record minima in 2007 and 2012 are clear exam-
ples of extreme events in which atmospheric circulation patterns
during summer played a substantial role (21, 22). An ice-free summer
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Table 1. Summary of key concerns or vulnerabilities to atmospheric,
cyrospheric, and biospheric components of the Arctic and Antarctic
highlighted by recent developments in polar research.

System component Key concerns or vulnerabilities

More rapid mean annual warming
to 2°C above baseline in both
polar regions compared to the

globe as a whole

Winter warming up to 7°C in the
Arctic and 3°C in the Antarctic
with 2°C global mean warming

Potential for more extreme
weather at lower latitudes,
including drought and heat waves

Atmosphere

Possible acceleration of arctic
sea-ice decline

Ocean during summer within the
next few decades

Cryosphere

Rapid loss of land ice from the
Greenland Ice Sheet and Thwaites
Glacier contributing to global sea

level rise

Sea-ice decline contributing to
loss of habitat for ice-dependent
marine mammals

Altered timing of seasonal species
interactions

Warming-related species’range
shifts and invasions

Gradual or sudden declines i
populations of large herbivores
and reciprocal effects on tundra

vegetation diversity and
productivity

Biosphere

Pronounced increase in methane
emissions

Threats to maintenance of
traditional livelihoods of
indigenous people of the north

Arctic Ocean may be realized within a few decades, as the pace
of observed ice loss has exceeded some model projections under
both RCP8.5 and RCP4.5 scenarios (I). The linear relationship be-
tween observed September sea-ice extent and climate models with
increased cumulative atmospheric CO, (19) suggests that ice extent
will drop below 1 million km*” with an additional 800 Gt of CO, (17).
At current emission rates of 35 to 40 Gt year ", this will occur within
the next 20 to 25 years.

Research addressing impacts of ongoing and accelerating arctic
sea-ice loss on sea-ice-dependent marine organisms (23), as well as
for components of adjacent terrestrial systems, has seen increasing
focus in the past decade (24, 25). Among the clearest examples of these
impacts are those extending across the arctic marine food web from
shifts in the timing of algal blooms (26) and increases in Arctic Ocean
primary productivity, which cascades to zooplankton and vertebrates
(23,27, 28). Loss of sea ice broadly affects arctic marine mammal
(AMM) movements, feeding, and life history events (29, 30). In turn,
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Fig. 2. Approximate year by which the 2°C warming threshold is reached for
the Arctic and Antarctic compared to the globe as a whole. Expected time to
2°C warming above the 1981-2005 mean under RCP8.5 (red) and RCP4.5 (blue) for
the globe (open circles) compared to the Arctic [solid circles; (A and B)] and Antarctic
[solid circles; (C and D)]. Means of 36 CMIP5 ensemble runs by Overland et al. (1) are
shown. In (B) and (D), symbols positioned at year 2100 indicate that 2°C warming
could be at 2100 or later.

these impacts cascade to human communities that rely on AMMs
for nutritional, cultural, and economic reasons.

For polar bears (Ursus maritimus), current and projected loss of
optimal habitat (31) has been associated with reduced on-ice foraging
and longer periods on land (32, 33). Recent work on ice habitat loss
indicates demographic and physiological consequences for polar bears,
such as reduced survival or abundance (34), increased energetic de-
mands of travel over less stable sea ice or open water (35, 36), and
nutritional stress from summertime fasting (37). Recent sea-ice loss
has also affected ice-dependent pinnipeds, with large land-based
haul-outs of Pacific walrus (Odobenus rosmarus divergens) in the
absence of summer sea ice, resulting in trampling deaths (38).

Shifts toward earlier timing of spring sea-ice breakup have also
driven increased mortality among harp (Pagophilus groenlandicus)
and ringed (Pusa hispida) seal pups (39, 40). In addition, phytoplankton
blooms have shifted earlier in the year in areas of the Arctic Ocean
where the timing of sea-ice melt has advanced (41). In some areas,
cetaceans have experienced what are likely short-term benefits due to
increased primary and secondary production, such as increased body
condition in bowhead whales (Balaena mysticetus) (42), and range
expansion opening previously unavailable habitat for bowheads and
sub-Arctic whales (43, 44). Broadly, sea-ice loss is expected to affect
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species assemblages and interactions in the Arctic, with an influx of
sub-Arctic species and the potential for increased competition with
endemic Arctic species (45).

Crucially, a recent circumpolar review of AMM population status
identified large data gaps on population structure, abundance, and
population trend (29). However, stabilization and reduction of atmo-
spheric greenhouse gas concentrations have emerged as the most
important conservation actions for AMMs. Throughout their range,
most AMM stocks and populations are subject to subsistence harvest
by Native people in the Arctic (29), so declines in AMM popula-
tions will likely affect these human populations. And even under
intermediate RCP4.5 and RCP6.0 scenarios, large-scale impacts to
ice-dependent AMMs are virtually certain; specifically, reductions
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Fig. 3. Greater warming likely in the Arctic and Antarctic with 2°C global warming.
Expected magnitude of monthly and mean annual warming above the 1981-2005
mean in the Arctic (solid circles) and Antarctic (open circles) with 2°C global warming
under RCP8.5 (red) and RCP4.5 (blue) according to 36 CMIP5 ensemble runs by
Overland etal. (7).

in abundance coupled with range shifts and impacts to life history.
Furthermore, expected increases in human activity in marine and
coastal zones in an ice-free Arctic in summer, such as offshore oil
and gas drilling or trans-Arctic shipping, are likely to result in cumu-
lative negative impacts on AMM:s (46-48). Improved monitoring,
especially for data-deficient species such as Atlantic and Pacific walrus,
will be important for improving AMM population status updates
critical for ongoing development of adaptive management and con-
servation policy.

HOW WILL ARCTIC WARMING AFFECT WEATHER

AT LOWER LATITUDES?

Environmental consequences of continued Arctic warming are un-
likely to be limited to the northern high latitudes. The past decade
has witnessed an increase in the occurrence of unusually hot summers
in Europe and the most extreme heat wave on record: the 2010 Russian
heat wave in which 55,000 heat-related deaths were estimated (49).
Although large uncertainties remain, recent developments in atmo-
spheric science indicate that anthropogenic warming (50), and in
particular Arctic amplification of warming associated with sea-ice
loss (49), may increase the probability of occurrence of Northern
Hemisphere mid-latitude summer weather extremes. Weaker poleward
summer temperature gradients resulting from Arctic amplification
of warming leads, e.g., to a weaker jet stream (51), while amplification
of planetary (“Rossby”) waves through the process of quasi-resonant
amplification (QRA) is likely leading to a more meandering jet stream
(52). Together, these factors are ostensibly contributing to an in-
crease in persistent mid-latitude summer weather extremes—i.e.,
historic droughts, floods, and heat waves—in recent years, highlighted
by the unprecedented weather extremes of summer 2018. Arctic
warming also likely affects mid-latitude winter weather patterns.
Although still debated (53), there is growing evidence (54-56) that
Arctic amplification of warming in winter may be weakening the
winter jet stream and the polar vortex, potentially increasing the
frequency of continental cold-air winter outbreaks such as those

Sea-ice extent anomaly
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July
August
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T
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Fig. 4. Declining Northern Hemisphere sea-ice extent. Northern Hemisphere monthly sea-ice extent anomalies (relative to 1981-2010) from 1850 to 2018 updated

after the Walsh et al. (14) dataset. Image credit: A. Barrett.
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seen during the winter of 2018/2019. These high-latitude impacts
are in addition to other (e.g., tropical) impacts on mid-latitude
weather dynamics.

An increase in occurrence of QRA during the satellite era (1979-
2011) coincides with a measure of Arctic amplification of warming
(52). Most recently (57), a specific observational-based fingerprint
was developed for QRA conditions based on anomalous zonal-mean
surface temperature profiles. Examination of the trend in this finger-
print in both long-term historical observations and the CMIP5 climate
historical model simulations revealed consistent evidence for an in-
crease in QRA conditions tied to anthropogenic warming. These QRA
events are expected to become more frequent with continued Arctic
warming (58).

The California drought of 2011-2017 has also recently been linked
to changing arctic conditions (59). A continued decline in Arctic
sea-ice extent, and the associated increase in Arctic sea surface tem-
peratures, could affect the Northern Hemisphere jet stream in such
a way as to direct winter storms north of California, leading to de-
creased snowpack and rainfall and exacerbated drought conditions
(60). Moreover, recent modeling (61) has strengthened the proposed
link between anthropogenic climate change and the type of high-
pressure “ridging” pattern that is responsible for the poleward diver-
sion of storm tracks over the western United States.

WHAT ARE THE CONSEQUENCES OF CONTINUED POLAR
WARMING FORLAND ICE LOSS AND SEA LEVEL RISE?

Additional lower-latitude environmental consequences of high-latitude
warming relate to expected continued loss of land ice and resultant
sea level rise. The most recent IPCC end of the 21st-century projection
is approximately 0.5-m global sea level rise even under mitigation
scenario RCP4.5 (62). The rise is attributable mostly to thermal
expansion of ocean water and melting mountain glaciers, with
smaller contributions from increasing ice sheet flow and meltwater
runoff of the Greenland Ice Sheet (GIS), West Antarctic Ice Sheet
(WAIS), and East Antarctic Ice Sheet (EAIS). Semiempirical models
suggest an approximately 70% greater projected rise in sea level
(62). The IPCC-projected contributions from ice sheets have in-
creased since 2001, with some other assessments giving still higher
ranges (63), and the process-based IPCC projections of future
warming show accelerating ice mass loss (64). Hence, stronger
warming, such as that projected under RCP8.5, is likely to cause
an even larger sea level rise.

Warming above a “survival” threshold, previously estimated as
approximately 1° to 4°C above preindustrial, may cause loss of most
of the GIS over the following centuries or longer (62). Related model-
ing experiments reveal that seasonal sea-ice loss increases ice sheet
mass loss and lowers the ice sheet survival threshold (65). However,
GIS melting may slow the Atlantic meridional overturning circula-
tion (66), perhaps helping to cool and stabilize the GIS. Past (67) and
ongoing (68) warming has driven rapid GIS retreat along deep fjords.
At least some of the past fjord retreats were triggered by ice-shelf
thinning and loss and proceeded by iceberg calving from tidewater
(nonfloating) cliffs (68). Recent increased physical understanding
of tidewater calving processes suggests that the GIS is at least some-
what more sensitive to warming than modeled (69). Notably, recent
work indicates that the GIS experienced one or more extensive and
persistent deglaciations within the last ~1.2 million years when paleo-
climatic records show only slightly warmer conditions than observed
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recently (70). This recent research suggests great GIS sensitivity to
warming.

In contrast to the GIS, major mass loss over the coming decades
from surface runoff is not expected for Antarctica under RCP4.5 or
greater emissions (62). However, ongoing mass loss was recently
triggered when warmer ocean waters thinned ice shelves, reducing
their buttressing effect, allowing for faster flow of nonfloating ice
into the ocean [reviewed in (71)]. Sufficient warming to trigger GIS-
type ice-shelf loss and tidewater-calving retreat could contribute
substantially to sea level rise in the next ~100 years especially from
WALIS, even if iceberg calving is limited to rates already exceeded
locally in GIS, owing to the much wider WAIS calving front that
could develop (72, 73). In addition, because WAIS could produce
higher cliffs with less drag from fjord sides than in the GIS, and thus
greater stress imbalances driving calving, even faster sea level rise is
possible (71).

Within the WAIS, Thwaites Glacier has undergone notably rapid
ice loss and appears particularly vulnerable to accelerated ice loss
with increased ice-shelf basal melt. In a recent comparison of two
simplified model scenarios representing “constant climate” and
“warming climate,” Thwaites Glacier collapsed in 80% of constant
climate experiments and in 100% of warming climate experiments
(74). Collapse of Thwaites Glacier and other Antarctic sources could
contribute more than 3 m to global sea level rise over a time span
that is poorly characterized but could be less than a century follow-
ing initiation if ice-shelf loss and cliff retreat become important
(72, 75). Further warming could extend these processes into marine
basins of EAIS, potentially adding an additional 12 m or more of sea
level rise further in the future (72). Geoengineering solutions have
been proposed (76), but grave difficulties remain.

Recent work (77, 78) suggests that past ice sheet fluctuations can
be modeled without invoking ice-shelf loss and subsequent cliff failure,
favoring models that give smaller or slower sea level rise than cal-
culated by some studies (72), but essentially all ice that flows into
the ocean ends in calving cliffs. Ice-shelf loss has been observed in
several cases with subsequent flow acceleration (75), so models lack-
ing cliff physics are omitting known processes that are critical to ice
loss. Uncertainties are very large on many aspects of this topic, in-
cluding poor knowledge of the threshold warming of ocean or atmo-
sphere needed to trigger major ice-shelf loss for vulnerable drainages.
Large, rapid sea level rise under strong warming thus remains possible
but unproven.

HOW WILL BIOLOGICAL SEASONALITY, AND THE TIMING

OF SPECIES INTERACTIONS, RESPOND TO CONTINUED WARMING?
Phenological responses to climate change have been most pronounced
at northern high latitudes, and recent work shows that shifts in phenol-
ogy are even more extreme than previously expected, likely because
of a nonlinear increase in warming with latitude (79). Across the
Arctic, recent phenological shifts in plants have resulted in longer
growing seasons and shorter flowering seasons (80, 81). Recent meta-
analyses have also revealed greater sensitivity of leaf emergence and
flowering phenology to warming at colder than at warmer sites across
the Arctic (82), suggesting a potential for phenological homogenization
across large spatial extents. Plant landscape-scale and community-
level phenological responses have consequences for higher trophic
levels, and change in synchrony among interacting species has seen
increasing focus over the past decade, especially in the context of negative
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consequences for consumer species of phenological mismatch with
resource species (83). For example, shorter flowering seasons have
recently been associated with declines in flies, a major group of arctic
pollinators (Fig. 5) (84). In another recent example, rates of chick
growth slowed in some high-arctic breeding shorebirds that experienced
reduced synchrony between chick hatching and the timing of peak
availability of forage insects (85).

In contrast, some species may benefit from earlier onset of the
annual plant growing season. Muskoxen (Ovibos moschatus), which
typically produce offspring before the onset of spring green-up,
may experience increasing trophic match as green-up timing advances
(86, 87). In northeast Greenland, increasing abundance of muskoxen
has been associated with a longer plant growing season related to
summer warming (88). In west Greenland, where the length of the
plant growing season has also increased (89), muskox abundance
has increased nearly steadily since 2002 (87). The degree to which
these phenological responses reflect adaptation to changing environ-
mental conditions or phenological plasticity is unclear, but threshold
responses of phenology to climate suggest that limits to plasticity are
becoming apparent (90).

HOW WILL CONTINUED ARCTIC WARMING AFFECT

TUNDRA HERBIVORES, ESPECIALLY SPECIES

OF SOCIOECONOMIC IMPORTANCE?

In arctic systems, large herbivores, particularly caribou/reindeer
(both Rangifer tarandus), integrate critical cultural, socioeconomic,
and resource value with pronounced capacity to influence ecosystem
dynamics. These reasons warrant improved understanding of the
effects of continued warming on tundra herbivores, as well as of
reciprocal feedbacks between herbivores and ecosystem structure
and function in the Arctic. Multiple recent studies indicate that her-
bivores can mediate responses to warming of key ecosystem prop-
erties, affecting carbon uptake (91, 92), landscape-scale vegetation
cycles (93), surface albedo (94), and plant diversity (95, 96). Recip-

Pollinator abundance (year t)

Days of overlap (year t - 1)

Fig. 5. Reduced pollinator abundance following shorter overlap with flower-
ing duration. Association between current-year pollinator abundance and the
number of days of overlap between pollinator presence and community-wide
flowering during the previous year at Zackenberg, Greenland (1996-2009). White
symbols denote muscid fly abundance, and gray symbols denote chironomid fly
abundance. Modified from Haye et al. (84). Background photo of syrphid fly (Diptera)
on dwarf fireweed (Chamerion latifolium) in Greenland. Photo credit: C. Urbanowicz.
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rocally, declines in North American caribou populations have re-
cently been linked to changes in tundra shrub cover associated with
declining sea-ice extent (97).

In some arctic plant communities, the stature of tundra vegetation
has increased with warming (98). However, in some cases, arctic
herbivores hinder plants from growing taller and thus prevent the
competitive exclusion of low-growing plants (96). This can result in
a positive effect of warming on species richness in the presence of
herbivores but a negative effect in the absence of herbivores (96).
Herbivores are thus important in preserving biodiversity in a warming
Arctic, and this role will likely become more important with addi-
tional warming (95).

The region extending from northern Fennoscandia through West
Siberia, the world’s major semidomesticated reindeer herding region,
has received increasing focus over the past decade on research into
consequences of climatic warming and associated extreme weather
(99, 100). On the Yamal Peninsula, where reindeer abundance totals
approximately 340,000 animals managed by 6000 fully nomadic in-
digenous Nenets herders (101), summer warming has been associated
with increasing deciduous shrub growth (99, 102). In the same region,
winter warming and stronger and more extensive rain-on-snow events
have led to ice-encrusted rangelands and catastrophic mass starvation
of reindeer (100). The region’s largest recorded reindeer mortality
episode occurred in 2013-2014, when an estimated 61,000 animals
died in the Yamal Peninsula alone (Fig. 6) (100). Nonetheless, some
recent work indicates that rain-on-snow events may not be a ubiquitous
factor in dynamics of Rangifer populations across their distribution
(103). On Svalbard, where rain-on-snow events also occur, reindeer
in separate populations have increased in abundance over the past
several decades (104, 105). Hence, single-population responses to
extreme events may not inform genus- or species-level responses to
long-term climatic trends (87, 103).

Research during the past decade has also indicated that Yamal
Nenets herders are concerned about their ability to mutually coexist
with rapidly expanding natural gas development on their ancient

F

| S

Fig. 6. Extensive reindeer mortality in West Siberia. Semidomesticated rein-
deer belonging to Nenets herders frozen in position from the most extensive and
severe rain-on-snow event on record for Yamal Peninsula, West Siberia, in which
atleast 61,000 animals died of starvation during winters of 2013-2014. Photo credit:
R. Serotetto.
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tundra reindeer rangelands (106). Catastrophic herd mortality during
the winters of 2006-2007 and 2013-2014 added another element to
the suite of risks that tundra nomads face during their annual migra-
tions. If cyclic synoptic weather patterns have indeed shifted in re-
sponse to regional warming, then these will have implications for
long-distance migration of large reindeer herds in the context of
rapidly expanding natural gas extraction.

WILL ANTARCTIC ECOSYSTEMS BE VULNERABLE TO INVASIONS
OR STATE SHIFTS UNDER WARMING?

In the five decades following the International Geophysical Year
(1957-1958), Antarctica has warmed in excess of 0.1°C per decade
(107). However, long-term terrestrial ecosystem research in Antarctica
did not begin until the early 1990s. Hence, we have a limited record
of contemporary Antarctic ecosystem response to climate change.
Recently, increasing focus on Antarctica’s McMurdo dry valleys
(MDVs) ecosystem has emphasized its responsiveness to changes in
physical boundary conditions and linked internal states of its com-
ponents (Fig. 7). During a decadal cooling period (1987-2000), the
MDYV experienced reduced glacial meltwater streamflow generation,
thickening ice covers, lowering lake levels, and drier soils (108). The
associated biological communities responded with decreasing popu-
lations of soil invertebrates, declining stream biomass, and reduced
lake primary productivity (109). This decadal cooling pattern ended
in 2002 with an austral summer of high solar radiation and warm
temperatures, increasing glacial melt and hydrological connectivity
between soils, streams, and lakes. The following decade showed no
discernible pattern in summer air temperatures or solar radiation
(108). Over this decade, the ecosystem showed a prolonged response
to the “flood year” of 2002, with increased stream flows, thinning
lake ice, increased lake levels, increased stream and lake productivity,
and increased populations of soil invertebrates. These decade-long
responses in varying directions and magnitudes to marked pulse
events may be representative of potential future state shifts resulting
from rapid or abrupt changes in climate.

The future biodiversity and functioning of Antarctic terrestrial
and freshwater ecosystems are closely coupled to the climatic changes
expected to occur in Antarctica. The retreat of ice associated with
near-future warming will expose previously unavailable habitats
(110) that can be colonized by local, and potentially by invasive,
species (111, 112). Some penguin species have already begun to
move to previously unused breeding grounds in response to changes
along the Antarctic Peninsula (113), and future warming may drive
additional range shifts of penguins in the Southern Ocean (114).
Recent work also emphasizes that the Southern Ocean may serve
as a conduit for, rather than barrier to, biological invasions of
Antarctica under future warming (115), with notable implications
for infectious disease introductions (116). The MDYV region, in
particular, is expected to warm substantially in the coming decades
(117). Under prolonged warming, there may likely be consistent en-
hanced physical connectivity across the MDYV landscape (i.e., Fig. 7C),
one potential outcome of which is the spatial homogenization of
communities and resource status among landscape units. Antarctica,
with its low-biodiversity ecosystems and physical systems responsive
to small changes in the energy budget, may be one of the best places
to untangle the complex biological and physical interactions that
will determine high-latitude ecosystem function under future climate
change (108, 118).
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Fig. 7. Contrasting patterns of connectivity among components of an Antarctic
ecosystem. Controls on (A) the McMurdo dry valleys of Antarctica during (B) an
austral summer of low surface energy input (solar radiation, conduction from air
temperatures, etc.) and during (C) an austral summer of high surface energy input
to the landscape. These physical changes to the system have direct implications for
biological communities in each part of the ecosystem. Image credit: E. Parrish.

HOW WILL METHANE FLUXES RESPOND

TO PERMAFROST THAWING?

Methane (CHy4) has approximately 30x the heat-trapping capacity
of CO,, and globally, terrestrial wetlands are the largest single source
of atmospheric CHy, with current annual emissions estimated at
140 to 280 Tg CH,4 year_1 (119). Moreover, northern wetlands store
more than 50% of global soil organic carbon due to slow organic
carbon decomposition rates resulting from wet surface conditions
and low temperatures (120).

Future climatic warming at high latitudes could substantially in-
crease net CH, emissions from wetlands and permafrost degrada-
tion, serving as a positive feedback to warming of the global climate
system (121). Similarly, increased net primary production, vascular
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plant species composition, and soil water content could enhance
methanogenesis (the microbial basis of wetland methane production)
and thereby CH,4 emissions (122). One of the largest uncertainties
in wetland CHy estimates is how wetland extent or total inundated
area will change with future warming (123). One recent study indi-
cates that under business-as-usual emissions, total wetland area in-
creases by 13%, and global CH, emissions nearly double relative to
current levels (124). For high-latitude wetlands, higher temperatures,
winter thawing, and a consequent increase in soil moisture content
are expected to be the primary drivers of elevated emissions (124, 125).

Emission scenarios span changes between a modest increase of
10 Tg CHy yearf1 to more than 50 Tg CH,4 year’1 for far northern
natural terrestrial methane emissions through the year 2080 with a
2°C global temperature increase (126, 127). Although increases in
methane emissions in excess of 50 Tg CH, year ' represent extreme
scenarios, these projections do not consider possible abrupt changes
or accelerating trends with future warming. Given the potential for
decomposition of large stocks of organic soil carbon, these changes
could be an important factor in the future. In addition to these un-
certainties, many processes not well represented in current models,
including hydrology, lake dynamics, and permafrost dynamics, are
likely to affect future arctic methane emissions and deserve in-
creased focus (128).

HOW WILL CONTINUED ARCTIC WARMING AFFECT TUNDRA
PRIMARY PRODUCTIVITY?

Improved focus on understanding heterogeneity in and drivers of
tundra vegetation productivity and responses to expected warming
will be critical to resolving questions of net ecosystem carbon stor-
age and release as the Arctic warms (129). While early, coarse-scale
satellite evidence inferred widespread tundra greening (130), recent
disparities between positive and negative trends in tundra produc-
tivity across arctic sites have been detected (131). Although produc-
tivity responses of deciduous shrubs to warming have been greatest
in wet and warm arctic sites (132, 133), a recent gradual loss of tem-
perature signal in remotely sensed productivity at the pan-Arctic
level (134) and in site-based plots (135) coincides with a deceleration
to the initial greening trends (131). Despite this, the area of tundra
that has greened over the satellite era is 20 times the area that has
browned (136). Because site-based terrestrial Arctic research is spa-
tially clustered, a few key locations account for a disproportionate
amount of local evidence, biasing the study of mechanisms behind
Arctic vegetation trends (137, 138). We thus advise inclusion of in-
formation from a greater variety of sites across the Arctic.

The study of drivers other than temperature of tundra vegetation
dynamics has recently been reinvigorated. Recent warming has be-
gun to relax strong thermal limitation on terrestrial primary pro-
ductivity in the Arctic, shifting its control to additional factors such
as moisture or nutrient limitation (139, 140). Recent attention has
also shifted to cold-season controls, extreme events (141), snow depth
(142), and the indirect influence of sea-ice decline through local and
regional weather and climate (24, 25). The compound local/regional
effects of many such abiotic drivers will likely continue to result in
the emergence of browning signals (143). Understanding tundra
productivity responses to future climate change should be improved
through the maintenance of long-term ecological monitoring and
manipulation sites; expansion of site-based studies to the widest
possible range of habitats within the Arctic; and increasing the spatial,
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temporal, and spectral resolutions in remote sensing [e.g., (144)],
with a focus on addressing sensor disagreement through calibration/
ground truthing across scales (145, 146).

Considerations of scale will similarly improve predictions and help
resolve seemingly contradictory responses to warming between tundra
productivity and plant phenology. While plot-scale data indicate
greater phenological sensitivity to warming at higher-latitude sites
(79, 82), satellite and plot-scale measures of green-up show little to
no advance in the faster warming high Arctic (132, 147). To what
extent these contradictions are scale-dependent ecological patterns
or artifacts of mismatches in methodologies and precision remains
unclear (136). New sources of data—from ground (148), drone (149),
and satellite-based sensors—offer opportunities to address these
uncertainties. The research potential of these emerging approaches
will be maximized by careful integration with, rather than replacement
of, existing monitoring strategies.

Anticipating near-term changes: The importance

of international agreements and cooperation

Ongoing and possible future atmospheric, cryospheric, and biospheric
changes such as those reviewed here in response to expected warming
in the polar regions cannot be addressed effectively by any single
nation in isolation. Similarly, the challenges that will inevitably arise
from increasing access to the polar regions and global pressure for
resources cannot be managed unilaterally. Existing monitoring pro-
grams, such as the U.S. Arctic Observing Network and the British
Antarctic Survey, are comparatively well developed in the polar regions.
Maintaining and expanding these efforts will provide considerable
value in scenario planning and policy development in anticipation
of ongoing climate change and associated impacts (150). Despite
uncertainties concerning precise mechanisms linking large-scale
abiotic and ecological dynamics in, e.g., the Arctic, calls have already
arisen for multinational cooperation and policy shifts in anticipa-
tion of further changes (25, 48, 151). Existing multinational agree-
ments provide encouraging exemplars of the nature of engagement
and cooperation likely necessary for mitigation and adaptation as
Earth inches toward 2°C mean warming.

The Antarctic Treaty, for instance, was drafted following the Third
IPY by 12 nations participating in research in the region, and its signa-
tories have since grown to 53 nations. At the time of its formalization
in 1961, the treaty was a hallmark of geopolitical peace agreements
and scientific foresight, openness, and cooperation. However, increas-
ing risks of intrusion by private vessels, and pressure to exploit Ant-
arctic fisheries and mineral resources, have led to calls for changes to
the processes by which the treaty might undergo modification (152).
Although one recent analysis reported that most topics discussed
during annual Antarctic Treaty Consultative Meetings (ATCM) be-
tween 1998 and 2011 focused on protected areas, environmental
issues, and tourism, it also found that a small subset of the treaty’s
signatories exert the greatest influence on the ATCM agenda (153).

The Arctic is experiencing an increase in shipping, tourism, and
natural resource extraction facilitated by easier access and propelled
by global demand (48, 154). Interest in shorter routes and reduced
transit times over the next few decades (151) has prompted invest-
ment in infrastructure and international partnerships (154). These
developments have prompted reviews of existing agreements and
research partnerships in the Arctic to assess their adequacy in light of
changing conditions. No comprehensive agreement like the Antarctic
Treaty covers the Arctic. However, several relevant treaties, agreements,
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and collaborations are in place. Three recent examples of increased
international cooperation include (i) Arctic Science Ministerial
meetings in Washington, D.C. (in 2016) and in Berlin, Germany (in
2018), with 26 nations and the European Union combining efforts to
pool resources and capacity for arctic science; (ii) The Agreement on
Enhancing International Arctic Scientific Cooperation, negotiated
under the auspices of the Arctic Council and put into effect in 2018;
and (iii) The Agreement to Prevent Unregulated High Seas Fisheries
in the Central Arctic Ocean (155), a rare example of application of the
precautionary principle. Given that very little is known about the ma-
rine resources and ecosystem conditions of the region beyond the
national jurisdictions of the Arctic nations, it would be impossible to
manage a commercial fishery in that region on a sustainable basis.
These developments are encouraging and reflect increasing aware-
ness of the rapid rate of change in the Arctic and the critical need to
understand how those changes are affecting the region and the world.

The close of the Fourth IPY saw the publication of syntheses
calling for increased international, multidisciplinary research collab-
oration to improve the prospects of foreseeing and mitigating con-
sequences of future warming in the polar regions (118). Although
these and other examples demonstrate some progress toward that
goal over the ensuing decade, more can be done by the nations of
the world to work together to advance meaningful scientific cooper-
ation in the polar regions. In the absence of efforts to curb or reduce
carbon emissions over the next two to four decades, warming, especially
in the northern high latitudes, is likely to accelerate (I). Given the
implications of this warming, it is essential to also accelerate efforts
to better understand, prepare for, and be able to address the environ-
mental, ecological, and societal changes that will result from continued
high-latitude warming.
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